WO2000022985A1 - Appareil permettant la ventilation controlee d'un patient - Google Patents
Appareil permettant la ventilation controlee d'un patient Download PDFInfo
- Publication number
- WO2000022985A1 WO2000022985A1 PCT/US1998/022408 US9822408W WO0022985A1 WO 2000022985 A1 WO2000022985 A1 WO 2000022985A1 US 9822408 W US9822408 W US 9822408W WO 0022985 A1 WO0022985 A1 WO 0022985A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- patient
- lungs
- manifold
- infant
- breathing
- Prior art date
Links
- 238000009423 ventilation Methods 0.000 title claims description 11
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 46
- 210000004072 lung Anatomy 0.000 claims abstract description 43
- 230000000241 respiratory effect Effects 0.000 claims abstract description 12
- 210000000056 organ Anatomy 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 20
- 238000004891 communication Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 5
- 230000033764 rhythmic process Effects 0.000 abstract description 4
- 230000002747 voluntary effect Effects 0.000 abstract description 3
- 238000003384 imaging method Methods 0.000 description 8
- 230000003190 augmentative effect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 206010006322 Breath holding Diseases 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 208000003443 Unconsciousness Diseases 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 210000003811 finger Anatomy 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000003434 inspiratory effect Effects 0.000 description 2
- 230000004199 lung function Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 210000003813 thumb Anatomy 0.000 description 2
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010039897 Sedation Diseases 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000036280 sedation Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/541—Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/021—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/201—Controlled valves
- A61M16/202—Controlled valves electrically actuated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/208—Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/208—Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
- A61M16/209—Relief valves
Definitions
- TITLE APPARATUS FOR CONTROLLED VENTILATION OF A PATIENT
- This invention relates to apparatus for controlling breathing of infants and other patients in connection with pulmonary diagnostic procedures and more particularly to apparatus for producing a pause in breathing of an infant or patient to permit visualization of the lungs.
- HRCT high resolution computed tomography
- the technique also involves voluntary inspiration to near full lung inflation before breath holding to minimize any non-inflated volumes and to distend and better display the pulmonary airways, vessels, and parenchyma.
- expiratory HRCT scans are desirable to identify air-trapping and differentiate causes for mosaic lung attentuation.
- the infant's inhalations are augmented by gentle overpressure of air synchronized with the infant's natural inhalations so that the infant effectively inhales to near full lung capacity for several successive inspirations.
- This increase in ventilation produces a mild hypocarbia (i.e., decrease in blood carbon dioxide level) which decreases pulmonary drive, and the rapid chest expansion produces a vagally mediated pause in spontaneous respiratory effort (the Hering-Breuer response) .
- the augmented supply of air also assures that all organs are amply provided with oxygen. After a relatively few augmented inhalations, the infant ordinarily naturally pauses its breathing.
- the equipment senses the pause, inflates the infant's lungs to maximum capacity, and activates the compression vest to produce a maximum forced exhalation.
- the rate of flow, recorded by a pneumotachograph, is a useful measure of the infant's lung function. This procedure and equipment has proved to be of great clinical value in the treatment of children afflicted with cystic fibrosis.
- the automatic breathing control equipment is complex and combined with flow measuring equipment to produce a physiological measurement. Consequently it is not readily portable nor adaptable to other situations in which a simpler device would be useful.
- the apparatus of the invention which consists essentially of a manifold, adapted to be connected to a source of breathable air, that is in fluid communication with a face mask and is provided with a pressure-limiting valve and an outlet port that can be occluded by the physician or operator.
- the operator closes the outlet port during the infant's inhalations to provide augmented inspirations synchronized with the infant's natural breathing rhythm.
- the pressure is controlled by the pressure-limiting valve, which is adjusted to provide a pressure calculated to inflate the lungs to about full lung capacity.
- the infant After a few such full breaths, the infant is temporarily satiated and naturally pauses its breathing for several seconds.
- the physician or another operator can trigger the operation of the imaging instrument, e.g., a CT scanner, MRI scanner, x- ray camera or the like.
- a further object is to provide an apparatus that can be used by a physician to induce an infant to pause its breathing.
- a further object is to provide an apparatus that can assist a physician in obtaining an image of an infant' s lungs .
- a further object is to provide an apparatus that can be used to induce a pause in an infant's breathing during which a CT scan of the lungs or other organs can be obtained.
- a further object is to provide an apparatus that can be used to induce a pause in an infant's breathing during which an MRI scan of the lungs or other organs can be obtained.
- a further object is to provide an apparatus for producing respiratory pauses in a patient at specific desired levels of lung inflation.
- a further object is to provide a simple and portable apparatus that a medical practitioner can use to control the ventilation of an infant or adult who is not capable of voluntarily executing a breathhold maneuver.
- FIG. 1 illustrates an embodiment of the apparatus of the invention having an outlet port adapted for manual occlusion.
- Figure 2 illustrates an embodiment of the apparatus of the invention having an outlet control valve.
- images can be obtained in infants by a "stop ventilation" technique in which the infant is induced to pause its breathing for a brief period of time, whereupon the lungs can be inflated to a desired volume and an image, e.g., an HRCT scan, can be obtained in the short interval before the infant resumes normal tidal breathing.
- a stop ventilation technique in which the infant is induced to pause its breathing for a brief period of time, whereupon the lungs can be inflated to a desired volume and an image, e.g., an HRCT scan, can be obtained in the short interval before the infant resumes normal tidal breathing.
- the physiological basis for "capturing" the infant's ventilation and inducing a pause depends, as discussed above, on a combination of a step increase in ventilation, which produces mild hypocarbia, thereby reducing respiratory drive, and rapid chest expansion, which produces a vagally mediated pause in spontaneous respiratory effort (the Hering-Breuer response) .
- the infant In order to induce a pause in an infant's breathing the infant must be provided with augmented inspirations for a few cycles of breathing in order to decrease the natural stimuli for breathing and provide sufficient oxygen to last through the pause. Thereupon the infant's natural reflexes will cause its breathing to stop until the levels of the blood gases return to values that again stimulate breathing, whereupon the infant naturally starts breathing again.
- an infant is fitted with a face mask, surrounding its nose and mouth, which is connected to a source of breathable air capable of supplying a flow of air sufficient for breathing at a pressure sufficient to inflate the lungs to about full capacity.
- the source of air should be capable of supplying air at a pressure of about 25-30 centimeters of water above atmospheric pressure.
- the air is conveniently supplied to the mask through a manifold provided with an inlet port adapted to be connected to the source of air, a controllable outlet port and a pressure-limiting relief valve.
- the manifold may be a simple tube leading from the air supply to an open end, with the face mask and pressure-limiting valve connected to the tube through T-fittings.
- the outlet port, or open end of the air supply tube may be of such a size that it can be simply occluded by the operator's thumb or finger.
- the outlet port can be provided with a valve that can be opened and closed by the operator, either directly, by a mechanical action, or indirectly, e.g., through an electrical actuator and appropriate manually- operated switch.
- Figure 1 illustrates a breathing controller 100 of the invention having a manifold 102 with an inlet port 104.
- the inlet port 104 is connected to a source of pressurized air 120 by air supply tube 122.
- the source of air 120 should be capable of supplying an air flow at a volume to provide sufficient air for normal breathing of the patient and at a pressure that can inflate the lungs of the patient to maximum volume in a brief period of time.
- a connecting conduit 106 connects the manifold 102 to the facemask 108.
- the outlet port 112 allows the air to flow out of the manifold when it is open to the atmosphere.
- the outlet port 112 is of such a size that it can be closed manually by an operator, e.g., by pressing a thumb or finger over the port 112.
- a pressure relief or pressure-limiting valve 110 automatically opens when the pressure in the manifold exceeds a preset value and vents the manifold 102 to the atmosphere through exhaust port 114.
- the infant In order to produce a pause in an infant' s respiration and obtain an image of the infant' s lung at a predetermined degree of inflation, the infant is first placed in a state of sleep, either naturally or by sedation.
- the face mask 108 is then fitted about the infant's nose and mouth and sealed to the extent necessary around the edges.
- a face mask having a soft, compressible edge provides an adequate seal, with only minor leaks, that is suitable for imaging procedures.
- a more thorough seal it can be achieved by the use of medical putty.
- the pressure in the manifold 102 is essentially atmospheric, and the infant can breath naturally, inhaling and exhaling through the face mask conduit 106 via the outlet port 112.
- the infant is then positioned within the imaging apparatus, e.g., an HRCT scanner.
- the operator of the breathing control apparatus closes the outlet port 112 in synchrony with the infant's spontaneous inspiratory breaths.
- the port is closed generally at the beginning of an inspiration and held closed until the infant has taken a full breath.
- the pressure in the manifold rises to a pressure predetermined by the setting of the pressure-limiting valve 110.
- the pressure- limiting valve 110 is set to provide a pressure of about 25- 30 centimeters of water, preferably about 25 centimeters of water, over atmospheric pressure. Such a pressure assures that the infant's lungs will be inflated to near full lung capacity.
- the operator When the infant has taken a full breath as determined by observation and/or the opening of the pressure- limiting valve 110, the operator opens the outlet port 112 and allows the infant to exhale. The outlet port 112 is then closed again and the infant is induced to take a second full breath. After a few full breaths, typically 4-5, the blood gas levels reach values such that the infant experiences no need to breathe, as discussed above. Accordingly, the infant's breathing pauses, and the lungs are in a quiescent state. At this time, the infant's lungs can be inflated to full capacity by closing the outlet port 112 and holding it closed for a few seconds. The operator then actuates the imaging device either directly or by signaling the operator of the imaging device.
- the outlet port 112 is opened and the infant is allowed to breathe normally. If an image of the lungs at their end- expiration volume is desired, the outlet port 112 is left open when the infant pauses in breathing and the infant is allowed to exhale to resting volume. The image is then taken at the resting volume and the infant resumes normal breathing after a few seconds.
- Such intermediate inflation may be achieved, for example, by adjusting the pressure limit on the pressure-limiting valve, or by fitting a pressure gauge to the manifold and manually inflating the lungs to a predetermined pressure.
- the technique of taking images of the infant's lungs in a quiescent state is especially useful with rapid sectional or spiral CT scanners.
- FIG. 2 An alternate embodiment of the breathing control apparatus of the invention is illustrated in Figure 2.
- the breathing control apparatus 200 of Figure 2 is generally similar to that illustrated in Figure 1.
- a source of pressurized breathable air 220 provides a stream of breathable air to the apparatus through air supply tube 222.
- the air enters the manifold 202 through inlet port 204.
- a face mask 208 is connected to manifold 202 through face mask conduit 206.
- a pressure-limiting valve 210 opens at a preset pressure to vent the manifold 202 to the atmosphere through exhaust port 214.
- an outlet control valve 216 is provided to open and close the outlet port 212.
- the outlet control valve 216 is opened and closed in rhythm with the infant's breathing in order to produce enhanced inhalations leading to a pause in the infant's breathing.
- the operator may open and close the outlet control valve 216 manually or by a mechanical or electrical valve operator as is conventional in the art of pneumatic control.
- the manifold is merely a chamber for placing the elements of the apparatus into fluid communication. Accordingly, the pressure-limiting valve could be connected to the face mask conduit 106 or 206, or could be integrated into the face mask itself.
- the bias flow arrangement illustrated wherein the air flows from the inlet port to the outlet port and the face mask is connected through a side tube, is believed to be the most convenient, other arrangements are not excluded.
- the outlet port could be located between the source of air and the face mask.
- Other measuring instruments can also be incorporated into the apparatus of the invention. For example, sensors to monitor the level of carbon dioxide in the exhaled air, pressure sensors to measure and/or record pressure, or a pneumotachometer to measure and/or record gas flow rate could be placed in the face mask or adjacent air conduits.
- augmented inspirations should preferably be closely spaced, however, for maximum efficacy in performing the procedure.
- the stopped ventilation procedure is especially useful in visualizing the lungs themselves, adjacent abdominal organs such as the liver and spleen are also moved by the action of the diaphragm. Consequently, scanned images of such organs are also degraded by respiratory motion in patients that cannot voluntarily hold their breath. Therefore, the apparatus and procedure of the invention are also useful in obtaining images of other organs that are moved by a patient's natural breathing.
- the apparatus can also be used for the same purpose with adults who cannot follow instructions, e.g., unconscious, mentally impaired, or confused persons.
- the ventilation apparatus is also useful in assisting breathing in persons who are having difficulty in breathing because of a medical emergency or trauma, if a source of air is available.
- air enriched in oxygen, pure oxygen, or air containing other therapeutically useful gases, such as anesthetic agents, or x-ray contrast agents can be used as a breathable gas in the apparatus of the invention. Accordingly, the apparatus is useful in hospitals for breathing assistance and resuscitation procedures.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Pulmonology (AREA)
- Emergency Medicine (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
L'invention concerne un appareil (100) permettant de produire une pause dans le cycle respiratoire d'un infant ou d'un patient incapable de retenir volontairement sa respiration. Ledit appareil comprend un collecteur (102) comportant un orifice (104) d'admission conçu pour être connecté à une source d'air ou autre gaz (120) respirable, un orifice (112) de sortie fermé, un masque (108) facial relié au collecteur, et une valve (110) de limitation de pression reliée au collecteur. On provoque une pause dans le cycle respiratoire du patient en insufflant de l'air dans ses poumons, en synchronisation avec l'inspiration naturelle, jusqu'à atteindre un volume supérieur au volume d'inspiration normal, et ce, sur plusieurs cycles respiratoires rapprochés. On parvient à insuffler de l'air dans les poumons du patient en plaçant le masque facial sur son visage, et en obstruant l'orifice de sortie de manière à introduire l'air pressurisé dans les poumons du patient. Après quelques cycles d'inspiration profonde, le rythme respiratoire d'un enfant ou d'un patient fait naturellement une pause de quelques secondes, pause pendant laquelle il est possible de prendre une image, notamment une radiographie, des poumons et/ou des organes adjacents.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1998/022408 WO2000022985A1 (fr) | 1998-10-22 | 1998-10-22 | Appareil permettant la ventilation controlee d'un patient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1998/022408 WO2000022985A1 (fr) | 1998-10-22 | 1998-10-22 | Appareil permettant la ventilation controlee d'un patient |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000022985A1 true WO2000022985A1 (fr) | 2000-04-27 |
Family
ID=22268135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/022408 WO2000022985A1 (fr) | 1998-10-22 | 1998-10-22 | Appareil permettant la ventilation controlee d'un patient |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2000022985A1 (fr) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002016957A1 (fr) | 2000-08-25 | 2002-02-28 | Zamir Hayek | Methode d'irm |
WO2003066146A1 (fr) * | 2002-02-04 | 2003-08-14 | Fisher & Paykel Healthcare Limited | Appareil d'assistance respiratoire |
US6705318B1 (en) | 1999-04-09 | 2004-03-16 | Archibald I. J. Brain | Disposable LMA |
US6792948B2 (en) | 2003-01-22 | 2004-09-21 | Archibald I. J. Brain | Laryngeal mask airway device with airway tube having flattened outer circumference and elliptical inner airway passage |
US6918388B2 (en) | 1997-07-25 | 2005-07-19 | The Laryngeal Mask Company Limited | Intubating laryngeal mask |
US7004169B2 (en) | 1999-10-07 | 2006-02-28 | Indian Ocean Medical Inc. | Laryngeal mask with large-bore gastric drainage |
US7134431B2 (en) | 2003-09-08 | 2006-11-14 | Indian Ocean Medical Inc. | Laryngeal mask airway device with position controlling tab |
US7156100B1 (en) | 1998-10-06 | 2007-01-02 | The Laryngeal Mask Company Ltd. | Laryngeal mask airway device |
US7383069B2 (en) | 1997-08-14 | 2008-06-03 | Sensys Medical, Inc. | Method of sample control and calibration adjustment for use with a noninvasive analyzer |
FR2923152A1 (fr) * | 2007-11-06 | 2009-05-08 | Gen Electric | Procede d'acquisition d'une image radiologique tridimensionnelle d'un organe en mouvement |
WO2015002661A1 (fr) * | 2006-04-17 | 2015-01-08 | The Periodic Breathing Foundation, Llc | Procédé et système pour réguler la respiration |
WO2015002662A1 (fr) * | 2013-07-02 | 2015-01-08 | The Periodic Breathing Foundation, Llc | Procédé et système pour réguler la respiration |
US9265904B2 (en) | 2009-07-06 | 2016-02-23 | Teleflex Life Sciences | Artificial airway |
US9498591B2 (en) | 2005-05-27 | 2016-11-22 | The Laryngeal Mask Company Ltd. | Laryngeal mask airway device with a support for preventing occlusion |
US9528897B2 (en) | 2009-08-13 | 2016-12-27 | Chimden Medical Pty Ltd | Pressure indicator |
US9675772B2 (en) | 2010-10-15 | 2017-06-13 | The Laryngeal Mask Company Limited | Artificial airway device |
US9694150B2 (en) | 1998-08-13 | 2017-07-04 | The Laryngeal Mask Company Limited | Laryngeal mask airway device |
US9974912B2 (en) | 2010-10-01 | 2018-05-22 | Teleflex Life Sciences Unlimited Company | Artificial airway device |
US10549054B2 (en) | 2011-02-02 | 2020-02-04 | Teleflex Life Sciences Unlimited Company | Artificial airway |
US10576229B2 (en) | 2009-03-03 | 2020-03-03 | The Laryngeal Mask Company Limited | Artificial airway device |
US10806327B2 (en) | 2011-11-30 | 2020-10-20 | Teleflex Life Sciences Pte, Ltd. | Laryngeal mask for use with an endoscope |
WO2022073339A1 (fr) * | 2020-10-08 | 2022-04-14 | 王洪奎 | Aspirateur isométrique |
EP4374900A1 (fr) * | 2022-11-22 | 2024-05-29 | Salk - Gemeinnützige Salzburger Landeskliniken Betriebsgesellschaft mbH | Dispositif et système de respiration pour ventilation à pression positive et traitement de pression positive continue des voies respiratoires pour réanimation néonatale |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5271401A (en) * | 1992-01-15 | 1993-12-21 | Praxair Technology, Inc. | Radiological imaging method |
US5513647A (en) * | 1994-05-03 | 1996-05-07 | Childrens Hospital Inc | Method for measuring adult-type pulmonary function tests in sedated infants and apparatus therefor |
US5551419A (en) * | 1994-12-15 | 1996-09-03 | Devilbiss Health Care, Inc. | Control for CPAP apparatus |
US5720282A (en) * | 1996-09-06 | 1998-02-24 | Wright; Clifford | Universal respiratory apparatus and method of using same |
US5732702A (en) * | 1996-02-19 | 1998-03-31 | Siemens Aktiengesellschaft | Method and apparatus for functional imaging |
-
1998
- 1998-10-22 WO PCT/US1998/022408 patent/WO2000022985A1/fr unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5271401A (en) * | 1992-01-15 | 1993-12-21 | Praxair Technology, Inc. | Radiological imaging method |
US5513647A (en) * | 1994-05-03 | 1996-05-07 | Childrens Hospital Inc | Method for measuring adult-type pulmonary function tests in sedated infants and apparatus therefor |
US5551419A (en) * | 1994-12-15 | 1996-09-03 | Devilbiss Health Care, Inc. | Control for CPAP apparatus |
US5732702A (en) * | 1996-02-19 | 1998-03-31 | Siemens Aktiengesellschaft | Method and apparatus for functional imaging |
US5720282A (en) * | 1996-09-06 | 1998-02-24 | Wright; Clifford | Universal respiratory apparatus and method of using same |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6918388B2 (en) | 1997-07-25 | 2005-07-19 | The Laryngeal Mask Company Limited | Intubating laryngeal mask |
US7383069B2 (en) | 1997-08-14 | 2008-06-03 | Sensys Medical, Inc. | Method of sample control and calibration adjustment for use with a noninvasive analyzer |
US9694150B2 (en) | 1998-08-13 | 2017-07-04 | The Laryngeal Mask Company Limited | Laryngeal mask airway device |
US7156100B1 (en) | 1998-10-06 | 2007-01-02 | The Laryngeal Mask Company Ltd. | Laryngeal mask airway device |
US6705318B1 (en) | 1999-04-09 | 2004-03-16 | Archibald I. J. Brain | Disposable LMA |
US7004169B2 (en) | 1999-10-07 | 2006-02-28 | Indian Ocean Medical Inc. | Laryngeal mask with large-bore gastric drainage |
GB2371364B (en) * | 2000-08-25 | 2005-05-18 | Zamir Hayek | MRI method |
WO2002016957A1 (fr) | 2000-08-25 | 2002-02-28 | Zamir Hayek | Methode d'irm |
JP2004507297A (ja) * | 2000-08-25 | 2004-03-11 | ザミール ハイエク | Mri法 |
US7509157B2 (en) * | 2000-08-25 | 2009-03-24 | Zamir Hayek | MRI method |
GB2371364A (en) * | 2000-08-25 | 2002-07-24 | Zamir Hayek | MRI method |
US8565855B2 (en) | 2000-08-25 | 2013-10-22 | Zamir Hayek | MRI method |
US9913953B2 (en) | 2002-02-04 | 2018-03-13 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
US9750905B2 (en) | 2002-02-04 | 2017-09-05 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
US7341059B2 (en) | 2002-02-04 | 2008-03-11 | Fisher & Paykel Healthcare Limited | Breathing assistance apparatus |
WO2003066146A1 (fr) * | 2002-02-04 | 2003-08-14 | Fisher & Paykel Healthcare Limited | Appareil d'assistance respiratoire |
US9027559B2 (en) | 2003-01-22 | 2015-05-12 | The Laryngeal Mask Company Ltd. | Laryngeal mask airway device with airway tube having flattened outer circumference and elliptical inner airway passage |
US6792948B2 (en) | 2003-01-22 | 2004-09-21 | Archibald I. J. Brain | Laryngeal mask airway device with airway tube having flattened outer circumference and elliptical inner airway passage |
US7134431B2 (en) | 2003-09-08 | 2006-11-14 | Indian Ocean Medical Inc. | Laryngeal mask airway device with position controlling tab |
US9498591B2 (en) | 2005-05-27 | 2016-11-22 | The Laryngeal Mask Company Ltd. | Laryngeal mask airway device with a support for preventing occlusion |
US9522245B2 (en) | 2005-05-27 | 2016-12-20 | The Laryngeal Mask Company Ltd. | Laryngeal mask airway device and method of manufacture |
US9662465B2 (en) | 2005-05-27 | 2017-05-30 | The Laryngeal Mask Company Ltd. | Laryngeal mask airway device |
WO2015002661A1 (fr) * | 2006-04-17 | 2015-01-08 | The Periodic Breathing Foundation, Llc | Procédé et système pour réguler la respiration |
FR2923152A1 (fr) * | 2007-11-06 | 2009-05-08 | Gen Electric | Procede d'acquisition d'une image radiologique tridimensionnelle d'un organe en mouvement |
US10576229B2 (en) | 2009-03-03 | 2020-03-03 | The Laryngeal Mask Company Limited | Artificial airway device |
US9265904B2 (en) | 2009-07-06 | 2016-02-23 | Teleflex Life Sciences | Artificial airway |
US10576230B2 (en) | 2009-07-06 | 2020-03-03 | Teleflex Life Sciences Unlimited Company | Artificial airway |
US10126197B2 (en) | 2009-08-13 | 2018-11-13 | Teleflex Life Sciences | Pressure indicator |
US9528897B2 (en) | 2009-08-13 | 2016-12-27 | Chimden Medical Pty Ltd | Pressure indicator |
US9974912B2 (en) | 2010-10-01 | 2018-05-22 | Teleflex Life Sciences Unlimited Company | Artificial airway device |
US9675772B2 (en) | 2010-10-15 | 2017-06-13 | The Laryngeal Mask Company Limited | Artificial airway device |
US10842962B2 (en) | 2010-10-15 | 2020-11-24 | Teleflex Life Sciences Pte. Ltd. | Artificial airway device |
US10549054B2 (en) | 2011-02-02 | 2020-02-04 | Teleflex Life Sciences Unlimited Company | Artificial airway |
US10806327B2 (en) | 2011-11-30 | 2020-10-20 | Teleflex Life Sciences Pte, Ltd. | Laryngeal mask for use with an endoscope |
WO2015002662A1 (fr) * | 2013-07-02 | 2015-01-08 | The Periodic Breathing Foundation, Llc | Procédé et système pour réguler la respiration |
WO2022073339A1 (fr) * | 2020-10-08 | 2022-04-14 | 王洪奎 | Aspirateur isométrique |
EP4374900A1 (fr) * | 2022-11-22 | 2024-05-29 | Salk - Gemeinnützige Salzburger Landeskliniken Betriebsgesellschaft mbH | Dispositif et système de respiration pour ventilation à pression positive et traitement de pression positive continue des voies respiratoires pour réanimation néonatale |
WO2024110548A1 (fr) * | 2022-11-22 | 2024-05-30 | Salk - Gemeinnützige Salzburger Landeskliniken Betriebsgesellschaft Mbh | Dispositif et système de respiration pour traitement par ventilation en pression positive et par pression d'air positive continue pour réanimation néonatale |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000022985A1 (fr) | Appareil permettant la ventilation controlee d'un patient | |
US10070804B2 (en) | Apparatus and method for the collection of samples of exhaled air | |
US10946159B2 (en) | System for providing flow-targeted ventilation synchronized to a patient's breathing cycle | |
EP1400256B1 (fr) | Appareil de ventilation artificielle | |
US6860265B1 (en) | Insufflation-exsufflation system for removal of broncho-pulmonary secretions with automatic triggering of inhalation phase | |
Le Souëf et al. | Forced expiratory maneuvers | |
Milner | Resuscitation of the newborn. | |
US20230226293A1 (en) | Lung airway clearance | |
US5975078A (en) | Respiratory monitoring apparatus | |
US11285287B2 (en) | Tracheostomy or endotracheal tube adapter for speech | |
Fletcher et al. | Passive respiratory mechanics | |
US5513647A (en) | Method for measuring adult-type pulmonary function tests in sedated infants and apparatus therefor | |
WO2001076476A2 (fr) | Procede et appareil de mesure de volumes d'air in vivo | |
US8246550B2 (en) | Comprehensive integrated testing protocol for infant lung function | |
US20170203066A1 (en) | Tracheostomy or endotracheal tube adapter for speech | |
JP2011030990A (ja) | 携帯用人工呼吸器の人命救助ナビゲーション装置 | |
US7108666B2 (en) | Method and apparatus for performing a forced expiratory maneuver in an infant | |
Mammel et al. | Effect of spontaneous and mechanical breathing on dynamic lung mechanics in hyaline membrane disease | |
Milner | The importance of ventilation to effective resuscitation in the term and preterm infant | |
Nickel et al. | Elective surgery on patients with respiratory paralysis | |
Sutt et al. | CASE STUDY 5–7. ADULT WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE | |
Hatch et al. | Comparison of two ventilators used with the T-piece in paediatric anaesthesia | |
Gordon | Bronchoscopy in Pulmonary Atelectasis | |
Spirometers et al. | KEY TERMS | |
CN114748050A (zh) | 鼻阻力测量仪及鼻阻力测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA MX |
|
NENP | Non-entry into the national phase |
Ref country code: CA |