WO2000012435A1 - Water purification system - Google Patents

Water purification system Download PDF

Info

Publication number
WO2000012435A1
WO2000012435A1 PCT/US1999/019496 US9919496W WO0012435A1 WO 2000012435 A1 WO2000012435 A1 WO 2000012435A1 US 9919496 W US9919496 W US 9919496W WO 0012435 A1 WO0012435 A1 WO 0012435A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
filter
coupled
ozone
Prior art date
Application number
PCT/US1999/019496
Other languages
French (fr)
Inventor
Gordon E. Evans
Original Assignee
Millennium 2100 Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millennium 2100 Corporation filed Critical Millennium 2100 Corporation
Priority to AU57865/99A priority Critical patent/AU5786599A/en
Publication of WO2000012435A1 publication Critical patent/WO2000012435A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46176Galvanic cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention generally relates to purification of fresh water supplies.
  • the present invention relates to transportable water purification systems that are compact, relatively simple to operate, and yet can take any fresh water source and produce drinking water meeting United States Environmental Protection Agency's National Primary Drinking Water Standards, World Health Organization drinking water recommendations, and other similar standards for drinking water.
  • reverse osmosis is a process utilized to purify water.
  • reverse osmosis is a complex process which requires an on-site engineer to monitor the equipment due to the high pressures required for the process.
  • most purification systems reintroduce contaminants back into the fresh water source in essentially a more concentrated state.
  • Conventional purification systems also generally require testing of the source water and then design of a system that will address the specific characteristics of the source water.
  • Conventional purification systems often fail to account for every possible contaminant which does not allow flexibility in using the system for various sources. Summary of the Invention
  • the present invention addresses the problems above by providing a transportable water purification system that can take any fresh water source and purify it to produce drinking water meeting regulatory standards throughout the world.
  • the present invention addresses these problems without using a reverse osmosis process. Instead, the present invention utilizes a series of filters designed to remove different types of materials.
  • the present invention utilizes a pump to remove water from the source, a sand or sediment filter, a 50/20 micron filter, a tri-phase ozone injection system, a coagulant injector, a multi-media tank, a carbon bed filter, a heavy metal reduction tank, a tannin removal tank, a nitrate removal tank, a 0.5 micron filter, a 0.2 micron filter, an ultraviolet light, and a ⁇ 0.1 micron filter.
  • the present invention can take any fresh water source and purify it to meet drinking water standards throughout the world. Another feature of the present invention is that it is transportable and can therefore be moved to sites where water purification is needed. This is important, for example, in developing countries or in areas struck by natural disaster. The flexibility of the present system allows a quick response to these areas with the assurance that the product water will meet all drinking water standards without the need for pre-testing of the source water.
  • FIG. 1 shows a schematic representation of an embodiment of the water purification system of the present invention
  • Figure 2 shows an isometric view of an embodiment of the water purification system of the present invention
  • Figure 3 shows a second isometric view of an embodiment of the water purification system of the present invention
  • Figure 4 shows a pump for extracting water from the source
  • FIGS. 5A and 5B show a centrifugal filter utilized in an embodiment of the present invention
  • Figure 6 shows an injector manifold utilized in an embodiment of the present invention
  • Figure 7 shows a multi-media tank utilized in an embodiment of the present invention
  • Figure 8 shows a carbon bed tank utilized in an embodiment of the present invention.
  • the present invention is directed to an apparatus and method for purifying water.
  • the invention will be described below with respect to particular embodiments.
  • An embodiment of the present invention will be described with respect to Figures 1-3, which show a schematic representation (FIG. 1) and isometric views (FIGs. 2 and 3) of an embodiment of the present invention.
  • a pump 102 is connected to a fresh water source and pumps the source water into the system.
  • a fresh water source as used herein, is defined as a water source (such as a river, stream, lake, etc.) with less than 1,000 total dissolved solids (TDS) (mg/L).
  • Pump 102 develops an initial pressure in the system of 60 to 90 pounds per square inch (PS I).
  • Pump 102 can be any type of pump, but preferably an air cooled engine driven centrifugal pump is used, as shown in FIG. 4, such as a Model B3TQMS-14 manufactured by Berkely. Pump 102 can be a permanent installation or a temporary installation, depending on the application. Pump 102 pumps the source water to a filter 104. A typical suction connection for pump 102 is shown in FIGs. 2-4. Pump
  • a strainer 204 is coupled to the end of pipe 202 which is inserted into the source water to prevent large debris from entering pipe 202.
  • Strainer 204 is preferably located at least one (1) pipe diameter from the bottom of the source body.
  • a typical discharge connection for pump 102 is shown in FIG. 4.
  • a discharge priming valve 402 is coupled to pump 102 at its discharge end.
  • An isolation valve 404 is adjacent discharge priming valve.
  • Discharge piping 406 is coupled to isolation valve 404, preferably through a concentric reducer 408.
  • Filter 104 provides an initial clearing of debris, sand, and grit such that filters down line do not clogged too quickly.
  • Filter 104 is preferably a spin/centrifugal style filter as manufactured by Lakos, model no. IL-0100-B, but can be any type of filter that provides an initial clearing of debris and will not interrupt operation of the system when being cleaned.
  • An example of filter 104 is depicted in FIG. 5.
  • the exemplary filter 104 removes sand, grit, silt, and other fine solids from the source water, removing 98% of such particles 74 microns (200 mesh) and larger.
  • Water enters filter 104 through an inlet 502.
  • the water is accelerated into a separation chamber 504, where solids heavier than the carrying water are centrifugally separated and allowed to accumulated in a collection chamber 506 for eventual purging through a purge outlet 508.
  • the water (free of separable solids) is then drawn up through an outlet 510 of filter 104.
  • a spin or centrifugal filter is preferable because there are no moving parts to replace when worn, there are no screens, cartridges, or other filter elements that need to be replaced, backflushing is not required, and the purging of collected solids can be performed while the filter is in operation, thereby reducing downtime.
  • Filter 104 is preferably constructed of stainless steel.
  • Filter 104 is purged through purge outlet 508.
  • a manual valve 512 is coupled to purge outlet 508.
  • a union connection 514 is coupled to manual valve 512.
  • a motorized ball valve 516 is coupled to union connection 514, and another union connection 518 is coupled to motorized ball valve 516. Solids are discharged through this purge outlet assembly. Purging is preferably performed while filter 104 is in operation.
  • filter 106 reduces the quantity of organic material, such as algae, in the water to realize a better ozonation at the next step.
  • Filter 106 is preferably a stainless steel, self-cleaning filter, as manufactured by Tekleen, model GBG, however, other similar filters can be used.
  • ozone Prior to reaching contact tank 112, ozone is injected into the system at an ozone injection point 108.
  • Contact tank 112 is provided in order to allow the ozone injection into the system to react with the water.
  • the ozonation process oxidizes organic materials in the water to begin clarifying the water.
  • the ozonation process also begins killing bacteria in the water. Further, by introducing ozone in the form of tiny bubbles, small particles begin to agglomerate through micro flocculation to allow subsequent steps in the process to remove the particles.
  • the ozonation process consists of ozone injector 108, a contact tank 112, an ORP (Oxidation Reduction Potential) monitor 114 and a solenoid valve 116.
  • Contact tank 112 is preferably a 250 gallon stainless steel tank.
  • the water stays in contact tank 112 to react with the ozone.
  • the ozonation process kills microorganisms (bacteria) through a process known as cellular lysis. In this oxidation process, the cellular membrane of microorganisms is ruptured and the bacterial cytoplasm is dispersed into solution. This process is much quicker than using chlorine to disinfect a water source.
  • This ozonation process also prevents trihalomethane (THM) formation, oxidizes inorganic material, controls taste and odor, and oxidizes synthetic and volatile organic chemicals.
  • Ozone injector 108 is available from Mazzei Injector Corp., for example. A preferred injector is model 684. The ozone system is available from EDC Ozone Systems of Irving, Texas, however, other manufacturers can be used.
  • a concentration of ozone should be in contact with the water for a certain period of time, known as contact time.
  • contact time a concentration of ozone
  • ORP monitor 114 measures the oxidation reduction potential in water.
  • the redox potential is an indirect measurement of the concentration, or the activity of ozone, in the solution and is measured in millivolts (mV).
  • ORP monitor 114 senses changes in the redox potential and adjusts the ozone feed rate appropriately.
  • the ORP reading at a certain point in the system takes into account contact time and concentration of the ozone. If the ORP reading at that point reaches a certain predetermined level, the source water proceeds to the next step. At contact tack 112, for example, an ORP reading over 400 is acceptable, over 500 is more preferable, and over 600 is most preferable. Only when the ORP reading reaches the desired level will solenoid valve 116 open and allow the water to continue through the system. If the ORP reading does not reach the desired levels, solenoid valve 116 remains shut and the water recirculates back to pond pump 102 through a recirculation loop 118.
  • FIG. 6 shows a venturi injector manifold generally at 600.
  • Injector manifold 600 may include a ball valve 602 and a venturi 604.
  • the purification gas (preferably ozone) is injected into the system under a vacuum condition.
  • Venturi 604 operates via a pressure differential . The amount of ozone drawn into the venturi
  • venturi 604 depends on the water flow and the pressure on the inlet and outlet sides. In one example, a pressure differential of 25 psi must be maintained between the well and the system back pressure for venturi 604 to operate correctly. Preferably, at least 10" of vacuum at venturi suction port 606 and 25 PSI at venturi outlet 608 is maintained.
  • booster pump 120 is required to pull the water from contact tank 112 and raise the pressure back up to 60 to 90 PSI.
  • Booster pump 120 can be any type of pump.
  • a preferred pump is a model CR-2 pump manufactured by Grundfos.
  • a bladder tank 122 protects against water hammer once booster pump 120 has been activated and all downstream tanks are full. If the water stagnates, bladder tank 124 will expand and automatically shut down booster pump 122 to prevent system pressure from exceeding a safe range of between 80 and 120 PSI.
  • a coagulant injector 124 injects chemicals into the water to create "flock" in the water allowing colloidal material to make particles bigger.
  • Instant coagulation is preferable in order to allow a consistent flow through the process.
  • a preferred coagulant is Filtermate C-150 coagulant manufactures by Argo Scientific because it provides near instantaneous coagulation.
  • Filtermate C-150 coagulant is a long polymer instantaneous floe.
  • Other possible coagulant are lime, ferrous sulfate, and calcium chloride, although these are not preferred because they do not act as quickly.
  • Multi-media tank 126 or 128 removes the majority of the particulate matter in the system. It will remove any particulate matter 20 microns or larger. Upstream filters 104 and 106 described above are important to remove heavy particulate matter early in the process so that multi-media tank 126 or 128 does not get dirty too quickly.
  • multi-media tank 126 or 128 The importance of coagulant injector 124 also relates to the multi-media tank because the coagulant injected at coagulant injector 124 creates larger sized particles that can be trapped by multi-media tank 126 or 128.
  • a multi- media tank consists of different layers of gravel, sand, garnet, and anthracite.
  • FIG. 7 A particular example of the preferred embodiment of multi-media tank 126 or 128 is shown in FIG. 7.
  • multi-media tank 126 or 128 consists of layers of anthracite #1 (.6 by .8 mm) 702, .45 to .55 millimeter sand 704, #50 garnet 706, #12 garnet 708, and l ⁇ " by V ⁇ " gravel 710.
  • multi-media tank 126 or 128 the following quantities are used in multi-media tank 126 or 128: one cubic foot of anthracite 702, 55 lbs. of sand 704, 50 lbs. of #50 garnet 706, 34 lbs. of #12 garnet 708, and 30 lbs. of gravel 710.
  • Source water flows into multi-media tank 126 or 128 via an inlet 712 at a top portion 714 of multi-media tank 126 or 128.
  • Source water flows down through layers 702, 704, 706, 708, and 710 to remove particulate matter down to 10 micron from the source water.
  • Multi-media tank 126 or 128 requires periodic cleaning due to the trapping of particulate matter in layers 702, 704, 706, 708, and 710.
  • the frequency of cleaning is determined by monitoring the pressure differential (drop) from inlet 712 to outlet 716 of multi-media tank 126 or 128.
  • An increased pressure differential (drop) between inlet 712 and outlet 716 of multi-media tank 126 or 128 signifies that backwashing is required.
  • a pressure differential of a clean media bed is 5 to 10 PSI. When the differential reaches 12 to 15 PSI, backwashing is required. Backwashing reverses the flow from a bottom portion 718 of tank 126 or 128 to a top portion 714 of tank 126 or 128, expanding and agitating the media bed. This action loosens sediment that may have collected on the media and flushes the sediment to drain. The bed is then rinsed to allow the media to settle back to the bottom of the bed.
  • source water proceeds from multi-media tank
  • Carbon bed 130 removes pesticides and volatile organic chemicals (VOC's) such as acrylamide, Benzene, xylene, vinyl chloride, etc. as listed in the Environmental Protection Agency's National Primary Drinking Water Regulations. Carbon bed tank 130 also reduces the ozone level in the water as ozone is undesirable in the next stage, heavy metal reduction tank
  • VOC's volatile organic chemicals
  • carbon bed tank 130 is constructed of layers of activated carbon, sand, and gravel.
  • the activated carbon is preferably a porous solid, granular in form, produced from any base material which has a high percentage of carbon content, such as wood, nut pits or shell, animal bone, hydrocarbon sludge, peat, lignite, bituminous coal and anthracite coal.
  • a preferred activated carbon is activated carbon from coconut shell, meeting American Water Works Association Standard B604-74.
  • An example of a suitable activated carbon is coconut shell from Alamo Water Refineries.
  • Carbon bed 130 includes activated carbon 802 from 26 to 30 inches in depth.
  • a preferred flow rate through carbon bed tank 130 is 2-14 gallons per minute per square foot (gpm/ft 2 ).
  • Source water flows into carbon bed tank 130 via an inlet 804 at a top portion 806 of carbon bed tank 130.
  • Source water flows down through activated carbon bed 802.
  • Water flows out of carbon bed tank 130 via an outlet 808 at a bottom portion 810 of carbon bed tank
  • Carbon bed tank 130 requires periodic cleaning, accomplished by backwashing carbon bed tank 130. The frequency of backwashing is determined by monitoring the pressure differential (drop) between inlet 804 and outlet 808 of carbon bed tank 130.
  • An increase pressure differential (drop) between inlet 804 and outlet 808 of carbon bed tank 130 signifies that backwashing is required.
  • a pressure differential of a clean bed is 5 to 10 PSI. When the differential reaches 12 to 15 PSI, backwashing is required. Backwashing reverses the flow from a bottom portion 810 of carbon bed tank 130 to a top portion 806 of carbon bed tank 130, expanding and agitating the carbon bed.
  • a preferred backwash rate is 10 - 17 gpm/ft 2 .
  • the carbon bed is preferably expanded by 30-40% of the bed depth.
  • source water proceeds from carbon bed tank 130 to a heavy metal reduction tank 132.
  • Heavy metal reduction tank 132 combines a mechanical filtration with oxidation/reduction to remove suspended solids, chlorine, hydrogen sulfide, and iron bearing compounds.
  • heavy metal reduction tank 132 comprises a virgin ground zinc and copper media. This virgin ground zinc and copper is available from KDF Fluid Treatment, Inc.
  • KDF-55 fine or medium, however, other products from other manufacturers can be utilized.
  • KDF-55 includes positively and negatively charged particles. Heavy metals go through the media bed and cling to the positively or negatively charged particles, depending on the type of metal. Heavy metal reduction tank 132 needs to be backwashed in order to maintain proper operation.
  • heavy metal reduction tank 132 is backwashed after every 8 hours of operation.
  • the appropriate time to backwash can also be determined by monitoring the pressure differential (drop) from the inlet to the outlet of the tank.
  • a pressure drop from the inlet to the outlet side of heavy metal reduction tank 132 is typically 5 to 10 PSI for a clean bed. If the pressure drop increases to between 12 and 15 PSI, then the tank needs to be backwashed.
  • backwashing water is pushed back through the bed from the bottom to dislodge particles retained in the bed.
  • backwashing is done at 30 gpm/ft 2 . Backwashing results in a bed expansion of 10 - 15%. The particles are then flushed to drain and the tank is rinsed to allow the media to settle to the bottom of the bed.
  • Source water then proceeds to a second carbon bed filter 134.
  • Second carbon bed filter 134 is similar in construction to first carbon bed filter 130. Second carbon bed filter 134 further clarifies the water, removing particulate matter larger than approximately 10 micron. Second carbon bed filter 134 is optional.
  • Source water then proceeds to a tannin removal tanks 136 or 138. Tannins in water are created by decaying plant life. Tannins make water brown/light red in color. Tannins are removed in tannin removal tank 136 or 138 through the use of a microporous anion resin.
  • a preferred microporous anion resin is available from Purolite Co. Other microporous anion resins are available from Dow Chemical, Ionica, Co., and Ion Exchange Tech., for example.
  • Nitrate removal tank 140 may be by-passed when nitrate levels within the source water are below EPA limits for drinking water (45 mg NO 3 /I). Nitrates are removed from the source water using a microporous anion resin. Examples of microporous anion resins are available as described above. Each nitrate removal tank 140 contains approximately 8 cubic feet of nitrate removal resin or approximately 240,000 grains. Regeneration of the resin is required depending on the quantity of nitrates in the source water. Sodium Chloride (NaCl) is preferred for regeneration for cost and efficiency. Sea water can be used quite effectively, if available.
  • NaCl sodium Chloride
  • the time between regeneration is calculated by using the ratio of 17.1 parts per million (ppm) of nitrates in the source water requires 1 grain of nitrate removal resin per gallon. Therefore, if the source water contains 50 ppm nitrate level, then 3 grains of nitrate removal resin per gallon of source water is utilized. In the above example with 240,000 grains in nitrate removal tank 140, an estimated 80,000 gallons of source water can run through nitrate removal tank 140 between regeneration cycles (240,000 grains ⁇ 3 grains/gallon).
  • Second stage ozonation consists of an ozone injector 142, a contact tank 144, a solenoid valve 146 an ORP monitor 148, and a recirculation loop 147 including a manual pump
  • Second stage ozonation operates in the same manner as the first stage ozonation discussed above.
  • the preferred ORP monitor reading is above 700 mV at this stage before the source water proceeds through the system. If the desired ORP reading is not reached, the source water recirculates back through recirculation loop 147 using manual pump 145.
  • Filter 150 is preferably a .5 micron filter which removes particulate matter down to .5 micron.
  • filters can be utilized, but preferably a replaceable cartridge type filter is used, as available from Ametech. Filter 150 can be replaced at a certain time interval depending on use of the system or can be replaced when the pressure drop from one side to the other of the filter increases significantly.
  • Filter 152 is preferably a .2 micron filter. Various types of filter could be utilized, but a replaceable cartridge type filter is preferred, as available from Ametech. Filter 152 can be replaced at a certain time interval based on use of the system or when the pressure drop from one side to the other of the filter increases significantly. Of course, different arrangements of filter 150 and 152 can be utilized. Filter 150 can even be eliminated, but this puts a heavier load on filter 152 which will require that filter 152 be replaced more often.
  • UV light 154 is a precautionary measure used to kill bacteria and viruses in the source water.
  • Filter 156 is preferably a ⁇ 0.1 micron filter. Filter 156 is also a precautionary measure. Even if bacteria exists which is below 0.2 micron in size, at less than 0.1 micron said bacteria would liquify. Therefore, filter 156 captures and removes any possible remaining bacteria, virus, or other matter in the source water.
  • a preferred filter 156 is available from Ametech, for example.
  • the source water is ready to be consumed and meets all regulations for drinking water, including United States Environmental Protection Agency National Primary Drinking Water Standards, World Health Organization, and other similar regulations such as set forth by the European Economic Community, all of which are incorporated herein by reference.
  • a third stage ozonation 158 is utilized. Similar to the previous ozonation stages, ozone is injected into the source water. A ORP reading of at least 700 mV in the product water is preferred.
  • the source water is now ready to be dispensed as pure water.
  • Pure water is defined as water meeting the United States Environmental Protection Agency's Maximum Contaminant Levels for Drinking Water. While various embodiments of the present invention have been described above, it should be understood that they have been present by way of example only, and not limitation. The present invention could be used with various steps removed or altered slightly, and is not limited to use on a transportable platform. Thus the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

A transportable water purification system that is compact, relatively simple to operate, and yet can take any fresh water source and produce drinking water meeting United States Environmental Protection Agency's National Primary Drinking Water Standards, World Health Organization drinking water recommendations, and other similar standards for drinking water. The water purification system utilizes a multi-stage filtration process (104, 106, 126, 128, 130, 132, 134, 136, 138, 140, 150, 152) that can be operated at relatively low pressure.

Description

Water Purification System
Background of the Invention
Field of the Invention
The present invention generally relates to purification of fresh water supplies. In particular, the present invention relates to transportable water purification systems that are compact, relatively simple to operate, and yet can take any fresh water source and produce drinking water meeting United States Environmental Protection Agency's National Primary Drinking Water Standards, World Health Organization drinking water recommendations, and other similar standards for drinking water.
Related Art
There exist a multitude of systems for purifying fresh water sources to meet potable drinking water standards. For example, reverse osmosis is a process utilized to purify water. However, reverse osmosis is a complex process which requires an on-site engineer to monitor the equipment due to the high pressures required for the process. Additionally, most purification systems reintroduce contaminants back into the fresh water source in essentially a more concentrated state. Conventional purification systems also generally require testing of the source water and then design of a system that will address the specific characteristics of the source water. Conventional purification systems often fail to account for every possible contaminant which does not allow flexibility in using the system for various sources. Summary of the Invention
The present invention addresses the problems above by providing a transportable water purification system that can take any fresh water source and purify it to produce drinking water meeting regulatory standards throughout the world.
The present invention addresses these problems without using a reverse osmosis process. Instead, the present invention utilizes a series of filters designed to remove different types of materials. For example, in one embodiment, the present invention utilizes a pump to remove water from the source, a sand or sediment filter, a 50/20 micron filter, a tri-phase ozone injection system, a coagulant injector, a multi-media tank, a carbon bed filter, a heavy metal reduction tank, a tannin removal tank, a nitrate removal tank, a 0.5 micron filter, a 0.2 micron filter, an ultraviolet light, and a < 0.1 micron filter.
A multitude of embodiments of the present invention are possible by using some or all of the components described. The present invention can take any fresh water source and purify it to meet drinking water standards throughout the world. Another feature of the present invention is that it is transportable and can therefore be moved to sites where water purification is needed. This is important, for example, in developing countries or in areas struck by natural disaster. The flexibility of the present system allows a quick response to these areas with the assurance that the product water will meet all drinking water standards without the need for pre-testing of the source water.
Brief Description of the Figures
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears. Figure 1 shows a schematic representation of an embodiment of the water purification system of the present invention;
Figure 2 shows an isometric view of an embodiment of the water purification system of the present invention;
Figure 3 shows a second isometric view of an embodiment of the water purification system of the present invention;
Figure 4 shows a pump for extracting water from the source;
Figures 5A and 5B show a centrifugal filter utilized in an embodiment of the present invention;
Figure 6 shows an injector manifold utilized in an embodiment of the present invention;
Figure 7 shows a multi-media tank utilized in an embodiment of the present invention;
Figure 8 shows a carbon bed tank utilized in an embodiment of the present invention.
Detailed Description of the Preferred Embodiments
The present invention is directed to an apparatus and method for purifying water. The invention will be described below with respect to particular embodiments. An embodiment of the present invention will be described with respect to Figures 1-3, which show a schematic representation (FIG. 1) and isometric views (FIGs. 2 and 3) of an embodiment of the present invention. A pump 102 is connected to a fresh water source and pumps the source water into the system. A fresh water source, as used herein, is defined as a water source (such as a river, stream, lake, etc.) with less than 1,000 total dissolved solids (TDS) (mg/L). Pump 102 develops an initial pressure in the system of 60 to 90 pounds per square inch (PS I). Pump 102 can be any type of pump, but preferably an air cooled engine driven centrifugal pump is used, as shown in FIG. 4, such as a Model B3TQMS-14 manufactured by Berkely. Pump 102 can be a permanent installation or a temporary installation, depending on the application. Pump 102 pumps the source water to a filter 104. A typical suction connection for pump 102 is shown in FIGs. 2-4. Pump
102 is coupled to a suction pipe 202 (either flexible or rigid) that is inserted into the source water. A strainer 204 is coupled to the end of pipe 202 which is inserted into the source water to prevent large debris from entering pipe 202. Strainer 204 is preferably located at least one (1) pipe diameter from the bottom of the source body.
A typical discharge connection for pump 102 is shown in FIG. 4. A discharge priming valve 402 is coupled to pump 102 at its discharge end. An isolation valve 404 is adjacent discharge priming valve. Discharge piping 406 is coupled to isolation valve 404, preferably through a concentric reducer 408. Filter 104 provides an initial clearing of debris, sand, and grit such that filters down line do not clogged too quickly. Filter 104 is preferably a spin/centrifugal style filter as manufactured by Lakos, model no. IL-0100-B, but can be any type of filter that provides an initial clearing of debris and will not interrupt operation of the system when being cleaned. An example of filter 104 is depicted in FIG. 5. The exemplary filter 104 removes sand, grit, silt, and other fine solids from the source water, removing 98% of such particles 74 microns (200 mesh) and larger. Water enters filter 104 through an inlet 502. The water is accelerated into a separation chamber 504, where solids heavier than the carrying water are centrifugally separated and allowed to accumulated in a collection chamber 506 for eventual purging through a purge outlet 508. The water (free of separable solids) is then drawn up through an outlet 510 of filter 104. A spin or centrifugal filter is preferable because there are no moving parts to replace when worn, there are no screens, cartridges, or other filter elements that need to be replaced, backflushing is not required, and the purging of collected solids can be performed while the filter is in operation, thereby reducing downtime. Filter 104 is preferably constructed of stainless steel.
Filter 104 is purged through purge outlet 508. A manual valve 512 is coupled to purge outlet 508. A union connection 514 is coupled to manual valve 512. A motorized ball valve 516 is coupled to union connection 514, and another union connection 518 is coupled to motorized ball valve 516. Solids are discharged through this purge outlet assembly. Purging is preferably performed while filter 104 is in operation.
From filter 104, source water proceeds to a second filter 106, preferably a 50/20 micron filter. Filter 106 reduces the quantity of organic material, such as algae, in the water to realize a better ozonation at the next step. Filter 106 is preferably a stainless steel, self-cleaning filter, as manufactured by Tekleen, model GBG, however, other similar filters can be used.
The water then proceeds towards a contact tank 112. Prior to reaching contact tank 112, ozone is injected into the system at an ozone injection point 108. Contact tank 112 is provided in order to allow the ozone injection into the system to react with the water. The ozonation process oxidizes organic materials in the water to begin clarifying the water. The ozonation process also begins killing bacteria in the water. Further, by introducing ozone in the form of tiny bubbles, small particles begin to agglomerate through micro flocculation to allow subsequent steps in the process to remove the particles. The ozonation process consists of ozone injector 108, a contact tank 112, an ORP (Oxidation Reduction Potential) monitor 114 and a solenoid valve 116. Contact tank 112 is preferably a 250 gallon stainless steel tank. The water stays in contact tank 112 to react with the ozone. The ozonation process kills microorganisms (bacteria) through a process known as cellular lysis. In this oxidation process, the cellular membrane of microorganisms is ruptured and the bacterial cytoplasm is dispersed into solution. This process is much quicker than using chlorine to disinfect a water source. This ozonation process also prevents trihalomethane (THM) formation, oxidizes inorganic material, controls taste and odor, and oxidizes synthetic and volatile organic chemicals. Ozone injector 108 is available from Mazzei Injector Corp., for example. A preferred injector is model 684. The ozone system is available from EDC Ozone Systems of Irving, Texas, however, other manufacturers can be used.
In order for the ozonation process to be effective, a concentration of ozone should be in contact with the water for a certain period of time, known as contact time. The following chart provides an example of typical concentrations of ozone and the contact time recommended.
Figure imgf000008_0001
ORP monitor 114 measures the oxidation reduction potential in water. The redox potential is an indirect measurement of the concentration, or the activity of ozone, in the solution and is measured in millivolts (mV). ORP monitor 114 senses changes in the redox potential and adjusts the ozone feed rate appropriately. The ORP reading at a certain point in the system takes into account contact time and concentration of the ozone. If the ORP reading at that point reaches a certain predetermined level, the source water proceeds to the next step. At contact tack 112, for example, an ORP reading over 400 is acceptable, over 500 is more preferable, and over 600 is most preferable. Only when the ORP reading reaches the desired level will solenoid valve 116 open and allow the water to continue through the system. If the ORP reading does not reach the desired levels, solenoid valve 116 remains shut and the water recirculates back to pond pump 102 through a recirculation loop 118.
An example of ozone injector 108 is shown in FIG. 6. FIG. 6 shows a venturi injector manifold generally at 600. Injector manifold 600, for example, may include a ball valve 602 and a venturi 604. The purification gas (preferably ozone) is injected into the system under a vacuum condition. Venturi 604 operates via a pressure differential . The amount of ozone drawn into the venturi
604 depends on the water flow and the pressure on the inlet and outlet sides. In one example, a pressure differential of 25 psi must be maintained between the well and the system back pressure for venturi 604 to operate correctly. Preferably, at least 10" of vacuum at venturi suction port 606 and 25 PSI at venturi outlet 608 is maintained.
Because the water has been sitting in contact tank 112, a booster pump 120 is required to pull the water from contact tank 112 and raise the pressure back up to 60 to 90 PSI. Booster pump 120 can be any type of pump. A preferred pump is a model CR-2 pump manufactured by Grundfos. A bladder tank 122 protects against water hammer once booster pump 120 has been activated and all downstream tanks are full. If the water stagnates, bladder tank 124 will expand and automatically shut down booster pump 122 to prevent system pressure from exceeding a safe range of between 80 and 120 PSI.
The water then continues to a coagulant injector 124. Coagulant injector 124 injects chemicals into the water to create "flock" in the water allowing colloidal material to make particles bigger. Instant coagulation is preferable in order to allow a consistent flow through the process. A preferred coagulant is Filtermate C-150 coagulant manufactures by Argo Scientific because it provides near instantaneous coagulation. Filtermate C-150 coagulant is a long polymer instantaneous floe. Other possible coagulant are lime, ferrous sulfate, and calcium chloride, although these are not preferred because they do not act as quickly.
The source water then goes to a multi-media tank 126 or 128. Figure 7 shows two multimedia tanks 126 and 128 because the multi-media tanks need to be backwashed. One multi -media tank can be used if the system can be taken offline to clean the tank when needed. Preferably, two multi-media tanks are used in order to allow continuous operation of the system. Multi-media tank 126 or 128 removes the majority of the particulate matter in the system. It will remove any particulate matter 20 microns or larger. Upstream filters 104 and 106 described above are important to remove heavy particulate matter early in the process so that multi-media tank 126 or 128 does not get dirty too quickly. The importance of coagulant injector 124 also relates to the multi-media tank because the coagulant injected at coagulant injector 124 creates larger sized particles that can be trapped by multi-media tank 126 or 128. One embodiment of a multi- media tank consists of different layers of gravel, sand, garnet, and anthracite. A particular example of the preferred embodiment of multi-media tank 126 or 128 is shown in FIG. 7. In this embodiment, multi-media tank 126 or 128 consists of layers of anthracite #1 (.6 by .8 mm) 702, .45 to .55 millimeter sand 704, #50 garnet 706, #12 garnet 708, and lΛ" by Vβ" gravel 710. In a preferred embodiment, the following quantities are used in multi-media tank 126 or 128: one cubic foot of anthracite 702, 55 lbs. of sand 704, 50 lbs. of #50 garnet 706, 34 lbs. of #12 garnet 708, and 30 lbs. of gravel 710. Source water flows into multi-media tank 126 or 128 via an inlet 712 at a top portion 714 of multi-media tank 126 or 128. Source water flows down through layers 702, 704, 706, 708, and 710 to remove particulate matter down to 10 micron from the source water.
Water flows out of multi-media tank 126 or 128 via an outlet 716 at a bottom portion 718 of the tank.
Multi-media tank 126 or 128 requires periodic cleaning due to the trapping of particulate matter in layers 702, 704, 706, 708, and 710. The frequency of cleaning is determined by monitoring the pressure differential (drop) from inlet 712 to outlet 716 of multi-media tank 126 or 128. An increased pressure differential (drop) between inlet 712 and outlet 716 of multi-media tank 126 or 128 signifies that backwashing is required. In one example, a pressure differential of a clean media bed is 5 to 10 PSI. When the differential reaches 12 to 15 PSI, backwashing is required. Backwashing reverses the flow from a bottom portion 718 of tank 126 or 128 to a top portion 714 of tank 126 or 128, expanding and agitating the media bed. This action loosens sediment that may have collected on the media and flushes the sediment to drain. The bed is then rinsed to allow the media to settle back to the bottom of the bed. In a preferred embodiment, source water proceeds from multi-media tank
126 or 128 to a first carbon bed 130. Carbon bed 130 removes pesticides and volatile organic chemicals (VOC's) such as acrylamide, Benzene, xylene, vinyl chloride, etc. as listed in the Environmental Protection Agency's National Primary Drinking Water Regulations. Carbon bed tank 130 also reduces the ozone level in the water as ozone is undesirable in the next stage, heavy metal reduction tank
132. In one embodiment, carbon bed tank 130 is constructed of layers of activated carbon, sand, and gravel. The activated carbon is preferably a porous solid, granular in form, produced from any base material which has a high percentage of carbon content, such as wood, nut pits or shell, animal bone, hydrocarbon sludge, peat, lignite, bituminous coal and anthracite coal. A preferred activated carbon is activated carbon from coconut shell, meeting American Water Works Association Standard B604-74. An example of a suitable activated carbon is coconut shell from Alamo Water Refineries.
A preferred embodiment of carbon bed tank 130 is shown in FIG. 8. Carbon bed 130 includes activated carbon 802 from 26 to 30 inches in depth. A preferred flow rate through carbon bed tank 130 is 2-14 gallons per minute per square foot (gpm/ft2). Source water flows into carbon bed tank 130 via an inlet 804 at a top portion 806 of carbon bed tank 130. Source water flows down through activated carbon bed 802. Water flows out of carbon bed tank 130 via an outlet 808 at a bottom portion 810 of carbon bed tank Carbon bed tank 130 requires periodic cleaning, accomplished by backwashing carbon bed tank 130. The frequency of backwashing is determined by monitoring the pressure differential (drop) between inlet 804 and outlet 808 of carbon bed tank 130. An increase pressure differential (drop) between inlet 804 and outlet 808 of carbon bed tank 130 signifies that backwashing is required. In one example, a pressure differential of a clean bed is 5 to 10 PSI. When the differential reaches 12 to 15 PSI, backwashing is required. Backwashing reverses the flow from a bottom portion 810 of carbon bed tank 130 to a top portion 806 of carbon bed tank 130, expanding and agitating the carbon bed. A preferred backwash rate is 10 - 17 gpm/ft2. The carbon bed is preferably expanded by 30-40% of the bed depth.
This action loosens sediment that may have collected on activated carbon 802 and flushes the sediment to drain. The bed is then rinsed to allow activated carbon 802 to settle back to the bottom of the tank.
In one embodiment, source water proceeds from carbon bed tank 130 to a heavy metal reduction tank 132. Heavy metal reduction tank 132 combines a mechanical filtration with oxidation/reduction to remove suspended solids, chlorine, hydrogen sulfide, and iron bearing compounds. In one embodiment, heavy metal reduction tank 132 comprises a virgin ground zinc and copper media. This virgin ground zinc and copper is available from KDF Fluid Treatment, Inc. A preferred product is KDF-55 fine or medium, however, other products from other manufacturers can be utilized. KDF-55 includes positively and negatively charged particles. Heavy metals go through the media bed and cling to the positively or negatively charged particles, depending on the type of metal. Heavy metal reduction tank 132 needs to be backwashed in order to maintain proper operation. In one example, heavy metal reduction tank 132 is backwashed after every 8 hours of operation. The appropriate time to backwash can also be determined by monitoring the pressure differential (drop) from the inlet to the outlet of the tank. A pressure drop from the inlet to the outlet side of heavy metal reduction tank 132 is typically 5 to 10 PSI for a clean bed. If the pressure drop increases to between 12 and 15 PSI, then the tank needs to be backwashed. In typical operation, water flows down through the bed. When backwashing, water is pushed back through the bed from the bottom to dislodge particles retained in the bed. In one embodiment, backwashing is done at 30 gpm/ft2. Backwashing results in a bed expansion of 10 - 15%. The particles are then flushed to drain and the tank is rinsed to allow the media to settle to the bottom of the bed.
Source water then proceeds to a second carbon bed filter 134. Second carbon bed filter 134 is similar in construction to first carbon bed filter 130. Second carbon bed filter 134 further clarifies the water, removing particulate matter larger than approximately 10 micron. Second carbon bed filter 134 is optional.
Source water then proceeds to a tannin removal tanks 136 or 138. Tannins in water are created by decaying plant life. Tannins make water brown/light red in color. Tannins are removed in tannin removal tank 136 or 138 through the use of a microporous anion resin. A preferred microporous anion resin is available from Purolite Co. Other microporous anion resins are available from Dow Chemical, Ionica, Co., and Ion Exchange Tech., for example.
Source water the proceeds to a nitrate removal tank 140. Nitrate removal tank 140 may be by-passed when nitrate levels within the source water are below EPA limits for drinking water (45 mg NO3/I). Nitrates are removed from the source water using a microporous anion resin. Examples of microporous anion resins are available as described above. Each nitrate removal tank 140 contains approximately 8 cubic feet of nitrate removal resin or approximately 240,000 grains. Regeneration of the resin is required depending on the quantity of nitrates in the source water. Sodium Chloride (NaCl) is preferred for regeneration for cost and efficiency. Sea water can be used quite effectively, if available. The time between regeneration is calculated by using the ratio of 17.1 parts per million (ppm) of nitrates in the source water requires 1 grain of nitrate removal resin per gallon. Therefore, if the source water contains 50 ppm nitrate level, then 3 grains of nitrate removal resin per gallon of source water is utilized. In the above example with 240,000 grains in nitrate removal tank 140, an estimated 80,000 gallons of source water can run through nitrate removal tank 140 between regeneration cycles (240,000 grains ÷ 3 grains/gallon).
Source water then proceeds to second stage ozonation. Second stage ozonation consists of an ozone injector 142, a contact tank 144, a solenoid valve 146 an ORP monitor 148, and a recirculation loop 147 including a manual pump
145. Second stage ozonation operates in the same manner as the first stage ozonation discussed above. The preferred ORP monitor reading is above 700 mV at this stage before the source water proceeds through the system. If the desired ORP reading is not reached, the source water recirculates back through recirculation loop 147 using manual pump 145.
Source water then proceeds to a filter 150. Filter 150 is preferably a .5 micron filter which removes particulate matter down to .5 micron. Various filters can be utilized, but preferably a replaceable cartridge type filter is used, as available from Ametech. Filter 150 can be replaced at a certain time interval depending on use of the system or can be replaced when the pressure drop from one side to the other of the filter increases significantly.
Source water then proceeds to a filter 152. Filter 152 is preferably a .2 micron filter. Various types of filter could be utilized, but a replaceable cartridge type filter is preferred, as available from Ametech. Filter 152 can be replaced at a certain time interval based on use of the system or when the pressure drop from one side to the other of the filter increases significantly. Of course, different arrangements of filter 150 and 152 can be utilized. Filter 150 can even be eliminated, but this puts a heavier load on filter 152 which will require that filter 152 be replaced more often. After passing through filters 150 and 152, the source water is exposed to an ultraviolet (UV) light 154. UV light 154 is a precautionary measure used to kill bacteria and viruses in the source water. While it is not believed that bacteria or virus exist that are less than .2 micron, it is possible that unknown or man- made bacteria may exist that are below .2 micron. A preferred manufacturer of the UV equipment is Atlantic UV. The source water then proceeds to filter 156. Filter 156 is preferably a <0.1 micron filter. Filter 156 is also a precautionary measure. Even if bacteria exists which is below 0.2 micron in size, at less than 0.1 micron said bacteria would liquify. Therefore, filter 156 captures and removes any possible remaining bacteria, virus, or other matter in the source water. A preferred filter 156 is available from Ametech, for example.
The source water is ready to be consumed and meets all regulations for drinking water, including United States Environmental Protection Agency National Primary Drinking Water Standards, World Health Organization, and other similar regulations such as set forth by the European Economic Community, all of which are incorporated herein by reference. However, it is possible that the water may be placed in a contaminated bottle or other device after dispensed from the system. Therefore, in order to ensure purified drinking water, a third stage ozonation 158 is utilized. Similar to the previous ozonation stages, ozone is injected into the source water. A ORP reading of at least 700 mV in the product water is preferred.
The source water is now ready to be dispensed as pure water. Pure water is defined as water meeting the United States Environmental Protection Agency's Maximum Contaminant Levels for Drinking Water. While various embodiments of the present invention have been described above, it should be understood that they have been present by way of example only, and not limitation. The present invention could be used with various steps removed or altered slightly, and is not limited to use on a transportable platform. Thus the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims

What Is Claimed Is:
1. A method of producing pure water from a feed water source comprising the steps of: (a) removing particulate matter from said feed water source; (b) ozonating said feed water source; (c) removing nitrates from said feed water source; (d) removing pesticides and volatile organic compounds from said feed water source; (e) removing heavy metals from said feed water source; and (f) removing bacteria from said feed water source.
2. The method of claim 1, further comprising a tannin removal step.
3. The method of producing pure water as in claim 1, further comprising a first step of removing water from said feed water source.
4. The method of producing pure water as in claim 1, wherein the step of removing particulate matter from said feed water source comprises a spin filter.
5. The method of producing pure water as in claim 4, wherein the step of removing particulate matter from said feed water source further comprises a screen filter.
6. The method of producing pure water as in claim 5, wherein said screen filter comprises a 50/20 micron filter.
7. The method of producing pure water as in claim 6, wherein said 50/20 micron filter is made of stainless steel.
8. The method of producing pure water as in claim 4, wherein the step of removing particulate matter from said feed water source further comprises a multi-media tank.
9. The method of producing pure water as in claim 8, wherein said multimedia tank comprises a tank at least partially filled with layers of anthracite, sand, garnet, and gravel.
10. The method of producing pure water as in claim 9, wherein said anthracite comprises #1 anthracite.
11. The method of producing pure water as in claim 9, wherein said sand comprises .45 to .55 millimeter sand.
12. The method of producing pure water as in claim 9, wherein said garnet comprises #50 garnet and #12 garnet.
13. The method of producing pure water as in claim 9, wherein said gravel comprises lA" by Va" gravel.
14. The method of producing pure water as in claim 1, wherein said step of ozonating said feed water source comprises a dual phase injection system wherein ozone is first injected into said feed water source after an initial removal of particulate matter but prior to the steps of nitrate removal, tannin, removal, and heavy metal reduction; and wherein ozone is injected into said feed water source a second time after said steps of nitrate removal, tannin removal, and heavy metal reduction.
15. The method of producing pure water as in claim 14, wherein an oxidation reduction potential reading at said second ozone injection is greater than 700 millivolts.
16. The method of producing pure water as in claim 14, further comprising a third ozonation.
17. The method of producing pure water as in claim 1, wherein the step of removing nitrates from said water comprises passing said water through a tank at least partially filled with a microporous anion resin.
18. The method of producing pure water as in claim 1, wherein the step of removing pesticides and volatile organic compounds from said water comprises passing said water through a tank at least partially filled with granular activated carbon.
19. The method of producing pure water as in claim 18 , wherein said granular activate carbon comprises granular activated carbon from coconut shell.
20. The method of producing pure water as in claim 1, wherein the step of removing heavy metals from said water comprises passing said water through a tank at least partially filled with virgin ground zinc and copper.
21. A water purification apparatus comprising: a filter coupled to said water extraction section; a water contact reservoir coupled to said filter section; a first ozone injector coupled with said water contact reservoir for introducing ozone to said water contact reservoir; a coagulant injector section coupled to said bladder tank; a multi-media tank coupled to said coagulant injector; a carbon bed tank coupled to said multi-media tank; a heavy metal reduction section coupled to said carbon bed tank; a tannin removal section coupled to said heavy metal reduction section; a nitrate removal section coupled to said tannin removal section; a second water contact reservoir coupled to said nitrate removal section; and a second ozone injector section coupled with said second water contact reservoir for introducing ozone to said water contact reservoir.
22. The apparatus of claim 21 , wherein said filter comprises a spin filter and a 50/20 micron filter.
23. The apparatus of claim 21, further comprising: an oxidation reduction potential monitor coupled to said first water contact reservoir; and a valve coupled to said oxidation reduction potential monitor; wherein said valve is normally closed and opens when said oxidation reduction potential monitor reaches a predetermined value.
24. The apparatus of claim 23, further comprising a recirculation loop coupled to said valve, wherein if said oxidation reduction potential monitor does not reach said predetermined value after a predetermined amount of time, said water recirculates back to said filter section through said recirculation loop.
25. The apparatus of claim 21, wherein said coagulant injector injects Filtermate C150 coagulant into said water.
26. The apparatus of claim 21, wherein said multi-media tank comprises a tank at least partially filled with layers of anthracite, sand, garnet, and gravel.
27. The apparatus of claim 26, wherein said anthracite comprises #1 anthracite.
28. The apparatus of claim 26, wherein said sand comprises .45 to .55 millimeter sand.
29. The apparatus of claim 26, wherein said garnet comprises #50 garnet and #12 garnet.
30. The apparatus of claim 26, wherein said gravel comprises lA" by V╬▓" gravel.
31. The apparatus of claim 21 , wherein said carbon bed tank comprises a tank at least partially filled with granular activated carbon.
32. The apparatus of claim 31, wherein said granular activated carbon comprises granular activate carbon from coconut shell.
33. The apparatus of claim 21 , wherein in said heavy metal reduction section comprises a tank at least partially filled with virgin ground zinc and copper which are positively and negatively charged.
34. The apparatus of claim 21 , wherein said tannin removal section comprises a tank at least partially filled with a microporous anion resin.
35. The apparatus of claim 21 , wherein said nitrate removal section comprises a tank at least partially filled with a microporous anion resin.
36. The apparatus of claim 21, further comprising: a second oxidation reduction potential monitor coupled to said second water contact reservoir; and a valve coupled to said second oxidation reduction potential monitor; wherein said valve is normally closed and opens when said second oxidation reduction potential monitor reaches a predetermined value.
37. The apparatus of claim 21, further comprising a filter coupled to said second contact tank.
38. The apparatus of claim 37, wherein said filter coupled to said second contact tank comprises a .5 micron filter and a .2 micron filter.
39. The apparatus of claim 37, further comprising an ultra-violet light coupled to said filter.
40. The apparatus of claim 39, further comprising a <0.1 micron filter coupled to said ultraviolet light.
41. The apparatus of claim 40, further comprising a third ozone injector coupled to said < 0.1 micron filter.
42. The apparatus of claim 39, further comprising a third ozone injector coupled to said ultraviolet light.
43. The apparatus of claim 42, wherein the apparatus is mounted on a transportable platform.
44. The apparatus of claim 21, wherein the apparatus is mounted on a transportable platform.
45. A water purification apparatus comprising: a pre-filtering section; a tri-stage ozone injection system; microporous resin bed filter; and a carbon bed filter.
46. The water purification apparatus of claim 45, wherein said tri-phase ozone injection system comprises a first ozone injection stage including a first contact tank, a first ozone injector, a first oxidation reduction potential monitor, and a first solenoid valve, a second contact tank, a second ozone injection stage including a second ozone injector, a second oxidation reduction potential monitor, a second solenoid valve, and a third ozone injection stage including a third contact tank and a third ozone injector.
47. The water purification apparatus of claim 46, wherein said first ozone injection stage is coupled to said pre-filtering section.
48. The water purification apparatus of claim 46, wherein said second ozone injection stage is coupled to said carbon bed filter.
49. The water purification apparatus of claim 45, further comprising a final filtering section.
50. The water purification apparatus of claim 49, wherein said tri-phase ozone injection system comprises a first ozone injection stage including a first contact tank, a first ozone injector, a first oxidation reduction potential monitor, and a first solenoid valve, a second contact tank, a second ozone injection stage including a second ozone injector, a second oxidation reduction potential monitor, a second solenoid valve, and a third ozone injection stage including a third contact tank and a third ozone injector.
51. The water purification apparatus of claim 50, wherein said third ozone injection stage is coupled to said final filtering section.
52. Drinking water having a contaminant level below the U.S. Environmental Protection Agency's Maximum Contaminant Levels for drinking water produced by a process comprising: (a) obtaining water having a contaminant levels greater than the Environmental Protection Agency's Maximum Contaminant Levels for drinking water; (b) removing particulate matter from said water; (c) ozonating said water; (d) removing nitrates from said water; (e) removing pesticides and volatile organic compounds from said water; (f) removing heavy metals from said water; and (g) removing bacteria from said water.
53. Drinking water produced in a process according to claim 52, wherein the step of obtaining said water comprises extracting said water from a fresh water source.
54. Drinking water produced in a process according to claim 53, wherein said water is extracted from said fresh water source using a pump.
55. Drinking water produced in a process according to claim 52, wherein the step of filtering said water comprises a spin filter.
56. Drinking water produced in a process according to claim 55, wherein the step of filtering said water further comprises a screen filter.
57. Drinking water produced in a process according to claim 56, wherein said screen filter comprises a 50/20 micron filter.
58. Drinking water produced in a process according to claim 56, wherein said 50/20 micron filter is made of stainless steel.
59. Drinking water produced in a process according to claim 55, wherein the step of filtering particulate matter further comprises a multi-media tank.
60. Drinking water produced in a process according to claim 59, wherein said multimedia tank comprises a tank at least partially filled with layers of anthracite, sand, garnet, and gravel.
61. Drinking water produced in a process according to claim 60, wherein said anthracite comprises #1 anthracite.
62. Drinking water produced in a process according to claim 60, wherein said sand comprises .45 to .55 millimeter sand.
63. Drinking water produced in a process according to claim 56, wherein said garnet comprises #50 garnet and #12 garnet.
64. Drinking water produced in a process according to claim 60, wherein said gravel comprises VΛ" by Vβ" gravel.
65. Drinking water produced in a process according to claim 52, wherein the step of ozonating said water comprises a dual phase injection system wherein ozone is first injected into said water after an initial removal of particulate matter but prior to the steps of nitrate removal, tannin, removal, and heavy metal reduction; and wherein ozone is injected a second time after the steps of nitrate removal, tannin removal, and heavy metal reduction.
66. Drinking water produced in a process according to claim 65, wherein an oxidation reduction potential reading at said second ozone injection is greater than 700 millivolts.
67. Drinking water produced in a process according to claim 65, further comprising a third ozone injection.
68. Drinking water produced in a process according to claim 52, wherein the step of removing nitrates from said solution comprises passing said solution through a tank at least partially filled with a microporous anion resin.
69. Drinking water produced in a process according to claim 52, wherein the step of removing pesticides and volatile organic compounds from said solution comprises passing said solution through a tank at least partially filled with granular activated carbon.
70. Drinking water produced in a process according to claim 69, wherein said granular activated carbon comprises granular activated carbon from coconut shell.
PCT/US1999/019496 1998-08-28 1999-08-27 Water purification system WO2000012435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57865/99A AU5786599A (en) 1998-08-28 1999-08-27 Water purification system

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US9825998P 1998-08-28 1998-08-28
US9826198P 1998-08-28 1998-08-28
US9826098P 1998-08-28 1998-08-28
US9825898P 1998-08-28 1998-08-28
US60/098,261 1998-08-28
US60/098,258 1998-08-28
US60/098,259 1998-08-28
US60/098,260 1998-08-28
US11533899P 1999-01-11 1999-01-11
US60/115,338 1999-01-11

Publications (1)

Publication Number Publication Date
WO2000012435A1 true WO2000012435A1 (en) 2000-03-09

Family

ID=27536881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/019496 WO2000012435A1 (en) 1998-08-28 1999-08-27 Water purification system

Country Status (2)

Country Link
AU (1) AU5786599A (en)
WO (1) WO2000012435A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310462A1 (en) * 1998-10-30 2003-05-14 Waterchef, Inc. Water purification system and method
WO2004041725A2 (en) * 2002-11-05 2004-05-21 Aquapure Technologies Ltd. Method and system for purification and disinfection of water
WO2005002839A2 (en) 2003-07-01 2005-01-13 Swz, Llc Stitch-bonded and gathered composites and methods for making same
EP2297049A1 (en) * 2008-05-22 2011-03-23 Water Safe Solutions, Inc. Mobile water purification system and method
CN103265107A (en) * 2012-01-19 2013-08-28 株式会社韩美Entec Treatment system for wastewater equipped with redox metal reactor
US8900459B2 (en) 2008-04-09 2014-12-02 Puresafe Water Systems, Inc. Versatile water purification systems and methods
CN104250045A (en) * 2013-06-25 2014-12-31 株式会社韩美Entec Water treatment system for treating ionic materials and hardly degradable substances by utilizing alloy catalytic reactor
CN104529077A (en) * 2014-12-26 2015-04-22 上海市城市建设设计研究总院 Water treatment device with combination of sand filtration and ozonation and activated carbon
CN105712540A (en) * 2016-04-14 2016-06-29 江苏巨达环保科技有限公司 Device applied to chemical-feeding advanced treatment of COD (chemical oxygen demand), NH3-N, hardness and heavy metal of sewage and provided with strong oxidization bed
US9745207B2 (en) 2011-06-24 2017-08-29 Emd Millipore Corporation System and method for water purification with automatic purge
US9926210B2 (en) 2011-06-24 2018-03-27 Emd Millipore Corporation System and method for purification and distribution of water with separation barrier taking away the biological contamination
WO2020159589A1 (en) * 2019-01-31 2020-08-06 Neptune Benson, Inc. Regenerative media filter and related methods
CN114007716A (en) * 2019-02-25 2022-02-01 海王星-班森有限责任公司 Regenerated media filter air scouring apparatus and method
CN115340217A (en) * 2016-06-22 2022-11-15 江苏达格水务有限公司 Original ecological water treatment system and water treatment process
CN116813154A (en) * 2023-08-28 2023-09-29 山西世洁环境科技有限公司 Circulating water treatment device of closed heat supply pipeline and treatment method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059317A (en) * 1989-10-02 1991-10-22 Dietrich Marius Transportable apparatus for producing drinking water
US5259972A (en) * 1990-08-01 1993-11-09 Nippon Rensui Company Apparatus and method for purifying water
US5785864A (en) * 1995-06-23 1998-07-28 Ajt & Associates, Inc. Apparatus for the purification of water and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059317A (en) * 1989-10-02 1991-10-22 Dietrich Marius Transportable apparatus for producing drinking water
US5259972A (en) * 1990-08-01 1993-11-09 Nippon Rensui Company Apparatus and method for purifying water
US5785864A (en) * 1995-06-23 1998-07-28 Ajt & Associates, Inc. Apparatus for the purification of water and method therefor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310462A1 (en) * 1998-10-30 2003-05-14 Waterchef, Inc. Water purification system and method
WO2004041725A2 (en) * 2002-11-05 2004-05-21 Aquapure Technologies Ltd. Method and system for purification and disinfection of water
WO2004041725A3 (en) * 2002-11-05 2004-08-26 Aquapure Technologies Ltd Method and system for purification and disinfection of water
US6802981B2 (en) 2002-11-05 2004-10-12 Aquapure Technologies Ltd. Method for purification and disinfection of water
WO2005002839A2 (en) 2003-07-01 2005-01-13 Swz, Llc Stitch-bonded and gathered composites and methods for making same
US8900459B2 (en) 2008-04-09 2014-12-02 Puresafe Water Systems, Inc. Versatile water purification systems and methods
EP2297049A4 (en) * 2008-05-22 2012-03-28 Water Safe Solutions Inc Mobile water purification system and method
EP2297049A1 (en) * 2008-05-22 2011-03-23 Water Safe Solutions, Inc. Mobile water purification system and method
US9745207B2 (en) 2011-06-24 2017-08-29 Emd Millipore Corporation System and method for water purification with automatic purge
US9926210B2 (en) 2011-06-24 2018-03-27 Emd Millipore Corporation System and method for purification and distribution of water with separation barrier taking away the biological contamination
CN103265107A (en) * 2012-01-19 2013-08-28 株式会社韩美Entec Treatment system for wastewater equipped with redox metal reactor
CN103265107B (en) * 2012-01-19 2015-09-23 株式会社韩美Entec Utilize the sewage and wastewater treatment system of redox metal reactor
CN104250045A (en) * 2013-06-25 2014-12-31 株式会社韩美Entec Water treatment system for treating ionic materials and hardly degradable substances by utilizing alloy catalytic reactor
CN104529077A (en) * 2014-12-26 2015-04-22 上海市城市建设设计研究总院 Water treatment device with combination of sand filtration and ozonation and activated carbon
CN105712540A (en) * 2016-04-14 2016-06-29 江苏巨达环保科技有限公司 Device applied to chemical-feeding advanced treatment of COD (chemical oxygen demand), NH3-N, hardness and heavy metal of sewage and provided with strong oxidization bed
CN105712540B (en) * 2016-04-14 2019-01-29 江苏巨达环保科技有限公司 Dosing Strong oxdiative bed depth handles COD of sewage, NH3The device of-N, hardness and heavy metal
CN115340217A (en) * 2016-06-22 2022-11-15 江苏达格水务有限公司 Original ecological water treatment system and water treatment process
WO2020159589A1 (en) * 2019-01-31 2020-08-06 Neptune Benson, Inc. Regenerative media filter and related methods
CN114007716A (en) * 2019-02-25 2022-02-01 海王星-班森有限责任公司 Regenerated media filter air scouring apparatus and method
CN116813154A (en) * 2023-08-28 2023-09-29 山西世洁环境科技有限公司 Circulating water treatment device of closed heat supply pipeline and treatment method thereof
CN116813154B (en) * 2023-08-28 2023-11-07 山西世洁环境科技有限公司 Circulating water treatment device of closed heat supply pipeline and treatment method thereof

Also Published As

Publication number Publication date
AU5786599A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
AU2016232986B2 (en) Process and apparatus for treating water
US5741416A (en) Water purification system having plural pairs of filters and an ozone contact chamber
US6426005B1 (en) Sequential descending bed filters with reject/washwater containing impurities being fed to a separate unit for elimination of impurities
Ebrahim et al. Fifteen years of R&D program in seawater desalination at KISR Part I. Pretreatment technologies for RO systems
US8919573B2 (en) Water purification system and method
WO2000012435A1 (en) Water purification system
WO2011133159A2 (en) Wastewater purification system and method
US3459302A (en) Apparatus and method of filtering solids from a liquid effluent
EP3585732A1 (en) Activated rice husk filters, filter media, and methods
KR100221225B1 (en) Apparatus for brine conversion
CN111285505A (en) Reservoir water treatment process
WO2008135920A2 (en) Apparatus and method for water treatment using filters with granular filtration media
JP4598643B2 (en) Water purification system and water purification method
CN206970356U (en) Cleaning system containing micro-polluted water
KR100744407B1 (en) Simple water purifier for water supply
RU2325330C2 (en) Method of oilfield waters preparation for oilfield layer pressure support system and device for its implementation
US20100032378A1 (en) Effluent treatment process
US20070007213A1 (en) Water filtration process and apparatus
Rachwal et al. Water treatment for public supply in the 1990's—A role for membrane technology?
Jolis et al. Desalination of municipal wastewater for horticultural reuse: process description and evaluation
KR100383802B1 (en) Apparatus for clarifying raw water
KR100372829B1 (en) A clean water apparatus
ZA200205320B (en) Method and device for effluent treatment.
JP2006136753A (en) High pressure type fine sand filter and filtering method using it
KR200245298Y1 (en) Apparatus for clarifying raw water

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase