WO2000019543A1 - Photodiode and optical communication system - Google Patents

Photodiode and optical communication system Download PDF

Info

Publication number
WO2000019543A1
WO2000019543A1 PCT/JP1999/005170 JP9905170W WO0019543A1 WO 2000019543 A1 WO2000019543 A1 WO 2000019543A1 JP 9905170 W JP9905170 W JP 9905170W WO 0019543 A1 WO0019543 A1 WO 0019543A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photodiode
wavelength
contact layer
communication system
Prior art date
Application number
PCT/JP1999/005170
Other languages
French (fr)
Japanese (ja)
Inventor
Shojiro Kitamura
Takeo Kawase
Takeo Kaneko
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Publication of WO2000019543A1 publication Critical patent/WO2000019543A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type

Definitions

  • the present invention relates to a photodiode having wavelength selectivity and suitable for use in wavelength division multiplexing optical communication, and an optical communication system using the same.
  • wavelength division multiplexing optical communication capable of high-speed and large-capacity communication has attracted attention.
  • this wavelength division multiplexing optical communication since a plurality of lights having different wavelengths are used as signals, in order to realize low crosstalk communication, it is necessary to use a photodiode having wavelength selectivity on the receiver side. desirable.
  • a photodiode having such wavelength selectivity is described in the literature (J. App 1. Phys. 78 (2), 15 Jul 1995 pp. 607-639).
  • a raised photodiode is disclosed.
  • the distributed reflection type multilayer mirror has wavelength selectivity, it is possible to achieve high wavelength selectivity with a small Q value for a specific wavelength.
  • this photodiode uses a distributed reflection multilayer mirror, it is necessary to accurately control the Mi of each layer.
  • the thickness of the light absorbing layer as well as the layer of the multilayer mirror needs to be set to a length that allows light to resonate between the upper and lower reflective multilayer mirrors. Needs to be controlled. Therefore, this photodiode has a drawback in that strict TO control of each layer is required, and fabrication is not easy. Disclosure of the invention
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a photodiode having wavelength selectivity and easy to manufacture. Another object of the present invention is to enable wavelength division multiplexing optical communication using an extremely simple optical circuit without using optical components such as a multiplexer and a demultiplexer using the photodiode according to the present invention. Another object of the present invention is to provide a simple optical communication system.
  • the photodiode of the present invention includes a semiconductor substrate, a light absorbing layer and a contact layer laminated on the semiconductor substrate, wherein the contact layer has a larger bandwidth than the light absorbing layer, and The contact layer has a thickness JJ capable of absorbing light having a wavelength equal to or less than the wavelength corresponding to the energy of the band width of the contact layer.
  • a film thickness capable of absorbing light having a wavelength equal to or less than the wavelength (human gc ) corresponding to the bandwidth of the contact layer, preferably absorbing 95% or more of such light. Since the contact layer has the largest possible thickness, light having a wavelength equal to or less than the specific wavelength gc is absorbed in the contact layer. Then, the light transmitted through the contact layer enters the light absorbing layer. Therefore, the contact layer functions as a filter that absorbs light in a specific wavelength range.
  • the light absorbing layer has the following formula:
  • the light having a wavelength that satisfies is absorbed.
  • the horizontal axis represents the wavelength
  • the vertical axis represents the photoelectric conversion efficiency of the pin-type photodiode.
  • Part of the incident light L (incident g n ⁇ J) is partially absorbed (the light corresponding to the portion indicated by the symbol a1 in FIG. 7) by the light absorbing layer, and the remaining light is absorbed by the contact layer and the contact layer.
  • Light absorption The light passes through the layer and enters the semiconductor chip.
  • the light in the predetermined wavelength region (including the input gcl and the input gil ) that is larger than the wavelength input gcl and is equal to or less than gil , including the wavelength, is mainly absorbed by the light absorption layer and converted into a photocurrent.
  • the layers other than the light absorption layer that is, the contact layer and the semiconductor substrate, electrons and holes excited by light absorption are annihilated because there is no electric field, and do not contribute to generation of photocurrent.
  • each of the contact layer and the light absorption layer functions as a filter for light in a specific wavelength region, and defines a wavelength region that can contribute to photocurrent to a specific range. And thus has excellent wavelength selectivity.
  • the photodiode Since the photodiode has wavelength selectivity, for example, even if light of wavelength, and light of wavelength ⁇ 2 are on the same optical path, a photodiode having wavelength selectivity corresponding to each wavelength is used. For example, it is possible to independently detect the light of wavelength ⁇ and the light of wavelength ⁇ 2 .
  • the photodiode since the photodiode has wavelength selectivity, for example, as shown in FIG. 7, the wavelength region of light that can be detected by the first photodiode is c1, and the wavelength region of light that can be detected by the second photodiode is c1, as shown in FIG.
  • the wavelength region By setting the wavelength region to be c 2, light of each wavelength can be detected independently.
  • a detectable wavelength region can be specified by controlling the composition and expansion of the contact layer and the light absorbing layer.
  • the control of the yarn and the film thickness is easier than the film formation of a distributed reflection type multilayer mirror or the like, and the photodiode can be manufactured by a simple process.
  • a plurality of lights having different wavelengths can be detected individually (or independently). For example, as shown in FIG. 7, in the use of the photodiode 1 0 0 1 and 1 0 0 2 wavelength region c 1 and c 2 containing the detection light Hachoe i and input 2 do not overlap Thus, two lights can be detected. The same applies to the case where the number of detected light is three or more.
  • good communication can be achieved with a crosstalk of -26 dB or less in wavelength division multiplexing optical communication using two or more signals using the photodiode according to the present invention as a light receiving element. .
  • the photodiode according to the present invention is desirably formed of a direct transition semiconductor in that a good wavelength cutoff characteristic can be obtained.
  • direct transition type semiconductors include AlGaAs, GalInP, ZnSSe and
  • a semiconductor such as an InGaN system can be used.
  • An optical communication system includes a light emitting element, an optical waveguide, and a light receiving element having the above-described photodiode, and the light emitting element and the light receiving element are directly optically connected to each other by the optical waveguide.
  • optical communication system a simple configuration consisting of a light-emitting element, an optical waveguide, for example, an optical fiber, and a light-receiving element having a photodiode according to the present invention is provided.
  • a wavelength division multiplexing optical communication system or the like can be configured with a configuration that does not require optical components such as a device.
  • the element and further, by optically directly coupling each emission port of the plurality of surface emitting lasers constituting the light emitting element, the core of the optical waveguide, and each light receiving surface of the photodiode according to the present invention, Unlike conventional optical communication systems, there is no need for optical components such as lenses, multiplexers, and demultiplexers. As a result, an optical communication system with a simple configuration, easy optical adjustment, and low-cost wavelength division multiplexing transmission can be configured.
  • Another optical communication system includes a first light receiving / emitting element including a light emitting element and a light receiving element having the above-described photodiode, an optical waveguide, and a light emitting element; A second light receiving / emitting element including a light receiving element having the light emitting element, wherein the first light receiving / emitting element and the second light receiving / emitting element are directly optically connected by an optical waveguide.
  • a simple structure including a first light receiving / emitting element, an optical waveguide, for example, an optical fiber and a second light receiving / emitting element, that is, a lens, a multiplexer, a duplexer
  • a wavelength division multiplexing optical communication system can be configured with a configuration that does not require optical components such as the above.
  • the light emitting element is a surface emitting laser, preferably a vertical cavity surface emitting laser.
  • FIG. 1 is a sectional view schematically showing a photodiode according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a manufacturing process of the photodiode shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing a manufacturing process performed subsequently to FIG.
  • FIG. 4 is a diagram showing an optical communication system using the photodiode of the present invention according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing an optical communication system using the photodiode of the present invention according to Embodiment 3 of the present invention.
  • FIG. 6 is a diagram showing an optical communication system using the photodiode of the present invention according to Embodiment 4 of the present invention.
  • FIG. 7 is a diagram showing the relationship between wavelength and photoelectric conversion efficiency for indicating the photoselectivity of the photodiode according to the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a structure of a photodiode 100 according to one embodiment of the present invention.
  • a p - type contact layer 103 made of p - type Al b Ga 1-b As is sequentially laminated to form a pin-type photodiode.
  • a dielectric film 106 made of a silicon oxide film, a silicon nitride film, or the like is formed around a deposition layer formed of a plurality of semiconductor layers formed on the n-type semiconductor substrate 101.
  • the lower end of the dielectric film 106 is formed so as to reach the n-type semiconductor substrate 101.
  • the dielectric film 106 constitutes an incident surface, and is therefore at least optically transparent.
  • a p-type ohmic electrode 107 is formed so as to surround the light receiving section 110.
  • an n-type ohmic mil 09 is formed on the lower surface of the n-type semiconductor substrate 101.
  • the composition ratio of A1 in each layer of the light absorption layer 102 and the p-type contact layer 103 preferably has a relationship of 0 ⁇ a ⁇ b. That is, assuming that the wavelengths corresponding to the energy of the bandwidth of each layer of the light absorption layer 102 and the p-type contact layer 103 are gi and gc , respectively, a relationship of human gc ⁇ human gi is established.
  • Contact layer 103 e absorb light of s ⁇ e wavelengths having a relationship of gc ( ⁇ 8), in order for this light does not reach the light-absorbing layer 102 without a sufficient thickness, preferably, e_ axd ⁇ 0.05 (h: absorption coefficient of contact layer, d: thickness of contact layer).
  • h absorption coefficient of contact layer
  • d thickness of contact layer
  • light Hachoe gc following wavelengths e s is substantially fully in contact layer 103 is (for example, preferably 95% or more) absorption.
  • Hachoe wavelength's less long wavelength a and the wavelength e gi than gc the light (human gc rather human ⁇ ON gi) through the contact layer 103, is absorbed by the light absorbing layer 102.
  • the light of wavelength incident gi than the long wavelength light e L (A gi ⁇ A L) is transmitted through the contact layer 103 and Hikari ⁇ Osamuso 102. Then, only the light absorbed by the light absorption layer 102 contributes to the photocurrent and is detected.
  • light of a wavelength (person s ) having a relationship of s ⁇ person ge is almost absorbed by the contact layer 103.
  • the electron and hole pairs excited by this light absorption disappear because of no electric field in the contact layer, and do not contribute to the generation of photocurrent.
  • Light of a wavelength (incident L ) having a relation of incident gi ⁇ enter t passes through the contact layer 103 and the light absorbing layer 102 and is absorbed or transmitted by the n-type semiconductor substrate 101.
  • the light absorbed by the semiconductor substrate 101 does not contribute to the generation of a photocurrent similarly to the light absorbed by the contact layer 103.
  • MOVPE Metal Organic Vapor Phase E pit axy
  • MOVPE Metal Organic Vapor Phase E pit axy
  • the MO VP E method is used for epitaxial growth, but the MBE (Molecular Beam Epitaxial) method or LPE (Liguid Phase Epitaxial) method may be used.
  • a dielectric film consisting of SiO 2 of about 25 nm is deposited on the epitaxial growth layer by atmospheric pressure thermal CVD (Chemi ca 1 Vapor Deposition). Form 105.
  • the dielectric film 105 prevents surface contamination during the process of forming the epitaxial growth layer.
  • the n-type semiconductor substrate 101 is etched into a circular shape when viewed from the upper surface of the epitaxy forming layer until it is in a columnar shape.
  • Form part 1 1 2 The plane ⁇ of the columnar portion 112 is circular in the present embodiment, but is not limited to this.
  • the photoresist is removed, and the etching cross section is treated with ammonium sulfide or the like.
  • a dielectric film 106 made of SiO 2 is formed on the epitaxial growth layer and the etching cross section by the atmospheric pressure thermal CVD method. Further formed.
  • the dielectric film 106 since the upper surface of the columnar portion 112 becomes the light receiving portion 110 (see FIG. 1), the dielectric film 106 also functions as a protective film and an anti-reflection film in the light receiving portion 110.
  • the optical thickness of the dielectric film 106 in the light-receiving section 110 is set to be approximately one-fourth the wavelength of the light (detected light) used as the light source. Set to be.
  • a ring-shaped contact hole surrounding the light receiving section 110 is opened in the dielectric film 106 on the p-type contact layer 103 to form a p-type ohmic electrode.
  • the n-type semiconductor substrate 101 is polished to a thickness of 50 to 150 1m, which is a thickness that is easy to cleave, and then an n-type semiconductor S109 is formed. I do.
  • each element is cleaved to complete the element shown in FIG. When the device is formed by dicing or the like instead of cleavage, polishing of the n-type semiconductor substrate is not necessary.
  • the n-type semiconductor substrate 101 is replaced with a high-resistance GaAs semiconductor substrate and an n-type contact layer, and the n-type contact layer is exposed by etching to form a dielectric film.
  • a contact hole may be formed in the film to form an n-type semiconductor 109.
  • the photodiode of the present embodiment has wavelength selectivity.
  • ⁇ gc 8 10 nm
  • FIG. 4 shows an embodiment of an optical communication system using the photodiode according to the present invention.
  • the optical communication system includes a light emitting element 100, an optical fiber 20 for transmitting light emitted from the light emitting element 100 0, and a light receiving element 20 for receiving light from the optical fiber 20. 0 and 0.
  • the light emitting device 1000 includes a plurality (two in this example) of surface emitting lasers 10-1 and 10-2 each having a different wavelength of emitted light.
  • two surface emitting lasers 10-1 (oscillation wavelength: human,) and 10-2 (oscillation wavelength: 2 ) having different wavelengths are arranged close to each other, and One exit port is arranged so as to face the core section 22 of the optical fiber 20. It is very difficult for an edge-emitting semiconductor laser to arrange a plurality of light-emitting components having different wavelengths close to each other.
  • a vertical cavity surface emitting laser having a resonance path in a direction perpendicular to the substrate has a high degree of freedom in in-plane arrangement, and the light emitting portions of a plurality of surface emitting lasers having different wavelengths. Are easily arranged close to each other, and are one of the most suitable as the light emitting element of the present invention.
  • the light receiving element 2 0 0 at least previous remarks third wavelengths's t and person 2 photodetection used possible two photodiodes 1 0 0 1 and 1 0 0 2.
  • the photodiodes 100-1 and 100-2 are arranged with their light receiving surfaces facing the core portion 22 of the optical fiber 20.
  • the wavelength corresponding to the energy of the bandwidth of the light absorption layer and the contact layer of the first photodiode 100-1 constituting the light receiving element 2000 is deviated.
  • human gil Oyobie gcl when is its wavelength corresponding to the energy of the second photodiode 1 0 0 2 bandwidth of the light absorption layer and the contact layer and it's si2 Oyobie gc2, shown in FIG. 7 like,
  • the light emitting element 1000 and the light receiving element 2000 are directly optically connected by the optical waveguide 20, and two-wavelength wavelength division multiplexing optical communication can be performed. The same applies when three or more different wavelengths are used. Of course, it can be applied to the case of a single wavelength.
  • a device mounted with a plurality of surface emitting lasers having different oscillation wavelengths is used as the light emitting device used in the present S mode. (I-L characteristics) are desirable, but the present invention is not limited to this, and a monolithic surface-emitting laser that can emit light of multiple wavelengths can be used.
  • optical fiber 20 it is preferable to use a GI (Graded Index) type fluoroplastic fiber or a GI type HPCF (Hard Polymer Clad Fiber) having a large core diameter, small light loss and small dispersion. .
  • GI Gram Index
  • HPCF Hard Polymer Clad Fiber
  • an element mounted with a plurality of surface emitting lasers having different oscillation wavelengths as a light emitting element, and a plurality of photodiodes according to the present invention used as a light receiving element can emit light. It is possible to configure a wavelength division multiplexing optical communication system having a simple configuration including three elements: an element, an optical fiber, and a light receiving element. Then, by optically aligning the emission ports of the plurality of surface emitting lasers constituting the light emitting element, the core of the optical fiber, and the light receiving surface of the photodiode according to the present invention, the optical communication system of It does not require optical components such as lenses, multiplexers, and demultiplexers. As a result, an optical communication system with a simple configuration, easy optical adjustment, and low-cost wavelength division multiplex transmission can be configured.
  • the first surface emitting laser 10-1 and the second surface emitting laser 102 are used as light emitting elements, and the first photodiode 100 according to the present invention is used as a light receiving element.
  • the first and second photodiodes 100-2 it was confirmed that good communication with a crosstalk of no more than 26 dB was possible. The following were used as each light emitting element and light receiving element.
  • the first photodiode 100-1 The first photodiode 100-1;
  • the n-type G a As substrate A 1 0. 07 Ga 0 . 93 light absorbing layer of IS4 ⁇ m of As and P-type Al 0. 085 Ga 0. p-type fl Jf 4 ⁇ M consisting 915 As It is a pin- type photodiode with a stacked contact layer, with a gcl of 810 nm and a human gil of 820 nm.
  • Wavelength 815 ⁇ 1 ⁇ 1 ⁇ input gci, input 1 / ⁇ gi
  • Second surface emitting laser 10-2 Second surface emitting laser 10-2;
  • FIG. 5 shows another embodiment of the optical communication system using the photodiode according to the present invention.
  • This optical communication system includes a first light receiving / emitting element 3000, an optical fiber 20, and a second light receiving / emitting element 4000.
  • first light emitting / receiving element 3000 In the first light emitting / receiving element 3000, light of wavelength, can be detected by the first photodiode 100-1, and light of wavelength z can be detected by the second surface emitting laser 10-2. Can be emitted. Further, in the second light emitting / receiving element 4000, light of wavelength 2 can be detected by the second photodiode 100-2, and the wavelength ⁇ can be detected by the first surface emitting laser 10-1. ! Of light can be emitted.
  • gil and ⁇ gcl respectively.
  • the wavelengths corresponding to the energy of the bandwidth of the light absorption layer and the contact layer of the second photodiode 100-2 constituting the second light-receiving / emitting element 40000 are gi2 and human gc2 , respectively.
  • the relationship of human gcl and human gil ⁇ human gc2 ⁇ A gi2 is established.
  • Full-duplex optical communication can be performed by directly optically connecting the first light emitting / receiving element 3000 and the second light emitting / receiving element 4000 with the optical waveguide 20. The same applies when three or more different wavelengths are used.
  • the surface emitting laser and the photodiode according to the present invention capable of detecting light having a wavelength different from the oscillation wavelength of the surface emitting laser are used as the light receiving and emitting elements. Accordingly, a wavelength division multiplexing optical communication system having a simple configuration including three members, a first light receiving / emitting element, an optical fino, and a second light receiving / emitting element can be configured. Then, each light-emitting or emitting surface of one or more surface-emitting lasers constituting each light-receiving / emitting element, the light-receiving surface of one or more photodiodes according to the present invention, and the core portion of the optical waveguide are optically positioned.
  • FIG. 6 shows a light-receiving / emitting element 500 that can be used instead of the light-receiving / emitting element in the optical communication system shown in FIG.
  • the light emitting / receiving element 500 0 has a first monolithic light emitting / receiving element 200-1 and a second monolithic light emitting / receiving element 200-2.
  • the first monolithic light-receiving / emitting element 200-1 comprises a first photodiode 100-1 and a first surface-emitting laser 100-1. 1 are monolithically laminated and formed.
  • the second monolithic light emitting / receiving element 200-2 is formed by monolithically laminating a second photodiode 100-2 and a second surface emitting laser 10-2.

Abstract

A photodiode comprising a light absorbing layer (102) and a contact layer (103) both formed one on the other on a semiconductor substrate (101), the bandwidth of the contact layer (103) being wider than that of the light absorbing layer (102), and the contact layer (103) being thick enough to substantially absorb light having a wavelength less than that corresponding to the energy of the bandwidth of the contact layer.

Description

明 細 書 フォトダイォ一ドおよび光通信システム 技術分野  Description Photodiodes and optical communication systems
本発明は、 波長選択性を有し、 波長分割多重光通信に用いるのに適したフォト ダイオードおよびこれを用いた光通信システムに関するものである。 背景技術  The present invention relates to a photodiode having wavelength selectivity and suitable for use in wavelength division multiplexing optical communication, and an optical communication system using the same. Background art
近年、 高速かつ大容量の通信が可能な波長分割多重光通信が注目されている。 この波長分割多重光通信では、 信号として波長の異なる複数の光を用いることか ら、 低クロストークの通信を実現するには、 受信機側において波長選択性を有す るフォトダイオードを用いることが望ましい。  In recent years, wavelength division multiplexing optical communication capable of high-speed and large-capacity communication has attracted attention. In this wavelength division multiplexing optical communication, since a plurality of lights having different wavelengths are used as signals, in order to realize low crosstalk communication, it is necessary to use a photodiode having wavelength selectivity on the receiver side. desirable.
このような波長選択性を有するフォトダイオードとしては、 文献 (J. App 1. Phy s. 78 (2) , 15 Jul 1995 pp. 607-639) に 分布反射型多層膜ミラ一によって波長選択性をもたせたフォトダイオードが 開示されている。 このフォトダイオードによれば、 分布反射型多層膜ミラ一によ つて波長選択性をもたせることから、 特定の波長に対して Q値が小さく高い波長 選択性を達成することができる。 しかし、 このフォトダイオードでは、 分布反射 型多層膜ミラ一を用いているため、 各層の Mi?を正確に制御する必要がある。 ま た、 多層膜ミラーの層だけでなく光吸収層でも、 その膜厚を上下の反射型多層膜 ミラー間で光が共振するための長さに設定する必要があり、 この点でも正確な層 の膜厚制御が必要となる。 したがって、 このフォトダイオードは、 各層の厳密な TO制御が要求され、 作成が容易でないという難点を有する。 発明の開示  A photodiode having such wavelength selectivity is described in the literature (J. App 1. Phys. 78 (2), 15 Jul 1995 pp. 607-639). A raised photodiode is disclosed. According to this photodiode, since the distributed reflection type multilayer mirror has wavelength selectivity, it is possible to achieve high wavelength selectivity with a small Q value for a specific wavelength. However, since this photodiode uses a distributed reflection multilayer mirror, it is necessary to accurately control the Mi of each layer. In addition, the thickness of the light absorbing layer as well as the layer of the multilayer mirror needs to be set to a length that allows light to resonate between the upper and lower reflective multilayer mirrors. Needs to be controlled. Therefore, this photodiode has a drawback in that strict TO control of each layer is required, and fabrication is not easy. Disclosure of the invention
本発明は、 上記問題点に鑑みてなされたもので、 その目的とするところは、 波 長選択性を有し、 かつ作製の容易なフォトダイオードを提供することである。 また、 本発明の他の目的は、 本発明に係るフォトダイオードを用い、 合波器や 分波器などの光部品を要せず、 極めてシンプルな光回路によつて波長分割多重光 通信が可能な光通信システムを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a photodiode having wavelength selectivity and easy to manufacture. Another object of the present invention is to enable wavelength division multiplexing optical communication using an extremely simple optical circuit without using optical components such as a multiplexer and a demultiplexer using the photodiode according to the present invention. Another object of the present invention is to provide a simple optical communication system.
本発明のフォトダイオードは、 半導体基板、 該半導体基板上に積層された光吸 収層およびコンタクト層が含まれ、 前記コンタクト層は、 そのバンド幅が前記光 吸収層のバンド幅より大きく、 かつ 前記コンタクト層は、 該コンタクト層のバ ンド幅のエネルギーに相当する波長以下の波長を有する光をぼほ吸収できる JJ莫厚 を有する。  The photodiode of the present invention includes a semiconductor substrate, a light absorbing layer and a contact layer laminated on the semiconductor substrate, wherein the contact layer has a larger bandwidth than the light absorbing layer, and The contact layer has a thickness JJ capable of absorbing light having a wavelength equal to or less than the wavelength corresponding to the energy of the band width of the contact layer.
本発明に係るフォトダイォ一ドによれば、 前記コンタクト層のバンド幅に相当 する波長 (人 gc) 以下の波長を有する光を吸収できる膜厚、 好ましくはこのよう な光の 9 5 %以上を吸収できる莫厚を有することから、 コンタクト層において前 記特定波長え gc以下の波長の光が吸収される。 そして、 コンタクト層を透過した 光は、 光吸収層に入射する。 したがって、 コンタクト層は、 特定波長範囲の光を 吸収するフィル夕として機能する。 According to the photodiode of the present invention, a film thickness capable of absorbing light having a wavelength equal to or less than the wavelength (human gc ) corresponding to the bandwidth of the contact layer, preferably absorbing 95% or more of such light. Since the contact layer has the largest possible thickness, light having a wavelength equal to or less than the specific wavelength gc is absorbed in the contact layer. Then, the light transmitted through the contact layer enters the light absorbing layer. Therefore, the contact layer functions as a filter that absorbs light in a specific wavelength range.
より具体的には、 前記コンタクト層のバンド幅のエネルギーに相当する波長を え とし、前記光吸収層のバンド幅のエネルギーに相当する波長をえ giとすると、 前記光吸収層では、 下記式 More specifically, assuming that the wavelength corresponding to the energy of the bandwidth of the contact layer is え and the wavelength corresponding to the energy of the bandwidth of the light absorbing layer is gi , the light absorbing layer has the following formula:
λ gCヽん≤ λ gi λ g C- pan ≤ λ gi
を満たす波長えの光が吸収される。 The light having a wavelength that satisfies is absorbed.
さらに、 この点を第 7図を参照して説明する。 第 7図において、 横軸は波長を 示し、 縦軸は p i n型フォトダイオードの光電変換効率を示す。 まず、 単一のフ オトダイオード 1 0 0— 1についてみると、 コンタクト層のバンド幅のエネルギ 一に相当する波長 A gcl以下の波長え s (人 s≤入 gcl)の光は、一部の光がコンタク ト層によって吸収され、 コンタクト層で吸収されずに透過した光 (第 7図におい て、符号 b 1でしめす部分に相当する光)が光吸収層によって吸収される。一方、 光吸収層のバンド幅のエネルギーに相当する波長人 gilより長い波長 This will be further described with reference to FIG. In FIG. 7, the horizontal axis represents the wavelength, and the vertical axis represents the photoelectric conversion efficiency of the pin-type photodiode. First, looking at a single photodiode 100-1 , the light of wavelength s (person s ≤ input gcl ) less than the wavelength A gcl corresponding to the energy of the bandwidth of the contact layer is partially The light is absorbed by the contact layer, and the light that has passed through without being absorbed by the contact layer (the light corresponding to the portion indicated by the symbol b1 in FIG. 7) is absorbed by the light absorbing layer. On the other hand, the wavelength corresponding to the energy of the bandwidth of the light absorption layer is longer than human gil.
入 L (入 gn <え J の光は、 一部の光 (第 7図において、 符号 a 1で示す部分に相 当する光) が光吸収層によって吸収され、 残りの光がコンタクト層および光吸収 層を透過し、 半導体勘反に入射する。 Part of the incident light L (incident g n <J) is partially absorbed (the light corresponding to the portion indicated by the symbol a1 in FIG. 7) by the light absorbing layer, and the remaining light is absorbed by the contact layer and the contact layer. Light absorption The light passes through the layer and enters the semiconductor chip.
そして、 波長人 ,を含む、 波長入 gclより大きく波長え gil以下の所定波長領域 (入 gclく入 ^え gil) の光は、 主として光吸収層に吸収されて、 光電流に変換さ れる。 光吸収層以外の層、 すなわちコンタクト層および半導体基板では、 光吸収 によって励起された電子およびホールは電界がないため対消滅し、 光電流の発生 に寄与しない。 Then, the light in the predetermined wavelength region (including the input gcl and the input gil ) that is larger than the wavelength input gcl and is equal to or less than gil , including the wavelength, is mainly absorbed by the light absorption layer and converted into a photocurrent. In the layers other than the light absorption layer, that is, the contact layer and the semiconductor substrate, electrons and holes excited by light absorption are annihilated because there is no electric field, and do not contribute to generation of photocurrent.
以上のように、 本発明のフォトダイオードでは、 コンタクト層および光吸収層 がそれそれ特定波長領域の光に対してフィル夕として機能し、 光電流に寄与でき る波長領域を特定の範囲に規定することができ、 したがって優れた波長選択性を 有する。  As described above, in the photodiode of the present invention, each of the contact layer and the light absorption layer functions as a filter for light in a specific wavelength region, and defines a wavelength region that can contribute to photocurrent to a specific range. And thus has excellent wavelength selectivity.
フォトダイオードが波長選択性を有するため、 たとえば、 波長え ,の光と波長 λ 2の光が同一光路上にあっても、 それそれの波長に対応する波長選択性を有す るフォトダイオードを用いれば、波長え ,の光と波長 λ 2の光を独立に検出するこ とができる。 つまり、 フォトダイオードが波長選択性を有することによって、 第 7図に示すように、 たとえば第 1のフォトダイオードが検出可能な光の波長領域 を c 1、 第 2のフォトダイオードが検出可能な光の波長領域を c 2となるように それそれ設定することにより、 それそれの波長の光を独立に検出することができ る。 Since the photodiode has wavelength selectivity, for example, even if light of wavelength, and light of wavelength λ 2 are on the same optical path, a photodiode having wavelength selectivity corresponding to each wavelength is used. For example, it is possible to independently detect the light of wavelength λ and the light of wavelength λ 2 . In other words, since the photodiode has wavelength selectivity, for example, as shown in FIG. 7, the wavelength region of light that can be detected by the first photodiode is c1, and the wavelength region of light that can be detected by the second photodiode is c1, as shown in FIG. By setting the wavelength region to be c 2, light of each wavelength can be detected independently.
本発明のフォトダイォードにおいては、 コンタクト層および光吸収層の組成お よび膨享を制御することによって、 検出可能な波長領域を特定できる。 そして、 これらの糸 および膜厚の制御は、 分布反射型多層膜ミラーなどの成膜に比べて 容易であり、 簡易なプロセスでフォトダイオードを製造できる。  In the photodiode of the present invention, a detectable wavelength region can be specified by controlling the composition and expansion of the contact layer and the light absorbing layer. The control of the yarn and the film thickness is easier than the film formation of a distributed reflection type multilayer mirror or the like, and the photodiode can be manufactured by a simple process.
そして、 選択される波長領域が異なる複数のフォトダイオードを用いることに より、 波長の異なる複数の光を個別に (あるいは独立に) 検出できる。 例えば、 第 7図に示すように、波長え iおよび入 2の被検出光を含む波長領域 c 1および c 2が重ならないフォトダイオード 1 0 0— 1および 1 0 0— 2を用いることによ つて、 2つの光を検出できる。 被検出光が 3以上の場合も、 同様である。 By using a plurality of photodiodes having different wavelength ranges to be selected, a plurality of lights having different wavelengths can be detected individually (or independently). For example, as shown in FIG. 7, in the use of the photodiode 1 0 0 1 and 1 0 0 2 wavelength region c 1 and c 2 containing the detection light Hachoe i and input 2 do not overlap Thus, two lights can be detected. The same applies to the case where the number of detected light is three or more.
前記コンタクト層の吸収係数をひとし、 前記コンタクト層の fl J*を dとしたと き、 下記式 Letting the absorption coefficient of the contact layer be d and the fl J * of the contact layer be d The following formula
e - a x d< 0 . 0 5 e- axd <0. 0 5
が満たされることが望ましい。 Is preferably satisfied.
上記式を満たすことにより、 本発明に係るフォトダイォ一ドを受光素子として 用い、 2以上の信号を用いた波長分割多重光通信において、 クロストークが — 2 6 d B以下となる良好な通信ができる。  By satisfying the above expression, good communication can be achieved with a crosstalk of -26 dB or less in wavelength division multiplexing optical communication using two or more signals using the photodiode according to the present invention as a light receiving element. .
本発明に係るフォトダイオードは、 良好な波長のカツトオフ特性が得られる点 で、 直接遷移型の半導体によって形成されることが望ましい。 直接遷移型半導体 としては、 例えば A l G aA s系、 G a l n P系、 Z n S S e系および  The photodiode according to the present invention is desirably formed of a direct transition semiconductor in that a good wavelength cutoff characteristic can be obtained. Examples of direct transition type semiconductors include AlGaAs, GalInP, ZnSSe and
I n G a N系などの半導体を用いることができる。 A semiconductor such as an InGaN system can be used.
本発明に係る光通信システムは、 発光素子、 光導波路、 および上述したような フォトダイオードを有する受光素子を備え、 前記発光素子と前記受光素子とが光 導波路によって直接的に光学接続される。  An optical communication system according to the present invention includes a light emitting element, an optical waveguide, and a light receiving element having the above-described photodiode, and the light emitting element and the light receiving element are directly optically connected to each other by the optical waveguide.
この光通信システムによれば、 発光素子、 光導波路、 例えば光ファイバ、 およ び本発明に係るフォトダイオードを有する受光素子の 3部材からなるシンプルな 構成で、 つまりレンズ, 合波器, 分波器などの光学部品を必要としない構成で、 波長分割多重光通信システムなどを構成することができる。  According to this optical communication system, a simple configuration consisting of a light-emitting element, an optical waveguide, for example, an optical fiber, and a light-receiving element having a photodiode according to the present invention is provided. A wavelength division multiplexing optical communication system or the like can be configured with a configuration that does not require optical components such as a device.
そして、 前記発光素子として異なる発振波長を有する複数の面発光レーザを搭 載した素子、 および前記複数の波長の光をそれそれ個別の素子で検出可能な、 本 発明に係る複数のフォトダイオード有する受光素子を用い、 さらに、 発光素子を 構成する複数の面発光レーザの各出射口と、 光導波路のコアと、 本発明に係るフ オトダイオードの各受光面とを光学的に直接結合することにより、 従来の光通信 システムのように、 レンズ, 合波器, 分波器などの光学部品を必要としない。 そ の結果、 構成がシンプルで、 かつ、 光学調整が容易で、 低コストな波長分割多重 伝送が可能な光通信システムを構成することができる。  And an element mounted with a plurality of surface emitting lasers having different oscillation wavelengths as the light emitting element, and a light receiving device having a plurality of photodiodes according to the present invention, wherein the light of the plurality of wavelengths can be detected by individual elements. By using the element, and further, by optically directly coupling each emission port of the plurality of surface emitting lasers constituting the light emitting element, the core of the optical waveguide, and each light receiving surface of the photodiode according to the present invention, Unlike conventional optical communication systems, there is no need for optical components such as lenses, multiplexers, and demultiplexers. As a result, an optical communication system with a simple configuration, easy optical adjustment, and low-cost wavelength division multiplexing transmission can be configured.
前記発光素子として、 発振波長の異なる複数の面発光レーザ、 好ましくは垂直 共振器型の面発光レーザを配置して構成された素子を用いることにより、 しきい 値および電流—光出射特性の制御が優れ、 かつ組立も容易となる。 本発明に係る他の光通信システムは、 発光素子と前述したようなフォトダイォ —ドを有する受光素子とを含む第 1の受発光素子、光導波路、および発光素子と、 前述したようなフォトダイオードを有する受光素子とを含む第 2の受発光素子を 備え、 前記第 1の受発光素子と前記第 2の受発光素子とが光導波路によって直接 的に光学接続される。 By using an element configured by arranging a plurality of surface emitting lasers having different oscillation wavelengths, preferably a vertical cavity surface emitting laser, as the light emitting element, it is possible to control the threshold value and the current-light emission characteristics. Excellent and easy to assemble. Another optical communication system according to the present invention includes a first light receiving / emitting element including a light emitting element and a light receiving element having the above-described photodiode, an optical waveguide, and a light emitting element; A second light receiving / emitting element including a light receiving element having the light emitting element, wherein the first light receiving / emitting element and the second light receiving / emitting element are directly optically connected by an optical waveguide.
この光通信システムによれば、 第 1の受発光素子、 光導波路、 例えば光フアイ ノ^ および第 2の受発光素子の 3者からなるシンプルな構成で、 つまりレンズ、 合波器、 分波器などの光学部品を必要としない構成で、 波長分割多重光通信シス テムを構成することができる。  According to this optical communication system, a simple structure including a first light receiving / emitting element, an optical waveguide, for example, an optical fiber and a second light receiving / emitting element, that is, a lens, a multiplexer, a duplexer A wavelength division multiplexing optical communication system can be configured with a configuration that does not require optical components such as the above.
前記第 1および第 2の受発光素子では、 前記発光素子が面発光レーザ、 好まし くは垂直共振器型の面発光レーザであることが望ましい。 図面の簡単な説明  In the first and second light emitting and receiving elements, it is preferable that the light emitting element is a surface emitting laser, preferably a vertical cavity surface emitting laser. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態 1に係るフォトダイォ一ドを模式的に示す断面図 である。  FIG. 1 is a sectional view schematically showing a photodiode according to Embodiment 1 of the present invention.
第 2図は、 第 1図に示すフォトダイォ一ドの製造プロセスを模式的に示す断面 図である。 第 3図は、 第 2図に引き続き行われる製造プロセスを模式的に示す断 面図である。  FIG. 2 is a cross-sectional view schematically showing a manufacturing process of the photodiode shown in FIG. FIG. 3 is a cross-sectional view schematically showing a manufacturing process performed subsequently to FIG.
第 4図は、 本発明の実施形態 2に係る、 本発明のフォトダイオードを用いた光 通信システムを示す図である。  FIG. 4 is a diagram showing an optical communication system using the photodiode of the present invention according to Embodiment 2 of the present invention.
第 5図は、 本発明の実施形態 3に係る、 本発明のフォトダイオードを用いた光 通信システムを示す図である。  FIG. 5 is a diagram showing an optical communication system using the photodiode of the present invention according to Embodiment 3 of the present invention.
第 6図は、 本発明の実施形態 4に係る、 本発明のフォトダイオードを用いた光 通信システムを示す図である。  FIG. 6 is a diagram showing an optical communication system using the photodiode of the present invention according to Embodiment 4 of the present invention.
第 7図は、 本発明に係るフォトダイオードの光選択性を示すための、 波長と光 電変換効率との関係を表す図である。 発明を実施するための最良の形態 FIG. 7 is a diagram showing the relationship between wavelength and photoelectric conversion efficiency for indicating the photoselectivity of the photodiode according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の の形態について、 図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(難形態 1)  (Difficult form 1)
(デバイス構造)  (Device structure)
第 1図は、 本発明の一実施の形態に係るフォトダイオード 100の構造を模式 的に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing a structure of a photodiode 100 according to one embodiment of the present invention.
同図に示すフォトダイオード 100では、 n型 G a Asからなる n型半導体基 板 101上に、 i型 Al aGa 1-aAsからなる光吸収層 102および In the photodiode 100 shown in FIG. 1, a light absorption layer 102 made of i-type Al a Ga 1-a As and an n-type semiconductor substrate 101 made of n-type
p型 Al bGa 1-bAsからなる p型コンタクト層 103が順次積層され、 pin 型フォトダイオードを構成している。 A p - type contact layer 103 made of p - type Al b Ga 1-b As is sequentially laminated to form a pin-type photodiode.
また、 n型半導体基板 101上に形成された複数の半導体層からなる堆積層の 周囲には、 シリコン酸化膜、 シリコン窒化膜などからなる誘電体膜 106が形成 されている。 この誘電体膜 106の下端は n型半導体基板 101に到達するよう に形成されている。 また、 p型コンタクト層 103の上面の受光部 110では、 誘電体膜 106は入射面を構成するため、 少なくとも光学的に透明である。  Further, a dielectric film 106 made of a silicon oxide film, a silicon nitride film, or the like is formed around a deposition layer formed of a plurality of semiconductor layers formed on the n-type semiconductor substrate 101. The lower end of the dielectric film 106 is formed so as to reach the n-type semiconductor substrate 101. In the light receiving section 110 on the upper surface of the p-type contact layer 103, the dielectric film 106 constitutes an incident surface, and is therefore at least optically transparent.
さらに、 p型コンタクト層 103の上面には、 受光部 110を囲むように p型 ォーミック電極 107が形成されている。 n型半導体基板 101の下面には、 n 型ォーミック mi l 09が形成されている。  Further, on the upper surface of the p-type contact layer 103, a p-type ohmic electrode 107 is formed so as to surround the light receiving section 110. On the lower surface of the n-type semiconductor substrate 101, an n-type ohmic mil 09 is formed.
ここで、 光吸収層 102および p型コンタクト層 103の各層の A 1の組成割 合については、 0≤a<bという関係とすることが好ましい。 すなわち、 光吸収 層 102および p型コンタクト層 103の各層のバンド幅のエネルギーに相当す る波長を、 それそれ入 giおよびえ gcとすると、 人 gc<人 giという関係になる。 コンタクト層 103は、 え s≤え gcの関係を有する波長 (λ8)の光を吸収し、 この光が光吸収層 102に到達しないために十分な厚さをなし、 好ましくは、 e_axd<0. 05 (ひ:コンタクト層の吸収係数、 d :コンタクト層厚) の関係 を満たす厚さを有する。 これは前述したように、 2以上の異なる波長、 たとえば 第 7図に示す 2つの波長え! (Agcl<A !≤Agil)および λ2 (Agc2<A2≤Agi2) の 2波長で波長分割多重光通信を行うときに、 クロストークが一 26dB以下で あることを意味する。 Here, the composition ratio of A1 in each layer of the light absorption layer 102 and the p-type contact layer 103 preferably has a relationship of 0 ≦ a <b. That is, assuming that the wavelengths corresponding to the energy of the bandwidth of each layer of the light absorption layer 102 and the p-type contact layer 103 are gi and gc , respectively, a relationship of human gc <human gi is established. Contact layer 103, e absorb light of s ≤ e wavelengths having a relationship of gc (λ 8), in order for this light does not reach the light-absorbing layer 102 without a sufficient thickness, preferably, e_ axd < 0.05 (h: absorption coefficient of contact layer, d: thickness of contact layer). This is, as mentioned above, two or more different wavelengths, for example the two wavelengths shown in Figure 7! (A gcl <A! ≤A gil ) and λ 2 (A gc2 <A 2 ≤A gi2 ) It means there is.
受光部 110から入射する光のうち、 波長え gc以下の波長え s (え s≤Agc)の 光はコンタクト層 103でほぼ充分に (たとえば、 好ましくは 95%以上) 吸収 される。波長え gcよりも長波長でかつ波長え gi以下の波長人 , (人 gcく人 ^入 gi) の光はコンタクト層 103を透過し、 光吸収層 102で吸収される。 さらに、 波 長入 giより長波長の光え L (Agi<AL)の光は、 コンタクト層 103および光吸 収層 102を透過する。 そして、 光吸収層 102で吸収された光のみが光電流に 寄与し、 検出される。 Of the light incident from the light receiving unit 110, light Hachoe gc following wavelengths e s (e s ≤A gc) is substantially fully in contact layer 103 is (for example, preferably 95% or more) absorption. Hachoe wavelength's less long wavelength a and the wavelength e gi than gc, the light (human gc rather human ^ ON gi) through the contact layer 103, is absorbed by the light absorbing layer 102. Furthermore, the light of wavelength incident gi than the long wavelength light e L (A gi <A L) is transmitted through the contact layer 103 and Hikari吸Osamuso 102. Then, only the light absorbed by the light absorption layer 102 contributes to the photocurrent and is detected.
つまり、 え s≤人 geの関係を有する波長 (人 s)の光は、 コンタクト層 103で ほぼ吸収される。 この光吸収によって励起された電子, ホール対は、 コンタクト 層で電界がないため対消滅し、光電流の発生に寄与しない。入 gi<入 tの関係を有 する波長 (入 L)の光は、 コンタクト層 103および光吸収層 102を透過し、 n型半導体基板 101で吸収あるいは透過する。 この半導体基板 101で吸収さ れた光は、 コンタクト層 103で吸収された光と同様に、 光電流の発生に寄与し ない。 That is, light of a wavelength (person s ) having a relationship of s ≤ person ge is almost absorbed by the contact layer 103. The electron and hole pairs excited by this light absorption disappear because of no electric field in the contact layer, and do not contribute to the generation of photocurrent. Light of a wavelength (incident L ) having a relation of incident gi <enter t passes through the contact layer 103 and the light absorbing layer 102 and is absorbed or transmitted by the n-type semiconductor substrate 101. The light absorbed by the semiconductor substrate 101 does not contribute to the generation of a photocurrent similarly to the light absorbed by the contact layer 103.
(デバイスの製造工程)  (Device manufacturing process)
次に、 第 1図に示すフォトダイオード 100の製造工程の一例を第 2図および 第 3図に沿って説明する。  Next, an example of a manufacturing process of the photodiode 100 shown in FIG. 1 will be described with reference to FIG. 2 and FIG.
(a) まず、 第 2図に示すように、 n型 GaAsからなる n型半導体基板 101 上に、 八10.070& 3 3からなる光吸収層102および (a) First, as shown in FIG. 2, on the n-type semiconductor substrate 101 made of n-type GaAs, eight 1 0.07 0 & 3 3 light absorbing layer 102 made of, and
P型 A10.085 G a 0.915 Asからなる p型コンタクト層 103をそれそれ 4 zmの 腿で MOVPE (Me t a 1 Organic Vapor Phase E pit axy)法によって順次ェピタキシャル成長させる。 本実施の形態では、 ェピタキシャル成長に MO VP E法を用いたが、 MBE (Mo lecular Beam E p i t ax y)法あるいは L P E (L i gu i d Phase E pit axy)法を用いてもよい。 P-type A10.085 G a 0. 915 to p-type contact layer 103 of As it then 4 are sequentially Epitakisharu grown thigh zm by MOVPE (Me ta 1 Organic Vapor Phase E pit axy) method. In this embodiment, the MO VP E method is used for epitaxial growth, but the MBE (Molecular Beam Epitaxial) method or LPE (Liguid Phase Epitaxial) method may be used.
次に、常圧熱 CVD (Chemi c a 1 Vapor Deposit ion) 法によってェビタキシャル成長層上に 25nm程度の S iO 2からなる誘電体膜 1 0 5を形成する。 この誘電体膜 1 0 5によって、 ェピタキシャル成長層のプロ セス中での表面汚染を防いでいる。 Next, a dielectric film consisting of SiO 2 of about 25 nm is deposited on the epitaxial growth layer by atmospheric pressure thermal CVD (Chemi ca 1 Vapor Deposition). Form 105. The dielectric film 105 prevents surface contamination during the process of forming the epitaxial growth layer.
(b) 次に、 第 3図に示すように、 図示しないフォトレジストをマスクとして、 n型半導体基板 1 0 1の途中まで、 ェピタキシャル形成層の上面からみて円形の 开狱にエッチングして柱状部 1 1 2を形成する。柱状部 1 1 2の平面开狱は、 本 実施の形態では円形としたが、 これに限られるものではない。  (b) Next, as shown in FIG. 3, using a photoresist (not shown) as a mask, the n-type semiconductor substrate 101 is etched into a circular shape when viewed from the upper surface of the epitaxy forming layer until it is in a columnar shape. Form part 1 1 2 The plane の of the columnar portion 112 is circular in the present embodiment, but is not limited to this.
次に、 フォトレジストを除去し、 硫化アンモニゥム等によるエッチング断面の 処理を行った後、 常圧熱 CVD法によってェピタキシャル成長層上とエッチング 断面に S i O 2からなる誘電体膜 1 0 6をさらに形成する。 ここで、 柱状部 1 1 2の上面の部分は受光部 1 1 0 (第 1図参照) となるため、 誘電体膜 1 0 6は受 光部 1 1 0において保護膜と反射防止膜を兼ねるように、 受光部 1 1 0での誘電 体膜 1 0 6の JJI^を、 その光学的厚さが光源として使用する光 (被検出光) の波 長の実質的にほぼ 1 / 4倍になるように設定する。 Next, the photoresist is removed, and the etching cross section is treated with ammonium sulfide or the like. Then, a dielectric film 106 made of SiO 2 is formed on the epitaxial growth layer and the etching cross section by the atmospheric pressure thermal CVD method. Further formed. Here, since the upper surface of the columnar portion 112 becomes the light receiving portion 110 (see FIG. 1), the dielectric film 106 also functions as a protective film and an anti-reflection film in the light receiving portion 110. As described above, the optical thickness of the dielectric film 106 in the light-receiving section 110 is set to be approximately one-fourth the wavelength of the light (detected light) used as the light source. Set to be.
( c ) 次に、 第 1図に示すように、 p型コンタクト層 1 0 3上の誘電体膜 1 0 6 に受光部 1 1 0を囲むリング状コンタクトホールを開けて p型ォ一ミック電極 1 0 7を形成し、 さらに n型半導体基板 1 0 1をへき開が容易な厚さである 5 0〜 1 5 0〃mの厚さまで研磨した後、 n型ォ一ミック S 1 0 9を形成する。 最後 に各素子にへき開して、 第 1図に示す素子が完成する。 素子をへき開でなくダイ シング等で形成する場合は、 n型半導体基板の研磨は必要ない。  (c) Next, as shown in FIG. 1, a ring-shaped contact hole surrounding the light receiving section 110 is opened in the dielectric film 106 on the p-type contact layer 103 to form a p-type ohmic electrode. After forming 107, the n-type semiconductor substrate 101 is polished to a thickness of 50 to 150 1m, which is a thickness that is easy to cleave, and then an n-type semiconductor S109 is formed. I do. Finally, each element is cleaved to complete the element shown in FIG. When the device is formed by dicing or the like instead of cleavage, polishing of the n-type semiconductor substrate is not necessary.
ここで、 n型半導体基板 1 0 1を高抵抗の G aA s半導体基板と n型コンタク ト層に置き換えて、 この n型コンタクト層をエッチングにより露出させて誘電体 膜を形成し、 この誘電体膜にコンタクトホールを開けて n型ォ一ミヅク l 0 9を形成してもよい。  Here, the n-type semiconductor substrate 101 is replaced with a high-resistance GaAs semiconductor substrate and an n-type contact layer, and the n-type contact layer is exposed by etching to form a dielectric film. A contact hole may be formed in the film to form an n-type semiconductor 109.
以上説明したように本実施の形態のフォトダイォ一ドは、波長選択性を有する。 本実施形態では、 半導体層の組成において、 a = 0 . 0 7、 b = 0 . 0 8 5 としたとき、  As described above, the photodiode of the present embodiment has wavelength selectivity. In this embodiment, when a = 0.07 and b = 0.085 in the composition of the semiconductor layer,
A gi= 8 2 O nm A gi = 8 2 O nm
λ gc= 8 1 0 nm であることを確認した。したがって、波長入 jを入 gc<入!≤ λ giを満たすように、 例えば、 え != 8 1 5 nmと設定することにより、 フォトダイオード 1 0 0によ つて、 波長え!の光を検出することができる。 λ gc = 8 10 nm Was confirmed. Therefore, input the wavelength j and input gc <input! By setting, for example,! = 8 15 nm to satisfy ≤ λ gi , the wavelength can be increased by the photodiode 100! Of light can be detected.
讓形態 2 )  Form 2)
第 4図に、 本発明に係るフォトダイオードを用いた光通信システムの一実施形 態を示す。 この光通信システムは、 発光素子 1 0 0 0と、 この発光素子 1 0 0 0 から出射された光を伝送する光ファイバ 2 0と、 この光ファイバ 2 0からの光を 受光する受光素子 2 0 0 0とを有する。  FIG. 4 shows an embodiment of an optical communication system using the photodiode according to the present invention. The optical communication system includes a light emitting element 100, an optical fiber 20 for transmitting light emitted from the light emitting element 100 0, and a light receiving element 20 for receiving light from the optical fiber 20. 0 and 0.
発光素子 1 0 0 0は、 それそれ出射光の波長が異なる複数 (この例では 2個) の面発光レーザ 1 0— 1および 1 0— 2を備えている。  The light emitting device 1000 includes a plurality (two in this example) of surface emitting lasers 10-1 and 10-2 each having a different wavelength of emitted light.
すなわち、 この実施形態では、 波長が異なる 2つの面発光レーザ 1 0—1 (発 振波長: 人 ,) および 1 0— 2 (発振波長:え 2) を近接して配置し、 各面発光レ 一ザの出射口が、 光ファイバ 2 0のコア部 2 2に対向するように配置される。 波長の異なる複数の発光部品を近接させて配置することは、 端面発光型の半導 体レーザでは非常に困難である。 これに対し、 基板に対し垂直な方向に共振経路 を設けた差直共振器型の面発光レーザは、 面内配置の自由度が高く、 波長の異な る複数の面発光レ一ザの発光部を近接させて配置することが容易であり、 本発明 の発光素子として最も適しているものの一つである。 That is, in this embodiment, two surface emitting lasers 10-1 (oscillation wavelength: human,) and 10-2 (oscillation wavelength: 2 ) having different wavelengths are arranged close to each other, and One exit port is arranged so as to face the core section 22 of the optical fiber 20. It is very difficult for an edge-emitting semiconductor laser to arrange a plurality of light-emitting components having different wavelengths close to each other. In contrast, a vertical cavity surface emitting laser having a resonance path in a direction perpendicular to the substrate has a high degree of freedom in in-plane arrangement, and the light emitting portions of a plurality of surface emitting lasers having different wavelengths. Are easily arranged close to each other, and are one of the most suitable as the light emitting element of the present invention.
受光素子 2 0 0 0としては、少なくとも前言 3波長人 tおよび人 2の光の検出が可 能な 2つのフォトダイオード 1 0 0— 1および 1 0 0— 2を用いる。 そして、 フ オトダイオード 1 0 0— 1 , 1 0 0— 2は、 その受光面が光ファイバ 2 0のコア 部 2 2と対面する状態で配置される。 The light receiving element 2 0 0 0, at least previous remarks third wavelengths's t and person 2 photodetection used possible two photodiodes 1 0 0 1 and 1 0 0 2. The photodiodes 100-1 and 100-2 are arranged with their light receiving surfaces facing the core portion 22 of the optical fiber 20.
また、 本鎌形態においては、 受光素子 2 0 0 0を構成する、 第 1のフォトダ ィオード 1 0 0— 1の光吸収層およびコン夕クト層のバンド幅のエネルギーに相 当する波長をそれそれ人 gilおよびえ gclとし、 第 2のフォトダイオード 1 0 0— 2の光吸収層およびコンタクト層のバンド幅のエネルギーに相当する波長をそ れそれ人 si2およびえ gc2とすると、 第 7図に示すように、 Further, in the present scythe configuration, the wavelength corresponding to the energy of the bandwidth of the light absorption layer and the contact layer of the first photodiode 100-1 constituting the light receiving element 2000 is deviated. and human gil Oyobie gcl, when is its wavelength corresponding to the energy of the second photodiode 1 0 0 2 bandwidth of the light absorption layer and the contact layer and it's si2 Oyobie gc2, shown in FIG. 7 like,
λ ,Εΐ< λ gil< λ gc2< λ gi2の関係が成立する。 また、 発光素子 1000を構成する、 第 1の面発光レーザ 10—1および第 2 の面発光レーザ 10— 2の出射光の波長をそれそれえ ,およびえ 2とすると、 入 gcl<入 i≤入 gil、 Agc2<A2≤Agi2といった関係が成立する。 λ, Εΐ <λ gil <λ gc2 <λ gi2 of relationship is established. Further, assuming that the wavelengths of the light emitted from the first surface emitting laser 10-1 and the second surface emitting laser 10-2 constituting the light emitting element 1000 are and 2 2 , respectively, input gcl <input i ≤ The relationship of input gil and A gc2 <A 2 ≤A gi2 is established.
これらの発光素子 1000と受光素子 2000を光導波路 20によって直接的 に光学接続し、 2波長の波長分割多重光通信を行うことができる。 3以上の異な る波長を用いる場合も同様である。 もちろん、 単一波長の場合にも適用できる。 本 ¾S形態で用いられる発光素子としては、 上述したように、 発振波長が異な る複数の面発光レーザを実装したものを用いることが、 レ一ザ発振のしきい値並 びに電流一光出力特性 (I— L特性) などをそろえる点で望ましいが、 これに限 定されず、 複数の波長の光を出射することができるモノリシックな面発光レ一ザ を用いることもできる。  The light emitting element 1000 and the light receiving element 2000 are directly optically connected by the optical waveguide 20, and two-wavelength wavelength division multiplexing optical communication can be performed. The same applies when three or more different wavelengths are used. Of course, it can be applied to the case of a single wavelength. As described above, as the light emitting device used in the present S mode, a device mounted with a plurality of surface emitting lasers having different oscillation wavelengths is used. (I-L characteristics) are desirable, but the present invention is not limited to this, and a monolithic surface-emitting laser that can emit light of multiple wavelengths can be used.
また、 光ファイバ 20としては、 コア径が大きく、 光の損失、 分散の小さい G I (Graded I nd e x)型のフッ素系プラスチックファイバあるいは G I型の HPCF (Hard Po lymer Clad Fiber) を用いる ことが好ましい。  Also, as the optical fiber 20, it is preferable to use a GI (Graded Index) type fluoroplastic fiber or a GI type HPCF (Hard Polymer Clad Fiber) having a large core diameter, small light loss and small dispersion. .
本実施形態に係る光通信システムによれば、 発光素子として異なる発振波長を 有する複数の面発光レーザを搭載した素子、 および、 受光素子として、 複数の 本発明に係るフォトダイオードを用いることにより、 発光素子、 光ファイバおよ び受光素子の 3部材からなるシンプルな構成の波長分割多重光通信システムを構 成することができる。 そして、 発光素子を構成する複数の面発光レーザの各出射 口と、 光ファイバのコア部と、 本発明に係るフォトダイオードの受光面とを光学 的に位置合わせすることにより、 ^の光通信システムのように、 レンズ, 合波 器, 分波器などの光学部品を必要としない。その結果、 構成がシンプルで、 かつ、 光学調整が容易で、 低コス卜な波長分割多重伝送が可能な光通信システムを構成 することができる。  According to the optical communication system according to the present embodiment, an element mounted with a plurality of surface emitting lasers having different oscillation wavelengths as a light emitting element, and a plurality of photodiodes according to the present invention used as a light receiving element can emit light. It is possible to configure a wavelength division multiplexing optical communication system having a simple configuration including three elements: an element, an optical fiber, and a light receiving element. Then, by optically aligning the emission ports of the plurality of surface emitting lasers constituting the light emitting element, the core of the optical fiber, and the light receiving surface of the photodiode according to the present invention, the optical communication system of It does not require optical components such as lenses, multiplexers, and demultiplexers. As a result, an optical communication system with a simple configuration, easy optical adjustment, and low-cost wavelength division multiplex transmission can be configured.
(実験例)  (Experimental example)
発光素子として、 第 1の面発光レーザ 10— 1および第 2の面発光レーザ 10 一 2を用い、 受光素子として、 本発明に係る、 第 1のフォトダイオード 100— 1および第 2のフォトダイオード 100— 2を用いて、 波長分割多重光通信を行 つたところ、 クロストークが一 26 d B以下の良好な通信ができることが確認さ れた。 各発光素子および受光素子としては、 以下のものを用いた。 The first surface emitting laser 10-1 and the second surface emitting laser 102 are used as light emitting elements, and the first photodiode 100 according to the present invention is used as a light receiving element. When wavelength division multiplexing optical communication was performed using the first and second photodiodes 100-2, it was confirmed that good communication with a crosstalk of no more than 26 dB was possible. The following were used as each light emitting element and light receiving element.
第 1のフォトダイオード 100— 1 ; The first photodiode 100-1;
n型 G a As基板上に、 A 10.07Ga 0.93 Asからなる iS4〃mの光吸収層と P型 Al 0.085 Ga 0.915Asからなる fl Jf 4〃mの p型コンタクト層を積層した p in型フォトダイオードで、 え gclが 810nm、 人 gilが 820 nmである。 第 2のフォトダイオード 100— 2; the n-type G a As substrate, A 1 0. 07 Ga 0 . 93 light absorbing layer of IS4〃m of As and P-type Al 0. 085 Ga 0. p-type fl Jf 4〃M consisting 915 As It is a pin- type photodiode with a stacked contact layer, with a gcl of 810 nm and a human gil of 820 nm. Second photodiode 100-2;
n型 G a A s基板上に、 G a A sからなる TO 4 mの光吸収層と  On a n-type GaAs substrate, a 4 m TO absorption layer made of GaAs
p型 Al 0.014Ga 86 Asからなる fl i¥4 mの p型コンタクト層を積層した p i n型フォトダイオードで、 人 gc2が 860nm、 人 gi2が 870 nmである。 第 1の面発光レーザ 10— 1; In p-type Al 0. 014 Ga 86 consisting As fl i ¥ 4 m pin type photodiodes stacked p-type contact layer, a person gc2 860 nm, human gi2 is 870 nm. First surface emitting laser 10-1;
波長え ,= 815 Ι1Π1 \入 gci、入 1 /^ gi  Wavelength, 815 Ι1Π1 \ input gci, input 1 / ^ gi
第 2の面発光レーザ 10— 2; Second surface emitting laser 10-2;
波長 λ2=865 nm 入 入 2^八 gi2ノ Wavelength λ 2 = 865 nm
(難形態 3)  (Difficult form 3)
第 5図に、 本発明に係るフォトダイオードを用いた光通信システムの他の実施 形態を示す。 この光通信システムは、 第 1の受発光素子 3000と、 光ファイバ 一 20と、 第 2の受発光素子 4000とから構成されている。  FIG. 5 shows another embodiment of the optical communication system using the photodiode according to the present invention. This optical communication system includes a first light receiving / emitting element 3000, an optical fiber 20, and a second light receiving / emitting element 4000.
第 1の受発光素子 3000においては、 第 1のフォトダイオード 100— 1に よって、 波長人 ,の光を検出することができ、 第 2の面発光レーザ 10— 2によ つて波長人 zの光を出射することができる。 また、 第 2の受発光素子 4000に おいては、 第 2のフォトダイオード 100— 2によって、 波長え 2の光を検出す ることができ、 第 1の面発光レーザ 10— 1によって、 波長 λ!の光を出射する ことができる。 In the first light emitting / receiving element 3000, light of wavelength, can be detected by the first photodiode 100-1, and light of wavelength z can be detected by the second surface emitting laser 10-2. Can be emitted. Further, in the second light emitting / receiving element 4000, light of wavelength 2 can be detected by the second photodiode 100-2, and the wavelength λ can be detected by the first surface emitting laser 10-1. ! Of light can be emitted.
また、 本実施形態においても、 実施形態 2と同様に 第 1の受発光素子 300 0を構成する、 第 1のフォトダイオード 100— 1の光吸収層およびコンタクト 層のバンド幅のエネルギーに相当する波長をそれそれえ gilおよび λ gclとし、 第 2の受発光素子 4 0 0 0を構成する、 第 2のフォトダイオード 1 0 0— 2の光吸 収層およびコンタクト層のバンド幅のエネルギーに相当する波長をそれそれ 入 gi2および人 gc2とすると、 第 7図に示すように、 人 gclく人 gil<人 gc2< A gi2の関 係が成立する。 Also, in the present embodiment, the wavelength corresponding to the energy of the bandwidth of the light absorption layer and the contact layer of the first photodiode 100-1 constituting the first light emitting / receiving element 3000 as in the second embodiment. And gil and λgcl , respectively. Assuming that the wavelengths corresponding to the energy of the bandwidth of the light absorption layer and the contact layer of the second photodiode 100-2 constituting the second light-receiving / emitting element 40000 are gi2 and human gc2 , respectively. As shown in FIG. 7, the relationship of human gcl and human gil <human gc2 <A gi2 is established.
また、 各受発光素子 3 0 0 0および 4 0 0 0の発光素子を構成する、 第 2の面 発光レーザ 1 0— 2および第 1の面発光レーザ 1 0— 1の出射光の波長をそれそ れ入 2および入 iとすると、 人 gcl< ^ 人 gi!、 人 gc2<人 2≤λ gi2を満たす。 これらの第 1の受発光素子 3 0 0 0と第 2の受発光素子 4 0 0 0を光導波路 2 0によって直接的に光学接続することで、 全二重光通信を行うことができる。 3 以上の異なる波長を用いる場合も同様である。 Further, the wavelengths of the light emitted from the second surface emitting laser 10-2 and the first surface emitting laser 10-1 which constitute the light emitting and receiving elements 30000 and 40000, respectively, If they are 2 and i, then person gcl <^ person gi ! Satisfies person gc2 <person 2λ gi2 . Full-duplex optical communication can be performed by directly optically connecting the first light emitting / receiving element 3000 and the second light emitting / receiving element 4000 with the optical waveguide 20. The same applies when three or more different wavelengths are used.
なお、 面発光レーザおよび光ファイバについては、 実施形態 2と同様であるの で、 その詳細の説明を省略する。  Since the surface emitting laser and the optical fiber are the same as those in the second embodiment, detailed description thereof will be omitted.
本 形態に係る光通信システムによれば、 受発光素子として面発光レ一ザお よびこの面発光レーザの発振波長と異なる波長の光を検出することができる本発 明に係るフォトダイオードを用いることにより、 第 1の受発光素子、 光ファイノ および第 2の受発光素子の 3部材からなるシンプルな構成の波長分割多重光通信 システムを構成することがてきる。 そして、 各受発光素子を構成する単数もしく は複数の面発光レーザの各出射口、 および本発明に係る単数もしくは複数のフォ トダイォードの受光面と、 光導波路のコア部とを光学的に位置合わせすることに より、 従来の光通信システムのように、 レンズ, 合波器, 分波器などの光学部品 を必要としない。 その結果、 構成がシンプルで、 かつ、 光学調整が容易で、 低コ ストな全二重光通信などが可能な多重光通信システムを構成することができる。 According to the optical communication system of the present embodiment, the surface emitting laser and the photodiode according to the present invention capable of detecting light having a wavelength different from the oscillation wavelength of the surface emitting laser are used as the light receiving and emitting elements. Accordingly, a wavelength division multiplexing optical communication system having a simple configuration including three members, a first light receiving / emitting element, an optical fino, and a second light receiving / emitting element can be configured. Then, each light-emitting or emitting surface of one or more surface-emitting lasers constituting each light-receiving / emitting element, the light-receiving surface of one or more photodiodes according to the present invention, and the core portion of the optical waveguide are optically positioned. By combining them, there is no need for optical components such as lenses, multiplexers, and demultiplexers as in conventional optical communication systems. As a result, it is possible to configure a multiplex optical communication system having a simple configuration, easy optical adjustment, and low-cost full-duplex optical communication.
(実施形態 4 ) (Embodiment 4)
第 6図は、 第 5図に示す光通信システムにおける受発光素子の変わりに用いる ことができる受発光素子 5 0 0 0を示す。  FIG. 6 shows a light-receiving / emitting element 500 that can be used instead of the light-receiving / emitting element in the optical communication system shown in FIG.
受発光素子 5 0 0 0は、 第 1のモノリシック受発光素子 2 0 0— 1および第 2 のモノリシック受発光素子 2 0 0— 2を有する。 第 1のモノリシック受発光素子 2 0 0— 1は、 第 1のフォトダイオード 1 0 0— 1と第 1の面発光レーザ 1 0― 1がモノリシックに積層されて形成されている。 第 2のモノリシヅク受発光素子 2 0 0— 2は、 第 2のフォトダイオード 1 0 0— 2と第 2の面発光レーザ 1 0— 2とがモノリシヅクに積層されて形成されている。 この受発光素子 5 0 0 0を光 導波路の両端にそれそれ直接的に光学接続することにより、 双方向の波長分割多 重光通信を行うことができる。 The light emitting / receiving element 500 0 has a first monolithic light emitting / receiving element 200-1 and a second monolithic light emitting / receiving element 200-2. The first monolithic light-receiving / emitting element 200-1 comprises a first photodiode 100-1 and a first surface-emitting laser 100-1. 1 are monolithically laminated and formed. The second monolithic light emitting / receiving element 200-2 is formed by monolithically laminating a second photodiode 100-2 and a second surface emitting laser 10-2. By directly optically connecting the light receiving / emitting element 500 to both ends of the optical waveguide, bidirectional wavelength division multiplex optical communication can be performed.
以上、 本発明の実施形態について述べたが、 本発明はこれらに限定されず、 本 発明の要旨の範囲内で種々の態様を取りうる。  As described above, the embodiments of the present invention have been described, but the present invention is not limited thereto, and can take various forms within the scope of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
(1)半導体基板、 該半導体基板上に積層された光吸収層およびコンタクト層が 含まれ、 前記コンタクト層は、 そのバンド幅が前記光吸収層のバンド幅より大き く、 かつ前記コンタクト層は、 該コンタクト層のバンド幅のエネルギーに相当す る波長以下の波長を有する光をぼほ吸収できる膜厚を有する、フォトダイォード。(1) a semiconductor substrate, including a light absorbing layer and a contact layer laminated on the semiconductor substrate, wherein the contact layer has a larger bandwidth than the light absorbing layer, and the contact layer has A photodiode having a thickness capable of absorbing light having a wavelength equal to or less than the wavelength corresponding to the energy of the bandwidth of the contact layer.
(2) 前記コンタクト層のバンド幅のエネルギーに相当する波長をえ gcとし、 前 記光吸収層のバンド幅のエネルギーに相当する波長を I giとすると、 前記光吸収 層では、 下記式(2) Assuming that a wavelength corresponding to the energy of the bandwidth of the contact layer is gc and a wavelength corresponding to the energy of the bandwidth of the light absorbing layer is I gi , the light absorbing layer has the following formula:
Figure imgf000016_0001
Figure imgf000016_0001
を満たす波長入の光が吸収される、請求の範囲第 1項記載のフォトダイォ一ド。 2. The photodiode according to claim 1, wherein light having a wavelength satisfying the following condition is absorbed.
(3) 前記コンタクト層の吸収係数をひとし、 前記コンタクト層の膜厚を dとし たとき、 下記式 (3) When the absorption coefficient of the contact layer is taken as d and the thickness of the contact layer is d,
e- «xd< 0. o 5 e- «xd <0 . o 5
が成立する、 請求の範囲第 1項記載のフォトダイォ一ド。 The photodiode according to claim 1, wherein the following holds.
(4) 前記半導体基板が n型半導体基板であり、 前記光吸収層が  (4) the semiconductor substrate is an n-type semiconductor substrate, and the light absorbing layer is
i型 Al aGa 1-aAsからなり、 前記コンタクト層が p型 A 1 bG a n Asから なる p i n型フォトダイオードであって、 0≤a<bの関係が満たされている請 求の範囲第 1項記載のフォトダイォ一ド。 Claim range wherein the contact layer is a pin-type photodiode composed of i-type Al a Ga 1-a As and the contact layer is composed of p-type A 1 b G an As, and a relationship of 0≤a <b is satisfied. The photodiode according to item 1.
(5)受光部に誘電体膜が設けられ、 該誘電体膜の膜厚をその光学厚みが被検出 光の波長の実質的に 1 / 4倍となるように設定する請求の範囲第 1項記載のフォ トダイォード。  (5) The dielectric film is provided in the light receiving section, and the thickness of the dielectric film is set so that the optical thickness thereof is substantially 1/4 times the wavelength of the light to be detected. Photodiode as described.
(6)発光素子、 光導波路、 および請求の範囲第 1項乃至第 5項のいずれかに記 載のフォトダイオードを有する受光素子を備え、 前記発光素子と前記受光素子と が光導波路によって直接的に光学接続された、 光通信システム。  (6) A light-emitting element, an optical waveguide, and a light-receiving element having the photodiode according to any one of claims 1 to 5, wherein the light-emitting element and the light-receiving element are directly connected by an optical waveguide. Optical communication system optically connected to
(7)前記発光素子は、 発振波長の異なる複数の面発光レーザを配置して構成さ れ、 前記受光素子は、 少なくとも前記面発光レ一ザの発信波長を検出可能な複数 のフォトダイオードを配置して構成された、 請求の範囲第 6項記載の光通信シス テム。 (7) The light emitting element is configured by arranging a plurality of surface emitting lasers having different oscillation wavelengths, and the light receiving element is configured by arranging a plurality of photodiodes capable of detecting at least a transmission wavelength of the surface emitting laser. The optical communication system according to claim 6, wherein the optical communication system is configured as follows. Tem.
(8)発光素子と請求の範囲第 1項乃至第 5項のいずれかに記載のフォトダイォ —ドを有する受光素子とを含む第 1の受発光素子、 光導波路、 および発光素子と 請求の範囲第 1項乃至第 5項のいずれかに記載のフォトダイォ一ドを有する受光 素子とを含む第 2の受発光素子を備え、  (8) A first light receiving / emitting element, an optical waveguide, and a light emitting element each including a light emitting element and a light receiving element having a photodiode according to any one of claims 1 to 5. A light receiving element having the photodiode according to any one of items 1 to 5, and a second light receiving and emitting element including
前記第 1の受発光素子と前記第 2の受発光素子とが光導波路によって直接的に 光学接続された、 光通信システム。  An optical communication system, wherein the first light receiving and emitting element and the second light receiving and emitting element are directly optically connected by an optical waveguide.
( 9 )前記第 1および第 2の受発光素子は、前記発光素子が面発光レーザである、 請求の範囲第 8項記載の光通信システム。  (9) The optical communication system according to claim 8, wherein the first and second light emitting and receiving elements are surface emitting lasers.
(10)前記面発光レーザは、 垂直共振器型の面発光レーザである、 請求の範囲 第 7項又は第 9項記載の光通信システム。  (10) The optical communication system according to claim 7 or 9, wherein the surface emitting laser is a vertical cavity surface emitting laser.
(11)前記光導波路は、 光ファイバである、 請求の範囲第 6項乃至第 10項の いずれかに記載の光通信システム。  (11) The optical communication system according to any one of claims 6 to 10, wherein the optical waveguide is an optical fiber.
(12)前記光ファイバは、 フッ素系プラスチックファイバ又は HPCFである 請求の範囲第 11項記載の光通信システム。  (12) The optical communication system according to claim 11, wherein the optical fiber is a fluoroplastic fiber or HPCF.
PCT/JP1999/005170 1998-09-29 1999-09-21 Photodiode and optical communication system WO2000019543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/291504 1998-09-29
JP10291504A JP2000114580A (en) 1998-09-29 1998-09-29 Photodiode and optical communication system

Publications (1)

Publication Number Publication Date
WO2000019543A1 true WO2000019543A1 (en) 2000-04-06

Family

ID=17769750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005170 WO2000019543A1 (en) 1998-09-29 1999-09-21 Photodiode and optical communication system

Country Status (2)

Country Link
JP (1) JP2000114580A (en)
WO (1) WO2000019543A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069039B2 (en) 2015-09-21 2018-09-04 Toyoda Gosei Co., Ltd Light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094039A (en) * 2000-09-20 2002-03-29 Fujitsu Ltd Photodetector and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268523A (en) * 1990-03-19 1991-11-29 Fujitsu Ltd Optical module
JPH053338A (en) * 1991-06-25 1993-01-08 Hitachi Cable Ltd Photoreceptor element
JPH0738205A (en) * 1993-07-20 1995-02-07 Mitsubishi Electric Corp Surface-light emitting laser diode array, driving method thereof, photodetector, photodetector array, space light connecting system and multiple-wavelength optical communication system
JPH0786630A (en) * 1993-09-17 1995-03-31 Hitachi Cable Ltd Single wavelength photo-detector
US5621238A (en) * 1994-02-25 1997-04-15 The United States Of America As Represented By The Secretary Of The Air Force Narrow band semiconductor detector
JPH10209483A (en) * 1997-01-17 1998-08-07 Hitachi Cable Ltd Photodetector
JPH10233523A (en) * 1997-02-18 1998-09-02 Hamamatsu Photonics Kk Photodetector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268523A (en) * 1990-03-19 1991-11-29 Fujitsu Ltd Optical module
JPH053338A (en) * 1991-06-25 1993-01-08 Hitachi Cable Ltd Photoreceptor element
JPH0738205A (en) * 1993-07-20 1995-02-07 Mitsubishi Electric Corp Surface-light emitting laser diode array, driving method thereof, photodetector, photodetector array, space light connecting system and multiple-wavelength optical communication system
JPH0786630A (en) * 1993-09-17 1995-03-31 Hitachi Cable Ltd Single wavelength photo-detector
US5621238A (en) * 1994-02-25 1997-04-15 The United States Of America As Represented By The Secretary Of The Air Force Narrow band semiconductor detector
JPH10209483A (en) * 1997-01-17 1998-08-07 Hitachi Cable Ltd Photodetector
JPH10233523A (en) * 1997-02-18 1998-09-02 Hamamatsu Photonics Kk Photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069039B2 (en) 2015-09-21 2018-09-04 Toyoda Gosei Co., Ltd Light-emitting device

Also Published As

Publication number Publication date
JP2000114580A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
US7184622B2 (en) Integrated volume holographic optical circuit apparatus
US8098969B2 (en) Waveguide optically pre-amplified detector with passband wavelength filtering
CA2562790C (en) Coolerless and floating wavelength grid photonic integrated circuits (pics) for wdm transmission networks
US6392256B1 (en) Closely-spaced VCSEL and photodetector for applications requiring their independent operation
US6671438B2 (en) Optical waveguide, optical module, and their fabrication method
EP2386891B1 (en) Transparent photonic integrated circuit
KR100871011B1 (en) Transistor outline type laser diode package with wavelength locking, and method for manufacturing the tilt filter
WO2017015578A1 (en) Compound semiconductor photonic integrated circuit with dielectric waveguide
JP4301948B2 (en) Adjustable optical filtering components
US11784463B2 (en) Silicon photonics based tunable laser
JP2009522805A (en) Monitor photodetector for integrated photonic devices
JP4584066B2 (en) Surface emitting laser device having photosensor and optical waveguide device using the same
TW201504599A (en) Polarization independent photodetector with high contrast grating and two dimensional period structure that can be used as dual usage HCG VCSEL-detector
EP2510390A1 (en) Waveguide optically pre-amplified detector with passband wavelength filtering
JP3111957B2 (en) Surface emitting device
WO1996031026A1 (en) In-line optical bi-directional link
US7412170B1 (en) Broad temperature WDM transmitters and receivers for coarse wavelength division multiplexed (CWDM) fiber communication systems
US6553051B1 (en) System for optically pumping a long wavelength laser using a short wavelength laser
WO2000019543A1 (en) Photodiode and optical communication system
CN111146683B (en) Tunable laser device based on silicon photons and packaging structure thereof
JPH11330535A (en) Photodiode and optical communication system
US7248616B2 (en) Bidirectional transceiver and method for driving the same
WO2023119364A1 (en) Optical device
JPH11330532A (en) Monolithic light receiving and emitting element and optical communication system
JP2953368B2 (en) Optical semiconductor integrated circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase