WO2000017524A1 - Two-stage centrifugal compressor driven directly by motor - Google Patents

Two-stage centrifugal compressor driven directly by motor Download PDF

Info

Publication number
WO2000017524A1
WO2000017524A1 PCT/JP1998/004218 JP9804218W WO0017524A1 WO 2000017524 A1 WO2000017524 A1 WO 2000017524A1 JP 9804218 W JP9804218 W JP 9804218W WO 0017524 A1 WO0017524 A1 WO 0017524A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
stage
centrifugal compressor
compressor
motor
Prior art date
Application number
PCT/JP1998/004218
Other languages
French (fr)
Japanese (ja)
Inventor
Haruo Miura
Kazuki Takahashi
Naohiko Takahashi
Hideo Nishida
Yasuo Fukushima
Minoru Yoshihara
Tsunehiro Endou
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2000571146A priority Critical patent/JP3918432B2/en
Priority to PCT/JP1998/004218 priority patent/WO2000017524A1/en
Publication of WO2000017524A1 publication Critical patent/WO2000017524A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • H02K9/12Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing wherein the cooling medium circulates freely within the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings

Definitions

  • the present invention relates to a two-stage centrifugal compressor driven directly by an electric motor, and more particularly to a two-stage centrifugal compressor directly used to be driven by an electric motor suitable for a small-capacity air compressor and used for a power air source in a factory.
  • Screw compressors and turbo compressors are used as factory power air sources with a discharge pressure of about 8 OMPa in gauge pressure and a compressor capacity of less than 100 kW to several hundred kW.
  • the use of turbo compressors is increasing due to easy maintenance.
  • An example of this turbo compressor is described in Japanese Patent Application Laid-Open No. Hei 8-159904 / Japanese Patent Application Laid-Open No. Hei 9-287579.
  • the rotation of a low-speed induction motor is increased at a high speed using a gear speed increaser, and blades are provided at both ends of an output shaft, which is a high speed rotation shaft of the gear speed increaser.
  • the car is installed to form a two-stage air compressor.
  • the impeller In the case of an evening compressor, the impeller should be rotated at a high speed in order to compress the air efficiently with as little fluid power as possible.
  • a gear speed increaser In the case of an evening compressor, the impeller should be rotated at a high speed in order to compress the air efficiently with as little fluid power as possible.
  • the speed of the motor was increased by using a gear speed increaser.
  • Use of the gearbox requires at least three shafts: a motor shaft, a bull gear shaft, and a pinion shaft for mounting the impeller.
  • Each shaft has a contact-type rolling bearing that rotatably supports the shaft. Bearings are required.
  • the peripheral speed of sliding bearings has also increased significantly compared to conventional bearings, and the operating conditions of sliding bearings have become more severe, making it difficult to ensure bearing life. .
  • the load on each component used in a turbo-type centrifugal compressor is still smaller than that of a positive displacement compressor, despite the increase in compact size. Therefore, the maintenance interval can be made relatively long, but it is difficult to achieve complete maintenance-free as long as there is contact between the rotating part such as a bearing and the stationary part.
  • an impeller is provided at the shaft end of the motor, and the direct drive centrifugal compressor drives the impeller directly without passing through the speed increaser.
  • An example of this is disclosed in Japanese Patent Publication No. 5-36640.
  • the compressor casing and the motor casing are formed separately. For this reason, a gearbox is not required, and although a certain degree of downsizing has been achieved, it is still insufficient to reduce the overall size of the compressor.
  • the present invention has been made in view of the problems and disadvantages of the related art described above, and has as its object to realize a two-stage centrifugal compressor that is directly driven by a compact electric motor that does not require a gear speed increasing device. It is in. Another object of the present invention is to realize a two-stage centrifugal compressor which is easy to assemble and has excellent maintainability. Still another object of the present invention is to provide a two-stage centrifugal compressor that is directly driven by an earth-friendly electric motor that can reduce power consumption and reduce the generation of carbon dioxide as much as possible. Disclosure of the invention
  • a first feature of the present invention for achieving the above object is that a rotating shaft having a motor rotor formed in an intermediate portion, and a centrifugal shaft attached to both ends of the rotating shaft.
  • a two-stage motor driven directly by a motor having a compressor impeller, a motor stay that constitutes a motor together with the rotor, and radial magnetic bearing means and thrust magnetic bearing means rotatably supporting the rotating shaft.
  • a water-cooled jacket is provided around the outer periphery of the motor for stays "", and the two-stage centrifugal compressor is sucked in the middle of the stay. The gas flow path that leads the rare working gas is formed.
  • the impellers mounted on both ends of the rotating shaft constitute a first compressor stage and a second compressor stage, and intermediate cooling for cooling the working gas compressed in these compressor stages.
  • an integral casing for accommodating the intermediate cooler and the discharge cooler together with the impeller, the radial magnetic bearing means, the thrust magnetic bearing and the electric motor. Things.
  • a cooling path is formed such that the working gas compressed in the first compressor stage flows into the intercooler from above, is cooled by the intercooler, and then flows out from below.
  • a cooling path is formed such that the working gas compressed in the second compressor stage flows into the discharge cooler from above, is cooled by the discharge cooler, and then flows out from below.
  • a second feature of the present invention to achieve the above object is that a rotating shaft having a rotor of an electric motor formed in an intermediate portion, impellers attached to both ends of the rotating shaft, and an electric motor together with the rotor
  • An integral casing is provided below the shaft and substantially parallel to the rotating shaft, and houses the rotating shaft, the intercooler and the discharge cooler, and is cooled by either the discharge cooler or the intercooler.
  • a cooling path is formed for guiding the working gas to an intermediate portion of the electric stay.
  • a window is formed at an axial end of the casing that houses the intermediate cooler and the discharge cooler.
  • a cover is detachably attached to the window, and the intermediate cooler and the discharge cooler are inserted from the axial direction.
  • the motor is a permanent magnet type synchronous motor, and the rotor is a ring-shaped permanent magnet, a ring-shaped carbon fiber reinforced plastic holding member for holding the permanent magnet, and a ring-shaped holding member. It is preferable to have a metal sleeve for holding the permanent magnet together with the member.
  • cooling switching means for selectively cooling the radial magnetic bearing means and the thrust magnetic bearing means with a working fluid cooled by the intercooler during load operation and with a working fluid cooled by the discharge cooler during no load operation. It is desirable to have
  • the rotor has two poles, means for detecting a magnetic pole position based on an induced voltage generated in a winding of a motor stator when the rotor rotates, and means for detecting the detected magnetic pole.
  • Inverter control means for controlling the electric motor based on the position may be provided.
  • an invertor for driving the electric motor, pressure detecting means for detecting a pressure on the downstream side of the second-stage impeller, and when the detected pressure is equal to or higher than a predetermined pressure, the working gas is discharged to the outside.
  • a blow-off valve may be opened to form a flow path for returning the working fluid flowing through the blow-off valve to the upstream side of the first stage impeller.
  • the electric motor may be provided with cooling switching means for selectively cooling the motor with the working fluid cooled by the intercooler during the load operation and with the working fluid cooled by the discharge cooler during the load operation.
  • FIG. 1 is a front view of an embodiment of a two-stage centrifugal compressor directly driven by an electric motor according to the present invention
  • FIGS. 2 and 3 are side views of the centrifugal compressor shown in FIG. 2 is a left side view
  • FIG. 3 is a right side view
  • FIG. 4 is a longitudinal sectional view around the rotation axis of the embodiment of FIG. 1
  • FIG. 5 is a circuit diagram of an embodiment of the motor driving circuit
  • FIG. 6 is a motor driven by an inverter.
  • FIG. 7 is a circuit diagram showing one embodiment of a position detection circuit when driving the motor, and FIG. 7 is an explanatory diagram for explaining position detection.
  • FIG. 8 is a detailed view of the electric motor portion of the rotating shaft shown in FIG. 4, and FIG.
  • FIG. 9 is a view as viewed from C in FIG.
  • FIG. 10 is a piping flow diagram of the compressor shown in FIG. 1;
  • FIGS. 11 and 12 are diagrams for explaining control of the centrifugal compressor;
  • FIG. FIG. 12 is a diagram showing a pressure-flow rate characteristic.
  • FIG. 13 is a detailed view of a cooling structure of a bearing portion in one embodiment of the present invention, and
  • FIG. 14 is a system diagram for sending a cooling gas to the cooling structure shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 to 3 are external views of one embodiment of a two-stage centrifugal compressor according to the present invention
  • FIG. 2 is a left side view
  • FIG. 3 is a right side view
  • FIG. 4 is a longitudinal sectional view around the rotation axis of the two-stage centrifugal compressor according to the present invention.
  • the two-stage centrifugal compressor of the present embodiment the rotary shaft 2 0 the electric motor rotor f 0 a is formed in the central portion, the radial magnetic bearing 2 3 a in the axial direction two positions, 2 3 b supports in the radial direction.
  • thrust magnetic bearings 24a and 24b provided adjacent to one radial magnetic bearing 23b support the rotating shaft 20 in a non-contact manner in the axial direction.
  • a first-stage impeller 21a and a second-stage impeller 21b are attached to both ends of the rotating shaft 20, respectively.
  • a motor stator 22 is arranged opposite the motor rotor 20a. Cooling water that cools the heat generated by the copper loss and iron loss that occur during the stay, or the wind loss that occurs between the stay 22 and the rotor 20a around the stay 22 Jacket 14 is provided. This stage 22 and the cooling water jacket 14 are assembled and integrated in advance before assembling the compressor.
  • the impellers 21a and 21b at each stage are of an open shroud type having no shroud.
  • the first-stage impeller 2 1a is kept between the inner casing 17b and the second-stage impeller 2 1b is kept between the inner casing 18b and the minute gap. It is spinning.
  • both the first stage compressor 1a and the second stage compressor 1b are axially covered with head covers 17 and 18 at their axial ends.
  • the head cover forms a suction stationary flow path wall surface and a discharge stationary flow path wall surface.
  • the first-stage head cover 17 includes pressure-resistant closing portions 17a and 17d, an inner casing portion 17b that forms a stationary flow path, and ribs 17c.
  • the pressure-resistant closing portion 17d may be integrated with the pressure-resistant closing portion 17a.
  • the rib 17c secures a flow path between the pressure-resistant closing portion 17a and the inner casing 17b.
  • the head cover 18 of the second-stage compressor 1b has pressure-resistant closing portions 18a and 18d, an inner casing 18 and ribs 18c as in the first stage.
  • the outer diameter of the motor cooling water jacket is larger than at least one of the outer diameters of the magnetic bearing housings 28a and 28b in which the magnetic bearings are assembled.
  • the outer diameter of each of the magnetic bearing housings 28a and 28b is larger.
  • the outer diameter of the head covers 17 and 18 is larger than the outer diameter of the magnetic bearing housing.
  • Each part can be incorporated into the motor casing 2 and the compressor casings 1a and 1b from the axial direction, so that the motor casing 2 and the compressor casings 1a and 1b are circles without division. It is possible to have a cylindrical and axially integral structure.
  • the shaft length In order to rotate a two-stage centrifugal compressor directly driven by an electric motor configured as described above at the same speed as a conventional gear-increasing compressor, the shaft length must be as short as possible. However, the diameter must be as large as possible. (This is because the motor rotor is almost at the center of the rotating shaft and is much longer than the tooth width of the gears.
  • the operating speed of the compressor according to the present invention is 40,000 RPM or more, and ordinary oil bearings cannot control such high-speed rotating shafts.
  • a magnetic bearing is used as a bearing, and the operating range of the compressor is thereby reduced to the third and fourth critical speeds of the rotating shaft.
  • a two-pole permanent magnet synchronous motor driven by an inverter is used as the motor. Then, the induced voltage generated in the winding of the electric stay is used for detecting the magnetic pole position.
  • a resolver, an optical encoder, or the like is used to detect the magnetic pole position.
  • these detectors can prevent the shaft length from becoming longer and the dangerous speed from lowering. Detecting the magnetic pole position using the induced voltage is often used for small motors with a capacity of about several kW or less, but 400 000 r r ⁇ ⁇ ! It was difficult to apply to a compressor rotating up to 800,000 rpm.
  • the magnetic pole position detection using the induced voltage is enabled by the method described below.
  • the permanent magnet type brushless synchronous motor used in the two-stage centrifugal compressor of this embodiment is a type of DC brushless motor.
  • Fig. 5 shows an example of a drive circuit for this DC brushless motor.
  • the drive unit of the DC brushless motor includes an inverter unit 47, an energization switching unit 46 that instructs the inverter unit 47 to switch energization, and a position detection circuit 45.
  • the position detection circuit 45 is for generating an energization switching signal, and detects the circumferential position of the permanent magnet rotor from the voltage induced in the motor.
  • the inverter unit 47 includes a switching transistor and a switching transistor in accordance with the current switching timing to the windings 44 a, 44 b, and 44 c of each phase of the motor designated by the current switching unit 46.
  • Switching elements consisting of diodes 48a, 48b, 48c and switching Operate the elements 49a, 49b, 49c.
  • a positive voltage is applied to the a-phase winding 44a only for a section of about 120 ° in the rotation angle of the rotation axis 20 and then the rotation angle of about 60 ° Section, stop energizing this a-phase.
  • a negative voltage is applied only for a section of about 120 °, and then the energization is stopped for a section of about 60 °.
  • the energization timing for each of the a-phase, b-phase, and c-phase is varied by 120 ° each. As a result, a rotating magnetic field is generated, and the brushless motor is driven.
  • FIG. 6 shows details of the position detection circuit 45 shown in FIG.
  • a block shows a rotational position detecting function based on the terminal voltage of the motor.
  • the terminal voltages Va, Vb, and Vc of the motor are input to an integrator 42 provided for each phase and integrated.
  • the phases of the terminal voltages Va, Vb, and Vc are shifted by 90 °.
  • the ripple component of harmonics generated by pulse width modulation (PWM) control is removed, and the signal approximates a sine wave.
  • PWM pulse width modulation
  • the integrator 42 has a high-pass filter for cutting the DC voltage.
  • the signal passed through the integrator 42 is compared with the phase terminal voltages V a, V b, and V c at the neutral potential V n by the comparator 43, and a pulse with a duty ratio of 1: 1 is used to make 0 NZO FF at the zero crossing point.
  • a signal is obtained.
  • the duty ratio is the ratio of the ON and OFF times. This pulse signal is obtained for each phase and is shifted by 120 ° each.
  • the source of the pulse signal is the phase terminal voltage whose phase changes according to the phase current of the motor. Because it is pressure, the rotation position pulse signal changes with the phase terminal voltage as it is, and the rotation position of the motor cannot be specified. To obtain the rotational position of the motor, the rotational position pulse signal is corrected with the phase current of the motor. The method of correction using the phase current will be described with reference to FIG.
  • the phase terminal voltage V is represented by the vector sum of the induced voltage E 0 and the impedance drop generated when the phase current Im flows through the phase resistance r and the phase inductance L.
  • the induced voltage E 0 is the vector difference between the phase terminal voltage V and the impedance drop.
  • the inverter for controlling the motor current switches the energization of the switching element based on the rotational position signal whose phase has been corrected by the phase corrector 41.
  • FIG. 8 shows an example of increasing the critical speed by increasing the diameter of the rotating shaft.
  • FIG. 8 shows a schematic structure of a rotor part of a permanent magnet type synchronous motor.
  • FIG. 9 is a view as viewed from C in FIG.
  • a ring-shaped permanent magnet 61 is held by a holding member 62.
  • the holding material is required to have properties such as being a non-magnetic material, having high specific strength, having low electric conductivity, that is, having high specific resistance.
  • CFRP carbon fiber
  • Hydraulic fitting is also difficult because of the low tensile strength of the CFRP material in the axial direction.
  • a cold fit that cools the rotating shaft does not cause temperature deformation corresponding to the above-mentioned interference.
  • the press-fitting method used in the processing of -CFRP is inappropriate because the compressive strength of CFRP is insufficient because the axial length of CFRP is long.
  • a steel sleeve 64 is interposed between the magnet 51 and the rotating shaft 20a.
  • carbon fibers are wound around the outer periphery of the multilayer ring magnet while impregnating the adhesive resin, and the resin is set at a high temperature in a high-temperature furnace.
  • hydraulic pressure is applied to the inner diameter side of the steel sleeve to forcibly expand the inner diameter of the steel sleeve, and the expanded steel sleeve is fitted to the rotating shaft.
  • carbon fibers having a large modulus of elasticity may be used.
  • carbon fibers having a high elastic modulus have a low tensile strength, and conversely, a high tensile strength has a low elastic modulus. Therefore, the structure shown in Fig. 8 and Fig. 9 is used to secure the required interference and to enable the use of carbon fiber with high tensile strength to realize a large-diameter rotary shaft.
  • the number of slots is set to six in the station core 2a shown in FIG. 9, the number of slots is not limited to this and can be increased or decreased as needed.
  • the CFRP rings 63a and 63b are attached to both ends of the permanent magnet. This ring is provided to reduce the leakage of the rotating magnetic field generated by the stator winding and to reduce the eddy current loss due to the harmonic components of the rotating magnetic field.
  • the mechanical properties of CFP and magnets decrease with increasing temperature. Therefore, if the heat generated by the loss in the rotor part is reduced and the mechanical characteristics are secured, the speed of the rotating shaft can be increased.
  • the built-in portion of the compressor described above is housed in a casing having an integral structure shown in FIG.
  • the first-stage compressor section 1a has a first-stage suction nozzle 4 having a suction filter silencer 19, a discharge nozzle, and a one-stage discharge flow forming a communication flow path to the intercooler 3a.
  • Road 5 The suction nozzle 4 and the discharge nozzle flow path 5 are formed so that the working fluid is sucked and discharged from the radial direction of the rotation shaft.
  • the second-stage compressor section lb has a suction passage 6 from the intercooler 3b, a discharge nozzle, and a second-stage discharge forming a communication flow passage to the discharge cooler 3b. And a flow path 7.
  • the suction nozzle 6 and the discharge nozzle flow path 7 The working fluid is formed so as to be sucked and discharged from the radial direction of the rotating shaft.
  • the intercooler 3a is stored in the intercooler case 1c, and the discharge cooler 3b is stored in the discharge cooler case 1d.
  • the intercooler case 1c and the discharge cooler case 1 are arranged in parallel so that the flows from the inlet to the outlet are opposite to each other in opposite directions. And this flow direction is made to coincide with the axial direction of the rotating shaft.
  • the intercooler case 1 c and the discharge cooler case 1 are joined at opposing mating surfaces.
  • the intercooler 3a is arranged so that the flow in the nest of the intercooler 3a goes from the upper surface to the lower surface.
  • Discharge cooler 3b is also placed in case 1d in the same way.
  • the first-stage discharge passage 5 is connected to the upper surface of one end of the intercooler case 1c.
  • the flow that has flowed into the intercooler case 1c flows out from the lower surface of the intercooler.
  • this flow passes through the lower part of the other end of the inlet of the intermediate cooler case 1C, the lower part of the discharge cooler, and the outer end face of the discharge cooler case 1d. Be guided.
  • a pipe is connected between the outlet and the second stage suction nozzle 6.
  • the flow that has flowed out of the second-stage compressor is guided to the upper surface of the discharge cooler case 1d at the outlet side of the intercooler through the second-stage discharge passage.
  • the flow that has flowed into the discharge cooler case 1d flows out from the lower surface of the discharge cooler. Then, this flow is discharged from the other end side surface of the inlet of the discharge cooler case Id.
  • the width of the cooler case in the direction perpendicular to the rotation axis direction can be reduced, and the casing can be integrally structured. Making it possible.
  • this implementation According to the example, the motor case 2, the compressor casings 1a and 1b, and the cooler cases lc and 1d are integrated by adopting a natural structure.
  • the casing is made of stuff, it is necessary to set a parting surface between the upper and lower rust molds. In this embodiment, it is desirable that the surface pass through the center of the joint between the rotating shaft and the intercooler and discharge cooler. In order to set the parting plane at this location on the premise of a monolith, it is necessary to reduce the depth dimension from the parting plane. For this purpose, the working fluid may be flowed downward from above in the cooler.
  • Windows are provided on the axial end faces of the intercooler case 1c and the discharge cooler case 1d, and the intercooler 3a and the discharge cooler 3b are inserted from one of the windows, and then the cooler head cover Attach 15a, 15b, 15c and 15d.
  • the cooler head covers 15a and 15b may be integral or may be divided.
  • the windows at the other end are closed with covers 16a and 16b.
  • the covers 16a and 16b may also be integral or may be divided.
  • the cooling water of the intercooler 3a and the discharge cooler 3b flows in from the head covers 15c and 15d, and is turned back by the end covers 16c and 16d at the tips of these coolers and again. It flows into the head covers 15c and 15d.
  • the head covers 15c, 15d, and the closing covers 16a, 1a can be used while the nests of the intercooler 3a and the discharge cooler 3b are attached to the compressor integrated casing. Simply removing the 6b and the end covers 16c and 16d can clean the water-side cooler that is the most dirty. Therefore, maintenance becomes easier.
  • a working fluid cooled by a cooler after being compressed by a compressor that is, compressed air
  • a unit consumption of the compressor that is, the power consumption will increase. Therefore, the working fluid leaking from the back of the impeller, which was originally expected as a loss, is used as cooling air for the bearing.
  • a labyrinth 29 is formed on the back of the first-stage impeller 21a, and a labyrinth 30 is formed on the back of the second-stage impeller 21b.
  • the first-stage labyrinth 29 has a passage hole 29a for blowing cooling air into a plurality of labyrinth chambers formed in the labyrinth.
  • FIG. 10 is a diagram schematically showing one embodiment of a piping system diagram of a two-stage centrifugal compressor.
  • a rotating shaft 20 to which the impellers 21a and 21b are mounted is rotatably accommodated.
  • the fluid sucked from the suction nozzle 4 is compressed by the first stage compressor, cooled by the intercooler 3a, and guided to the second stage suction nozzle.
  • the fluid sucked from the second-stage suction nozzle is further compressed by the second-stage impeller 21b and then cooled by the discharge cooler 3b.
  • the cooling fluid is taken out from the intermediate between the outlet of the intercooler 3a and the suction nozzle 6 of the second stage, passes through the filter 72 and the check valve 73, and passes through the cooling hole 29a of the first stage lapel It is led to.
  • the cooling fluid is also guided to the motor cooling holes 32 and the bearing cooling holes 31 on the second stage side.
  • the 0 N / 0 FF valve 74 adjusts the flow rate of the fluid for cooling the electric motor, and is operated by the electromagnetic valve 82. It should be noted that when the compressor is operating under no load, When the wind valve 77 is open, the pressure of the cooling fluid taken out from between the first-stage compressor and the second-stage compressor decreases.
  • the cooling fluid joins a cooling line taken out from between the first-stage compressor and the second-stage compressor.
  • the pressure detector 92 shown in FIG. 1 detects the pressure downstream of the discharge check valve 71 of the compressor.
  • the arithmetic processing unit 93 issues a command to blow air through the blow-off valve 77.
  • the solenoid valve 80 operates and the blow-off valve 77 opens.
  • the arithmetic processing unit 93 simultaneously issues an operation command for the solenoid valve 81.
  • the solenoid valve 81 opens, the ON / OFF valve 76 also opens.
  • a flow regulating valve 78 and a filter 79 are arranged upstream of the solenoid valve 80.
  • the cooling air supply line branches off from the downstream of the discharge cooler and is always open.In addition, it branches off from the downstream of the intercooler and opens with the blow-off valve 77 opened. Two cooling lines in the line are operational. In this state, the pressure of the cooling line branched from the downstream of the intercooler is higher than the pressure of the cooling line branched from the downstream of the intercooler. Back pressure is applied to valve 73 and this line is automatically closed.
  • no cooling air is blown into the lapiling chamber formed on the back of the second-stage impeller.
  • This is a labyrinth from downstream of discharge cooler 3b.
  • the static pressure at the back of the second-stage impeller increases, and the thrust force by the fluid from the back side of the second-stage impeller toward the suction side increases. If the thrust force is large, the thrust of the magnetic axis g of the thrust must be increased, which causes a decrease in the strength of the thrust force and an increase in the loss. Is no longer effective.
  • the working fluid extracted from the upstream side of the second stage suction section is used for cooling, and during no-load operation, the working fluid extracted from the discharge cooler outlet downstream is used for cooling.
  • This cooling fluid is blown into the motor section, near the inlet side of the labyrinth on the back side of the first stage impeller, and into the downstream side of the labyrinth on the back side of the second stage impeller, thereby forming the entire compressor. Reduce the power used for cooling
  • FIG. 11 shows an embodiment of the rotation speed control of a motor in a two-stage centrifugal compressor driven directly by a motor.
  • the first-stage suction temperature 91 is detected by a temperature sensor (not shown), and the detected signal is input to the arithmetic processing circuit 93.
  • the ratio between the temperature obtained from the detected signal and the design suction temperature (T s de s) stored in advance therein is obtained.
  • the rated speed (N max) at that temperature (T s) is calculated by multiplying the design speed by approximately the 1/3 power of the temperature ratio.
  • a design minimum rotation speed (N min) in the load operation is calculated corresponding to the rated rotation speed.
  • a sensor for detecting the brand pressure 92 is provided downstream of the check valve 71, and a signal detected by this sensor is also input to the arithmetic processing unit 93. Then, the output of the inverter 94 is adjusted so that the plant pressure 92 becomes a predetermined value between the rated rotation speed Nmax and the design minimum rotation speed Nmin. That is, the current supplied from the inverter 94 to the motor 2 is controlled in accordance with the output adjustment signal of the inverter obtained by the arithmetic processing device 93. As a result, the number of revolutions of the motor changes, and the capacity of the compressor is adjusted.
  • a method of controlling the compressor speed by controlling the number of revolutions of the compressor will be described with reference to FIG.
  • the set air volume of the compressor is determined under the summer suction temperature conditions. Therefore, if the rotation speed does not change, the flow rate at which the set discharge pressure (P dp) is obtained shifts to the larger flow rate side from the design point when the suction temperature decreases. In this case, the power of the compressor increases. If more working fluid is supplied to the compressor than necessary, the no-load operation time of the compressor becomes longer, and the power consumption also increases in this case.
  • the cube value of the ratio between the suction temperature and the design suction temperature is calculated, and the rotation speed obtained by multiplying the design rotation speed is set as the rated rotation speed under the suction temperature condition. Thereafter, the compressor is controlled using this rated rotation speed as the upper limit rotation speed for compressor operation.
  • the minimum rotational speed of the compressor is obtained as follows. In a speed-controlled compressor, the flow rate decreases as the speed decreases. If the flow rate is lower than a certain value, surging will occur and unstable operation will occur. Therefore, surging must be avoided. The operating speed at which this surging can be avoided is the minimum speed. Specifically, the value obtained by multiplying the previously obtained rated speed by a certain ratio is defined as the minimum speed (N min).
  • this minimum rotation speed has already been corrected for the suction temperature, this value can be used as the minimum rotation speed even if the suction temperature changes. Therefore, by changing the compressor speed between the rated speed and the above minimum speed, The capacity of the compressor can be easily controlled. If the capacity can be adjusted by changing the rotation speed of the compressor, the no-load operation time of the compressor can be reduced, and the total power consumption of the compressor can be reduced. -When the rotation speed is controlled and the lower limit rotation speed is reached, the blow-off valve 7 will also be set if the pressure (P dp) downstream of the check valve rises above the set pressure of the blow-off valve (P d H n). Open 7.
  • the discharged working fluid is returned to the first-stage suction flow path from the direction perpendicular to the rotation axis direction, that is, the operation flowing out of the blow-off valve 7 7 to the nozzle 33 in Fig. 1.
  • a swirl component is given to the inlet flow of the first stage impeller, the suction flow rate can be reduced, and the power of the compressor can be reduced.
  • P dp pressure downstream of the valve
  • P d L blow-off valve closing set pressure
  • a throttle valve was provided on the suction side of the first stage compressor, and during blowing operation, the throttle valve was throttled to reduce compressor power.
  • the compressor of the present embodiment does not require a throttle valve on the suction side, so that the number of parts can be reduced as compared with the conventional method. Also, the compressor can be packaged in a compact form, which is economically advantageous. It goes without saying that a suction valve may be provided in the above embodiment.
  • cooling air is blown into the inside of the rear labyrinth on the second stage side.
  • a labyrinth 35 having an inner diameter larger than the inner diameter of the lapiling 30 formed on the back of the second-stage impeller is provided on the inner peripheral portion of the housing that holds the second-stage side 24 b of the thrust bearing.
  • a cooling fluid blowing hole is formed between the labyrinth 35 and the lapiling 30 of the second stage impeller.
  • a cooling fluid blowing hole 31b is formed between the magnetic bearing sensor 36 and the labyrinth 30 of the second stage impeller. The cooling hole 31b may be formed between the magnetic bearing 23b and the sensor 36.
  • cooling air is taken in from the downstream of the discharge cooler 23 b through the filter 75 and is introduced into the blowing hole 31 a of the casing 1.
  • Guided ⁇ Thrust from the second stage to the first stage at the thrust force receiving part determined by the inner diameter of the back labyrinth 30 of the second stage impeller and the labyrinth inner diameter of the thrust bearing Force acts.
  • the thrust force generated by the first-stage impeller and the second-stage impeller it is possible to reduce the imbalance of the thrust force generated by the first-stage impeller and the second-stage impeller, and to realize a high-speed rotating shaft system in which the thrust bearing is reduced in size.
  • centrifugal compressor As described above, in the present invention, there is no contact between the rotating part and the stationary part, and there is no need to use oil in any part of the compressor.
  • a centrifugal compressor can be obtained.
  • a two-stage centrifugal compressor that is friendly to the global environment can be obtained.
  • the operating power can be reduced, the energy saving effect is large, and the generation of carbon dioxide to the global environment can be suppressed.
  • the centrifugal compressor can be downsized at high speed, the installation area can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A two-stage centrifugal compressor driven directly by a motor which has impellers directly mounted on both end portions of a shaft thereof, and which comprises an inverter-driven high-frequency motor rotatable at a high speed, the rotary shaft being supported rotatably on magnetic bearings, whereby the two-stage centrifugal compressor does not require an oil and maintenance work. A rotor of the motor comprises a permanent magnet, a ring-shaped carbon fiber-reinforced plastic member for retaining the permanent magnet, and a metal sleeve for holding the permanent magnet between the metal sleeve and the carbon fiber-reinforced plastic member, the occurrence of a clearance between the permanent magnet and the rotary shaft which is liable to be encountered during a high-speed rotation of the motor being prevented by utilizing the strength of the carbon fiber. The rotary shaft which is rotated at a high speed causes the motor to generate heat due to an iron loss, a copper loss and a windage loss, and also the magnetic bearings to generate heat in the same manner, a part of an operating gas which has been cooled in an intermediate cooler or a discharge cooler being therefore introduced into a central portion and a labyrinth of a stator of the motor to cool the motor and magnetic bearings.

Description

明 細 書 電動機で直接駆動する 2段遠心圧縮機 - 技術分野  Description Two-stage centrifugal compressor driven directly by electric motor-Technical Field
本発明は、 電動機で直接駆動する 2段遠心圧縮機に係り、 特に工場の 動力空気源等に用いられる中、 小容量の空気圧縮機に好適な電動機で直 接駆動する 2段遠心圧縮機に関する。 背景技術  TECHNICAL FIELD The present invention relates to a two-stage centrifugal compressor driven directly by an electric motor, and more particularly to a two-stage centrifugal compressor directly used to be driven by an electric motor suitable for a small-capacity air compressor and used for a power air source in a factory. . Background art
吐出圧力がゲージ圧で約 8 O M P a、 圧縮機容量が 1 0 0 k W弱から 数百 k Wクラスの工場動力空気源として、 スクリユー圧縮機やターボ圧 縮機が使用されている。 この中でターボ圧縮機はメンテナンスが容易等 の理由で使用が増えている。 このターボ圧縮機の例が、 特開平 8— 1 5 9 0 9 4号公報ゃ特開平 9 - 2 8 7 5 9 6号公報に記載されている。 こ れらの公報に記載のターボ圧縮機では、 低速の誘導電動機の回転を歯車 増速機を用いて高速に増速し、 歯車増速機の高速回転軸である出力軸の 両端部に羽根車を取付けて 2段の空気圧縮機を形成している。  Screw compressors and turbo compressors are used as factory power air sources with a discharge pressure of about 8 OMPa in gauge pressure and a compressor capacity of less than 100 kW to several hundred kW. Among them, the use of turbo compressors is increasing due to easy maintenance. An example of this turbo compressor is described in Japanese Patent Application Laid-Open No. Hei 8-159904 / Japanese Patent Application Laid-Open No. Hei 9-287579. In the turbocompressors described in these publications, the rotation of a low-speed induction motor is increased at a high speed using a gear speed increaser, and blades are provided at both ends of an output shaft, which is a high speed rotation shaft of the gear speed increaser. The car is installed to form a two-stage air compressor.
夕一ボ圧縮機の場合、 空気をできるだけ小さい流体動力で効率良く圧 縮するためには、 羽根車を高速で回転させればよい。従来、 高速回転可 能で大容量の電動機の入手が容易でかったので、 歯車増速機を用いて電 動機の回転を増速していた。 増速機の使用により、 少なく ともモータ軸、 ブルギア軸及び羽根車を取付けるピニォン軸の 3本の軸が必要になる。 そして、 各軸にはその軸を回転可能に支持する接触形の転がり軸受ゃ滑 り軸受か必要となる。圧縮機の高速小形化が進む中、 滑り軸受の軸周速 も従来に比して格段に上昇しており、 滑り軸受の使用条件が厳しくなつ て軸受寿命を確保することが困難になっている。 一 一方、 歯車増速機については、 小形コンパク ト化という要請があり、 増速比が次第に大きくなつている。 増速比を大きくするため、 歯車のモ ジュール値を小さく し面圧や滑り速度を大きく している。 その結果、 や はり従来に比較すると使用条件が厳しくなってきている。 In the case of an evening compressor, the impeller should be rotated at a high speed in order to compress the air efficiently with as little fluid power as possible. Conventionally, it was not easy to obtain a large-capacity motor capable of high-speed rotation, so the speed of the motor was increased by using a gear speed increaser. Use of the gearbox requires at least three shafts: a motor shaft, a bull gear shaft, and a pinion shaft for mounting the impeller. Each shaft has a contact-type rolling bearing that rotatably supports the shaft. Bearings are required. As compressors have become smaller and smaller at high speeds, the peripheral speed of sliding bearings has also increased significantly compared to conventional bearings, and the operating conditions of sliding bearings have become more severe, making it difficult to ensure bearing life. . On the other hand, there is a demand for smaller gears for gearboxes, and the gear ratio is gradually increasing. To increase the speed increase ratio, the module value of the gear is reduced, and the surface pressure and sliding speed are increased. As a result, the use conditions have become stricter than before.
ところで、 ターボ型の遠心圧縮機に用いられる各構成要素の負荷は、 小型コンパク ト化により増加したにもかかわらず、 容積形圧縮機に比較 すればまだ小さい。 そのためメ ンテナンス間隔を比較的長期間にするこ とができるが、 軸受等の回転部と静止部との間の接触部分がある限り、 完全なメンテナンスフリーを実現することは困難である。  By the way, the load on each component used in a turbo-type centrifugal compressor is still smaller than that of a positive displacement compressor, despite the increase in compact size. Therefore, the maintenance interval can be made relatively long, but it is difficult to achieve complete maintenance-free as long as there is contact between the rotating part such as a bearing and the stationary part.
また、 歯車増速装置を内蔵する遠心圧縮機の場合には、 回転軸に羽根 車が負荷されるので慣性力が大きい。 慣性力が大きいと、 過渡トルクも 大きくなり、 起動停止に要する時間が長くなる。 さらに、 歯車増速機が 付け加わる分、 構造が複雑にならざるをえず、 振動固有値の回避が容易 ではない。 したがって、 歯車増速機を備えたターボ圧縮機では、 頻繁な 起動停止や回転数制御による容量調節が困難である。  In the case of a centrifugal compressor with a built-in gear speed increasing device, the impeller is loaded on the rotating shaft, so that the inertia force is large. If the inertia force is large, the transient torque will also be large, and the time required for starting and stopping will be long. In addition, the addition of the gearbox increases the complexity of the structure, and it is not easy to avoid the vibration eigenvalue. Therefore, with a turbo compressor equipped with a gearbox, it is difficult to frequently adjust the capacity by starting and stopping and controlling the number of revolutions.
なお、 ターボ圧縮機を小型コンパク ト化すると、 作動ガスを圧縮して 発生する熱及び摩擦により圧縮機内部で発生する熱を外部に放熱する放 熱路の確保が重要になる。 そのため、 中間冷却器や吐出冷却器をターボ 圧縮機本体の近傍に設けるのが一般的である。 圧縮機全体を小型化する ためには、 冷却器も小型化する必要がある。 特開平 8— 1 0 5 3 8 6号 公報に記載された歯車増速機を備えた遠心圧縮機では、 中間冷却器及び 吐出冷却器の被冷却流体入口及び出口を水平方向にして、 歯車増速装置 が必然的に水平方向に大きな幅を要することと合致させている。 しかし ながら、 この特開平 8 - 1 0 5 3 8 6号公報に記載のものは、 冷却器 スト内で冷却によって発生したドレンを作動流体の流れとともに排出し ているので、 ネスト内の圧力損失が大きくなること、 及び作動ガス中に ドレンが含まれるという不具合がある。 When the turbo compressor is made compact, it is important to secure a heat radiation path to radiate the heat generated inside the compressor to the outside by the heat generated by compressing the working gas and the friction. Therefore, it is common to provide an intercooler or discharge cooler near the turbo compressor body. In order to reduce the size of the compressor as a whole, the size of the cooler also needs to be reduced. In a centrifugal compressor equipped with a gear speed increaser described in Japanese Patent Application Laid-Open No. H08-105538, an intercooler and The cooling fluid inlet and outlet of the discharge cooler are horizontal, which is consistent with the fact that the gear speed increaser necessarily requires a large horizontal width. However, in the method described in Japanese Patent Application Laid-Open No. Hei 8-105386, the drain generated by cooling in the cooler strike is discharged together with the flow of the working fluid, so that the pressure loss in the nest is reduced. There is a problem in that the working gas becomes large and the working gas contains drain.
一方、 上記増速機付き遠心圧縮機の不具合を解消するために、 電動機 の軸端部に羽根車を設け、 増速機を介さずに直接羽根車を駆動する電動 機直接駆動式遠心圧縮機の例が、 特公平 5— 3 6 6 4 0号公報に開示さ れている。 この公報に記載の圧縮機においては、 圧縮機ケーシングと電 動機ケ一シングとを別体で形成している。 そのため、 増速機は不要とな り、 ある程度の小型化は達成したものの、 まだ圧縮機全体の小型コンパ ク ト化については不十分である。  On the other hand, in order to solve the above-mentioned problems of the centrifugal compressor with a speed increaser, an impeller is provided at the shaft end of the motor, and the direct drive centrifugal compressor drives the impeller directly without passing through the speed increaser. An example of this is disclosed in Japanese Patent Publication No. 5-36640. In the compressor described in this publication, the compressor casing and the motor casing are formed separately. For this reason, a gearbox is not required, and although a certain degree of downsizing has been achieved, it is still insufficient to reduce the overall size of the compressor.
本発明は、 上記従来技術の有する課題及び不具合に鑑みなされたもの であり、 その目的は、 歯車増速装置を不要とした小型コンパク 卜な電動 機で直接駆動する 2段遠心圧縮機を実現することにある。 本発明の他の 目的は、 組立が容易でメンテナンス性に優れた 2段遠心圧縮機を実現す ることにある。 本発明のさらに他の目的は、 消費動力を低減するととも に、 二酸化炭素の発生を極力低減できる地球環境にやさしい電動機で直 接駆動する 2段遠心圧縮機を提供することにある。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of the problems and disadvantages of the related art described above, and has as its object to realize a two-stage centrifugal compressor that is directly driven by a compact electric motor that does not require a gear speed increasing device. It is in. Another object of the present invention is to realize a two-stage centrifugal compressor which is easy to assemble and has excellent maintainability. Still another object of the present invention is to provide a two-stage centrifugal compressor that is directly driven by an earth-friendly electric motor that can reduce power consumption and reduce the generation of carbon dioxide as much as possible. Disclosure of the invention
上記目的を達成するための本発明の第 1の特徴は、 中間部に電動機の 回転子が形成された回転軸と、 この回転軸の両端部に取付けられた遠心 圧縮機羽根車と、 前記回転子とともに電動機を構成する電動機のステー 夕と、 前記回転軸を回転可能に支承するラジアル磁気軸受手段とスラス 卜磁気軸受手段とを備えた電動機で直接駆動する 2段遠心圧縮機にお ""、 て、 前記電動機のステ一夕の外周部にこのステ一タを水冷する水冷ジャ ケッ トを設け、 前記ステ一夕の中間部にこの 2段遠心圧縮機に吸込まれ た作動ガスを導くガス流路を形成したものである。 A first feature of the present invention for achieving the above object is that a rotating shaft having a motor rotor formed in an intermediate portion, and a centrifugal shaft attached to both ends of the rotating shaft. A two-stage motor driven directly by a motor having a compressor impeller, a motor stay that constitutes a motor together with the rotor, and radial magnetic bearing means and thrust magnetic bearing means rotatably supporting the rotating shaft. At the centrifugal compressor, a water-cooled jacket is provided around the outer periphery of the motor for stays "", and the two-stage centrifugal compressor is sucked in the middle of the stay. The gas flow path that leads the rare working gas is formed.
そして好ましくは、 回転軸の両端に取付けられた羽根車が 1段目の圧 縮機段と 2段目の圧縮機段を構成し、 これら圧縮機段で圧縮された作動 ガスを冷却する中間冷却器と吐出冷却器とを設け、 前記羽根車、 前記ラ ジアル磁気軸受手段、 前記スラス ト磁気軸受及び前記電動機とともにこ れら中間冷却器及び吐出冷却器を収容する一体型のケ一シングを設ける ものである。  Preferably, the impellers mounted on both ends of the rotating shaft constitute a first compressor stage and a second compressor stage, and intermediate cooling for cooling the working gas compressed in these compressor stages. And an integral casing for accommodating the intermediate cooler and the discharge cooler together with the impeller, the radial magnetic bearing means, the thrust magnetic bearing and the electric motor. Things.
さらに好ましくは、 中間冷却器には 1段目の圧縮機段で圧縮された作 動ガスが上方から流入し、 この中間冷却器で冷却された後下方から流出 するように冷却路を形成する、 または、 吐出冷却器には 2段目の圧縮機 段で圧縮された作動ガスが上方から流入し、 この吐出冷却器で冷却され た後下方から流出するように冷却路を形成するものである。  More preferably, a cooling path is formed such that the working gas compressed in the first compressor stage flows into the intercooler from above, is cooled by the intercooler, and then flows out from below. Alternatively, a cooling path is formed such that the working gas compressed in the second compressor stage flows into the discharge cooler from above, is cooled by the discharge cooler, and then flows out from below.
上記目的を達成するための本発明の第 2の特徴は、 中間部に電動機の 回転子が形成された回転軸と、 この回転軸の両端部に取付けられた羽根 車と、 前記回転子とともに電動機を構成する電動機のステ一夕と、 前記 回転軸を回転可能に支承する一対のラジアル磁気軸受手段とスラスト磁 気軸受手段とを備えた電動機で直接駆動する 2段遠心圧縮機において、 前記一方の羽根車で圧縮された作動ガスを冷却する中間冷却器と、 前記 他方の羽根車で圧縮された作動ガスを冷却する吐出冷却器とを前記回転 軸の下方であってこの回転軸にほぼ並行に配置し、 これら回転軸、 中間 冷却器及び吐出冷却器を収容する一体型のケーシングを設け、 前記吐出 冷却器または中間冷却器のいずれかで冷却された作動ガスを前記電動 のステ一夕の中間部に導く冷却路を形成したものである。 A second feature of the present invention to achieve the above object is that a rotating shaft having a rotor of an electric motor formed in an intermediate portion, impellers attached to both ends of the rotating shaft, and an electric motor together with the rotor A two-stage centrifugal compressor directly driven by an electric motor having a pair of radial magnetic bearing means and a thrust magnetic bearing means rotatably supporting the rotating shaft; Rotating the intercooler for cooling the working gas compressed by the impeller, and the discharge cooler for cooling the working gas compressed by the other impeller; An integral casing is provided below the shaft and substantially parallel to the rotating shaft, and houses the rotating shaft, the intercooler and the discharge cooler, and is cooled by either the discharge cooler or the intercooler. A cooling path is formed for guiding the working gas to an intermediate portion of the electric stay.
そして、 前記ケーシングの中間冷却器及び吐出冷却器を収容する軸方 向端部に窓を形成し、 この窓に着脱可能にカバーを取付け、 前記中間冷 却器及び吐出冷却器を軸方向から挿入可能にすることが好ましい。 また、 前記電動機は永久磁石式同期電動機であり、 前記回転子は、 リ ング状の永久磁石と、 該永久磁石を保持するリ ング状の炭素繊維強化プ ラスチック保持部材と、 このリ ング状保持部材とともに前記永久磁石を 挟持する金属製スリーブとを有することが好ましい。  A window is formed at an axial end of the casing that houses the intermediate cooler and the discharge cooler. A cover is detachably attached to the window, and the intermediate cooler and the discharge cooler are inserted from the axial direction. Preferably it is possible. The motor is a permanent magnet type synchronous motor, and the rotor is a ring-shaped permanent magnet, a ring-shaped carbon fiber reinforced plastic holding member for holding the permanent magnet, and a ring-shaped holding member. It is preferable to have a metal sleeve for holding the permanent magnet together with the member.
さらに、 ラジアル磁気軸受手段及びスラスト磁気軸受手段を、 負荷運 転時には前記中間冷却器で冷却した作動流体で、 無負荷運転時には前記 吐出冷却器で冷却した作動流体で選択的に冷却する冷却切換手段を備え ることが望ましい。  Further, cooling switching means for selectively cooling the radial magnetic bearing means and the thrust magnetic bearing means with a working fluid cooled by the intercooler during load operation and with a working fluid cooled by the discharge cooler during no load operation. It is desirable to have
また、 回転子は極数が 2極であり、 この回転子が回転するときに電動 機のステ一タの巻線に発生した誘起電圧に基づいて磁極位置を検出する 手段と、 この検出した磁極位置に基づいて前記電動機を制御するィン バータ制御手段とを設けてもよい。  The rotor has two poles, means for detecting a magnetic pole position based on an induced voltage generated in a winding of a motor stator when the rotor rotates, and means for detecting the detected magnetic pole. Inverter control means for controlling the electric motor based on the position may be provided.
さらに、 前記電動機を駆動するインバー夕と、 前記 2段目の羽根車の 下流側の圧力を検出する圧力検出手段と、 この検出された圧力が所定圧 力以上であれば外部に作動ガスを放風する放風弁と、 前記圧力検出手段 が検出した圧力に基づき前記ィンバ一タを制御する制御手段とを設け、 設定下限回転数に到達しても予め定められた前記放風弁開設定圧力以上 に前記検出圧力が上昇する場合には放風弁を開き、 この放風弁を流通し た作動流体を 1段目の羽根車の上流側に戻す流路を形成してもよい。 ま た、 電動機を負荷運転時には前記中間冷却器で冷却した作動流体で、 負荷運転時には前記吐出冷却器で冷却した作動流体で選択的に冷却する 冷却切換手段を備えてもよい。 図面の簡単な説明 Further, an invertor for driving the electric motor, pressure detecting means for detecting a pressure on the downstream side of the second-stage impeller, and when the detected pressure is equal to or higher than a predetermined pressure, the working gas is discharged to the outside. A blow-off valve for blowing air, and control means for controlling the inverter based on the pressure detected by the pressure detection means, and the predetermined blow-off valve opening set pressure even when the set lower limit rotation speed is reached. that's all In the case where the detected pressure rises, a blow-off valve may be opened to form a flow path for returning the working fluid flowing through the blow-off valve to the upstream side of the first stage impeller. Further, the electric motor may be provided with cooling switching means for selectively cooling the motor with the working fluid cooled by the intercooler during the load operation and with the working fluid cooled by the discharge cooler during the load operation. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る電動機で直接駆動する 2段遠心圧縮機の一実 施例の正面図であり、 第 2図及び第 3図は第 1図に示した遠心圧縮機の 側面図であり、 第 2図は左側面図、 第 3図は右側面図である。 第 4図は、 第 1図の実施例の回転軸回りの縦断面図であり、 第 5図は電動機駆動回 路のー実施例の回路図であり、 第 6図は、 インバ一タにより電動機を駆 動するときの位置検出回路の一実施例を示した回路図であり、 第 7図は 位置検出を説明する説明図である。 また第 8図は、 第 4図に示した回転 軸の電動機部分の詳細図であり、 第 9図は第 8図の C視図である。 第 1 0図は、 第 1図に示した圧縮機の配管フロー図であり、 第 1 1図及び第 1 2図は遠心圧縮機の制御を説明するための図であり、 第 1 1図は配管 系統図、 第 1 2図は圧力一流量特性を示す図である。 また、 第 1 3図は 本発明の一実施例における軸受部の冷却構造の詳細図、 第 1 4図は第 1 3図に示した冷却構造に冷却ガスを送る系統図である。 発明を実施するための最良の形態  FIG. 1 is a front view of an embodiment of a two-stage centrifugal compressor directly driven by an electric motor according to the present invention, and FIGS. 2 and 3 are side views of the centrifugal compressor shown in FIG. 2 is a left side view, and FIG. 3 is a right side view. FIG. 4 is a longitudinal sectional view around the rotation axis of the embodiment of FIG. 1, FIG. 5 is a circuit diagram of an embodiment of the motor driving circuit, and FIG. 6 is a motor driven by an inverter. FIG. 7 is a circuit diagram showing one embodiment of a position detection circuit when driving the motor, and FIG. 7 is an explanatory diagram for explaining position detection. FIG. 8 is a detailed view of the electric motor portion of the rotating shaft shown in FIG. 4, and FIG. 9 is a view as viewed from C in FIG. FIG. 10 is a piping flow diagram of the compressor shown in FIG. 1; FIGS. 11 and 12 are diagrams for explaining control of the centrifugal compressor; FIG. FIG. 12 is a diagram showing a pressure-flow rate characteristic. FIG. 13 is a detailed view of a cooling structure of a bearing portion in one embodiment of the present invention, and FIG. 14 is a system diagram for sending a cooling gas to the cooling structure shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施例を図面を用いて説明する。 第 1図ないし第 3図は、 本 発明に係る 2段遠心圧縮機の一実施例の外観図であり、 第 1図はその正 面図、 第 2図は左側面図、 第 3図は右側面図である。 さらに、 第 4図は、 本発明に係る 2段遠心圧縮機の回転軸周りの縦断面図である。第 4図に 示すように、 本実施例の 2段遠心圧縮機では、 中央部に電動機回転子 f 0 a が形成された回転軸 2 0を、 軸方向 2箇所でラジアル磁気軸受 2 3 a、 2 3 bがラジアル方向に支承している。 また、 一方のラジアル磁 気軸受 2 3 bの隣に設けたスラス ト磁気軸受 2 4 a、 2 4 bが軸方向に 非接触で回転軸 2 0を支承している。 回転軸 2 0の両端部には、 それぞ れ 1段目羽根車 2 1 aおよび 2段目羽根車 2 1 bが取付けられている。 電動機回転子 2 0 aに対向して電動機のステ一タ 2 2が配置されてい る。ステ一夕 2 2の外周にはステ一夕で発生する銅損や鉄損、 あるいは ステ一夕 2 2と回転子 2 0 aとの間に発生する風損により発生した熱を 冷却する冷却水ジャケッ ト 1 4が設けられている。このステ一夕 2 2と 冷却水ジャケッ ト 1 4とを、 圧縮機を組立てる前に予め組み付けて一体 化しておく。 An embodiment of the present invention will be described with reference to the drawings. 1 to 3 are external views of one embodiment of a two-stage centrifugal compressor according to the present invention, and FIG. 2 is a left side view, and FIG. 3 is a right side view. Further, FIG. 4 is a longitudinal sectional view around the rotation axis of the two-stage centrifugal compressor according to the present invention. As shown in Figure 4, the two-stage centrifugal compressor of the present embodiment, the rotary shaft 2 0 the electric motor rotor f 0 a is formed in the central portion, the radial magnetic bearing 2 3 a in the axial direction two positions, 2 3 b supports in the radial direction. Also, thrust magnetic bearings 24a and 24b provided adjacent to one radial magnetic bearing 23b support the rotating shaft 20 in a non-contact manner in the axial direction. A first-stage impeller 21a and a second-stage impeller 21b are attached to both ends of the rotating shaft 20, respectively. A motor stator 22 is arranged opposite the motor rotor 20a. Cooling water that cools the heat generated by the copper loss and iron loss that occur during the stay, or the wind loss that occurs between the stay 22 and the rotor 20a around the stay 22 Jacket 14 is provided. This stage 22 and the cooling water jacket 14 are assembled and integrated in advance before assembling the compressor.
各段の羽根車 2 1 a、 2 l bは、 シュラウドを有しないオープンシュ ラウ ド型である。 1段目の羽根車 2 1 aはインナ一ケ一シング 1 7 bと の間に、 2段目の羽根車 2 1 bはィンナーケ一シング 1 8 bとの間に、 それぞれ微小ギヤップを保って回転している。  The impellers 21a and 21b at each stage are of an open shroud type having no shroud. The first-stage impeller 2 1a is kept between the inner casing 17b and the second-stage impeller 2 1b is kept between the inner casing 18b and the minute gap. It is spinning.
さらに、 1段目の圧縮機 1 aおよび 2段目の圧縮機 1 bの双方は、 軸 方向端部をへッ ドカバ一 1 7、 1 8で軸方向から覆われている。 へッ ド カバ一は吸込み静止流路壁面および吐出静止流路壁面を形成している。 1段目のへッ ドカバ一 1 7は、 耐圧閉止部 1 7 a、 1 7 dと静止流路を 形成するィンナーケーシング部 1 7 bと、 リブ 1 7 cとから構成される, ここで、 耐圧閉止部 1 7 dを耐圧閉止部 1 7 aと一体にしてもよい。 ま た、 リブ 1 7 cは耐圧閉止部 1 7 aとィンナ一ケ一シング部 1 7 b と の間に流路を確保する。 2段目の圧縮機 1 bのへッ ドカバー 1 8は 1段 目と同様に、 耐圧閉止部 1 8 a、 1 8 dとインナーケ一シング部 1 8 とリブ 1 8 cとを備えている。 Further, both the first stage compressor 1a and the second stage compressor 1b are axially covered with head covers 17 and 18 at their axial ends. The head cover forms a suction stationary flow path wall surface and a discharge stationary flow path wall surface. The first-stage head cover 17 includes pressure-resistant closing portions 17a and 17d, an inner casing portion 17b that forms a stationary flow path, and ribs 17c. The pressure-resistant closing portion 17d may be integrated with the pressure-resistant closing portion 17a. Ma In addition, the rib 17c secures a flow path between the pressure-resistant closing portion 17a and the inner casing 17b. The head cover 18 of the second-stage compressor 1b has pressure-resistant closing portions 18a and 18d, an inner casing 18 and ribs 18c as in the first stage.
電動機冷却水ジャケッ 卜の外径は、 磁気軸受を組み付けた磁気軸受ハ ウジング 2 8 a、 2 8 bの少なく とも一方の外径より大きい。 この第 4 図に示した実施例では、 磁気軸受ハウジング 2 8 a、 2 8 bの双方の外 径より大きい。 さらにへッ ドカバ一 1 7、 1 8の外径も、 磁気軸受ハウ ジングの外径より大きい。 電動機、 軸受および圧縮機部の大きさの関係 をこのように定めることにより、 ケ一シング内に収容される回転軸や羽 根車等のィンターナル部品を、 軸方向から容易にケ一シング内に組み立 てることが可能になる。 そして、 電動機ケーシング 2および圧縮機ケー シング 1 a、 1 b内に各部品を軸方向から組み込むことができるので、 電動機ケ一シング 2および圧縮機ケ一シング 1 a、 1 bを分割のない円 筒状でかつ軸方向に一体の構造にすることができる。  The outer diameter of the motor cooling water jacket is larger than at least one of the outer diameters of the magnetic bearing housings 28a and 28b in which the magnetic bearings are assembled. In the embodiment shown in FIG. 4, the outer diameter of each of the magnetic bearing housings 28a and 28b is larger. Furthermore, the outer diameter of the head covers 17 and 18 is larger than the outer diameter of the magnetic bearing housing. By determining the relationship between the size of the motor, bearing, and compressor section in this manner, the internal components such as the rotating shaft and the impeller accommodated in the casing can be easily inserted into the casing from the axial direction. It can be assembled. Each part can be incorporated into the motor casing 2 and the compressor casings 1a and 1b from the axial direction, so that the motor casing 2 and the compressor casings 1a and 1b are circles without division. It is possible to have a cylindrical and axially integral structure.
このように構成した電動機で直接駆動する 2段遠心圧縮機を、 従来用 いられている歯車増速形圧縮機と同程度の速度で回転させるためには、 軸長さを可能な限り短く し、 できる限り径を大きく しなければならない ( これは、 回転軸のほぼ中央部に歯車の歯幅に比べてはるかに長い電動機 回転子を有するためであり、 この電動機回転子があるので危険速度が低 下する。本発明に係る圧縮機の運転速度は 4万 RPM以上あり、 通常の油 軸受ではこのような高速の回転軸を制振することができない。 特に、 3 次危険速度を超えた領域での運転となる本実施例では軸受として磁気軸 受を用い、 それにより圧縮機の運転範囲を回転軸の 3次と 4次の危険速 P In order to rotate a two-stage centrifugal compressor directly driven by an electric motor configured as described above at the same speed as a conventional gear-increasing compressor, the shaft length must be as short as possible. However, the diameter must be as large as possible. (This is because the motor rotor is almost at the center of the rotating shaft and is much longer than the tooth width of the gears. The operating speed of the compressor according to the present invention is 40,000 RPM or more, and ordinary oil bearings cannot control such high-speed rotating shafts. In this embodiment, a magnetic bearing is used as a bearing, and the operating range of the compressor is thereby reduced to the third and fourth critical speeds of the rotating shaft. P
9 度の間に納めている。 It is stored between 9 degrees.
なお本実施例では、 電動機としてィンバ一タにより駆動される 2極の 永久磁石式同期電動機を用いている。 そして、 磁極位置の検出に電動 ステ一夕の巻線に発生する誘起電圧を利用している。 これにより、 専用 の磁極位置検出センサを不要とし、 回転軸長を短く している。 従来は、 磁極位置の検出にリゾルバや光エンコーダ等を用いているが、 これらの 検出器により軸長が長くなって、 危険速度が低下するのを防止できる。 誘起電圧を利用して磁極位置を検出することは、 容量数 k W程度以下 の小形の電動機では多用されているが、 容量百 k W弱〜数百 k Wで 4 0 0 0 0 r ρ π!〜 8 0 0 0 0 r p m回転する圧縮機への適用は困難であつ た。 本実施例では以下に記載の方法により、 誘起電圧を利用した磁極位 置検出を可能にしている。 本実施例の 2段遠心圧縮機に用いる永久磁石 式ブラシレス同期電動機は、 一種の直流ブラシレスモータである。 この 直流ブラシレスモータの駆動回路の一例を第 5図に示す。  In this embodiment, a two-pole permanent magnet synchronous motor driven by an inverter is used as the motor. Then, the induced voltage generated in the winding of the electric stay is used for detecting the magnetic pole position. This eliminates the need for a dedicated magnetic pole position detection sensor and shortens the rotating shaft length. Conventionally, a resolver, an optical encoder, or the like is used to detect the magnetic pole position. However, these detectors can prevent the shaft length from becoming longer and the dangerous speed from lowering. Detecting the magnetic pole position using the induced voltage is often used for small motors with a capacity of about several kW or less, but 400 000 r r ρ π ! It was difficult to apply to a compressor rotating up to 800,000 rpm. In this embodiment, the magnetic pole position detection using the induced voltage is enabled by the method described below. The permanent magnet type brushless synchronous motor used in the two-stage centrifugal compressor of this embodiment is a type of DC brushless motor. Fig. 5 shows an example of a drive circuit for this DC brushless motor.
モータ軸の回転位置あるいは負荷の大きさに応じて、 例えば 1 2 0 ° 通電方式でパワースィッチを O Nノ 0 F Fし、 電動機の巻線の a相、 b 相および c相の各相に電流を流す。 直流ブラシレスモータの駆動部は、 ィンバ一タ部 4 7と、 このィンバ一タ部 4 7へ通電切換を指示する通電 切換部 4 6と、 位置検出回路 4 5とを有している。 位置検出回路 4 5は、 通電切換信号を発生するためのもので、 モータに誘起される電圧から永 久磁石回転子の周方向位置を検出する。 ィンバ一タ部 4 7は、 通電切換 部 4 6から指示されたモ一夕の各相の巻線 4 4 a、 4 4 b、 4 4 cへの 通電切換タイミ ングに応じて、 スイッチングトランジスタとダイォ一ド から成るスィッチング素子 4 8 a、 4 8 b、 4 8 cおよびスイッチング 素子 4 9 a、 4 9 b、 4 9 cを動作させる。 Depending on the rotational position of the motor shaft or the size of the load, the power switch is turned ON and OFF by, for example, a 120 ° conduction method, and current is applied to each of the phases a, b, and c of the motor winding. Shed. The drive unit of the DC brushless motor includes an inverter unit 47, an energization switching unit 46 that instructs the inverter unit 47 to switch energization, and a position detection circuit 45. The position detection circuit 45 is for generating an energization switching signal, and detects the circumferential position of the permanent magnet rotor from the voltage induced in the motor. The inverter unit 47 includes a switching transistor and a switching transistor in accordance with the current switching timing to the windings 44 a, 44 b, and 44 c of each phase of the motor designated by the current switching unit 46. Switching elements consisting of diodes 48a, 48b, 48c and switching Operate the elements 49a, 49b, 49c.
1 2 0° 通電方式においては、 a相の巻線 4 4 aに回転軸 2 0の回転 角でほぼ 1 2 0° の区間だけ正電圧を印加した後、 回転角でほぼ 6 0°— の区間、 この a相への通電を停止する。 その後、 ほぼ 1 2 0° の区間だ け負電圧を印加し、 さらにその後 6 0° の区間だけ通電を停止する。 b 相および c相へも同様に通電する。 ただし、 a相、 b相および c相の各 相への通電タイ ミ ングは、 夫々 1 2 0° ずつ互いに変化させている。 こ れにより、 回転磁界が発生し、 ブラシレスモータが駆動される。  In the 120 ° energization method, a positive voltage is applied to the a-phase winding 44a only for a section of about 120 ° in the rotation angle of the rotation axis 20 and then the rotation angle of about 60 ° Section, stop energizing this a-phase. After that, a negative voltage is applied only for a section of about 120 °, and then the energization is stopped for a section of about 60 °. Energize the b-phase and c-phase in the same way. However, the energization timing for each of the a-phase, b-phase, and c-phase is varied by 120 ° each. As a result, a rotating magnetic field is generated, and the brushless motor is driven.
次に、 第 5図に示した位置検出回路 4 5の詳細を第 6図に示す。 この 第 6図では、 モータの端子電圧に基づいた回転位置検出機能をブロック で示している。 モータの端子電圧 V a、 V b、 V cは各相毎に設けられ た積分器 4 2に入力されて積分される。 積分器 4 2で積分することによ り、 端子電圧 V a、 V b、 V cの位相は 9 0° シフ トする。 これととも に、 パルス幅変調 (PWM) 制御等で生じた高調波のリ ップル成分が除 去され、 正弦波に近似された信号となる。 ここで、 積分器 4 2がすべて の信号成分を積分する純粋な積分処理を実行すると、 微少な D C電圧を 無意味に増幅することになる。 この不具合を避けるため、 積分器 4 2は D C電圧をカツ 卜するハイパスフィルタを有している。 積分器 4 2を通 過した信号は、 コンパレータ 4 3で相端子電圧 V a、 V b、 V cの中性 電位 V nと比較され、 ゼロクロス点で 0 NZO F Fするデューティ比 1 : 1のパルス信号が得られる。 ここで、 デューティ比は、 ONと O F Fの時間の比である。 このパルス信号は各相毎に得られ、 各々 1 2 0° ずつずれている。  Next, FIG. 6 shows details of the position detection circuit 45 shown in FIG. In FIG. 6, a block shows a rotational position detecting function based on the terminal voltage of the motor. The terminal voltages Va, Vb, and Vc of the motor are input to an integrator 42 provided for each phase and integrated. By integrating with the integrator 42, the phases of the terminal voltages Va, Vb, and Vc are shifted by 90 °. At the same time, the ripple component of harmonics generated by pulse width modulation (PWM) control is removed, and the signal approximates a sine wave. Here, if the integrator 42 performs a pure integration process of integrating all the signal components, the minute DC voltage is amplified in a meaningless manner. To avoid this problem, the integrator 42 has a high-pass filter for cutting the DC voltage. The signal passed through the integrator 42 is compared with the phase terminal voltages V a, V b, and V c at the neutral potential V n by the comparator 43, and a pulse with a duty ratio of 1: 1 is used to make 0 NZO FF at the zero crossing point. A signal is obtained. Here, the duty ratio is the ratio of the ON and OFF times. This pulse signal is obtained for each phase and is shifted by 120 ° each.
パルス信号の元は、 モータの相電流によって位相が変化する相端子電 圧であるから、 回転位置パルス信号はこのままでは相端子電圧と共に変 化し、 モータの回転位置を特定できない。 モータの回転位置を得るため に、 モータの相電流で回転位置パルス信号を補正する。 第 7図を用いぞ、 相電流による補正の方法を説明する。 The source of the pulse signal is the phase terminal voltage whose phase changes according to the phase current of the motor. Because it is pressure, the rotation position pulse signal changes with the phase terminal voltage as it is, and the rotation position of the motor cannot be specified. To obtain the rotational position of the motor, the rotational position pulse signal is corrected with the phase current of the motor. The method of correction using the phase current will be described with reference to FIG.
相端子電圧 Vは、 誘起電圧 E 0と、 相抵抗 rおよび相ィンダク夕ンス Lに相電流 I mが流れて生じるィンピ一ダンスドロップとのべク トル和 で表される。 つまり、 誘起電圧 E 0は、 相端子電圧 Vとィンピーダンス ドロップのべク トル差である。 相端子電圧 Vと誘起電圧 E 0との位相差 5を求め、 この値を相端子電圧 Vの位相から差し引くことにより、 誘起 電圧 の位相、 すなわち回転軸の回転角情報を得ることができる。 第 6図における位相補正器 4 1は、 この位相差 Sを求めるものであり、 得られた位相差 <5に基づいて回転位置パルス信号の位相を補正する。 そ の結果、 モータ電流の大きさの如何に関わらず、 誘起電圧と位相が一致 したパルス信号が得られる。 モータ電流を制御するィンバ一タ部では、 位相補正器 4 1により位相補正された回転位置信号に基づいてスィッチ ング素子の通電切換を実施する。 The phase terminal voltage V is represented by the vector sum of the induced voltage E 0 and the impedance drop generated when the phase current Im flows through the phase resistance r and the phase inductance L. In other words, the induced voltage E 0 is the vector difference between the phase terminal voltage V and the impedance drop. By obtaining the phase difference 5 between the phase terminal voltage V and the induced voltage E 0 and subtracting this value from the phase of the phase terminal voltage V, the phase of the induced voltage, that is, the rotation angle information of the rotating shaft can be obtained. The phase corrector 41 in FIG. 6 calculates the phase difference S, and corrects the phase of the rotational position pulse signal based on the obtained phase difference <5. As a result, a pulse signal whose phase matches the induced voltage is obtained regardless of the magnitude of the motor current. The inverter for controlling the motor current switches the energization of the switching element based on the rotational position signal whose phase has been corrected by the phase corrector 41.
ところで、 回転軸 2 0の危険速度を高めるためには、 回転軸径をでき るだけ大きくするか、 回転軸長を短くするのが一般的である。 第 8図に- 回転軸径を大径化して危険速度を高めた例を示す。 第 8図は、 永久磁石 式同期電動機の回転子部分の概略構造を示したものである。 また、 第 9 図は、 第 8図の C視図である。 リ ング状の永久磁石 6 1が保持材 6 2で 保持されている。 この保持材には、 非磁性体であること、 比強度が高い こと、 電気伝導率が低いことすなわち固有抵抗値が高いこと、 等の性能 が要求される。 これらの性能を満足するものとして、 C F R P (炭素繊 維強化プラスチック材) がある。 By the way, in order to increase the critical speed of the rotating shaft 20, it is common to increase the rotating shaft diameter as much as possible or to shorten the rotating shaft length. Fig. 8 shows an example of increasing the critical speed by increasing the diameter of the rotating shaft. FIG. 8 shows a schematic structure of a rotor part of a permanent magnet type synchronous motor. FIG. 9 is a view as viewed from C in FIG. A ring-shaped permanent magnet 61 is held by a holding member 62. The holding material is required to have properties such as being a non-magnetic material, having high specific strength, having low electric conductivity, that is, having high specific resistance. CFRP (carbon fiber) Fiber-reinforced plastic material).
ところで、 本実施例の回転軸は 3次の危険速度を超えて回転するので、 遠心力により永久磁石が回転軸から遊離するのを防止する必要がある そこで、 永久磁石の遊離を防止するだけの締め代を C F R Pと回転軸と の間に形成する。 永久磁石の強度は非常に小さいので、 永久磁石自体が 遠心力を負担することはできない。 上述の締め代が不足すると運転中に 永久磁石がシャフ トから離れ、 アンバランスを生じる。 アンバランスが 生じると、 アンバランス振動が大きくなり、 圧縮機を安定して運転でき なくなる。 このため本実施例の運転条件では、 締め代として 1 0 0 0分 の 3 mm程度が必要となる。 C F R Pの周方向の熱膨張係数はほとんど 0であり、 一般的に使用される焼き嵌めは不可能である。 また、 油圧嵌 めは C F R P材の軸方向引張り強さが低いので困難である。 さらに回転 軸を冷却する冷し嵌めでは、 上記締め代分の温度変形を生じない。 また- C F R Pの加工で用いられる圧入法は、 本実施例の場合には C F R Pの 軸方向長さが長いので、 C F R Pの圧縮強度が不足し不適である。  By the way, since the rotating shaft of this embodiment rotates beyond the third critical speed, it is necessary to prevent the permanent magnet from separating from the rotating shaft due to centrifugal force. An interference is formed between CFRP and rotating shaft. Since the strength of the permanent magnet is very small, the permanent magnet itself cannot bear the centrifugal force. If the above-mentioned interference is insufficient, the permanent magnet separates from the shaft during operation, causing imbalance. If unbalance occurs, unbalance vibration will increase and the compressor will not be able to operate stably. For this reason, under the operating conditions of the present embodiment, a closing margin of about 3 mm for 100 minutes is required. The coefficient of thermal expansion in the circumferential direction of CFRP is almost 0, and shrink-fit which is generally used is impossible. Hydraulic fitting is also difficult because of the low tensile strength of the CFRP material in the axial direction. In addition, a cold fit that cools the rotating shaft does not cause temperature deformation corresponding to the above-mentioned interference. In addition, in the case of the present embodiment, the press-fitting method used in the processing of -CFRP is inappropriate because the compressive strength of CFRP is insufficient because the axial length of CFRP is long.
そこで、 本実施例においては、 磁石 5 1 と回転軸 2 0 aの間に鋼製ス リーブ 6 4を介在させている。 回転軸 2 0を組立てる前に、 多層リング 磁石の外周に接着樹脂を含浸させながら炭素繊維を巻き付け、 高温炉に 入れて樹脂を高温硬化させる。 これにより、 一体スリーブを形成する。 —方、 一体スリーブの内径とほぼ同じ外径を有する鋼製スリーブ 6 4を 用意し、 この鋼製スリーブの外周に先に述べた一体スリーブを装着する, 鋼製スリーブの内径を、 必要締め代分に相当する量だけ回転軸外径より も小さくする。 次にこの鋼製スリーブの内径側に油圧を負荷して強制的 に鋼製スリーブの内径を拡張し、 拡張した鋼製スリーブを回転軸に嵌め 込む。 Therefore, in this embodiment, a steel sleeve 64 is interposed between the magnet 51 and the rotating shaft 20a. Before assembling the rotating shaft 20, carbon fibers are wound around the outer periphery of the multilayer ring magnet while impregnating the adhesive resin, and the resin is set at a high temperature in a high-temperature furnace. This forms an integral sleeve. — On the other hand, prepare a steel sleeve 64 having the same outer diameter as the inner diameter of the integral sleeve, and attach the above-mentioned integral sleeve to the outer periphery of this steel sleeve. Make the diameter smaller than the outer diameter of the rotating shaft by an amount equivalent to a minute. Next, hydraulic pressure is applied to the inner diameter side of the steel sleeve to forcibly expand the inner diameter of the steel sleeve, and the expanded steel sleeve is fitted to the rotating shaft. Put in.
単に運転中に隙間を生じないようにするのであれば、 縦弾性係数の大 きな炭素繊維を使用すればよい。 しかし高弾性係数の炭素繊維は、 引 §1 り強さが低く、 逆に引張り強さが高いと弾性係数が低い。 そこで第 8図 及び第 9図に示す構造にして必要締め代を確保し、 引張り強さの高い炭 素繊維の使用を可能にして大径の回転軸を実現している。 なお、 第 9図 で示したステ一夕コァ 2 aでは、 スロッ ト数を 6個にしているが、 ス ロッ ト数はこれに限るものではなく、 必要に応じて増減できるものであ る。  To avoid gaps during operation, carbon fibers having a large modulus of elasticity may be used. However, carbon fibers having a high elastic modulus have a low tensile strength, and conversely, a high tensile strength has a low elastic modulus. Therefore, the structure shown in Fig. 8 and Fig. 9 is used to secure the required interference and to enable the use of carbon fiber with high tensile strength to realize a large-diameter rotary shaft. Although the number of slots is set to six in the station core 2a shown in FIG. 9, the number of slots is not limited to this and can be increased or decreased as needed.
永久磁石の両端部には、 C F R Pリ ング 6 3 a、 6 3 bを装着してい る。 このリ ングを、 ステ一タ卷線が作る回転磁界の漏れを少なくすると ともに、 回転磁界の高調波成分による渦電流損を減らすために設けてい る。 C F R Pや磁石は温度が高くなると機械的特性が低下する。 した がって、 回転子部に生じる損失による発熱を低減して機械的特性を確保 すれば、 回転軸を高速化できる。  The CFRP rings 63a and 63b are attached to both ends of the permanent magnet. This ring is provided to reduce the leakage of the rotating magnetic field generated by the stator winding and to reduce the eddy current loss due to the harmonic components of the rotating magnetic field. The mechanical properties of CFP and magnets decrease with increasing temperature. Therefore, if the heat generated by the loss in the rotor part is reduced and the mechanical characteristics are secured, the speed of the rotating shaft can be increased.
上述した圧縮機の内蔵部分を、 第 1図に示した一体構造のケーシング に収納する。 1段目の圧縮機部 1 aは、 吸込みフィルタサイレンサ 1 9 を備えた 1段吸込みノズル 4と、 吐出ノズルと、 中間冷却器 3 aへの連 絡流路を形成している 1段吐出流路 5 とを有している。吸込みノズル 4 と吐出ノズル流路 5とは、 回転軸の半径方向から作動流体が吸込まれ、 また吐出されるように形成されている。  The built-in portion of the compressor described above is housed in a casing having an integral structure shown in FIG. The first-stage compressor section 1a has a first-stage suction nozzle 4 having a suction filter silencer 19, a discharge nozzle, and a one-stage discharge flow forming a communication flow path to the intercooler 3a. Road 5 The suction nozzle 4 and the discharge nozzle flow path 5 are formed so that the working fluid is sucked and discharged from the radial direction of the rotation shaft.
同様に、 2段目の圧縮機部 l bは、 中間冷却器 3 bからの吸込み流路 6と、 吐出ノズルと、 吐出冷却器 3 bへの連絡流路を形成している 2段 目の吐出流路 7とを有している。 吸込みノズル 6と吐出ノズル流路 7は、 回転軸の半径方向から作動流体が吸込まれ、 また吐出されるように形成 されている。 Similarly, the second-stage compressor section lb has a suction passage 6 from the intercooler 3b, a discharge nozzle, and a second-stage discharge forming a communication flow passage to the discharge cooler 3b. And a flow path 7. The suction nozzle 6 and the discharge nozzle flow path 7 The working fluid is formed so as to be sucked and discharged from the radial direction of the rotating shaft.
中間冷却器 3 aは中間冷却器ケース 1 cに、 また、 吐出冷却器 3 bは— 吐出冷却器ケース 1 dにそれぞれ収納される。 中間冷却器ケース 1 cと 吐出冷却器ケース 1 とは、 入口から出口方向への流れが互いに逆である 対向流となるように平行に配置している。 そしてこの流れ方向を回転軸 の軸方向に一致させている。 中間冷却器ケース 1 cおよび吐出冷却器 ケース 1は相対する合せ面で結合される。  The intercooler 3a is stored in the intercooler case 1c, and the discharge cooler 3b is stored in the discharge cooler case 1d. The intercooler case 1c and the discharge cooler case 1 are arranged in parallel so that the flows from the inlet to the outlet are opposite to each other in opposite directions. And this flow direction is made to coincide with the axial direction of the rotating shaft. The intercooler case 1 c and the discharge cooler case 1 are joined at opposing mating surfaces.
中間冷却器 3 aのネスト内流れが上面から下面に向かうように、 中間 冷却器 3 aを配置する。 吐出冷却器 3 bもケース 1 d内に同様に配置す  The intercooler 3a is arranged so that the flow in the nest of the intercooler 3a goes from the upper surface to the lower surface. Discharge cooler 3b is also placed in case 1d in the same way.
1段目の吐出流路 5を、 中間冷却器ケース 1 cの一方端の上面に接続 する。 中間冷却器ケース 1 cに流入した流れは、 中間冷却器の下面から 流出する。 この流れは、 例えば、 第 1図に示した実施例のように中間冷 却器ケース 1 Cの入口の他端の下部から吐出冷却器の下部を通り、 吐出 冷却器ケース 1 dの外側端面に導かれる。 この出口から 2段目の吸込み ノズル 6間を、 配管接続する。 また、 2段目の圧縮機から流出した流れ は、 2段目の吐出流路を経て吐出冷却器ケース 1 dの中間冷却器出口側 端の上面に導かれる。 吐出冷却器ケース 1 dに流入した流れは、 吐出冷 却器の下面から流出する。 そして、 この流れは、 吐出冷却器ケース I d の入口の他端側面から排出される。 The first-stage discharge passage 5 is connected to the upper surface of one end of the intercooler case 1c. The flow that has flowed into the intercooler case 1c flows out from the lower surface of the intercooler. For example, as shown in the embodiment shown in FIG. 1, this flow passes through the lower part of the other end of the inlet of the intermediate cooler case 1C, the lower part of the discharge cooler, and the outer end face of the discharge cooler case 1d. Be guided. A pipe is connected between the outlet and the second stage suction nozzle 6. The flow that has flowed out of the second-stage compressor is guided to the upper surface of the discharge cooler case 1d at the outlet side of the intercooler through the second-stage discharge passage. The flow that has flowed into the discharge cooler case 1d flows out from the lower surface of the discharge cooler. Then, this flow is discharged from the other end side surface of the inlet of the discharge cooler case Id.
このように圧縮機段と中間冷却器及び吐出冷却器を構成した本実施例 では、 回転軸方向に対して直角方向の冷却器ケースの幅を小さくするこ とができ、 ケーシングの一体構造化を可能にしている。 つまり、 本実施 例によれば、 電動機ケース 2、 圧縮機ケーシング 1 a、 1 bおよび冷却 器ケース l c、 1 dを铸物構造を採用して一体化している。 In this embodiment in which the compressor stage, the intercooler and the discharge cooler are configured as described above, the width of the cooler case in the direction perpendicular to the rotation axis direction can be reduced, and the casing can be integrally structured. Making it possible. In other words, this implementation According to the example, the motor case 2, the compressor casings 1a and 1b, and the cooler cases lc and 1d are integrated by adopting a natural structure.
ケ一シングを铸物で製作する場合には、 銹型の上型と下型の分離面-^ ある見切り面を設定する必要がある。 本実施例では、 回転軸と中間冷却 器および吐出冷却器の接合部中心を通る面が望ましい。 一体铸物を前提 にして見切り面をこの場所に設定するためには、 見切り面からの深さ寸 法を小さくする必要がある。 そのためには、 冷却器内では上方から下方 に作動流体を流せばよい。  If the casing is made of stuff, it is necessary to set a parting surface between the upper and lower rust molds. In this embodiment, it is desirable that the surface pass through the center of the joint between the rotating shaft and the intercooler and discharge cooler. In order to set the parting plane at this location on the premise of a monolith, it is necessary to reduce the depth dimension from the parting plane. For this purpose, the working fluid may be flowed downward from above in the cooler.
中間冷却器ケース 1 c と吐出冷却器ケース 1 dの各々の軸方向端面に 窓を設けて、 一方の窓から中間冷却器 3 aおよび吐出冷却器 3 bを挿入 し、 その後冷却器へッ ドカバー 1 5 a、 1 5 b、 1 5 c、 1 5 dを取付 ける。 冷却器へッ ドカバー 1 5 a、 1 5 bは、 一体であってもよいし、 分割されていてもよい。 他端側の窓は、 カバ一 1 6 a、 1 6 bで閉止さ れる。 カバー 1 6 a、 1 6 bも一体型であってもよいし、 分割されてい てもよい。  Windows are provided on the axial end faces of the intercooler case 1c and the discharge cooler case 1d, and the intercooler 3a and the discharge cooler 3b are inserted from one of the windows, and then the cooler head cover Attach 15a, 15b, 15c and 15d. The cooler head covers 15a and 15b may be integral or may be divided. The windows at the other end are closed with covers 16a and 16b. The covers 16a and 16b may also be integral or may be divided.
中間冷却器 3 aおよび吐出冷却器 3 bの冷却水は、 へッ ドカバ一 1 5 c、 1 5 d側から流入し、 これら冷却器先端のエンドカバー 1 6 c、 1 6 dで折り返され再びへッ ドカバー 1 5 c、 1 5 dへ流入する。 このよ うに構成することにより、 中間冷却器 3 aおよび吐出冷却器 3 bのネス トを圧縮機一体ケーシングに取付けたまま、 ヘッ ドカバー 1 5 c、 1 5 d、 閉止カバ一 1 6 a、 1 6 bおよびェンドカバー 1 6 c、 1 6 dを取 り外すだけで最も汚れ易い水側の冷却器部を清掃することができる。 し たがって、 メンテナンスが容易になる。  The cooling water of the intercooler 3a and the discharge cooler 3b flows in from the head covers 15c and 15d, and is turned back by the end covers 16c and 16d at the tips of these coolers and again. It flows into the head covers 15c and 15d. With this configuration, the head covers 15c, 15d, and the closing covers 16a, 1a can be used while the nests of the intercooler 3a and the discharge cooler 3b are attached to the compressor integrated casing. Simply removing the 6b and the end covers 16c and 16d can clean the water-side cooler that is the most dirty. Therefore, maintenance becomes easier.
回転軸の軸受部ゃ電動機部には、 風損、 銅損および鉄損が生じ、 これ 75 P Wind loss, copper loss, and iron loss occur in the rotating shaft bearing and the motor. 75 P
16 らにより発熱する。 この発熱を放熱するために、 圧縮機で圧縮した後に 冷却器で冷却された作動流体、 すなわち圧縮空気を利用する。 しかしな がら、 この冷却空気量を最小にしないと圧縮機の原単位, つまり消費動 力が増加するという不具合を生じる。 そこで、 元来損失として見込まれ ていた羽根車の背面から漏れる作動流体を、 軸受の冷却空気に使用する。 第 4図において、 1段目の羽根車 2 1 aの背面にはラビリ ンス 2 9を、 2段目の羽根車 2 1 bの背面にはラビリ ンス 3 0を形成する。 1段目の ラビリ ンス 2 9には、 このラビリ ンスに形成された複数のラビリ ンス室 に冷却空気を吹込む通路孔 2 9 aが形成されている。 16 Generates heat. In order to dissipate this heat, a working fluid cooled by a cooler after being compressed by a compressor, that is, compressed air, is used. However, if the amount of cooling air is not minimized, the unit consumption of the compressor, that is, the power consumption will increase. Therefore, the working fluid leaking from the back of the impeller, which was originally expected as a loss, is used as cooling air for the bearing. In FIG. 4, a labyrinth 29 is formed on the back of the first-stage impeller 21a, and a labyrinth 30 is formed on the back of the second-stage impeller 21b. The first-stage labyrinth 29 has a passage hole 29a for blowing cooling air into a plurality of labyrinth chambers formed in the labyrinth.
次に、 冷却空気の吹き込み方法を第 1 0図を用いて説明する。 第 1 0 図は、 2段遠心圧縮機の配管系統図の一実施例を模式的に示した図であ る。 一体ケーシング 1 a、 1 b、 1 c、 1 d、 2内に、 羽根車 2 1 a、 2 1 bを装着した回転軸 2 0が回転自在に収容されている。 吸込みノズ ル 4から吸込まれた流体は、 1段目の圧縮機で圧縮された後中間冷却器 3 aで冷却され、 2段目の吸込みノズルに導かれる。 2段目の吸込みノ ズルから吸込まれた流体は、 さらに 2段目の羽根車 2 1 bで圧縮された 後吐出冷却器 3 bで冷却され、 逆止^ 7 1を経て需要元のブラン卜へ圧 送される。  Next, a method of blowing cooling air will be described with reference to FIG. FIG. 10 is a diagram schematically showing one embodiment of a piping system diagram of a two-stage centrifugal compressor. In the integral casings 1a, 1b, 1c, 1d and 2, a rotating shaft 20 to which the impellers 21a and 21b are mounted is rotatably accommodated. The fluid sucked from the suction nozzle 4 is compressed by the first stage compressor, cooled by the intercooler 3a, and guided to the second stage suction nozzle. The fluid sucked from the second-stage suction nozzle is further compressed by the second-stage impeller 21b and then cooled by the discharge cooler 3b. Pumped to
一方、 冷却流体を中間冷却器 3 aの出口と 2段目の吸込みノズル 6と の中間から取り出し、 フィルタ 7 2および逆止弁 7 3を経て、 1段目の ラピリ ンスの冷却孔 2 9 aに導かれる。 また、 冷却流体は、 電動機冷却 孔 3 2および 2段目側の軸受冷却孔 3 1にも導かれている。 ここで、 0 N / 0 F F弁 7 4は、 電動機を冷却する流体の流量を調節するものであ り、 電磁弁 8 2により操作される。 なお、 圧縮機の無負荷運転時等の放 風弁 7 7が開いている時には、 第 1段目圧縮機と第 2段目圧縮機との中 間から取り出した冷却流体の圧力が低下する。 このような状態において も冷却は必要なので、 吐出冷却器 3 bから流出した作動流体の一部を敢 り出して冷却流体に用いる。 この冷却流体は、 フィルタ 7 5および O N Z O F F弁 7 6を通過した後、 第 1段目圧縮機と第 2段目圧縮機との中 間から取り出した冷却ラインに合流する。 On the other hand, the cooling fluid is taken out from the intermediate between the outlet of the intercooler 3a and the suction nozzle 6 of the second stage, passes through the filter 72 and the check valve 73, and passes through the cooling hole 29a of the first stage lapel It is led to. The cooling fluid is also guided to the motor cooling holes 32 and the bearing cooling holes 31 on the second stage side. Here, the 0 N / 0 FF valve 74 adjusts the flow rate of the fluid for cooling the electric motor, and is operated by the electromagnetic valve 82. It should be noted that when the compressor is operating under no load, When the wind valve 77 is open, the pressure of the cooling fluid taken out from between the first-stage compressor and the second-stage compressor decreases. Since cooling is necessary even in such a state, a part of the working fluid flowing out of the discharge cooler 3b is taken out and used as a cooling fluid. After passing through the filter 75 and the ONZOFF valve 76, the cooling fluid joins a cooling line taken out from between the first-stage compressor and the second-stage compressor.
冷却ラインの切換えの一例を以下に示す。 圧縮機の吐出逆止弁 7 1の 下流の圧力を第 1図に示した圧力検出器 9 2が検出する。 この検出した 圧力が、 サージングを回避するための最小回転数 N min における設定 圧力 P d H Tを超えると、 演算処理装置 9 3が放風弁 7 7による放風の 指令を出す。 放風のために放風弁 7 7の開指令が出ると、 電磁弁 8 0が 動作して、 放風弁 7 7が開く。 この時、 演算処理装置 9 3は同時に電磁 弁 8 1の動作指令を出す。 電磁弁 8 1が開く と、 O N / 0 F F弁 7 6も 開く。 なお、 電磁弁 8 0の上流側には、 流量調整弁 7 8およびフィルタ 7 9が配設されている。  An example of switching of the cooling line will be described below. The pressure detector 92 shown in FIG. 1 detects the pressure downstream of the discharge check valve 71 of the compressor. When the detected pressure exceeds the set pressure P d H T at the minimum rotation speed N min for avoiding surging, the arithmetic processing unit 93 issues a command to blow air through the blow-off valve 77. When a command to open the blow-off valve 77 is issued for blowing air, the solenoid valve 80 operates and the blow-off valve 77 opens. At this time, the arithmetic processing unit 93 simultaneously issues an operation command for the solenoid valve 81. When the solenoid valve 81 opens, the ON / OFF valve 76 also opens. It should be noted that a flow regulating valve 78 and a filter 79 are arranged upstream of the solenoid valve 80.
冷却空気の供給ラインは、 吐出冷却器の下流から分岐し常時開状態に なっているラインに加えて、 新たに中間冷却器の下流から分岐し放風弁 7 7の開とともに開状態となったラインの 2つの冷却ラインが動作状態 になる。 この状態では、 吐出冷却器の下流から分岐した冷却ラインの圧 力が、 中間冷却器の下流から分岐した冷却ラインの圧力より高いので、 中間冷却器の下流から分岐したラインに設けられた逆止弁 7 3に逆圧が 負荷され、 このラインは自動的に閉じられる。  The cooling air supply line branches off from the downstream of the discharge cooler and is always open.In addition, it branches off from the downstream of the intercooler and opens with the blow-off valve 77 opened. Two cooling lines in the line are operational. In this state, the pressure of the cooling line branched from the downstream of the intercooler is higher than the pressure of the cooling line branched from the downstream of the intercooler. Back pressure is applied to valve 73 and this line is automatically closed.
本実施例では、 2段目の羽根車の背面に形成したラピリ ンス室には冷 却空気を吹き込まない。 これは、 吐出冷却器 3 bより下流からラビリ ン ス室に流体を吹き込むと、 2段目の羽根車の背面における静圧が高くな り、 2段目の羽根車の背面側から吸込み側へ向かう流体によるスラスト 力が大きくなるからである。 スラスト力が大きいと、 スラスト磁気軸 g のスラス トカラ一を大きく しなければならず、 これによりスラス ト力 ラーの強度の低下および損失の増加が引き起こされるからであるするこ とになり、 全体としては効果がなくなるからである。 In this embodiment, no cooling air is blown into the lapiling chamber formed on the back of the second-stage impeller. This is a labyrinth from downstream of discharge cooler 3b. When fluid is blown into the suction chamber, the static pressure at the back of the second-stage impeller increases, and the thrust force by the fluid from the back side of the second-stage impeller toward the suction side increases. If the thrust force is large, the thrust of the magnetic axis g of the thrust must be increased, which causes a decrease in the strength of the thrust force and an increase in the loss. Is no longer effective.
負荷運転時には 2段目の吸込み部より上流側から抽出した作動流体を、 無負荷運転時には吐出冷却器出口より下流側から抽出した作動流体を冷 却に用いる。 この冷却流体を、 電動機部、 1段目の羽根車の背面側ラビ リ ンス室の入口側近く、 および 2段目の羽根車の背面側ラビリ ンスの下 流側にそれぞれ吹き込んで、 圧縮機全体の冷却に使用する動力を低減す る。  During load operation, the working fluid extracted from the upstream side of the second stage suction section is used for cooling, and during no-load operation, the working fluid extracted from the discharge cooler outlet downstream is used for cooling. This cooling fluid is blown into the motor section, near the inlet side of the labyrinth on the back side of the first stage impeller, and into the downstream side of the labyrinth on the back side of the second stage impeller, thereby forming the entire compressor. Reduce the power used for cooling
さらに、 本発明の 2段遠心圧縮機では運転に必要な総動力を、 以下に 記載の方法により低減している。 第 1 1図は、 電動機で直接駆動する 2 段遠心圧縮機において、 電動機の回転数制御の一実施例を示したもので ある。 1段目の吸込み温度 9 1を図示しない温度センサで検出し、 検出 した信号を演算処理回路 9 3に入力する。 この演算処理回路では、 検出 した信号から求めた温度と内部に予め記憶した設計吸込み温度 (T s d e s ) との比を求める。 そして、 この温度の比の約 1 / 3乗値を設計回 転数に乗じて、 その温度 (T s ) における定格回転数 (N m a x ) を演 算する。 また、 定格回転数に対応して負荷運転における設計最小回転数 ( N m i n ) を演算する。  Further, in the two-stage centrifugal compressor of the present invention, the total power required for operation is reduced by the method described below. FIG. 11 shows an embodiment of the rotation speed control of a motor in a two-stage centrifugal compressor driven directly by a motor. The first-stage suction temperature 91 is detected by a temperature sensor (not shown), and the detected signal is input to the arithmetic processing circuit 93. In this arithmetic processing circuit, the ratio between the temperature obtained from the detected signal and the design suction temperature (T s de s) stored in advance therein is obtained. Then, the rated speed (N max) at that temperature (T s) is calculated by multiplying the design speed by approximately the 1/3 power of the temperature ratio. Further, a design minimum rotation speed (N min) in the load operation is calculated corresponding to the rated rotation speed.
一方、 逆止弁 7 1の下流にはブラン卜圧力 9 2を検出するセンサが設 けられ、 このセンサが検出した信号も演算処理装置 9 3に入力される。 そして、 定格回転数 N m a xと設計最小回転数 N m i nの間で、 プラン ト圧力 9 2が定められた値になるように、 ィンバー夕 9 4の出力を調整 する。 すなわち、 演算処理装置 9 3が求めたインバー夕の出力調整信 に応じて、 インバータ 9 4が電動機 2へ供給する電流を制御する。 これ により、 電動機の回転数が変化し、 圧縮機の容量が調節される。 On the other hand, a sensor for detecting the brand pressure 92 is provided downstream of the check valve 71, and a signal detected by this sensor is also input to the arithmetic processing unit 93. Then, the output of the inverter 94 is adjusted so that the plant pressure 92 becomes a predetermined value between the rated rotation speed Nmax and the design minimum rotation speed Nmin. That is, the current supplied from the inverter 94 to the motor 2 is controlled in accordance with the output adjustment signal of the inverter obtained by the arithmetic processing device 93. As a result, the number of revolutions of the motor changes, and the capacity of the compressor is adjusted.
圧縮機の回転数を制御して、 圧縮機の容量を制御する方法を第 1 2図 にを用いて説明する。 圧縮機の設定風量は、 夏場の吸込み温度条件の下 で決定される。 したがって、 回転数が変わらないとすると、 吸込み温度 が下がると設定吐出圧力 (P d p ) が得られる流量が設計点より大流量 側にずれる。 この場合、 圧縮機の動力が増加する。 また、 必要以上の作 動流体を圧縮機に供給すると、 圧縮機の無負荷運転時間が長くなり、 こ の場合も消費動力が増加する。  A method of controlling the compressor speed by controlling the number of revolutions of the compressor will be described with reference to FIG. The set air volume of the compressor is determined under the summer suction temperature conditions. Therefore, if the rotation speed does not change, the flow rate at which the set discharge pressure (P dp) is obtained shifts to the larger flow rate side from the design point when the suction temperature decreases. In this case, the power of the compressor increases. If more working fluid is supplied to the compressor than necessary, the no-load operation time of the compressor becomes longer, and the power consumption also increases in this case.
そこで、 吸込み温度と設計吸込み温度との比の 3乗値を求め、 設計回 転数に乗じて得た回転数を、 その吸込み温度条件における定格回転数に 設定する。 以後この定格回転数を圧縮機の運転の上限回転数として圧縮 機を制御する。 一方、 圧縮機の最小回転数を以下のように求める。 回転 数制御の圧縮機においては、 回転数を低下させると流量も低下する。 流 量がある値より少ないとサージングを起こし不安定運転になる。 そのた めサージングを回避しなければならない。 このサージングを回避できる 運転回転数を最小回転数とする。 具体的には、 先に求めた定格回転数に ある比率を乗じた値を最小回転数 (N m i n ) とする。 この最小回転数 は、 既に吸込み温度の補正がなされているので、 吸込み温度が変化して もこの値を最小回転数として用いることができる。 したがって、 定格回 転数と上記最小回転数間で圧縮機の回転数を変化させることにより、 圧 縮機の容量制御を容易に行える。 圧縮機の回転数を変化させて容量調節 をすることができると、 圧縮機の無負荷運転時間を短縮でき、 圧縮機の 総消費動力を低減できる。 ― 回転数制御をしていて下限回転数に到達し tも、 放風弁開設定圧力 ( P d H n 以上に逆止弁下流の圧力 (P d p ) が上昇する場合には放 風弁 7 7を開く。 そして、 放風した作動流体を回転軸方向に対し直角方 向から 1段目の吸込み流路に戻す。 つまり、 第 1図のノズル 3 3へ放風 弁 7 7から流出した作動ガスを導く。 このようにすることにより、 1段 目の羽根車の入口流れに旋回成分を付与し、 吸込み流量を減らすことが でき、 圧縮機の動力を低減できる。 なお、 運転中において逆止弁下流の 圧力 (P d p ) が放風弁閉設定圧力 (P d L ) より低下したら、 放風弁 7 7を閉じる。 Therefore, the cube value of the ratio between the suction temperature and the design suction temperature is calculated, and the rotation speed obtained by multiplying the design rotation speed is set as the rated rotation speed under the suction temperature condition. Thereafter, the compressor is controlled using this rated rotation speed as the upper limit rotation speed for compressor operation. On the other hand, the minimum rotational speed of the compressor is obtained as follows. In a speed-controlled compressor, the flow rate decreases as the speed decreases. If the flow rate is lower than a certain value, surging will occur and unstable operation will occur. Therefore, surging must be avoided. The operating speed at which this surging can be avoided is the minimum speed. Specifically, the value obtained by multiplying the previously obtained rated speed by a certain ratio is defined as the minimum speed (N min). Since this minimum rotation speed has already been corrected for the suction temperature, this value can be used as the minimum rotation speed even if the suction temperature changes. Therefore, by changing the compressor speed between the rated speed and the above minimum speed, The capacity of the compressor can be easily controlled. If the capacity can be adjusted by changing the rotation speed of the compressor, the no-load operation time of the compressor can be reduced, and the total power consumption of the compressor can be reduced. -When the rotation speed is controlled and the lower limit rotation speed is reached, the blow-off valve 7 will also be set if the pressure (P dp) downstream of the check valve rises above the set pressure of the blow-off valve (P d H n). Open 7. Then, the discharged working fluid is returned to the first-stage suction flow path from the direction perpendicular to the rotation axis direction, that is, the operation flowing out of the blow-off valve 7 7 to the nozzle 33 in Fig. 1. In this way, a swirl component is given to the inlet flow of the first stage impeller, the suction flow rate can be reduced, and the power of the compressor can be reduced. When the pressure downstream of the valve (P dp) drops below the blow-off valve closing set pressure (P d L), close the blow-off valve 77.
従来の圧縮機では、 1段目の圧縮機の吸込み側に絞り弁を設け、 放風 運転時にはこの絞り弁を絞って圧縮機動力を低減していた。 本実施例の 圧縮機では吸込み側の絞り弁を不要にしたので、 この従来方法に比べて 部品点数を少なくすることができる。 また、 圧縮機をコンパク 卜にパッ ケージ化でき、 経済的に有利である。 なお、 以上の実施例において吸込 み弁を設けても良いことは言うまでもない。  In conventional compressors, a throttle valve was provided on the suction side of the first stage compressor, and during blowing operation, the throttle valve was throttled to reduce compressor power. The compressor of the present embodiment does not require a throttle valve on the suction side, so that the number of parts can be reduced as compared with the conventional method. Also, the compressor can be packaged in a compact form, which is economically advantageous. It goes without saying that a suction valve may be provided in the above embodiment.
本発明の他の実施例を第 1 3図及び第 1 4図を用いて説明する。 本実 施例では、 2段目側の背面ラ ビリ ンスの機内側に冷却空気を吹き込んで いる。 スラス ト軸受の 2段目側 2 4 b を保持するハウジングの内周部 に、 2段目羽根車の背面に形成されたラピリ ンス 3 0の内径より内径が 大きいラ ビリ ンス 3 5を設ける。 このラ ビリ ンス 3 5と上記 2段目側羽 根車のラピリ ンス 3 0との間に、 冷却流体の吹込み孔を形成する。 さら に、 磁気軸受センサ 3 6と 2段目羽根車のラビリンス 3 0との間にも冷 却流体の吹込み孔 3 1 bを形成する。 なお、 この冷却孔 3 1 bを、 磁気 軸受 2 3 bとセンサ 3 6の間に形成してもよい。 このように構成すれほ- 第 1 4図に示したように、 冷却空気が吐出冷却器 2 3 bの下流からフィ ルタ 7 5を経て取り込まれ、 ケ一シング 1の吹込み孔 3 1 aに導かれる < 2段目羽根車の背面ラビリ ンス 3 0の内径とスラスト軸受のラビリ ン ス内径とから決定されるスラス卜力の受カ部に、 2段目側から 1段目側 に向かうスラスト力が作用する。 これにより、 1段目羽根車と 2段目羽 根車で発生するスラスト力のァンバランスを低減でき、 スラスト軸受を 小型化した高速回転軸系を実現できる。 本実施例においては、 2段目羽 根車の背面ラピリ ンスからの漏れ量を少なくすることができるので、 圧 縮機の消費動力を低減できるという効果もある。 Another embodiment of the present invention will be described with reference to FIGS. 13 and 14. FIG. In the present embodiment, cooling air is blown into the inside of the rear labyrinth on the second stage side. A labyrinth 35 having an inner diameter larger than the inner diameter of the lapiling 30 formed on the back of the second-stage impeller is provided on the inner peripheral portion of the housing that holds the second-stage side 24 b of the thrust bearing. A cooling fluid blowing hole is formed between the labyrinth 35 and the lapiling 30 of the second stage impeller. Further In addition, a cooling fluid blowing hole 31b is formed between the magnetic bearing sensor 36 and the labyrinth 30 of the second stage impeller. The cooling hole 31b may be formed between the magnetic bearing 23b and the sensor 36. With this configuration, as shown in FIG. 14, cooling air is taken in from the downstream of the discharge cooler 23 b through the filter 75 and is introduced into the blowing hole 31 a of the casing 1. Guided <Thrust from the second stage to the first stage at the thrust force receiving part determined by the inner diameter of the back labyrinth 30 of the second stage impeller and the labyrinth inner diameter of the thrust bearing Force acts. As a result, it is possible to reduce the imbalance of the thrust force generated by the first-stage impeller and the second-stage impeller, and to realize a high-speed rotating shaft system in which the thrust bearing is reduced in size. In the present embodiment, since the amount of leakage from the rear lapel of the second-stage impeller can be reduced, there is also an effect that the power consumption of the compressor can be reduced.
以上述べたように、 本発明においては、 回転部と静止部間の接触が無 く、 圧縮機のどの部分にも油を使用する必要が無いので、 長期にわたつ てメ ンテナンス不要な 2段遠心圧縮機を得ることができる。 また油を使 用しないので、 地球環境にやさしい 2段遠心圧縮機を得ることができる ( さらに、 運転動力を低減できるので、 省エネ効果も大であり、 地球環境 に対する二酸化炭素の発生も抑制できる。 また、 遠心圧縮機の高速小型 化が可能なので、 設置面積を低減できる。 As described above, in the present invention, there is no contact between the rotating part and the stationary part, and there is no need to use oil in any part of the compressor. A centrifugal compressor can be obtained. In addition, since no oil is used, a two-stage centrifugal compressor that is friendly to the global environment can be obtained. (In addition, since the operating power can be reduced, the energy saving effect is large, and the generation of carbon dioxide to the global environment can be suppressed. Also, since the centrifugal compressor can be downsized at high speed, the installation area can be reduced.

Claims

請 求 の 範 囲 中間部に電動機の回転子が形成された回転軸と、 この回転軸の両蝨 部に取付けられた遠心圧縮機羽根車と、 前記回転子とともに電動機 を構成する電動機のステ一夕と、 前記回転軸を回転可能に支承する ラジアル磁気軸受手段とスラス ト磁気軸受手段とを備えた電動機で 直接駆動する 2段遠心圧縮機において、 前記電動機のステ一夕の外 周部にこのステ一タを水冷する水冷ジャケッ トを設け、 前記ステ一 夕の中間部にこの 2段遠心圧縮機に吸込まれた作動ガスを導くガス 流路を形成したことを特徴とする電動機で直接駆動する 2段遠心圧 縮機。 Scope of Claims: A rotating shaft with a rotor of an electric motor formed in its intermediate portion, a centrifugal compressor impeller attached to both ends of the rotating shaft, and a steering wheel of the electric motor that constitutes an electric motor together with the rotor. In a two-stage centrifugal compressor that is directly driven by an electric motor having a radial magnetic bearing means and a thrust magnetic bearing means that rotatably support the rotary shaft, the rotary shaft is rotatably supported. Directly driven by an electric motor, the stator is provided with a water-cooled jacket for water-cooling the stator, and a gas flow path is formed in the middle of the stator for guiding the working gas sucked into the two-stage centrifugal compressor. Two-stage centrifugal compressor.
. 前記回転軸の両端に取付けられた羽根車が 1段目の圧縮機段と 2段 目の圧縮機段を構成し、 これら圧縮機段で圧縮された作動ガスを冷 却する中間冷却器と吐出冷却器とを設け、 前記羽根車、 前記ラジア ル磁気軸受手段、 前記スラス ト磁気軸受及び前記電動機とともにこ れら中間冷却器及び吐出冷却器を収容する一体型のケーシングを設 けたことを特徴とする請求の範囲第 1項に記載の電動機で直接駆動 する 2段遠心圧縮機。Impellers attached to both ends of the rotating shaft constitute a first compressor stage and a second compressor stage, and an intercooler cools the working gas compressed by these compressor stages. A discharge cooler is provided, and an integrated casing is provided that accommodates the intercooler and the discharge cooler together with the impeller, the radial magnetic bearing means, the thrust magnetic bearing, and the electric motor. A two-stage centrifugal compressor directly driven by the electric motor according to claim 1.
. 前記中間冷却器には 1段目の圧縮機段で圧縮された作動ガスが上方 から流入し、 この中間冷却器で冷却された後下方から流出するよう に冷却路を形成したことを特徴とする請求の範囲第 2項に記載の電 動機で直接駆動する 2段遠心圧縮機。 A cooling path is formed in the intercooler so that the working gas compressed in the first compressor stage flows from above, is cooled by the intercooler, and then flows out from below. A two-stage centrifugal compressor directly driven by the electric motor according to claim 2.
. 前記吐出冷却器には 2段目の圧縮機段で圧縮された作動ガスが上方 から流入し、 この吐出冷却器で冷却された後下方から流出するよう に冷却路を形成したことを特徴とする請求の範囲第 2項に記載の電 動機で直接駆動する 2段遠心圧縮機。 The working gas compressed by the second compressor stage flows into the discharge cooler from above, and after being cooled by this discharge cooler, it flows out from below. A two-stage centrifugal compressor directly driven by an electric motor according to claim 2, characterized in that a cooling path is formed in the compressor.
5 . 中間部に電動機の回転子が形成された回転軸と、 この回転軸の両端 部に取付けられた羽根車と、 前記回転子とともに電動機を構成する 電動機のステ一夕と、 前記回転軸を回転可能に支承する一対のラジ アル磁気軸受手段とスラス ト磁気軸受手段とを備えた電動機で直接 駆動する 2段遠心圧縮機において、 前記一方の羽根車で圧縮された 作動ガスを冷却する中間冷却器と、 前記他方の羽根車で圧縮された 作動ガスを冷却する吐出冷却器とを前記回転軸の下方であってこの 回転軸にほぼ並行に配置し、 これら回転軸、 中間冷却器及び吐出冷 却器を収容する一体型のケーシングを設け、 前記吐出冷却器または 中間冷却器のいずれかで冷却された作動ガスを前記電動機のステ一 夕の中間部に導く冷却路を形成したことを特徴とする電動機で直接 駆動する 2段遠心圧縮機。 5. A rotating shaft with a rotor of an electric motor formed in an intermediate portion, an impeller attached to both ends of the rotating shaft, a stator of the electric motor that constitutes an electric motor together with the rotor, and the rotating shaft. In a two-stage centrifugal compressor directly driven by an electric motor equipped with a pair of rotatably supported radial magnetic bearing means and thrust magnetic bearing means, intercooling is performed to cool the working gas compressed by one of the impellers. and a discharge cooler for cooling the working gas compressed by the other impeller are arranged below the rotating shaft and almost parallel to the rotating shaft, and these rotating shafts, intercooler and discharge cooler The present invention is characterized by providing an integrated casing that houses a cooler, and forming a cooling path that guides the working gas cooled by either the discharge cooler or the intercooler to an intermediate portion of the stator of the electric motor. A two-stage centrifugal compressor that is directly driven by an electric motor.
6 . 前記ケーシングの中間冷却器及び吐出冷却器を収容する軸方向端部 に窓を形成し、 この窓に着脱可能にカバ一を取付け、 前記中間冷却 器及び吐出冷却器を軸方向から挿入可能にしたことを特徴とする請 求の範囲第 5項に記載の電動機で直接駆動する 2段遠心圧縮機。6. A window is formed at the axial end of the casing that accommodates the intercooler and the discharge cooler, and a cover is removably attached to the window, so that the intercooler and the discharge cooler can be inserted from the axial direction. A two-stage centrifugal compressor directly driven by the electric motor according to claim 5, characterized in that:
7 . 前記電動機は永久磁石式同期電動機であり、 前記回転子は、 リ ング 状の永久磁石と、 該永久磁石を保持するリ ング状の炭素繊維強化プ ラスチック保持部材と、 このリ ング状保持部材とともに前記永久磁 石を挟持する金属製スリーブとを有することを特徴とする請求の範 囲第 5項に記載の電動機で直接駆動する 2段遠心圧縮機。 7. The electric motor is a permanent magnet type synchronous motor, and the rotor includes a ring-shaped permanent magnet, a ring-shaped carbon fiber reinforced plastic holding member that holds the permanent magnet, and the ring-shaped holding member. 6. The two-stage centrifugal compressor directly driven by an electric motor according to claim 5, further comprising a metal sleeve that holds the permanent magnet together with the member.
8 . 前記ラジアル磁気軸受手段及びスラスト磁気軸受手段を、 負荷運転 時には前記中間冷却器で冷却した作動流体で、 無負荷運転時には前 記吐出冷却器で冷却した作動流体で選択的に冷却する冷却切換手段 を備えたことを特徴とする請求の範囲第 5項に記載の電動機で直痿 駆動する 2段遠心圧縮機。 8. The radial magnetic bearing means and the thrust magnetic bearing means are operated under load. Claim 5, further comprising a cooling switching means that selectively cools the working fluid with the working fluid cooled by the intercooler at times and with the working fluid cooled by the discharge cooler during no-load operation. A two-stage centrifugal compressor directly driven by the electric motor described above.
9 . 前記回転子は極数が 2極であり、 この回転子が回転するときに電動 機のステ一夕の巻線に発生した誘起電圧に基づいて磁極位置を検出 する手段と、 この検出した磁極位置に基づいて前記電動機を制御す るィンバ一夕制御手段とを設けたことを特徴とする請求の範囲第 5 項に記載の電動機で直接駆動する 2段遠心圧縮機。 9. The rotor has two poles, and means for detecting the magnetic pole position based on the induced voltage generated in the winding of the motor's steering wheel when the rotor rotates; 6. The two-stage centrifugal compressor directly driven by the electric motor according to claim 5, further comprising: an inverter overnight control means for controlling the electric motor based on the magnetic pole position.
1 0 . 前記電動機を駆動するインバ一夕と、 前記 2段目の羽根車の下 流側の圧力を検出する圧力検出手段と、 この検出された圧力が所定圧 力以上であれば外部に作動ガスを放風する放風弁と、 前記圧力検出手 段が検出した圧力に基づき前記ィンバ一夕を制御する制御手段とを設 け、 設定下限回転数に到達しても予め定められた前記放風弁開設定圧 力以上に前記検出圧力が上昇する場合には放風弁を開き、 この放風弁 を流通したた作動流体を 1段目の羽根車の上流側に戻す流路を形成し たことを特徴とする請求の範囲第 5項に記載の電動機で直接駆動する 2段遠心圧縮機。 10. An inverter that drives the electric motor, a pressure detection means that detects the pressure on the downstream side of the second stage impeller, and an external device that operates if the detected pressure is higher than a predetermined pressure. A blow-off valve for blowing off gas and a control means for controlling the inverter overnight based on the pressure detected by the pressure detection means are provided, and the blow-off valve is configured to prevent the blow-off from occurring at a predetermined speed even when a set lower limit rotation speed is reached. When the detected pressure rises above the wind valve opening set pressure, the blowoff valve is opened, and a flow path is formed in which the working fluid that has passed through the blowoff valve is returned to the upstream side of the first stage impeller. A two-stage centrifugal compressor directly driven by an electric motor according to claim 5.
1 1 . 前記電動機を、 負荷運転時には前記中間冷却器で冷却した作動流 体で、 無負荷運転時には前記吐出冷却器で冷却した作動流体で選択 的に冷却する冷却切換手段を備えたことを特徴とする請求の範囲第 5項に記載の電動機で直接駆動する 2段遠心圧縮機。 1 1. The motor is characterized by comprising a cooling switching means for selectively cooling the electric motor with the working fluid cooled by the intercooler during load operation and with the working fluid cooled by the discharge cooler during no-load operation. A two-stage centrifugal compressor directly driven by the electric motor according to claim 5.
PCT/JP1998/004218 1998-09-18 1998-09-18 Two-stage centrifugal compressor driven directly by motor WO2000017524A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000571146A JP3918432B2 (en) 1998-09-18 1998-09-18 Two-stage centrifugal compressor driven directly by an electric motor
PCT/JP1998/004218 WO2000017524A1 (en) 1998-09-18 1998-09-18 Two-stage centrifugal compressor driven directly by motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/004218 WO2000017524A1 (en) 1998-09-18 1998-09-18 Two-stage centrifugal compressor driven directly by motor

Publications (1)

Publication Number Publication Date
WO2000017524A1 true WO2000017524A1 (en) 2000-03-30

Family

ID=14209030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004218 WO2000017524A1 (en) 1998-09-18 1998-09-18 Two-stage centrifugal compressor driven directly by motor

Country Status (2)

Country Link
JP (1) JP3918432B2 (en)
WO (1) WO2000017524A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579078B2 (en) 2001-04-23 2003-06-17 Elliott Turbomachinery Co., Inc. Multi-stage centrifugal compressor driven by integral high speed motor
JP2003328998A (en) * 2002-05-17 2003-11-19 Kobe Steel Ltd Turbo compressor
FR2844550A1 (en) * 2002-09-17 2004-03-19 Toyota Motor Co Ltd Internal combustion engine turbocompressor having turbine/electrical rotating machine/compressor with mechanism passing lubrication during electrical rotating machine displacement rotor/stator
JP2005180267A (en) * 2003-12-18 2005-07-07 Mitsubishi Heavy Ind Ltd Turbo refrigerator, compressor thereof, and control method thereof
FR2910081A1 (en) * 2006-12-18 2008-06-20 Airfan Soc Par Actions Simplif Gas delivery apparatus i.e. respiratory assistance apparatus, has wall extended around motor at constant distance from motor such that case and motor delimit gas flow passage, and impeller rotated to generate forced gas stream in passage
WO2009001198A1 (en) * 2007-06-25 2008-12-31 Airfan Apparatus for regulated delivery of a gas, in particular breathing apparatus
WO2011014934A1 (en) 2009-08-03 2011-02-10 Atlas Copco Airpower Turbocompressor system
ITTO20100578A1 (en) * 2010-07-06 2012-01-07 Fond Istituto Italiano Di Tecnologia DEVICE FOR THE GENERATION OF ELECTRIC ENERGY FROM A COMPRESSED AIR SOURCE
US8803375B2 (en) 2011-07-25 2014-08-12 Seiko Epson Corporation Electromechanical device, and movable body and robot using electromechanical device
JP2018189079A (en) * 2017-05-09 2018-11-29 株式会社神戸製鋼所 Compressor
WO2022233603A1 (en) 2021-05-06 2022-11-10 IFP Energies Nouvelles Two-compression-stage electric gas compressor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810595B2 (en) * 1977-05-20 1983-02-26 株式会社日立製作所 Automatic operation control device for turbo compressor
JPS58166269U (en) * 1982-04-27 1983-11-05 神鋼電機株式会社 Bearing cooling device
JPS6271462A (en) * 1985-09-25 1987-04-02 Nippon Seiko Kk Motor
JPH01129741A (en) * 1987-11-13 1989-05-23 Mitsubishi Metal Corp Magnet for rotor
JPH0226720B2 (en) * 1983-08-11 1990-06-12 Mitsubishi Heavy Ind Ltd
JPH04183252A (en) * 1990-11-13 1992-06-30 Nippon Densan Corp Method of starting sensorless motor and starting circuit
JPH05223097A (en) * 1992-02-13 1993-08-31 Ebara Corp Vacuum pump driving canned motor
JPH06346891A (en) * 1993-06-07 1994-12-20 Ebara Corp Motor integrated type fluid machinery
JPH08144993A (en) * 1994-11-17 1996-06-04 Hitachi Ltd Capacity control fir turbo compressor
JP2656885B2 (en) * 1993-03-29 1997-09-24 超電導発電関連機器・材料技術研究組合 Claw-pole type electric motor cooling method
JP2556680Y2 (en) * 1991-04-15 1997-12-08 カルソニック株式会社 Fan motor cooling device for automotive air conditioners
JPH1054398A (en) * 1996-08-12 1998-02-24 Hitachi Ltd Turbo compressor and rotary machine
JPH10131897A (en) * 1996-10-29 1998-05-19 Seiko Kakoki Kk Electric axial blower

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810595B2 (en) * 1977-05-20 1983-02-26 株式会社日立製作所 Automatic operation control device for turbo compressor
JPS58166269U (en) * 1982-04-27 1983-11-05 神鋼電機株式会社 Bearing cooling device
JPH0226720B2 (en) * 1983-08-11 1990-06-12 Mitsubishi Heavy Ind Ltd
JPS6271462A (en) * 1985-09-25 1987-04-02 Nippon Seiko Kk Motor
JPH01129741A (en) * 1987-11-13 1989-05-23 Mitsubishi Metal Corp Magnet for rotor
JPH04183252A (en) * 1990-11-13 1992-06-30 Nippon Densan Corp Method of starting sensorless motor and starting circuit
JP2556680Y2 (en) * 1991-04-15 1997-12-08 カルソニック株式会社 Fan motor cooling device for automotive air conditioners
JPH05223097A (en) * 1992-02-13 1993-08-31 Ebara Corp Vacuum pump driving canned motor
JP2656885B2 (en) * 1993-03-29 1997-09-24 超電導発電関連機器・材料技術研究組合 Claw-pole type electric motor cooling method
JPH06346891A (en) * 1993-06-07 1994-12-20 Ebara Corp Motor integrated type fluid machinery
JPH08144993A (en) * 1994-11-17 1996-06-04 Hitachi Ltd Capacity control fir turbo compressor
JPH1054398A (en) * 1996-08-12 1998-02-24 Hitachi Ltd Turbo compressor and rotary machine
JPH10131897A (en) * 1996-10-29 1998-05-19 Seiko Kakoki Kk Electric axial blower

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579078B2 (en) 2001-04-23 2003-06-17 Elliott Turbomachinery Co., Inc. Multi-stage centrifugal compressor driven by integral high speed motor
JP2003328998A (en) * 2002-05-17 2003-11-19 Kobe Steel Ltd Turbo compressor
FR2844550A1 (en) * 2002-09-17 2004-03-19 Toyota Motor Co Ltd Internal combustion engine turbocompressor having turbine/electrical rotating machine/compressor with mechanism passing lubrication during electrical rotating machine displacement rotor/stator
JP2005180267A (en) * 2003-12-18 2005-07-07 Mitsubishi Heavy Ind Ltd Turbo refrigerator, compressor thereof, and control method thereof
FR2910081A1 (en) * 2006-12-18 2008-06-20 Airfan Soc Par Actions Simplif Gas delivery apparatus i.e. respiratory assistance apparatus, has wall extended around motor at constant distance from motor such that case and motor delimit gas flow passage, and impeller rotated to generate forced gas stream in passage
WO2009001198A1 (en) * 2007-06-25 2008-12-31 Airfan Apparatus for regulated delivery of a gas, in particular breathing apparatus
WO2011014934A1 (en) 2009-08-03 2011-02-10 Atlas Copco Airpower Turbocompressor system
US9470238B2 (en) 2009-08-03 2016-10-18 Atlas Copco Airpower, Naamloze Vennootschap Electric motor having segmented stator windings
WO2012004738A1 (en) * 2010-07-06 2012-01-12 Fondazione Istituto Italiano Di Tecnologia Device for generating electric power from a source of air or other gas or fluid under pressure
JP2013531964A (en) * 2010-07-06 2013-08-08 フォンダツィオーネ・イスティトゥート・イタリアーノ・ディ・テクノロジャ Device for generating power from a source of air or other gas or liquid under pressure
US8957540B2 (en) 2010-07-06 2015-02-17 Fondazione Istituto Italiano Di Tecnologia Device for generating electric power from a source of air or other gas or fluid under pressure
RU2567376C2 (en) * 2010-07-06 2015-11-10 Фондацьоне Иституто Итальяно Ди Текнолоджия Device intended for generation of electric energy from source of air or another gas or fluid under pressure
ITTO20100578A1 (en) * 2010-07-06 2012-01-07 Fond Istituto Italiano Di Tecnologia DEVICE FOR THE GENERATION OF ELECTRIC ENERGY FROM A COMPRESSED AIR SOURCE
US8803375B2 (en) 2011-07-25 2014-08-12 Seiko Epson Corporation Electromechanical device, and movable body and robot using electromechanical device
JP2018189079A (en) * 2017-05-09 2018-11-29 株式会社神戸製鋼所 Compressor
WO2022233603A1 (en) 2021-05-06 2022-11-10 IFP Energies Nouvelles Two-compression-stage electric gas compressor
FR3122708A1 (en) 2021-05-06 2022-11-11 IFP Energies Nouvelles Electrified Gas Compressor with Dual Compression Stage

Also Published As

Publication number Publication date
JP3918432B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
US9261104B2 (en) Air blower for a motor-driven compressor
US7942646B2 (en) Miniature high speed compressor having embedded permanent magnet motor
US7704056B2 (en) Two-stage vapor cycle compressor
EP1961972A2 (en) Two-stage vapor cycle compressor
US11313373B2 (en) Fluid compressor
US9341191B2 (en) Thrust equalizing mechanism for cryogenic turbine generator
KR101408341B1 (en) Permanent Magnetic Motor and Fluid Charger Comprising the Same
US11428244B2 (en) Heat pump comprising a fluid compressor
EP1926914A2 (en) Multi-stage compression system including variable speed motors
US9777746B2 (en) Motor cooling system manifold
JP2000130176A (en) Turbo charger with generator and motor
WO2000017524A1 (en) Two-stage centrifugal compressor driven directly by motor
CN106602765B (en) Cooling method and cooling system for rotor of direct-drive centrifugal machine of high-speed permanent magnet motor
TW201839263A (en) Magnetic bearing motor compressor
KR101372320B1 (en) Turbo machinary
US11686325B2 (en) Fuel cell comprising a fluid compressor
US11067088B2 (en) Heating, ventilation and air conditioning system comprising a fluid compressor
JP2008072810A (en) Magnetic bearing arrangement integrated with motor
CN113819077A (en) Magnetic suspension air blower with single-stage double-suction and double stator and rotor
JP3749353B2 (en) Rotary compressor system
JP2008039129A (en) Turbine unit for air cycle refrigerator
JP2008072811A (en) Motor-integrated magnetic bearing device
JP2001254699A (en) High-speed motor drive compressor and its cooling method
KR20010011628A (en) Structure for cooling motor in turbo compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase