WO2000010563A1 - Novel substituted triazole compounds - Google Patents
Novel substituted triazole compounds Download PDFInfo
- Publication number
- WO2000010563A1 WO2000010563A1 PCT/US1999/018640 US9918640W WO0010563A1 WO 2000010563 A1 WO2000010563 A1 WO 2000010563A1 US 9918640 W US9918640 W US 9918640W WO 0010563 A1 WO0010563 A1 WO 0010563A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- optionally substituted
- aryl
- heteroaryl
- hydrogen
- Prior art date
Links
- 0 Cc1nnc(*)[n]1* Chemical compound Cc1nnc(*)[n]1* 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/16—Emollients or protectives, e.g. against radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- This invention relates to a novel group of triazole compounds, processes for the preparation thereof, the use thereof in treating CSBP/p38 kinase mediated diseases and pharmaceutical compositions for use in such therapy.
- Intracellular signal transduction is the means by which cells respond to extracellular stimuli. Regardless of the nature of the cell surface receptor (e. g. protein tyrosine kinase or seven-transmembrane G-protein coupled), protein kinases and phosphatases along with phopholipases are the essential machinery by which the signal is further transmitted within the cell [Marshall, J. C. Cell , 80, 179-278 (1995)].
- protein kinases and phosphatases along with phopholipases are the essential machinery by which the signal is further transmitted within the cell [Marshall, J. C. Cell , 80, 179-278 (1995)].
- Protein kinases can be categorized into five classes with the two major classes being, tyrosine kinases and serine / threonine kinases depending upon whether the enzyme phosphorylates its substrate(s) on specific tyrosine(s) or serine / threonine(s) residues [Hunter, T.. Methods in Enzymology ( " Protein Kinase Classification) p. 3, Hunter, T.; Sefton, B. M.; eds. vol. 200, Academic Press; San Diego, 1991].
- kinases For most biological responses, multiple intracellular kinases are involved and an individual kinase can be involved in more than one signaling event. These kinases are often cytosolic and can translocate to the nucleus or the ribosomes where they can affect transcriptional and translational events, respectively. The involvement of kinases in transcriptional control is presently much better understood than their effect on translation as illustrated by the studies on growth factor induced signal transduction involving MAP/ERK kinase [Marshall, C. J. Cell . 80, 179 (1995); Herskowitz, I. Cell . 80, 187 (1995); Hunter, T. Cell . 80, 225 (1995);Seger, R., and Krebs, E. G. FASEB J..
- cytokines e.g., IL-1 and TNF
- mediators of inflammation e.g., COX-2, and iNOS
- LPS bacterial lipopolysaccharide
- Han (Han, et al, Science 265, 808(1994)] identified murine p38 as a kinase which is tyrosine phosphorylated in response to LPS.
- Definitive proof of the involvement of the p38 kinase in LPS-stimulated signal transduction pathway leading to the initiation of proinflammatory cytokine biosynthesis was provided by the independent discovery of p38 kinase by Lee [Lee; et al, Nature, 372, 739(1994)] as the molecular target for a novel class of anti-inflammatory agents.
- CSBP 1 and 2 The discovery of p38 (termed by Lee as CSBP 1 and 2) provided a mechanism of action of a class of anti- inflammatory compounds for which SK&F 86002 was the prototypic example. These compounds inhibited IL- 1 and TNF synthesis in human monocytes at concentrations in the low uM range [Lee, et al., Int. J. Immunopharmac. 10(7), 835(1988)] and exhibited activity in animal models which are refractory to cyclooxygenase inhibitors [Lee; et al, Annals N. Y. Acad. Sci.. 696, 149(1993)].
- CSBP/p38 is a one of several kinases involved in a stress-response signal transduction pathway which is parallel to and largely independent of the analogous mitogen-activated protein kinase (MAP) kinase cascade ( Figure 1).
- Stress signals including LPS, pro-inflammatory cytokines, oxidants, UV light and osmotic stress, activate kinases upstream from CSBP/p38 which in turn phosphorylate CSBP/p38 at threonine 180 and tyrosine 182 resulting in CSBP/p38 activation.
- MAPKAP kinase-2 and MAPKAP kinase-3 have been identified as downstream substrates of CSBP/p38 which in turn phosphorylate heat shock protein Hsp 27 ( Figure 2). It is not yet known whether MAPKAP-2, MAPKAP-3, Mnkl or Mnk2 are involved in cytokine biosynthesis or alternatively that inhibitors of CSBP/p38 kinase might regulate cytokine biosynthesis by blocking a yet unidentified substrate downstream from CSBP/p38 [Cohen, P. Trends Cell Biol.. 353-361(1997)].
- CSBP/p38 kinase inhibitors (SK&F 86002 and SB 203580) also decrease the synthesis of a wide variety of pro-inflammatory proteins including, EL-6, IL-8, GM-CSF and COX-2.
- Inhibitors of CSBP/p38 kinase have also been shown to suppress the TNF- induced expression of VCAM-1 on endothelial cells, the TNF-induced phosphorylation and activation of cytosolic PLA2 and the EL- 1 -stimulated synthesis of collagenase and stromelysin.
- Interleukin-1 IL-1
- Tumor Necrosis Factor TNF
- DL-1 has been demonstrated to mediate a variety of biological activities thought to be important in immunoregulation and other physiological conditions such as inflammation [See, e.g., Dinarello et al., Rev. Infect. Disease, 6, 51 (1984)].
- the myriad of known biological activities of IL-1 include the activation of T helper cells, induction of fever, stimulation of prostaglandin or collagenase production, neutrophil chemotaxis, induction of acute phase proteins and the suppression of plasma iron levels.
- TNF production has been implicated in mediating or exacerbating a number of diseases including rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions; sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoisosis, bone resorption diseases, reperfusion injury, graft vs.
- allograft rejections fever and myalgias due to infection, such as influenza, cachexia secondary to infection or malignancy, cachexia, secondary to acquired immune deficiency syndrome (AIDS), AIDS, ARC (AIDS related complex), keloid formation, scar tissue formation, Crohn's disease, ulcerative colitis, or pyresis.
- AIDS cachexia secondary to infection or malignancy
- cachexia secondary to acquired immune deficiency syndrome
- AIDS AIDS
- ARC AIDS related complex
- keloid formation scar tissue formation
- Crohn's disease Crohn's disease
- ulcerative colitis or pyresis.
- Interleukin-8 is a chemotactic factor produced by several cell types including mononuclear cells, fibroblasts, endothelial cells, and keratinocytes. Its production from endothelial cells is induced by IL-1, TNF, or lipopolysachharide (LPS). IL-8 stimulates a number of functions in vitro. It has been shown to have chemoattractant properties for neutrophils, T-lymphocytes, and basophils. In addition it induces histamine release from basophils from both normal and atopic individuals as well as lysozomal enzyme release and respiratory burst from neutrophils.
- IL-8 has also been shown to increase the surface expression of Mac- 1 (CD1 lb/CD 18) on neutrophils without de novo protein synthesis, this may contribute to increased adhesion of the neutrophils to vascular endothelial cells.
- Many diseases are characterized by massive neutrophil infiltration.
- Conditions associated with an increased in IL-8 production (which is responsible for chemotaxis of neutrophil into the inflammatory site) would benefit by compounds which are suppressive of IL-8 production.
- IL-1 and TNF affect a wide variety of cells and tissues and these cytokines as well as other leukocyte derived cytokines are important and critical inflammatory mediators of a wide variety of disease states and conditions. The inhibition of these cytokines is of benefit in controlling, reducing and alleviating many of these disease states.
- CSBP/p38 Inhibition of signal transduction via CSBP/p38, which in addition to IL-1, TNF and IL-8 described above is also required for the synthesis and/or action of several additional pro-inflammatory proteins (i.e., IL-6, GM-CSF, COX-2, collagenase and stromelysin), is expected to be a highly effective mechanism for regulating the excessive and destructive activation of the immune system. This expectation is supported by the potent and diverse anti-inflammatory activities described for CSBP/p38 kinase inhibitors [Badger, et al, J. Pharm. Exp. Thera. 279 (3): 1453- 1461.(1996); Griswold, et al, Pharmacol. Comm. 7, 323-229 (1996)].
- This invention relates to the novel compounds of Formula (I), (II) and (III) and pharmaceutical compositions comprising a compound of Formula (I), (II) or
- This invention relates to a method of treating a CSBP/RK/p38 kinase mediated disease in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of Formula (I), (II) or (III).
- This invention also relates to a method of inhibiting cytokines and the treatment of a cytokine mediated disease, in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of
- This invention more specifically relates to a method of inhibiting the production of IL-1 in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I), (II) or (HI).
- This invention more specifically relates to a method of inhibiting the production of IL-6 in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I), (II) or (III).
- This invention more specifically relates to a method of inhibiting the production of EL-8 in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I), (II) or (III).
- This invention more specifically relates to a method of inhibiting the production of TNF in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I), (II), or (III).
- Rl is pyrid-4-yl, or pyrimidin-4-yl ring, which ring is optionally substituted one or more times with Y, Ci-4 alkyl, halogen, hydroxyl, C ⁇ _4 alkoxy, Ci-4 alkylthio, Ci-4 alkylsulfinyl, CH2OR12, amino, mono and di- Ci-6 alkyl substituted amino, or a N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or
- Y is X ⁇ -R a ;
- X1 is sulfur, oxygen, or NH
- R a is Ci-6alkyl, aryl, arylCi- ⁇ alkyl, heterocyclic, heterocyclylCi-6 alkyl, heteroaryl, or heteroarylC 1 _6alkyl; and wherein each of these moieties may be optionally substituted;
- R4 is phenyl, naphth-1-yl or naphth-2-yl, or a heteroaryl, which is optionally substituted by one or two substituents, each of which is independently selected, and which, for a 4-phenyl, 4-naphth-l-yl, 5-naphth-2-yl or 6-naphth-2-yl substituent, is halogen, cyano, nitro, C(Z)NR7Ri7, C(Z)ORi6,
- Z is oxygen or sulfur; n is 0, or an integer having a value of 1 to 10; m is 0, or the integer 1 or 2; m' is an integer having a value of 1 or 2, m" is 0, or an integer having a value of 1 to 5; v is 0, or an integer having a value of 1 or 2;
- R2 is hydrogen, C(H)(A)(R 2 2), (CRl ⁇ R23)n OR9, (CR ⁇ oR23)nOR_ l, Ci-ioalkyl, halo-substituted -io alkyl, C2-10 alkenyl, C2-10 alkynyl, C3.7 cycloalkyl,
- R22 is an optionally substituted C ⁇ _ ⁇ o alkyl
- Rb is hydrogen, Ci-6 alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, or heterocyclylCj-4 alkyl; and wherein each of these moieties may be optionally substituted;
- R3 is heterocyclyl, heterocyclylCi-io alkyl or R$;
- R5 is hydrogen, Ci-4 alkyl, C2-4 alkenyl, C2-4 alkynyl or NR7R17, excluding the moieties SR5 being SNR7R17 and SOR5 being SOH;
- R is hydrogen, a pharmaceutically acceptable cation, C -io alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4 alkyl, heterocyclic, aroyl, or Ci-io alkanoyl;
- R7 and R17 is each independently selected from hydrogen or Ci-4 alkyl or R7 and Rl7 together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR15;
- R8 is Ci-io alkyl, halo-substituted Ci
- Rl2 is hydrogen or Ri6
- Rl3 and R14 is each independently selected from hydrogen or optionally substituted Ci-4 alkyl, optionally substituted aryl or optionally substituted aryl-Ci-4 alkyl, or together with the nitrogen which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR9;
- Rl5 is Rio or C(Z)-C ⁇ _4 alkyl
- Rl6 is Cj-4 alkyl, halo-substituted-C ⁇ .4 alkyl, or C3-7 cycloalkyl
- Rl8 is Ci-io alkyl, C3-7 cycloalkyl, heterocyclyl, aryl, aryli-ioalkyl, heterocyclyl, heterocyclyl-Cj- ioalkyl, heteroaryl or heteroaryl i-ioalkyl;
- Rl9 is hydrogen, cyano, C1.4 alkyl, C3-7 cycloalkyl or aryl;
- R23 is hydrogen, Ci-6 alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, or heterocyclylCj-4 alkyl moiety, all of which may be optionally substituted; or a pharmaceutically acceptable salt thereof.
- Rl is a pyrid-4-yl, or pyrimidin-4-yl ring, which ring is optionally substituted one or more times with Y, Ci-4 alkyl, halogen, hydroxyl, Ci-4 alkoxy, Ci-4alkylthio,
- X is sulfur, oxygen, or NH
- R a is C ⁇ _6alkyl, aryl, arylCj- ⁇ alkyl, heterocyclic, heterocyclylCi-6 alkyl, heteroaryl, or heteroarylC ⁇ _6alkyl, wherein each of these moieties may be optionally substituted;
- R4 is phenyl, naphth-1-yl or naphth-2-yl, or a heteroaryl, which is optionally substituted by one or two substituents, each of which is independently selected, and which, for a 4-phenyl, 4-naphth-l-yl, 5-naphth-2-yl or 6-naphth-2-yl substituent, is halogen, cyano, nitro, C(Z)NR7Ri7, C(Z)ORi6, (CRioR20)vCORi2, SR5, SOR5, OR12, halo-substituted-Ci-4 alkyl, -4 alkyl, ZC(Z)Ri
- R2 is hydrogen, C(H)(A)(R 22 ), (CRl ⁇ R23)n OR9, (CR ⁇ oR23)nORn, Ci-ioalkyl, halo-substituted Ci-io alkyl, C2-10 alkenyl, C2-10 alkynyl, C3.7 cycloalkyl, C3-7cycloalkylCi-io alkyl, C5.7 cycloalkenyl, C5-7 cycloalkenyl -ioalkyl, aryl, arylCi-io alkyl, heteroaryl, heteroarylCi-ioalkyl, heterocyclyl, heterocyclylCi-io alkyl, (CRi 0 R23)nS(O) m Ri8, (CR ⁇ 0 R23)nNHS(O) 2 Rl8, (CRl ⁇ R23)nNRi3Rl4, (CR ⁇ oR23)nNO 2 , (CR ⁇ 0 R23)n
- A is an optionally substituted aryl, heterocyclyl, or heteroaryl ring, or A is a substituted Cl-10 alkyl; R22 is an optionally substituted C J. IQ alkyl;
- Rb is hydrogen, Ci-6 alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, or heterocyclylCi-4 alkyl; and wherein each of these moieties may be optionally substituted;
- R3 is heterocyclyl, heterocyclylCi-io alkyl or Rs;
- R5 is hydrogen, Ci-4 alkyl, C2-4 alkenyl, C2-4 alkynyl or NR7R17, excluding the moieties SR5 being SNR7R17 and SOR5 being SOH;
- R6 is hydrogen, a pharmaceutically acceptable cation, Ci-io alkyl, C3.7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4 alkyl, heterocyclic, aroyl, or Ci- o alkanoyl;
- R7 and R 7 is each
- Rl7 together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR15;
- R8 is Ci-io alkyl, halo-substituted Ci-io alkyl, C2-10 alkenyl, C2-10 alkynyl, C3-7 cycloalkyl, C5-7 cycloalkenyl, aryl, arylCi-io alkyl, heteroaryl, heteroarylCi-io alkyl, (CR ⁇ 0 R20)nORi 1, (CR ⁇ oR2 ⁇ )nS(O) m Ri8, (CRioR2 ⁇ )nNHS(O) 2 Rl8, (CRioR20)nNRl3Rl4; and wherein the aryl, arylalkyl, heteroaryl, and heteroarylalkyl moieties may be optionally substituted;
- R9 is hydrogen, C(Z)R ⁇ 1 or optionally substituted -io alkyl, S(O)2Rl8, optionally substituted aryl or optionally substituted aryl-Ci-4 alkyl;
- RlO and R20 are each independently selected from hydrogen or C _4 alkyl;
- Rl 1 is hydrogen, Ci-io alkyl, C3-7 cycloalkyl, heterocyclyl, heterocyclyl
- Rl2 is hydrogen or Ri6;
- R13 and R14 is each independently selected from hydrogen or optionally substituted C -4 alkyl, optionally substituted aryl or optionally substituted aryl-Ci-4 alkyl, or together with the nitrogen which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR9 ;
- Ri5 is R ⁇ o or C(Z)-Ci-4 alkyl;
- Rl6 is Ci-4 alkyl, halo-substituted-Ci-4 alkyl, or C3-7 cycloalkyl;
- Rl8 is Ci-io alkyl, C3-7 cycloalkyl, heterocyclyl, aryl, aryli-ioalkyl, heterocyclyl, heterocyclyl-Ci-ioalkyl, heteroaryl or heteroaryl i-ioalkyl;
- R 9 is hydrogen, cyano, Ci-4 alkyl, C3-7 cycloalkyl or aryl;
- R23 is hydrogen, Ci-6 alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, or heterocyclylCi-4 alkyl moiety, all of which may be optionally substituted; or a pharmaceutically acceptable salt thereof.
- Rl is a pyrid-4-yl, or a pyrimidin-4-yl ring, which ring is optionally substituted one or more times with Y, C ⁇ _4 alkyl, halogen, hydroxyl, Cj-4 alkoxy, Ci-4 alkylthio, Ci-4 alkylsulfinyl, CH2OR12, amino, mono and di- Ci-6 alkyl substituted amino, a N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NRi5, or N(R ⁇ o)C(O)R D ;
- Y is X ⁇ -R a ;
- X is sulfur, oxygen or NH;
- R a is Ci-6alkyl, aryl, arylCi-6alkyl, heterocyclic, heterocyclylCi-6 alkyl, heteroaryl, or heteroarylC _6alkyl, wherein each of these moieties may be optionally substituted;
- R4 is a phenyl, naphth-1-yl, naphth-2-yl, or a heteroaryl ring, which rings are optionally substituted by one or two substituents, each of which is independently selected, and which, for a 4-phenyl, 4-naphth-l-yl, 5-naphth-2-yl or 6-naphth-2- yl substituent, is halogen, cyano, nitro, C(Z)NR7Ri7, C(Z)ORi6, (CRioR20)vCORi2, SR5, SOR5, OR12,
- R22 is an optionally substituted C _ ⁇ o alkyl
- R is hydrogen, Ci-6 alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, or heterocyclylCi-4 alkyl; and wherein each of these moieties may be optionally substituted;
- R3 is heterocyclyl, heterocyclylC -io alkyl or Rs;
- R5 is hydrogen, Ci-4 alkyl, C2-4 alkenyl, C2-4 alkynyl or NR7R17, excluding the moieties SR5 being SNR7R17 and SOR5 being SOH;
- R6 is hydrogen, a pharmaceutically acceptable cation, Ci-io alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4 alkyl, heterocyclic, aroyl, or Ci-io alkanoyl;
- R7 and R 7 is each
- R9 is hydrogen, C(Z)R ⁇ 1 or optionally substituted Ci-io alkyl, S(O)2Rl8. optionally substituted aryl or optionally substituted aryl-Ci-4 alkyl; RlO and R20 are each independently selected from hydrogen or Ci-4 alkyl; Ri is hydrogen, - o alkyl, C3-7 cycloalkyl, heterocyclyl, heterocyclyl
- Rl2 is hydrogen or R 6;
- Rl3 and R14 is each independently selected from hydrogen or optionally substituted Ci-4 alkyl, optionally substituted aryl or optionally substituted aryl-Ci-4 alkyl, or together with the nitrogen which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR9;
- Rl5 is Rio or C(Z)-C ⁇ _4 alkyl;
- R 16 is C 1 -4 alkyl, halo-substituted-C 1.4 alkyl, or C3-7 cycloalkyl;
- Rl8 is Ci-10 alkyl, C3-7 cycloalkyl, heterocyclyl, aryl, aryli-ioalkyl, heterocyclyl, heterocyclyl-Ci- oalkyl, heteroaryl or heteroaryl i-ioalkyl;
- Rl9 is hydrogen, cyano, Ci-4 alkyl, C3-7 cycloalkyl
- R1 , R2 and R4 moieties are the same.
- Suitable Rl moieties for use herein include a 4-pyridyl, or 4-pyrimidinyl ring. More preferred is the 4-pyrimdinyl ring.
- the Ri moiety is optionally substituted one or more times, suitably 1 to 3 times, with Y, optionally substituted C -4 alkyl, halogen, hydroxyl, optionally substituted C _4alkylsulfinyl, CH2OR12, amino, mono and di- Ci-6 alkyl substituted amino, N(R ⁇ o)C(O)Rb, N(R ⁇ o)S(O)2Rd» or an N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NRi5.
- Y is X ⁇ -R a ; and X is oxygen, sulfur or nitrogen, preferably oxygen.
- R a is Ci-6alkyl, aryl, arylCi-6alkyl, heterocyclic, heterocyclylCi-6 alkyl, heteroaryl, or heteroarylC ⁇ _6alkyl, wherein each of these moieties may be optionally substituted as defined herein.
- R a When R a is aryl, it is preferably phenyl or napthyl. When R a is arylalkyl, it is preferably benzyl or napthylmethyl.
- R a is a heterocyclic or heterocyclic alkyl moiety, the heterocyclic portion is preferably pyrrolindinyl, piperidinyl, morpholino, tetrahydropyranyl, tetrahydrothiopyranyl, tetrahydrothipyransulfinyl, tetrahydrothio-pyransulfonyl, pyrrolindinyl, indole, or piperonyl ring. It is noted that the heterocyclic rings herein may contain unsaturation, such as in a tryptamine ring.
- R a is a heteroaryl ring as defined below, it is preferably a pyridine or tetrazole ring.
- the R a aryl, heterocyclic and heteroaryl rings may be optionally substituted one or more times, preferably one to three times, independently with halogen; Ci-4 alkyl, such as methyl, ethyl, propyl, isopropyl, or t-butyl; halosubstituted alkyl, such as CF3; hydroxy; hydroxy substituted C -4 alkyl; (CR 0R20) _ l-4 alkoxy, such as methoxy or ethoxy; (CR QR20) C 1 S(O) m alkyl and (CR10R20) -S(O) m aryl (wherein m is 0, 1, or 2); (CR ⁇ oR2 ⁇ )q c (O)OR ⁇ 1, such as C(O)Ci-4 alkyl or C(O)OH moieties; (CR ⁇ oR2 ⁇ )q c (°) R l i ; (CR ⁇ oR2 ⁇ )q° (O)R
- s is an integer having a value of 1, 2, or 3.
- s is 2 yielding a 1 ,3-dioxyethylene moiety, or ketal functionality.
- q is 0 or an integer having a value of 1 to 4.
- Rb is hydrogen, Ci-6 alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, or heterocyclylCi-4 alkyl moiety; all of which moieties may be optionally substituted as defined below.
- R c is an -6 alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, or heterocyclylCi-4 alkyl moiety, all of which moieties may be optionally substituted as defined below.
- R a moiety is an alkyl group it may be optionally substituted as defined herein in the definition section below. Also, the alkyl portion of the R substituents, where applicable, such as the mono- and di-C -6 alkyl amino moieties, may be halo substituted.
- R a groups include, methyl, ethyl, benzyl, halosubstituted benzyl, napthylmethyl, phenyl, halosubstituted phenyl, aminocarbonylphenyl, alkylphenyl, cyanophenyl, alkylthiophenyl, hydroxyphenyl, alkoxyphenyl, phenoxyphenyl, benzyloxyphenyl, phenylphenyl, methylenedioxyphenyl, trifluoromethylphenyl, methylsulfonylphenyl, tetrazole, methyltetrazolyl, morpholinopropyl, piperonyl, piperidin-4-yl, alkyl substituted piperidine, such as 1 -methyl piperidine, or 2,2,6,6- tetramethylpiperidin-4-yl .
- Preferred ring substitution on the benzyl or phenyl rings is in the 4-position.
- Preferred substitution on the phenyl or phenyl alkyl groups is halogen, halosubstituted alkyl or alkyl groups, such as fluoro or chloro, or methyl.
- Rb is preferably Ci-6 alkyl; preferably Rio is hydrogen. It is also recognized that the Rb moieties, in particular the Ci-6 alkyl group may be optionally substituted, preferably from one to three times, preferably with halogen, such as fluorine, as in trifluoro- methyl or trifluroethyl.
- the preferred ring placement for the optional substituents on the 4-pyridyl derivative is in the 2-position, and a preferred ring placement on the 4-pyrimidinyl ring is also at the 2-position.
- a preferred substituent group is methoxy.
- R4 is a phenyl, naphth-1-yl, naphth-2-yl, or a heteroaryl ring, all of which rings may be optionally substituted, independently, by one or two substituents. More preferably R4 is a phenyl or naphthyl ring. Suitable substitutions for R4 when this is a 4-phenyl, 4-naphth-l-yl,
- 5-naphth-2-yl or 6-naphth-2-yl moiety are one or two substituents each of which are independently selected from halogen, SR5, SOR5, OR12, CF3, or (CR oR2 ⁇ )vNRl ⁇ R20» and for other positions of substitution on these rings preferred substitution is halogen, S(O) m R3, OR3, CF3, (CRioR20)m"NRi3Ri4, NRioC(Z)R3 and NR ⁇ oS(O) m 'R8.
- R4 is a heteroaryl ring
- the ring is substituted in a similar ring substitution pattern as for the phenyl ring as described above,.
- halogen SR5, SOR5, OR 12, CF3, or (CR ⁇ oR2 ⁇ )vNRl ⁇ R20.
- Preferred substituents for the 4-position in phenyl and naphth-1-yl and on the 5-position in naphth-2-yl include halogen, especially fluoro and chloro and SR5 and SOR5 wherein R5 is preferably a Ci-2 alkyl, more preferably methyl; of which the fluoro and chloro is more preferred, and most especially preferred is fluoro.
- Preferred substituents for the 3-position in phenyl and naphth-1-yl rings include: halogen, especially fluoro and chloro; OR3, especially Ci-4 alkoxy; CF3, NR10R2O. such as amino; NRioC(Z)R3, especially NHCO(Ci-io alkyl);
- NR ⁇ oS(O) m 'R8 especially NHSO2(CMO alkyl), and SR3 and SOR3 wherein R3 is preferably a Ci-2 alkyl, more preferably methyl.
- R3 is preferably a Ci-2 alkyl, more preferably methyl.
- R3 may also include hydrogen.
- the R4 moiety is an unsubstituted or substituted phenyl moiety. More preferably, R4 is phenyl or phenyl substituted at the 4-position with fluoro and/or substituted at the 3-position with fluoro, chloro, Ci-4 alkoxy, methane- sulfonamido or acetamido, or R4 is a phenyl di-substituted at the 3,4-position independently with chloro or fluoro, more preferably chloro. Most preferably, R4 is a 4-fluorophenyl.
- Z is oxygen or sulfur, preferably oxygen.
- R3 is heterocyclyl, heterocyclylCi-io alkyl or Rg.
- R5 is hydrogen, C ⁇ 4 alkyl, C2-4 alkenyl, C2-4 alkynyl or
- NR7R17 excluding the moieties SR5 being SNR7R17 and SOR5 being SOH.
- R6 is hydrogen, a pharmaceutically acceptable cation, Ci-io alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, aroyl, or Ci-io alkanoyl.
- R7 and R17 is each independently selected from hydrogen or Cl-4 alkyl or R7 and R17 together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR15.
- Rs is Ci-io alkyl, halo-substituted Ci-io alkyl, C2-10 alkenyl, C2-IO alkynyl, C3-7 cycloalkyl, C5-7 cycloalkenyl, aryl, arylCi-io alkyl, heteroaryl, heteroarylCi-io alkyl, (CR ⁇ oR20)nORl l, (CR ⁇ oR2 ⁇ )nS(O) m Ri8, (CRioR20)nNHS(O)2Rl8, or CRioR20)nNRl3Rl4; wherein the aryl, arylalkyl, heteroaryl, and heteroarylalkyl containing moieties may be optionally substituted.
- R9 is hydrogen, C(Z)R ⁇ 1, optionally substituted Ci-io alkyl, S(O)2Rl8» optionally substituted aryl or an optionally substituted aryl-Ci-4 alkyl.
- Rio and R20 are each independently selected from hydrogen or C 1-4 alkyl.
- Rl 1 is hydrogen, -io alkyl, C3-7 cycloalkyl, heterocyclyl, heterocyclyl Ci-ioalkyl, aryl, arylCi-io alkyl, heteroaryl or heteroarylCi-io alkyl; and wherein all of these moieties may be optionally substituted.
- R12 is hydrogen or Ri6; and Rl6 i suitably, C1.4 alkyl, halo- substituted-Ci-4 alkyl, or C3-7 cycloalkyl.
- R13 and R14 is each independently selected from hydrogen or optionally substituted Cj-4 alkyl, optionally substituted aryl or optionally substituted aryl-Ci-4 alkyl, or together with the nitrogen which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR9.
- R15 is Rio or C(Z)-Ci-4 alkyl.
- Ri8 is Ci-io alkyl, C3.7 cycloalkyl, heterocyclyl, aryl, aryli-ioalkyl, heterocyclyl, heterocyclyl-Ci-ioalkyl, heteroaryl or heteroaryl -ioalkyl.
- v is 0, or an integer having a value of 1 or 2.
- n is 0, or the integer 1 or 2.
- m' is an integer having a value of 1 or 2.
- n is 0, or an integer having a value of 1 to 10.
- R2 is hydrogen, C(H)(A)(R 2 2), (CRl ⁇ R23)n OR9, (CR ⁇ oR23)nORl l, Ci-ioalkyl, halo-substituted Ci-io alkyl, C2-10 alkenyl, C2-10 alkynyl, C3.7 cycloalkyl, C3.7cycloalkylC1.io alkyl, C5-7 cycloalkenyl, C5-7 cycloalkenyl Ci-ioalkyl, aryl, arylCi-io alkyl, heteroaryl, heteroarylCi-ioalkyl, heterocyclyl, heterocyclylCi-io alkyl, (CR ⁇ oR23)nS(O) m Rl8,
- R23 is hydrogen, Ci-6 alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylCi-4alkyl, heterocyclyl, or a heterocyclylCi-4 alkyl moiety, all of which moieties may be optionally substituted as defined below.
- R2 is hydrogen, C(H)(A)(R22)> an optionally substituted heterocyclyl ring, and optionally substituted heterocyclylCi-io alkyl, an optionally substituted Ci-io alkyl, an optionally substituted C3_7cycloalkyl, an optionally substituted C3-7cycloalkyl -io alkyl, (CR ⁇ oR23)nC(Z)ORn group,
- R2 is C(H)(A)(R22) it is recognized that the first methylene carbon in this chain is a tertiary carbon, and it will contain one hydrogen moiety.
- R2 is a C(AA )(A) moiety, wherein AA is the R22 moiety, but is specifically the side chain residue (R) of an amino acid, as is further described herein.
- A is an optionally substituted C3-7cycloalkyl, aryl, heteroaryl, or heterocyclic ring, or A is a substituted CJ.JO alkyl moiety.
- the ring may be substituted independently one or more times, preferably, 1 to 3 times by Ci-io alkyl; halogen; halo substituted -io alkyl, such as CF3; (CR ⁇ oR2 ⁇ )tORl l; (CR ⁇ oR2 ⁇ )tNRl3Rl4, especially amino or mono- or i-C .4 alkylamino; (CRioR2 ⁇ )tS(O) m Rl8 > wherein m is 0, 1 or 2; SH; NR ⁇ o Z)R3 (such NHCO(CMO alkyl)); or NR ⁇ oS(O) m R8 (such as NHSO2(Ci-io alkyl)).
- t is 0, or an integer of 1 to 4.
- A is an optionally substituted cycloalkyl it is as defined below in the R22 substitution.
- the ring is preferably a morpholino, pyrrolidinyl, piperazinyl or a piperidinyl ring.
- A is an optionally substituted aryl moiety, it is preferably a phenyl ring.
- the heteroaryl term is as defined below in the definition section.
- the alkyl chain may be straight or branched. The chain is substituted independently 1 or more times, preferably 1 to 3 times by halogen, such as fluorine, chlorine, bromine or iodine; halosubstituted Ci-io alkyl, such as CF3; C3-7cycloalkyl, Ci-io alkoxy, such as methoxy or ethoxy; hydroxy substituted C -io alkoxy; halosubstituted Cj-io alkoxy, such as OCF2CF2H; OR ⁇ ; S(O)mRi8 (wherein m is 0, 1 or 2); NR13R14; C(Z)NRi3Ri4;
- A is a C3.7 cycloalkyl, or a C j.g alkyl, more preferably a C j _2 alkyl, i.e. a methylene or ethylene moiety, more preferably a methylene moiety which is substituted by one of the above noted groups.
- A when A is an alkyl derivative, it is substituted by OR j ⁇ where R 1 is preferably hydrogen, aryl or arylalkyl; NR13R14; OC(Z)R ⁇ 1; or C(Z)OR ⁇ 1- More preferably, A is substituted by R ⁇ ⁇ where Rj j is hydrogen.
- R22 i a CJ.IQ alkyl chain, which chain may be straight or branched and which may be optionally substituted independently, one or more times, preferably 1 to 3 times, by halogen, such as fluorine, chlorine, bromine or iodine; halo substituted Ci-io alkyl; Ci-io alkoxy, such as methoxy or ethoxy; hydroxy substituted Ci-io alkoxy; halosubstituted -io alkoxy, such as OCF2CF2H; ORi 1 ; S(O) m Ri8;
- the optional substituents on these cycloalkyl, aryl, heteroaryl, and heterocyclic moieties are as defined herein below. It is noted that those R22 substituent groups which contain carbon as the first connecting group, i.e.
- R22 is a C g unsubstituted or substituted alkyl group, such as a C 1.3 alkylene, such as methyl, ethyl or isopropyl, or a methylene or ethylene moiety substituted by one of the above noted moieties, or as noted above those substituent groups which contain a carbon may substituent for the first methylene unit of the alkyl chain, such as carboxy, C(O)OR j, C(O)NRi3Ri4, or R22 i an optionally substituted aryl group, such as a benzyl or phenethyl.
- a C g unsubstituted or substituted alkyl group such as a C 1.3 alkylene, such as methyl, ethyl or isopropyl, or a methylene or ethylene moiety substituted by one of the above noted moieties, or as noted above those substituent groups which contain a carbon may substituent for the first methylene unit of the al
- R22 is a C
- R22 alkyl chain is substituted by ORj ⁇ , where Rl 1 is preferably hydrogen, aryl or arylalkyl; S(O)mRi8, where m is 0 and R ⁇ % is a Cj.g alkyl; or an optionally substituted aryl, i.e. a benzyl or phenethyl moiety.
- R22 i methyl, phenyl, benzyl, CH2OH, or CH2-O-aryl.
- one or both of A and R22 contain hydroxy moieties, such as in C ⁇ . ⁇ alkyl ORj j, wherein Ri 1 is hydrogen, i.e.CH2CH2OH.
- Ri 1 is hydrogen, i.e.CH2CH2OH.
- AAj is the (R) side chain residue of an amino acid, it is a C j_ 5 alkyl group, which may be straight or branched. This means the R group off the core amino acid of the structure R-C(H)(COOH)(NH2).
- the R residue term is for example, CH3 for alanine, (CI ⁇ CH- for valine, (CH3)2CH-CH2-for leucine, phenyl-CH2- for phenylalanine, CH3-S-CH2-CH2- for methionine, etc.
- All generally recognized primary amino acids are included in this groups, such as but not limited to, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine, hydroxylysine, methylhistidine, and other naturally occurring amino acids not found in proteins, such as b-alanine, g-aminobutyric acid, homocysteine, homoserine, citrulline, ornithine, canavanine, djenkolic acid, and b-cyanoalanine, or other naturally occurring non-mammalian amino acids.
- AAj is the residue of phenylalanine, or alanine.
- the ring is preferably a morpholino, pyrrolidinyl, piperazinyl, or a piperidinyl group.
- the substituents may be directly attached to the free nitrogen, such as in the piperidinyl group or pyrrole ring, or on the ring itself.
- the ring is a piperidine or pyrrole, more preferably piperidine.
- the R22 heterocyclyl ring may be optionally substituted one to four times independently by halogen; Ci-4 alkyl; aryl, such as phenyl; arylalkyl, such as benzyl,
- C(O)OR ⁇ 1, such as the C(O)C ⁇ _4 alkyl or C(O)OH moieties; C(O)H; C(O)Ci-4 alkyl; hydroxy substituted Ci-4 alkyl; C1.4 alkoxy; S(O) m Ci-4 alkyl (wherein m is 0, 1, or 2); or NR10R2O (wherein Rio and R20 are independently hydrogen or Ci-4alkyl).
- the substituents are attached directly on the available nitrogen, i.e. a l-Formyl-4-piperidine, l-benzyl-4-piperidine, l-methyl-4- piperidine, l-ethoxycarbonyl-4-piperidine.
- the ring is substituted by an alkyl group and the ring is attached in the 4-position, it is preferably substituted in the 2- or 6- position or both, such as 2,2,6,6-tetramethyl-4-piperidine.
- the substituents are all directly on the available nitrogen.
- R22 optional substituent is an optionally substituted aryl, it is preferably a phenyl; or when R22 i an optionally substituted heteroaryl ring (as defined in the definition section below), the rings may be optionally substituted independently one or more times, preferably by one to three times by Ci- o alkyl; halogen, especially fluoro or chloro; (CRioR20)tORl 1; (CR oR2 ⁇ )t Ri3Ri4; especially amino or mono- or di-C ⁇ .4 alkylamino; (CRioR2 ⁇ )tS(O) m Rl8.
- m is 0, 1 or 2; SH; ORi 1 ; NRioC(Z)R3 (such NHCO(Ci-io alkyl)); or NRioS(O) m R8 (such as NHSO2(Ci-io alkyl)).
- a or R22 is an (optionally) substituted C3-7cycloalkyl group, it is preferably a C3 or C6 ring, most preferably a C3 ring, which ring may be optionally substituted one or more time, preferably 1 to 3 times, independently by halogen, such as fluorine, or chlorine; (CRioR20)tORn; S(O) m Ri8; cyano; (CR ⁇ oR2 ⁇ )t Rl3Rl4; especially amino or mono- or di-C ⁇ .4 alkylamino; N(R ⁇ o)C(O)X ⁇ and Xi is Ci-4 alkyl, aryl or arylCi-4alkyl; Ci-io alkyl, such as methyl, ethyl, propyl, isopropyl, or t-butyl; an optionally substituted alkyl wherein the substituents are halogen, (such as CF3), hydroxy, nitro, cyano, amino, NR
- R e is a 1,3-dioxyalkylene group of the formula -O-(CH2)s-O-, wherein s is 1 to 3, preferably s is 2 yielding a 1,3-dioxyethylene moiety, or ketal functionality.
- Rf is NR21R24; alkyl j.g; halosubstituted alkyl ⁇ _6; hydroxy substituted alkyl 1-6; alkenyl 2-6 ; aryl or heteroaryl optionally substituted by halogen, alkyl 1-6, halosubstituted alkyl 1 -6, hydroxyl, or alkoxy ⁇ _6.
- R21 is hydrogen, or alkyl 1 -6.
- R24 is hydrogen, alkyl j.g, aryl, benzyl, heteroaryl, alkyl substituted by halogen or hydroxyl, or phenyl substituted by a member selected from the group consisting of halo, cyano, alkyl .5, alkoxy j.g, halosubstituted alkyl ⁇ _6,
- S(O) m alkyli-6; or R2 and R24 may together with the nitrogen to which they are attached form a ring having 5 to 7 members, which members may be optionally replaced by a heteroatom selected from oxygen, sulfur or nitrogen.
- the ring may be saturated or contain more than one unsaturated bond.
- Rf is NR21R24, and more preferably R21 and R24 are both hydrogen.
- R13 and R 14 are independently hydrogen, C ⁇ _4 alkyl, preferably methyl, or benzyl.
- Rl 1 is suitably hydrogen, Ci-4 alkyl, especially methyl.
- Ri8 is preferably aryl, especially phenyl, or a Ci-io alkyl, especially methyl, or ethyl.
- Rl l is preferably hydrogen, aryl, especially phenyl, or Ci-io alkyl, especially methyl or ethyl.
- Rl8 is suitably alkyl, especially methyl.
- R2 is selected from hydrogen, C(H)(A)(R22)» Ci-io alkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylCi-io alkyl, (CR ⁇ oR23)nNS(O) 2 Rl8, (CRl ⁇ R23)nS(O) m Rl8, arylCi-io alkyl, (CRioR23)n Rl3Rl4, optionally substituted C3-7cycloalkyl, or optionally substituted C3-7cycloalkyl -io alkyl.
- the ring is preferably a morpholino, pyrrolidinyl, piperazinyl, or a piperidinyl group.
- the substituents may be directly attached to the free nitrogen, such as in the piperidinyl group or pyrrole ring, or on the ring itself.
- the ring is a piperidine or pyrrole, more preferably piperidine.
- the heterocyclyl ring may be optionally substituted one to four times independently by halogen; C .4 alkyl; aryl, such as phenyl; aryl alkyl, such as benzyl - wherein the aryl or aryl alkyl moieties themselves may be optionally substituted (as in the definition section below); C(O)OR ⁇ 1, such as the C(O)C ⁇ _4 alkyl or C(O)OH moieties; C(O)H; C(O)C ⁇ _4 alkyl; hydroxy substituted C1.4 alkyl; Ci-4 alkoxy; S(O) m Ci-4 alkyl; or NR ⁇ oR20-
- the substituents are directly attached on the available nitrogen, i.e. a l-Formyl-4-piperidine, l-benzyl-4-piperidine, l-methyl-4- piperidine, l-ethoxycarbonyl-4-piperidine.
- the ring is substituted by an alkyl group and the ring is attached in the 4-position, it is preferably substituted in the 2- or 6- position or both, such as 2,2,6,6-tetramethyl-4-piperidine.
- R2 is an optionally substituted heterocyclyl Ci-io alkyl group
- the ring is preferably a morpholino, pyrrolidinyl, piperazinyl or a piperidinyl group.
- the alkyl chain is 1 to 4 carbons, more preferably 3 or 4, and most preferably 3, such as in a propyl group.
- Preferred heterocyclic alkyl groups include but are not limited to, morpholino ethyl, morpholino propyl, pyrrolidinyl propyl, and piperidinyl propyl moieties.
- R2 is an optionally substituted C3-7cycloalkyl, or an optionally substituted C3-7cycloalkyl Ci- o alkyl
- the cycloalkyl group is preferably a C3 or C(, ring, most preferably a C ⁇ ring, which rings may be optionally substituted.
- the cycloalkyl rings may be optionally substituted one to three times independently by halogen, such as fluorine, chlorine, bromine or iodine; hydroxy; OC(O)Rb, Ci-io alkoxy, such as methoxy or ethoxy; S(O) m alkyl, such as methylthio, methylsulfinyl or methylsulfonyl; S(O) m aryl; cyano, nitro; NR7R17; N(R ⁇ o)C(O)X and Xi is Ci-4 alkyl, aryl or arylCi-4alkyl; -io alkyl, such as methyl, ethyl, propyl, isopropyl, or t- butyl; optionally substituted alkyl wherein the substituents are halogen, (such as CF3), hydroxy, nitro, cyano, amino, NR7R17, S(O)m alkyl and
- Rb is hydrogen, Ci-6 alkyl, C3-7 cycloalkyl, aryl, arylCi-4 alkyl, heteroaryl, heteroarylC -4alkyl, heterocyclyl, or heterocyclylC ⁇ .4 alkyl; and wherein each of these moieties may be optionally substituted.
- Rd, Re and Rf are as defined above.
- R2 cycloalkyl moiety is substituted by NR7R17 group, or NR7R17
- the substituent is preferably an amino, amino alkyl, or an optionally substituted pyrrolidinyl moiety.
- those rings may be optionally substituted 1 to 3 times as defined in the definition section.
- a preferred subgenus of Formula (I) are the compounds of Formula (la) as represented by the general structure:
- a preferred subgenus of Formula (II) are the compounds of Formula (Ila) represented by the general structure :
- a preferred subgenus of Formula (III) are compounds of Formula (Ilia) having the general structure :
- halogen such as fluorine, chlorine, bromine or iodine
- hydroxy hydroxy substituted Cj-ioalkyl
- Cj- o alkoxy such as methoxy or ethoxy
- halosubstituted Ci-io alkoxy S(O)m alkyl, such as methyl thio, methylsulfinyl or methyl sulfonyl
- NR7R17 such as amino or mono or -disubstituted Cj_4 alkyl or wherein the R7R17 can cyclize together with the nitrogen to which they are attached to form a 5 to 7 membered ring which optionally contains an additional heteroatom selected from O/N/S
- Ci- o alkyl, C3_7-ycloalkyl, or C3_7cycloalkyl Ci- o alkyl group such as methyl, ethyl
- Ci-io alkyl such CF2CF2H, or CF3
- an optionally substituted aryl such as phenyl, or an optionally substituted arylalkyl, such as benzyl or phenethyl, wherein these aryl containing moieties may also be substituted one to two times by halogen; hydroxy; hydroxy substituted alkyl; C ⁇ _ ⁇ o alkoxy; S(O) alkyl; amino, mono & di-substituted C1.4 alkyl amino, such as in the NR7R 7 group; Cj_4 alkyl, or CF3.
- Suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of inorganic and organic acids, such as hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methane sulphonic acid, ethane sulphonic acid, acetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid and mandelic acid.
- basic salts of inorganic and organic acids such as hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methane sulphonic acid, ethane sulphonic acid, acetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid and
- pharmaceutically acceptable salts of compounds of Formula (I) may also be formed with a pharmaceutically acceptable cation, for instance, if a substituent group comprises a carboxy moiety.
- Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations.
- C ⁇ _ ⁇ o a lkyl or “alkyl” or “alkyl _ ⁇ o” is used herein to mean both straight and branched chain radicals of 1 to 10 carbon atoms, unless the chain length is otherwise limited, including, but not limited to, methyl, ethyl, n-propyl, iso- propyl, n-butyl, _ec-butyl, w ⁇ -butyl, tert-butyl, n-pentyl and the like.
- cycloalkyl is used herein to mean cyclic radicals, preferably of 3 to 8 carbons, including but not limited to cyclopropyl, cyclopentyl, cyclohexyl, and the like.
- cycloalkenyl is used herein to mean cyclic radicals, preferably of 5 to 8 carbons, which have at least one bond including but not limited to cyclopentenyl, cyclohexenyl, and the like.
- alkenyl is used herein at all occurrences to mean straight or branched chain radical of 2-10 carbon atoms, unless the chain length is limited thereto, including, but not limited to ethenyl, 1-propenyl, 2-propenyl, 2-methyl-l- propenyl, 1-butenyl, 2-butenyl and the like.
- aryl is used herein to mean phenyl and naphthyl.
- heteroaryl (on its own or in any combination, such as “heteroaryloxy”, or “heteroaryl alkyl”) is used herein to mean a 5-10 membered aromatic ring system in which one or more rings contain one or more heteroatoms selected from the group consisting of N, O or S, such as, but not limited, to pyrrole, pyrazole, furan, thiophene, quinoline, isoquinoline, quinazolinyl, pyridine, pyrimidine, oxazole, thiazole, thiadiazole, tetrazole, triazole, imidazole, or benzimidazole.
- heterocyclic (on its own or in any combination, such as “heterocyclylalkyl”) is used herein to mean a saturated or partially unsaturated 4-10 membered ring system in which one or more rings contain one or more heteroatoms selected from the group consisting of N, O, or S; such as, but not limited to, pyrrolidine, piperidine, piperazine, morpholine, tetrahydropyran, or imidazolidine.
- aralkyl or “heteroarylalkyl” or “heterocyclicalkyl” is used herein to mean Ci-4 alkyl as defined above attached to an aryl, heteroaryl or heterocyclic moiety as also defined herein unless otherwise indicate.
- sulfinyl is used herein to mean the oxide S (O) of the corresponding sulfide, the term “thio” refers to the sulfide, and the term “sulfonyl” refers to the fully oxidized S (O)2 moiety.
- aroyl is used herein to mean C(O)Ar, wherein Ar is as phenyl, naphthyl, or aryl alkyl derivative such as defined above, such group include but are not limited to benzyl and phenethyl.
- alkanoyl is used herein to mean C(O)Ci-io alkyl wherein the alkyl is as defined above.
- the compounds of the present invention may exist as stereoisomers, regioisomers, or diastereiomers. These compounds may contain one or more asymmetric carbon atoms and may exist in racemic and optically active forms. All of these compounds are included within the scope of the present invention.
- Exemplified compounds of Formula (I), or pharmaceutically acceptable salts thereof include: l-(Pyrid-4-yl)-3-phenyl-5-(4-fluorophenyl)- 1 ,2,4-triazole; 1 -(6-Aminopyrimidin-4-yl)-3-phenyl-5-(4-fluorophenyl)- 1 ,2,4-triazole; l-[4-(6,7-Dimethoxyquinazoline)]-3-phenyl-5-(4-fluorophenyl)-l,2,4-triazole;
- An exemplified compound of Formula (II), or a pharmaceutically acceptable salt thereof is 1 -(4-Fluorophenyl)-3-phenyl-5-(2-aminopyrimidin-4-yl)- 1 ,2,4-triazole.
- the compounds of Formula (I), (II) and (III) may be obtained by applying synthetic procedures, described herein.
- the synthesis provided for is applicable to producing compounds of Formula (I), (II) or (III) having a variety of different R ⁇ , R2, and R4 groups which are reacted, employing optional substituents which are suitably protected, to achieve compatibility with the reactions outlined herein. Subsequent deprotection, in those cases, then affords compounds of the nature generally disclosed.
- C(O)NRi3Ri4 from CO2CH3 by heating with or without catalytic metal cyanide, e.g. NaCN, and HNR13R14 in CH3OH; OC(O)R3 from OH with e.g., ClC(O)R3 in pyridine; NR ⁇ o-C(S)NRi3Ri4 from NHR10 with an alkylisothiocyante or thiocyanic acid; NR6C(O)OR6 from NHR6 with the alkyl chloroformate; NR ⁇ oC(O)NRi3Ri4 from NHR10 by treatment with an isocyanate, e.g.
- Precursors of the groups Rj, R2 and R4 can be other R , R2 and R4 groups which can be interconverted by applying standard techniques for functional group interconversion.
- I_IQ alkylN3 derivative can be converted to the corresponding C I_IQ alkylN3 derivative by reacting with a suitable azide salt, and thereafter if desired can be reduced to the corresponding C _ o lkylNH2 compound, which in turn can be reacted with Rj S(0)2X wherein X is halo (e.g., chloro) to yield the corresponding C .1 QalkylNHS (0)2R 18 compound.
- a compound of the formula (I), (II) or (III) where R2 is halosubstituted C ⁇ _iQ- lkyl can be reacted with an amine R13R14NH to yield the corresponding C ⁇ _ ⁇ o-alkylNR 3R 4 compound, or can be reacted with an alkali metal salt of compound.
- alpha leaving groups for the displacement are halides and sulfonate esters, such as trifates or mesylates and appropriate nucleophiles are may be either organic or inorganic oxygen, nitrogen or sulfur compounds.
- halides and sulfonate esters such as trifates or mesylates
- appropriate nucleophiles are may be either organic or inorganic oxygen, nitrogen or sulfur compounds.
- phenols, alcohols, primary or secondary amines, anilines and either alkyl or aryl sulfides which may be reacted as their metal salts or in the presence of an amine (such as triethylamine or DBU) or inorganic base (such as potassium carbonate) either with or without solvent and heated as required to effect the displacement.
- an amine such as triethylamine or DBU
- inorganic base such as potassium carbonate
- triazoles can be prepared by condensing the acyl chloride with thioamides to form the corresponding monothioimides. The monothioimides are then condensed with arylhydrazines to afford the 1,2,4-triazole nuclei.
- bases such as sodium hydride, organolithiums or trialkylamines.
- Suitable protecting groups for use with hydroxyl groups and nitrogen groups are well known in the art and described in many references, for instance, Protecting Groups in Organic Synthesis, Greene T W, Wiley-Interscience, New York, 1981.
- Suitable examples of hydroxyl protecting groups include silyl ethers, such as t- butyldimethyl or t-butyldiphenyl, and alkyl ethers, such as methyl connected by an alkyl chain of variable link, (CRl ⁇ R2 ⁇ )n-
- compositions of Formula (I) may be obtained in known manner, for example by treatment thereof with an appropriate amount of acid in the presence of a suitable solvent.
- the compounds of Formula (I) or a pharmaceutically acceptable salt thereof can be used in the manufacture of a medicament for the prophylactic or therapeutic treatment of any disease state in a human, or other mammal, which is exacerbated or caused by excessive or unregulated cytokine production by such mammal's cell, such as but not limited to monocytes and/or macrophages.
- Compounds of Formula (I) are capable of inhibiting proinflammatory cytokines, such as IL-1, IL-6, IL-8, and TNF and are therefore of use in therapy.
- IL- 1, EL-6, IL-8 and TNF affect a wide variety of cells and tissues and these cytokines, as well as other leukocyte-derived cytokines, are important and critical inflammatory mediators of a wide variety of disease states and conditions.
- the inhibition of these pro-inflammatory cytokines is of benefit in controlling, reducing and alleviating many of these disease states.
- the present invention provides a method of treating a cytokine- mediated disease which comprises administering an effective cytokine-interfering amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- Compounds of Formula (I) are capable of inhibiting inducible proinflammatory proteins, such as COX-2, also referred to by many other names such as prostaglandin endoperoxide synthase-2 (PGHS-2) and are therefore of use in therapy.
- COX-2 also referred to by many other names
- PGHS-2 prostaglandin endoperoxide synthase-2
- These proinflammatory lipid mediators of the cyclooxygenase (CO) pathway are produced by the inducible COX-2 enzyme.
- Regulation, therefore of COX-2 which is responsible for the these products derived from arachidonic acid, such as prostaglandins affect a wide variety of cells and tissues are important and critical inflammatory mediators of a wide variety of disease states and conditions. Expression of COX-1 is not effected by compounds of Formula (I).
- This selective inhibition of COX-2 may alleviate or spare ulcerogenic liability associated with inhibition of COX-1 thereby inhibiting prostoglandins essential for cytoprotective effects.
- inhibition of these pro-inflammatory mediators is of benefit in controlling, reducing and alleviating many of these disease states.
- these inflammatory mediators in particular prostaglandins, have been implicated in pain, such as in the sensitization of pain receptors, or edema.
- This aspect of pain management therefore includes treatment of neuromuscular pain, headache, cancer pain, and arthritis pain.
- Compounds of Formula (I) or a pharmaceutically acceptable salt thereof are of use in the prophylaxis or therapy in a human, or other mammal, by inhibition of the synthesis of the COX-2 enzyme.
- the present invention provides a method of inhibiting the synthesis of COX-2 which comprises administering an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- the present invention also provides for a method of prophylaxis treatment in a human, or other mammal, by inhibition of the synthesis of the COX-2 enzyme.
- compounds of Formula (I) or a pharmaceutically acceptable salt thereof are of use in the prophylaxis or therapy of any disease state in a human, or other mammal, which is exacerbated by or caused by excessive or unregulated IL-1, IL-6, IL-8 or TNF production by such mammal's cell, such as, but not limited to, monocytes and/or macrophages.
- this invention relates to a method of inhibiting the production of IL-1 in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- this invention relates to a method of inhibiting the production of TNF in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- TNF production has been implicated in mediating or exacerbating a number of diseases including rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, stroke, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoisosis, bone resorption diseases, such as osteoporosis, reperfusion injury, graft vs.
- diseases including rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, stroke, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcois
- allograft rejections fever and myalgias due to infection, such as influenza, cachexia secondary to infection or malignancy, cachexia secondary to acquired immune deficiency syndrome (AIDS), AIDS, ARC (AIDS related complex), keloid formation, scar tissue formation, Crohn's disease, ulcerative colitis and pyresis.
- AIDS cachexia secondary to infection or malignancy
- AIDS cachexia secondary to acquired immune deficiency syndrome
- AIDS AIDS
- ARC AIDS related complex
- keloid formation scar tissue formation
- Crohn's disease Crohn's disease
- ulcerative colitis ulcerative colitis
- viruses of Formula (I) are also useful in the treatment of viral infections, where such viruses are sensitive to upregulation by TNF or will elicit TNF production in vivo.
- the viruses contemplated for treatment herein are those that produce TNF as a result of infection, or those which are sensitive to inhibition, such as by decreased replication, directly or indirectly, by the TNF inhibiting-compounds of Formula (1).
- viruses include, but are not limited to HIV-1, HIV-2 and HIV-3, Cytomegalovirus (CMV), Influenza, adenovirus and the Herpes group of viruses, such as but not limited to, He ⁇ es Zoster and He ⁇ es Simplex.
- this invention relates to a method of treating a mammal afflicted with a human immunodeficiency virus (HIV) which comprises administering to such mammal an effective TNF inhibiting amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof. It is also recognized that both IL-6 and IL-8 are produced during rhinovirus
- HRV HRV infections and contribute to the pathogenesis of common cold and exacerbation of asthma associated with HRV infection
- HRV infection Turner et al. (1998), Clin. Infec. Dis., Vol 26, p 840; Teren et al. (1997), Am J Respir Crit Care Med vol 155, pl362; Grunberg et al. (1997), Am J Respir Crit Care Med 156:609 and Zhu et al, J Clin Invest (1996), 97:421).
- Epithelial cells represent the primary site of infection of HRV. Therefore another aspect of the present invention is a method of treatment to reduce inflammation associated with a rhinovirus infection, not necessarily a direct effect on virus itself.
- Compounds of Formula (I) may also be used in association with the veterinary treatment of mammals, other than in humans, in need of inhibition of TNF production.
- TNF mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted above, but in particular viral infections.
- viruses include, but are not limited to, lentivirus infections such as, equine infectious anaemia virus, caprine arthritis virus, visna virus, or maedi virus or retrovirus infections, such as but not limited to feline immunodeficiency virus (FIV), bovine immunodeficiency virus, or canine immunodeficiency virus or other retroviral infections.
- lentivirus infections such as, equine infectious anaemia virus, caprine arthritis virus, visna virus, or maedi virus or retrovirus infections, such as but not limited to feline immunodeficiency virus (FIV), bovine immunodeficiency virus, or canine immunodeficiency virus or other retroviral infections.
- the compounds of Formula (I) may also be used topically in the treatment or prophylaxis of topical disease states mediated by or exacerbated by excessive cytokine production, such as by IL-1 or TNF respectively, such as inflamed joints, eczema, psoriasis and other inflammatory skin conditions such as sunburn; inflammatory eye conditions including conjunctivitis; pyresis, pain and other conditions associated with inflammation.
- cytokine production such as by IL-1 or TNF respectively, such as inflamed joints, eczema, psoriasis and other inflammatory skin conditions such as sunburn; inflammatory eye conditions including conjunctivitis; pyresis, pain and other conditions associated with inflammation.
- Compounds of Formula (I) have also been shown to inhibit the production of
- IL-8 Interleukin-8, NAP. Accordingly, in a further aspect, this invention relates to a method of inhibiting the production of IL-8 in a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- a mammal in need thereof which comprises administering to said mammal an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- IL-8 has the unique property of promoting neutrophil chemotaxis and activation. Therefore, the inhibition of IL-8 production would lead to a direct reduction in the neutrophil infiltration.
- the compounds of Formula (I) are administered in an amount sufficient to inhibit cytokine, in particular IL-1, IL-6, IL-8 or TNF, production such that it is regulated down to normal levels, or in some case to subnormal levels, so as to ameliorate or prevent the disease state.
- Abnormal levels of IL-1, IL-6, IL-8 or TNF constitute: (i) levels of free (not cell bound) IL-1, IL-6, IL-8 or TNF greater than or equal to 1 picogram per ml; (ii) any cell associated IL-1, IL-6, IL-8 or TNF; or (iii) the presence of IL-1, IL-6, IL-8 or TNF mRNA above basal levels in cells or tissues in which IL-1, IL-6, IL-8 or TNF, respectively, is produced.
- the compounds of Formula (I) are inhibitors of cytokines, specifically IL-1, IL-6, IL-8 and TNF is based upon the effects of the compounds of Formulas (I) on the production of the E -l, IL-8 and TNF in in vitro assays which are described herein.
- the term "inhibiting the production of IL-1 (IL-6, IL-8 or TNF)” refers to: a) a decrease of excessive in vivo levels of the cytokine (IL-1, IL-6, IL-8 or TNF) in a human to normal or sub-normal levels by inhibition of the in vivo release of the cytokine by all cells, including but not limited to monocytes or macrophages; b) a down regulation, at the genomic level, of excessive in vivo levels of the cytokine (IL-1, IL-6, IL-8 or TNF) in a human to normal or sub-normal levels; c) a down regulation, by inhibition of the direct synthesis of the cytokine (IL- 1 , IL-6, IL-8 or TNF) as a postranslational event; or d) a down regulation, at the translational level, of excessive in vivo levels of the cytokine (IL-1, IL-6, IL-8 or TNF)
- TNF mediated disease or disease state refers to any and all disease states in which TNF plays a role, either by production of TNF itself, or by TNF causing another monokine to be released, such as but not limited to IL-1, IL-6 or IL-8.
- cytokine refers to any secreted polypeptide that affects the functions of cells and is a molecule which modulates interactions between cells in the immune, inflammatory or hematopoietic response.
- a cytokine includes, but is not limited to, monokines and lymphokines, regardless of which cells produce them.
- a monokine is generally referred to as being produced and secreted by a mononuclear cell, such as a macrophage and/or monocyte.
- Lymphokines are generally referred to as being produced by lymphocyte cells.
- cytokines include, but are not limited to, Interleukin-1 (IL-1), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor Necrosis Factor-alpha (TNF-a) and Tumor Necrosis Factor beta (TNF- ⁇ ).
- cytokine interfering or "cytokine suppressive amount” refers to an effective amount of a compound of Formula (I) which will cause a decrease in the in vivo levels of the cytokine to normal or sub-normal levels, when given to a patient for the prophylaxis or treatment of a disease state which is exacerbated by, or caused by, excessive or unregulated cytokine production.
- the cytokine referred to in the phrase "inhibition of a cytokine, for use in the treatment of a HIV-infected human” is a cytokine which is implicated in (a) the initiation and/or maintenance of T cell activation and/or activated T cell- mediated HIV gene expression and/or replication and/or (b) any cytokine-mediated disease associated problem such as cachexia or muscle degeneration.
- TNF- ⁇ also known as lymphotoxin
- TNF-a also known as cachectin
- CSBP MAP kinase
- RK proinflammatory cytokines
- cytokine biosynthesis inhibitors of the present invention, compounds of Formula (I) have been determined to be potent and selective inhibitors of CSBP/p38/RK kinase activity. These inhibitors are of aid in determining the signaling pathways involvement in inflammatory responses. In particular, for the first time a definitive signal transduction pathway can be prescribed to the action of lipopolysaccharide in cytokine production in macrophages.
- CSBP inhibitors were subsequently tested in a number of animal models for anti-inflammatory activity. Model systems were chosen that were relatively insensitive to cyclooxygenase inhibitors in order to reveal the unique activities of cytokine suppressive agents. The inhibitors exhibited significant activity in many such in vivo studies.
- Chronic diseases which have an inappropriate angiogenic component are various ocular neovasularizations, such as diabetic retinopathy and macular degeneration.
- Other chronic diseases which have an excessive or increased proliferation of vasculature are tumor growth and metastasis, atherosclerosis, and certain arthritic conditions. Therefore CSBP kinase inhibitors will be of utility in the blocking of the angiogenic component of these disease states.
- vasculature inappropriate angiogenesis includes, but is not limited to, diseases which are characterized by hemangiomas and ocular diseases.
- inappropriate angiogenesis includes, but is not limited to, diseases which are characterized by vesicle proliferation with accompanying tissue proliferation, such as occurs in cancer, metastasis, arthritis and atherosclerosis.
- the present invention provides a method of treating a CSBP kinase mediated disease in a mammal in need thereof, preferably a human, which comprises administering to said mammal, an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.
- a compound of Formula (I) or a pharmaceutically acceptable salt thereof in therapy, it will normally be formulated into a pharmaceutical composition in accordance with standard pharmaceutical practice.
- This invention therefore, also relates to a pharmaceutical composition comprising an effective, non- toxic amount of a compound of Formula (I) and a pharmaceutically acceptable carrier or diluent.
- Compounds of Formula (I), pharmaceutically acceptable salts thereof and pharmaceutical compositions inco ⁇ orating such may conveniently be administered by any of the routes conventionally used for drug administration, for instance, orally, topically, parenterally or by inhalation.
- the compounds of Formula (I) may be administered in conventional dosage forms prepared by combining a compound of Formula (I) with standard pharmaceutical carriers according to conventional procedures.
- the compounds of Formula (I) may also be administered in conventional dosages in combination with a known, second therapeutically active compound. These procedures may involve mixing, granulating and compressing or dissolving the ingredients as appropriate to the desired preparation.
- the form and character of the pharmaceutically acceptable character or diluent is dictated by the amount of active ingredient with which it is to be combined, the route of administration and other well-known variables.
- the carrier(s) must be "acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
- the pharmaceutical carrier employed may be, for example, either a solid or liquid.
- solid carriers are lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like.
- liquid carriers are syrup, peanut oil, olive oil, water and the like.
- the carrier or diluent may include time delay material well known to the art, such as glyceryl mono-stearate or glyceryl distearate alone or with a wax.
- the preparation can be tableted, placed in a hard gelatin capsule in powder or pellet form or in the form of a troche or lozenge.
- the amount of solid carrier will vary widely but preferably will be from about 25mg. to about lg.
- the preparation will be in the form of a syrup, emulsion, soft gelatin capsule, sterile injectable liquid such as an ampule or nonaqueous liquid suspension.
- Compounds of Formula (I) may be administered topically, that is by non- systemic administration. This includes the application of a compound of Formula (I) externally to the epidermis or the buccal cavity and the instillation of such a compound into the ear, eye and nose, such that the compound does not significantly enter the blood stream.
- systemic administration refers to oral, intravenous, intraperitoneal and intramuscular administration.
- Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin to the site of inflammation such as liniments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, ear or nose.
- the active ingredient may comprise, for topical administration, from 0.001% to 10% w/w, for instance from 1% to 2% by weight of the formulation. It may however comprise as much as 10% w/w but preferably will comprise less than 5% w/w, more preferably from 0.1% to 1% w/w of the formulation.
- Lotions according to the present invention include those suitable for application to the skin or eye.
- An eye lotion may comprise a sterile aqueous solution optionally containing a bactericide and may be prepared by methods similar to those for the preparation of drops.
- Lotions or liniments for application to the skin may also include an agent to hasten drying and to cool the skin, such as an alcohol or acetone, and/or a moisturizer such as glycerol or an oil such as castor oil or arachis oil.
- Creams, ointments or pastes according to the present invention are semi-solid formulations of the active ingredient for external application. They may be made by mixing the active ingredient in finely-divided or powdered form, alone or in solution or suspension in an aqueous or non-aqueous fluid, with the aid of suitable machinery, with a greasy or non-greasy base.
- the base may comprise hydrocarbons such as hard, soft or liquid paraffin, glycerol, beeswax, a metallic soap; a mucilage; an oil of natural origin such as almond, corn, arachis, castor or olive oil; wool fat or its derivatives or a fatty acid such as steric or oleic acid together with an alcohol such as propylene glyeol or a macrogel.
- the formulation may inco ⁇ orate any suitable surface active agent such as an anionic, cationic or non-ionic surfactant such as a sorbitan ester or a polyoxyethylene derivative thereof.
- Suspending agents such as natural gums, cellulose derivatives or inorganic materials such as silicaceous silicas, and other ingredients such as lanolin, may also be included.
- Drops according to the present invention may comprise sterile aqueous or oily solutions or suspensions and may be prepared by dissolving the active ingredient in a suitable aqueous solution of a bactericidal and/or fungicidal agent and/or any other suitable preservative, and preferably including a surface active agent.
- the resulting solution may then be clarified by filtration, transferred to a suitable container which is then sealed and sterilized by autoclaving or maintaining at 98-100°C. for half an hour.
- the solution may be sterilized by filtration and transferred to the container by an aseptic technique.
- bactericidal and fungicidal agents suitable for inclusion in the drops are phenylmercuric nitrate or acetate (0.002%), benzalkonium chloride (0.01%) and chlorhexidine acetate (0.01%).
- Suitable solvents for the preparation of an oily solution include glycerol, diluted alcohol and propylene glyeol.
- Compounds of Formula (I) may be administered parenterally, that is by intravenous, intramuscular, subcutaneous intranasal, intrarectal, intravaginal or intraperitoneal administration.
- the subcutaneous and intramuscular forms of parenteral administration are generally preferred.
- Appropriate dosage forms for such administration may be prepared by conventional techniques.
- Compounds of Formula (I) may also be administered by inhalation, that is by intranasal and oral inhalation administration.
- Appropriate dosage forms for such administration such as an aerosol formulation or a metered dose inhaler, may be prepared by conventional techniques.
- the daily oral dosage regimen will preferably be from about 0.1 to about 80 mg kg of total body weight, preferably from about 0.2 to 30 mg/kg, more preferably from about 0.5 mg to 15mg.
- the daily parenteral dosage regimen about 0.1 to about 80 mg/kg of total body weight, preferably from about 0.2 to about 30 mg/kg, and more preferably from about 0.5 mg to 15mg/kg.
- the daily topical dosage regimen will preferably be from 0.1 mg to 150 mg, administered one to four, preferably two or three times daily.
- the daily inhalation dosage regimen will preferably be from about 0.01 mg/kg to about 1 mg/kg per day.
- the optimal quantity and spacing of individual dosages of a compound of Formula (I) or a pharmaceutically acceptable salt thereof will be determined by the nature and extent of the condition being treated, the form, route and site of administration, and the particular patient being treated, and that such optimums can be determined by conventional techniques. It will also be appreciated by one of skill in the art that the optimal course of treatment, i.e., the number of doses of a compound of Formula (I) or a pharmaceutically acceptable salt thereof given per day for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment determination tests.
- novel compounds of Formula (I) may also be used in association with the veterinary treatment of mammals, other than humans, in need of inhibition of CSBP/p38 or cytokine inhibition or production.
- CSBP/p38 mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted herein in the Methods of Treatment section, but in particular viral infections.
- viruses include, but are not limited to, lentivirus infections such as, equine infectious anaemia virus, caprine arthritis virus, visna virus, or maedi virus or retrovirus infections, such as but not limited to feline immunodeficiency virus (FIV), bovine immunodeficiency virus, or canine immunodeficiency virus or other retroviral infections.
- Interleukin - 1 D -1
- Interleukin -8 IL-8
- Tumour Necrosis Factor TNF
- Interleukin - 1 (IL-1)
- Human peripheral blood monocytes are isolated and purified from either fresh blood preparations from volunteer donors, or from blood bank buffy coats, according to the procedure of Colotta et al, J Immunol, 132, 936 (1984). These monocytes (1x10 ⁇ ) are plated in 24- well plates at a concentration of 1-2 million/ml per well. The cells are allowed to adhere for 2 hours, after which time non-adherent cells are removed by gentle washing. Test compounds are then added to the cells for lh before the addition of lipopolysaccharide (50 ng/ml), and the cultures are incubated at 37°C for an additional 24h. At the end of this period, culture supernatants are removed and clarified of cells and all debris.
- IL- 1 biological activity either by the method of Simon et al, J. Immunol. Methods, 84, 85, (1985) (based on ability of IL-1 to stimulate a Interleukin 2 producing cell line (EL-4) to secrete IL-2, in concert with A23187 ionophore) or the method of Lee et al., J. ImmunoTherapy, 6 (1), 1-12 (1990) (ELISA assay).
- Compounds of Formula (I), exemplified by Example 1 were found to be active in this assay having an IC50 of ⁇ 7uM.
- mice and rats are injected with LPS.
- mice from Charles River Laboratories are pretreated (30 minutes) with compound or vehicle. After the 30 min. pretreat time, the mice are given LPS (lipopolysaccharide from Esherichia coli Serotype 055-85, Sigma Chemical Co., St Louis, MO) 25 ug/mouse in 25 ul phosphate buffered saline (pH 7.0) intraperitoneally. Two hours later the mice are killed by CO2 inhalation and blood samples are collected by exsanguination into heparinized blood collection tubes and stored on ice. The blood samples are centrifuged and the plasma collected and stored at -20°C until assayed for TNF ⁇ by ELISA.
- LPS lipopolysaccharide from Esherichia coli Serotype 055-85, Sigma Chemical Co., St Louis, MO
- mice Male Lewis rats from Charles River Laboratories are pretreated at various times with compound or vehicle. After a determined pretreat time, the rats are given
- LPS lipopolysaccharide from Esherichia coli Serotype 055-85, Sigma Chemical Co., St Louis, MO
- heparinized whole blood is collected from each rat by cardiac puncture 90 minutes after the LPS injection.
- the blood samples are centrifuged and the plasma collected for analysis by ELISA for TNF ⁇ levels.
- TNF ⁇ levels were measured using a sandwich ELISA, as described in Olivera et al., Circ. Shock, 37, 301-306, (1992), whose disclosure is inco ⁇ orated by reference in its entirety herein, using a hamster monoclonal antimurine TNF ⁇ (Genzyme, Boston, MA) as the capture antibody and a polyclonal rabbit antimurine TNFa (Genzyme) as the second antibody.
- a peroxidase-conjugated goat antirabbit antibody Pierce, Rockford, IL
- TNF ⁇ levels in the plasma samples from each animal were calculated from a standard curve generated with recombinant murine TNF ⁇ (Genzyme).
- Test compound concentrations were prepared at 10 X concentrations and LPS prepared at 1 ug/ml (final cone, of 50 ng/ml LPS) and added in 50 uL volumes to 1.5 mL eppendorf tubes. Heparinized human whole blood was obtained from healthy volunteers and was dispensed into eppendorf tubes containing compounds and LPS in 0.4 mL volumes and the tubes incubated at 37 C. Following a 4 hour incubation, the tubes were centrifuged at 5000 ⁇ m for 5 minutes in a TOMY microfuge, plasma was withdrawn and frozen at -80 C.
- Cytokine measurement IL-I and or TNF were quantified using a standardized ELISA technology. An in-house ELISA kit was used to detect human IL-1 and TNF. Concentrations of IL-1 or TNF were determined from standard curves of the appropriate cytokine and IC50 values for test compound (concentration that inhibited 50% of LPS-stimulated cytokine production) were calculated by linear regression analysis.
- CSBP/p38 Kinase Assay This assay measures the CSBP/p38-catalyzed transfer of 32p from [a-
- Reactions were carried in round bottom 96 well plate (from Corning) in a 30 ml volume. Reactions contained (in final concentration): 25 mM Hepes, pH 7.5; 8 mM MgCl2; 0.17 mM ATP (the KmrATP] of P 38 ( see Lee et al., Nature 300, n72 pg. 639-746 (Dec. 1994)); 2.5 uCi of [g-32P]ATP; 0.2 mM sodium orthovanadate; 1 mM DTT; 0.1% BSA; 10% glycerol; 0.67 mM T669 peptide; and 2-4 nM of yeast- expressed, activated and purified p38.
- Reactions were initiated by the addition of [gamma-32P]Mg/ATP, and incubated for 25 min. at 37 °C. Inhibitors (dissolved in DMSO) were incubated with the reaction mixture on ice for 30 minutes prior to adding the 32P-ATP. Final DMSO concentration was 0.16%. Reactions were terminated by adding 10 ul of 0.3 M phosphoric acid, and phosphorylated peptide was isolated from the reactions by capturing it on p81 phosphocellulose filters. Filters were washed with 75 mM phosphoric acids, and inco ⁇ orated 32P was quantified using beta scintillation counter.
- Example 2 demonstrated positive inhibitory activity of an IC50 of ⁇ 50uM in this binding assay or a similar assay.
- Example 3 was found not to be active in this binding assay at concentrations of lOOuM.
- This assay describes a method for determining the inhibitory effects of compounds of Formula (I) on human PGHS-2 protein expression in LPS stimulated human monocytes.
- a suitable assay for PGHS-2 protein expression may be found in a number of publications, including US Patent 5,593,992 whose disclosure is inco ⁇ orated herein by reference.
- This assay provides for examination of the expression of tumor necrosis factor mRNA in specific brain regions which follow experimentally induced lateral fluid- percussion traumatic brain injury (TBI) in rats. Since TNF- a is able to induce nerve growth factor (NGF) and stimulate the release of other cytokines from activated astrocytes, this post-traumatic alteration in gene expression of TNF- a plays an important role in both the acute and regenerative response to CNS trauma.
- a suitable assay may be found in WO 97/35856 whose disclosure is inco ⁇ orated herein by reference.
- This assay characterizes the regional expression of interleukin- l ⁇ (IL-l ⁇ ) mRNA in specific brain regions following experimental lateral fluid-percussion traumatic brain injury (TBI) in rats. Results from these assays indicate that following TBI, the temporal expression of IL-l ⁇ mRNA is regionally stimulated in specific brain regions. These regional changes in cytokines, such as IL-1 ⁇ play a role in the post- traumatic pathologic or regenerative sequelae of brain injury.
- TBI lateral fluid-percussion traumatic brain injury
- Described in WO 97/32583 whose disclosure is inco ⁇ orated herein by reference, is an assay for determination of inflammatory angiogenesis which may be used to show that cytokine inhibition will stop the tissue destruction of excessive or inappropriate proliferation of blood vessels.
- Example 1 1 -(Pyrid-4-yl)-3-phenyl-5-(4-fluorophenyl)- 1 ,2,4-triazole
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Immunology (AREA)
- Dermatology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Molecular Biology (AREA)
- Rheumatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pain & Pain Management (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Ophthalmology & Optometry (AREA)
- Urology & Nephrology (AREA)
- Oncology (AREA)
- Pulmonology (AREA)
- Toxicology (AREA)
- Communicable Diseases (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99942232A EP1112070B1 (en) | 1998-08-20 | 1999-08-17 | Novel substituted triazole compounds |
DE69917296T DE69917296T2 (en) | 1998-08-20 | 1999-08-17 | NEW SUBSTITUTED TRIAZONE COMPOUNDS |
AT99942232T ATE266399T1 (en) | 1998-08-20 | 1999-08-17 | NEW SUBSTITUTED TRIAZOLE COMPOUNDS |
US09/762,809 US6599910B1 (en) | 1998-08-20 | 1999-08-17 | Substituted triazole compounds |
CA002341370A CA2341370A1 (en) | 1998-08-20 | 1999-08-17 | Novel substituted triazole compounds |
JP2000565884A JP2003525201A (en) | 1998-08-20 | 1999-08-17 | New substituted triazole compounds |
US10/401,249 US7223760B2 (en) | 1998-08-20 | 2003-03-26 | Substituted triazole compounds |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9730298P | 1998-08-20 | 1998-08-20 | |
US9732298P | 1998-08-20 | 1998-08-20 | |
US9730098P | 1998-08-20 | 1998-08-20 | |
US60/097,302 | 1998-08-20 | ||
US60/097,300 | 1998-08-20 | ||
US60/097,322 | 1998-08-20 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/762,809 A-371-Of-International US6599910B1 (en) | 1998-08-20 | 1999-08-17 | Substituted triazole compounds |
US09762809 A-371-Of-International | 1999-08-17 | ||
US10/401,249 Division US7223760B2 (en) | 1998-08-20 | 2003-03-26 | Substituted triazole compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000010563A1 true WO2000010563A1 (en) | 2000-03-02 |
Family
ID=27378362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/018640 WO2000010563A1 (en) | 1998-08-20 | 1999-08-17 | Novel substituted triazole compounds |
Country Status (8)
Country | Link |
---|---|
US (2) | US6599910B1 (en) |
EP (1) | EP1112070B1 (en) |
JP (1) | JP2003525201A (en) |
AT (1) | ATE266399T1 (en) |
CA (1) | CA2341370A1 (en) |
DE (1) | DE69917296T2 (en) |
ES (1) | ES2221426T3 (en) |
WO (1) | WO2000010563A1 (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0539550B1 (en) * | 1991-05-25 | 1996-03-20 | ITT Automotive Europe GmbH | Windscreen cleaning installation, especially for motor vehicles |
WO2001009106A1 (en) * | 1999-08-02 | 2001-02-08 | Smithkline Beecham P.L.C. | Diamino-1,2,4-triazole-carboxylic and derivatives as gsk-3 inhibitors |
WO2002040476A1 (en) * | 2000-11-16 | 2002-05-23 | Smithkline Beecham Corporation | Pyridyl-substituted triazoles as tgf inhibitors |
WO2002072576A1 (en) * | 2001-03-09 | 2002-09-19 | Pfizer Products Inc. | Benzimidazole anti-inflammatory compounds |
WO2002088113A1 (en) * | 2001-04-30 | 2002-11-07 | The Procter & Gamble Company | Triazole compounds useful in treating diseases associated with unwanted cytokine activity |
WO2002094814A1 (en) * | 2001-05-08 | 2002-11-28 | Schering Aktiengesellschaft | 3,5-diamino-1,2,4-triazoles as kinase inhibitors |
WO2003040110A1 (en) | 2001-11-09 | 2003-05-15 | Fujisawa Pharmaceutical Co., Ltd. | Triazole derivatives as cyclooxygenase (cox) inhibitors |
WO2003042211A1 (en) * | 2001-11-15 | 2003-05-22 | Smithkline Beecham Corporation | Phenyl substituted triazoles and their use as selective inhibors of akl5 kinase |
US6599910B1 (en) | 1998-08-20 | 2003-07-29 | Smithkline Beecham Corporation | Substituted triazole compounds |
WO2003035626A3 (en) * | 2001-10-23 | 2003-11-06 | Applied Research Systems | Azole derivatives and pharmaceutical compositions containing them |
WO2004014900A1 (en) * | 2002-08-09 | 2004-02-19 | Eli Lilly And Company | Benzimidazoles and benzothiazoles as inhibitors of map kinase |
US6727364B2 (en) | 2001-04-30 | 2004-04-27 | The Procter & Gamble Company | Triazole compounds useful in treating diseases associated with unwanted cytokine activity |
WO2004046120A2 (en) * | 2002-11-15 | 2004-06-03 | Vertex Pharmaceuticals Incorporated | Diaminotriazoles useful as inhibitors of protein kinases |
US6790846B2 (en) | 2001-05-24 | 2004-09-14 | The Procter & Gamble Company | Isoxazolone compounds useful in treating diseases associated with unwanted cytokine activity |
WO2005013982A1 (en) * | 2003-08-06 | 2005-02-17 | Vertex Pharmaceuticals Incorporated | Aminotriazole compounds useful as inhibitors of protein kinases |
EP1676574A2 (en) | 2004-12-30 | 2006-07-05 | Johnson & Johnson Vision Care, Inc. | Methods for promoting survival of transplanted tissues and cells |
EP1707205A2 (en) | 2002-07-09 | 2006-10-04 | Boehringer Ingelheim Pharma GmbH & Co. KG | Pharmaceutical compositions of anticholinergics and p38 kinase inhibitors in the treatment of respiratory diseases |
WO2006117657A1 (en) * | 2005-05-03 | 2006-11-09 | Ranbaxy Laboratories Limited | Triazolone derivatives as anti-inflammatory agents |
WO2007049820A1 (en) | 2005-10-28 | 2007-05-03 | Takeda Pharmaceutical Company Limited | Heterocyclic amide compound and use thereof |
US7244441B2 (en) | 2003-09-25 | 2007-07-17 | Scios, Inc. | Stents and intra-luminal prostheses containing map kinase inhibitors |
US7268139B2 (en) | 2002-08-29 | 2007-09-11 | Scios, Inc. | Methods of promoting osteogenesis |
US7301021B2 (en) | 1997-07-02 | 2007-11-27 | Smithkline Beecham Corporation | Substituted imidazole compounds |
WO2008142031A1 (en) | 2007-05-18 | 2008-11-27 | Institut Curie | P38alpha as a therapeutic target in bladder carcinoma |
EP2116245A2 (en) | 2004-08-07 | 2009-11-11 | Boehringer Ingelheim International GmbH | EGFR kinase inhibitor combinations for treating respiratory and gastrointestinal disorders |
EP2384751A1 (en) | 2004-12-24 | 2011-11-09 | Boehringer Ingelheim International Gmbh | Medicaments for the treatment or prevention of fibrotic diseases |
WO2012146362A1 (en) * | 2011-04-26 | 2012-11-01 | King Saud University | Triazole compounds as potential anti-inflammatory agents |
WO2013049591A2 (en) * | 2011-09-29 | 2013-04-04 | Verseon Corporation | Dual inhibitor compounds and methods of use thereof |
US10342786B2 (en) | 2017-10-05 | 2019-07-09 | Fulcrum Therapeutics, Inc. | P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD |
US11291659B2 (en) | 2017-10-05 | 2022-04-05 | Fulcrum Therapeutics, Inc. | P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD |
WO2022195579A1 (en) | 2021-03-15 | 2022-09-22 | Saul Yedgar | Hyaluronic acid-conjugated dipalmitoyl phosphatidyl ethanolamine in combination with non-steroidal anti-inflammatory drugs (nsaids) for treating or alleviating inflammatory diseases |
US11452713B2 (en) | 2016-02-29 | 2022-09-27 | University Of Florida Research Foundation, Incorporated | Chemotherapeutic methods for treating low-proliferative disseminated tumor cells |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6759410B1 (en) * | 1999-11-23 | 2004-07-06 | Smithline Beecham Corporation | 3,4-dihydro-(1H)-quinazolin-2-ones and their use as CSBP/p38 kinase inhibitors |
AR039241A1 (en) * | 2002-04-04 | 2005-02-16 | Biogen Inc | HETEROARILOS TRISUSTITUIDOS AND METHODS FOR ITS PRODUCTION AND USE OF THE SAME |
UA80295C2 (en) * | 2002-09-06 | 2007-09-10 | Biogen Inc | Pyrazolopyridines and using the same |
US7276050B2 (en) * | 2004-03-02 | 2007-10-02 | Alan Franklin | Trans-scleral drug delivery method and apparatus |
EP1802585A1 (en) * | 2004-09-03 | 2007-07-04 | Memory Pharmaceuticals Corporation | 4-substituted 4,6-dialkoxy-cinnoline derivatives as phospodiesterase 10 inhibitors for the treatment of psychiatric or neurological syndroms |
CA2747398C (en) | 2008-12-17 | 2023-06-20 | The Scripps Research Institute | Generation and maintenance of stem cells |
EP2763533B1 (en) | 2011-10-06 | 2021-12-29 | Merck Sharp & Dohme Corp. | Triazolyl pde10 inhibitors |
WO2013162027A1 (en) | 2012-04-27 | 2013-10-31 | 学校法人 慶應義塾 | Neuronal differentiation promoter |
TW201422610A (en) | 2012-11-15 | 2014-06-16 | Merck Sharp & Dohme | Secondary alcohol substituted triazoles as PDE10 inhibitors |
WO2014078217A1 (en) * | 2012-11-15 | 2014-05-22 | Merck Sharp & Dohme Corp. | Cyclopropyl imidazopyridine pde10 inhibitors |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0162217A1 (en) * | 1984-03-16 | 1985-11-27 | Ciba-Geigy Ag | 1,2,4-Triazacycloalcadiene derivatives |
Family Cites Families (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE162217C (en) * | ||||
US2833779A (en) * | 1956-10-29 | 1958-05-06 | American Cyanamid Co | Substituted pyrazoles |
US3707475A (en) | 1970-11-16 | 1972-12-26 | Pfizer | Antiinflammatory imidazoles |
US3929807A (en) | 1971-05-10 | 1975-12-30 | Ciba Geigy Corp | 2-Substituted-4(5)-(aryl)-5(4)-(2,3 or -4-pyridyl)-imidazoles |
US3940486A (en) * | 1971-05-10 | 1976-02-24 | Ciba-Geigy Corporation | Imidazole derivatives in the treatment of pain |
US4058614A (en) | 1973-12-04 | 1977-11-15 | Merck & Co., Inc. | Substituted imidazole compounds and therapeutic compositions therewith |
US4199592A (en) * | 1978-08-29 | 1980-04-22 | E. I. Du Pont De Nemours And Company | Antiinflammatory 4,5-diaryl-2-nitroimidazoles |
GR75287B (en) * | 1980-07-25 | 1984-07-13 | Ciba Geigy Ag | |
US4503065A (en) * | 1982-08-03 | 1985-03-05 | E. I. Du Pont De Nemours And Company | Antiinflammatory 4,5-diaryl 1-2-halo imidazoles |
JPS60226882A (en) | 1984-04-24 | 1985-11-12 | Nippon Zoki Pharmaceut Co Ltd | Novel pyrimidopyrimidine derivative |
US4565875A (en) * | 1984-06-27 | 1986-01-21 | Fmc Corporation | Imidazole plant growth regulators |
US4686231A (en) * | 1985-12-12 | 1987-08-11 | Smithkline Beckman Corporation | Inhibition of 5-lipoxygenase products |
IL83467A0 (en) * | 1986-08-15 | 1988-01-31 | Fujisawa Pharmaceutical Co | Imidazole derivatives,processes for their preparation and pharmaceutical compositions containing the same |
CA2084290A1 (en) | 1990-06-12 | 1991-12-13 | Jerry L. Adams | Inhibition of 5-lipoxygenase and cyclooxygenase pathway mediated diseases |
FR2665898B1 (en) * | 1990-08-20 | 1994-03-11 | Sanofi | DERIVATIVES OF AMIDO-3 PYRAZOLE, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM. |
IE913473A1 (en) * | 1990-10-15 | 1992-04-22 | Fujisawa Pharmaceutical Co | Quinazoline derivatives and their preparation |
WO1992010190A1 (en) | 1990-12-13 | 1992-06-25 | Smithkline Beecham Corporation | Novel csaids |
WO1992010498A1 (en) | 1990-12-13 | 1992-06-25 | Smithkline Beecham Corporation | Novel csaids |
JP3375659B2 (en) * | 1991-03-28 | 2003-02-10 | テキサス インスツルメンツ インコーポレイテツド | Method of forming electrostatic discharge protection circuit |
US5302387A (en) | 1991-11-06 | 1994-04-12 | Mycogen Corporation | Bacillus thuringiensis isolates active against cockroaches and genes encoding cockroach-active toxins |
US5656644A (en) * | 1994-07-20 | 1997-08-12 | Smithkline Beecham Corporation | Pyridyl imidazoles |
JP3264492B2 (en) | 1992-01-13 | 2002-03-11 | スミスクライン・ビーチャム・コーポレイション | Pyridyl-substituted imidazole |
US5916891A (en) * | 1992-01-13 | 1999-06-29 | Smithkline Beecham Corporation | Pyrimidinyl imidazoles |
US5716972A (en) * | 1993-01-13 | 1998-02-10 | Smithkline Beecham Corporation | Pyridyl substituted imidazoles |
US6008235A (en) | 1992-01-13 | 1999-12-28 | Smithkline Beecham Corporation | Pyridyl substituted imidazoles |
IL104369A0 (en) | 1992-01-13 | 1993-05-13 | Smithkline Beecham Corp | Novel compounds and compositions |
US5521184A (en) * | 1992-04-03 | 1996-05-28 | Ciba-Geigy Corporation | Pyrimidine derivatives and processes for the preparation thereof |
GB9303993D0 (en) * | 1993-02-26 | 1993-04-14 | Fujisawa Pharmaceutical Co | New heterocyclic derivatives |
US5690959A (en) | 1993-05-29 | 1997-11-25 | Smithkline Beecham Corporation | Pharmaceutical thermal infusion process |
IL110296A (en) * | 1993-07-16 | 1999-12-31 | Smithkline Beecham Corp | Imidazole compounds process for their preparation and pharmaceutical compositions containing them |
US5593992A (en) * | 1993-07-16 | 1997-01-14 | Smithkline Beecham Corporation | Compounds |
ZA945363B (en) * | 1993-07-21 | 1995-03-14 | Smithkline Beecham Corp | Novel compounds |
ES2140561T3 (en) * | 1993-09-17 | 2000-03-01 | Smithkline Beecham Corp | DRUG UNION PROTEIN. |
US5869043A (en) * | 1993-09-17 | 1999-02-09 | Smithkline Beecham Corporation | Drug binding protein |
US5783664A (en) * | 1993-09-17 | 1998-07-21 | Smithkline Beecham Corporation | Cytokine suppressive anit-inflammatory drug binding proteins |
JP3588116B2 (en) * | 1993-10-01 | 2004-11-10 | ノバルティス アクチェンゲゼルシャフト | Pharmacologically active pyrimidineamine derivatives and process for their production |
AU693475B2 (en) * | 1993-10-01 | 1998-07-02 | Novartis Ag | Pyrimidineamine derivatives and processes for the preparation thereof |
JPH09505055A (en) * | 1993-11-08 | 1997-05-20 | スミスクライン・ビーチャム・コーポレイション | Oxazole for treatment of cytokine-mediated diseases |
US5654307A (en) * | 1994-01-25 | 1997-08-05 | Warner-Lambert Company | Bicyclic compounds capable of inhibiting tyrosine kinases of the epidermal growth factor receptor family |
US5559137A (en) * | 1994-05-16 | 1996-09-24 | Smithkline Beecham Corp. | Compounds |
US5545669A (en) * | 1994-06-02 | 1996-08-13 | Adams; Jerry L. | Anti-inflammatory compounds |
TW530047B (en) * | 1994-06-08 | 2003-05-01 | Pfizer | Corticotropin releasing factor antagonists |
JPH10510540A (en) * | 1994-12-12 | 1998-10-13 | オメロス メディカル システムズ,インコーポレーテッド | Irrigation solutions and methods for controlling pain, inflammation and convulsions |
EP0799051B1 (en) * | 1994-12-12 | 2005-07-27 | Omeros Corporation | Irrigation solution and use thereof for perioperatively inhibiting pain, inflammation and spasm at a wound |
CA2210322A1 (en) | 1995-01-12 | 1996-07-18 | Smithkline Beecham Corporation | Novel compounds |
US5658903A (en) * | 1995-06-07 | 1997-08-19 | Smithkline Beecham Corporation | Imidazole compounds, compositions and use |
US5739143A (en) * | 1995-06-07 | 1998-04-14 | Smithkline Beecham Corporation | Imidazole compounds and compositions |
US5792778A (en) * | 1995-08-10 | 1998-08-11 | Merck & Co., Inc. | 2-substituted aryl pyrroles, compositions containing such compounds and methods of use |
US5837719A (en) | 1995-08-10 | 1998-11-17 | Merck & Co., Inc. | 2,5-substituted aryl pyrroles, compositions containing such compounds and methods of use |
US6083949A (en) * | 1995-10-06 | 2000-07-04 | Merck & Co., Inc. | Substituted imidazoles having anti-cancer and cytokine inhibitory activity |
US5717100A (en) * | 1995-10-06 | 1998-02-10 | Merck & Co., Inc. | Substituted imidazoles having anti-cancer and cytokine inhibitory activity |
US6413961B1 (en) * | 1995-12-12 | 2002-07-02 | Omeros Medical Systems, Inc. | Irrigation solution and method for inhibition of pain and inflammation |
ZA9610687B (en) * | 1995-12-22 | 1997-09-29 | Smithkline Beecham Corp | Novel synthesis. |
ZA97175B (en) * | 1996-01-11 | 1997-11-04 | Smithkline Beecham Corp | Novel substituted imidazole compounds. |
US6046208A (en) * | 1996-01-11 | 2000-04-04 | Smithkline Beecham Corporation | Substituted imidazole compounds |
EP0900083B1 (en) | 1996-01-11 | 2003-08-20 | Smithkline Beecham Corporation | Novel substituted imidazole compounds |
JP2001508395A (en) | 1996-01-11 | 2001-06-26 | スミスクライン・ビーチャム・コーポレイション | New cycloalkyl-substituted imidazole |
AP9700912A0 (en) | 1996-01-11 | 1997-01-31 | Smithkline Beecham Corp | Novel cycloalkyl substituted imidazoles |
JP2000507224A (en) | 1996-03-08 | 2000-06-13 | スミスクライン・ビーチャム・コーポレイション | Use of CSAID compounds as inhibitors of angiogenesis |
WO1997033883A1 (en) | 1996-03-13 | 1997-09-18 | Smithkline Beecham Corporation | Novel pyrimidine compounds useful in treating cytokine mediated diseases |
JP2000507545A (en) | 1996-03-25 | 2000-06-20 | スミスクライン・ビーチャム・コーポレイション | Novel treatment for CNS injury |
WO1997035856A1 (en) | 1996-03-25 | 1997-10-02 | Smithkline Beecham Corporation | Novel treatment for cns injuries |
US5948786A (en) * | 1996-04-12 | 1999-09-07 | Sumitomo Pharmaceuticals Company, Limited | Piperidinylpyrimidine derivatives |
US6875769B2 (en) * | 1996-05-23 | 2005-04-05 | Pfizer Inc. | Substituted6,6-hetero-bicyclicderivatives |
EP0922042A1 (en) | 1996-08-09 | 1999-06-16 | Smithkline Beecham Corporation | Novel piperazine containing compounds |
WO1998007425A1 (en) | 1996-08-21 | 1998-02-26 | Smithkline Beecham Corporation | Imidazole compounds, compositions and use |
AU5147598A (en) | 1996-10-17 | 1998-05-11 | Smithkline Beecham Corporation | Methods for reversibly inhibiting myelopoiesis in mammalian tissue |
DK0948495T3 (en) * | 1996-11-19 | 2004-06-01 | Amgen Inc | Aryl- and heteroaryl-substituted condensed pyrrole as anti-inflammatory agents |
US5724708A (en) * | 1996-12-03 | 1998-03-10 | Textron, Inc. | End connector assembly for watchband |
ZA9711092B (en) | 1996-12-11 | 1999-07-22 | Smithkline Beecham Corp | Novel compounds. |
US5929076A (en) * | 1997-01-10 | 1999-07-27 | Smithkline Beecham Corporation | Cycloalkyl substituted imidazoles |
US6514977B1 (en) * | 1997-05-22 | 2003-02-04 | G.D. Searle & Company | Substituted pyrazoles as p38 kinase inhibitors |
ES2270520T3 (en) * | 1997-06-12 | 2007-04-01 | Aventis Pharma Limited | IMIDAZOLIL-CYCLICAL ACETALS. |
US6562832B1 (en) * | 1997-07-02 | 2003-05-13 | Smithkline Beecham Corporation | Substituted imidazole compounds |
AR016294A1 (en) | 1997-07-02 | 2001-07-04 | Smithkline Beecham Corp | IMIDAZOL SUBSTITUTE COMPOSITE, PHARMACEUTICAL COMPOSITION CONTAINING IT, ITS USE IN THE MANUFACTURE OF A MEDICINAL PRODUCT AND PROCEDURE FOR SUPREPARATION |
TW517055B (en) | 1997-07-02 | 2003-01-11 | Smithkline Beecham Corp | Novel substituted imidazole compounds |
JP2002509537A (en) | 1997-07-02 | 2002-03-26 | スミスクライン・ビーチャム・コーポレイション | New cycloalkyl-substituted imidazole compounds |
US6489325B1 (en) | 1998-07-01 | 2002-12-03 | Smithkline Beecham Corporation | Substituted imidazole compounds |
JP2001518507A (en) | 1997-10-08 | 2001-10-16 | スミスクライン・ビーチャム・コーポレイション | New cycloalkenyl substituted compounds |
WO1999018942A1 (en) | 1997-10-10 | 1999-04-22 | Imperial College Innovations Ltd. | Use of csaidtm compounds for the management of uterine contractions |
JP2002515891A (en) | 1997-12-19 | 2002-05-28 | スミスクライン・ビーチャム・コーポレイション | New piperidine-containing compounds |
WO1999032121A1 (en) | 1997-12-19 | 1999-07-01 | Smithkline Beecham Corporation | Compounds of heteroaryl substituted imidazole, their pharmaceutical compositions and uses |
US6148226A (en) | 1998-02-13 | 2000-11-14 | Aerospace Research Technologies Inc. | Optical imaging through scattering media: fit to an inhomogeneous diffusion model for differentiation |
ID27285A (en) | 1998-05-15 | 2001-03-22 | Astrazeneca Ab | BENZAMIDA DEPOSIT FOR TREATMENT DISEASE EXPANDED BY SITOKINA |
DE69921986T2 (en) * | 1998-05-15 | 2005-12-22 | Astrazeneca Ab | BENZAMIDE DERIVATIVES FOR THE TREATMENT OF CYTOKIN-MEDIATED DISEASES |
US6130235A (en) | 1998-05-22 | 2000-10-10 | Scios Inc. | Compounds and methods to treat cardiac failure and other disorders |
WO1999061437A1 (en) | 1998-05-22 | 1999-12-02 | Smithkline Beecham Corporation | Novel 2-alkyl substituted imidazole compounds |
CA2333157A1 (en) | 1998-05-26 | 1999-12-02 | Smithkline Beecham Corporation | Novel substituted imidazole compounds |
AU4429799A (en) | 1998-06-12 | 1999-12-30 | Vertex Pharmaceuticals Incorporated | Inhibitors of p38 |
AU4395399A (en) | 1998-07-02 | 2000-01-24 | Sankyo Company Limited | Five-membered heteroaryl compounds |
US6207687B1 (en) * | 1998-07-31 | 2001-03-27 | Merck & Co., Inc. | Substituted imidazoles having cytokine inhibitory activity |
MXPA01000895A (en) * | 1998-08-04 | 2002-08-20 | Astrazeneca Ab | Amide derivatives useful as inhibitors of the production of cytokines. |
CA2341370A1 (en) | 1998-08-20 | 2000-03-02 | Smithkline Beecham Corporation | Novel substituted triazole compounds |
KR20010082184A (en) * | 1998-08-28 | 2001-08-29 | 추후제출 | Inhibitors of p38-α Kinase |
US6184226B1 (en) | 1998-08-28 | 2001-02-06 | Scios Inc. | Quinazoline derivatives as inhibitors of P-38 α |
AU762245B2 (en) * | 1998-09-18 | 2003-06-19 | Vertex Pharmaceuticals Incorporated | Inhibitors of p38 |
SK285520B6 (en) * | 1998-09-25 | 2007-03-01 | Astrazeneca Ab | Amide derivatives, process for their preparation, pharmaceutical composition containing them and their use in manufacture of medicament in treatment of medical conditions mediated by cytokines |
EP1117653B1 (en) * | 1998-10-01 | 2003-02-05 | AstraZeneca AB | Quinoline and quinazoline derivatives and their use as inhibitors of cytokine mediated diseases |
JP2002526388A (en) | 1998-10-07 | 2002-08-20 | スミスクライン・ビーチャム・コーポレイション | Novel measures to manage seizures |
PL347432A1 (en) | 1998-10-23 | 2002-04-08 | Hoffmann La Roche | Bicyclic nitrogen heterocycles |
DE69914357T2 (en) | 1998-11-04 | 2004-11-11 | Smithkline Beecham Corp. | PYRIDIN-4-YL OR PYRIMIDIN-4-YL SUBSTITUTED PYRAZINE |
JP2002530404A (en) | 1998-11-20 | 2002-09-17 | ジー・ディー・サール・アンド・カンパニー | Method for producing 5-substituted pyrazoles using dithiethane |
AU765492B2 (en) * | 1998-12-25 | 2003-09-18 | Teikoku Hormone Mfg. Co., Ltd. | Aminopyrazole derivatives |
EP1140083A4 (en) | 1999-01-08 | 2004-01-02 | Smithkline Beecham Corp | Novel compounds |
UA73492C2 (en) * | 1999-01-19 | 2005-08-15 | Aromatic heterocyclic compounds as antiinflammatory agents | |
US6358959B1 (en) * | 1999-01-26 | 2002-03-19 | Merck & Co., Inc. | Polyazanaphthalenone derivatives useful as alpha 1a adrenoceptor antagonists |
US6509361B1 (en) * | 1999-05-12 | 2003-01-21 | Pharmacia Corporation | 1,5-Diaryl substituted pyrazoles as p38 kinase inhibitors |
US6541477B2 (en) * | 1999-08-27 | 2003-04-01 | Scios, Inc. | Inhibitors of p38-a kinase |
US20020002169A1 (en) * | 1999-12-08 | 2002-01-03 | Griffin John H. | Protein kinase inhibitors |
US6525046B1 (en) * | 2000-01-18 | 2003-02-25 | Boehringer Ingelheim Pharmaceuticals, Inc. | Aromatic heterocyclic compounds as antiinflammatory agents |
US7235551B2 (en) * | 2000-03-02 | 2007-06-26 | Smithkline Beecham Corporation | 1,5-disubstituted-3,4-dihydro-1h-pyrimido[4,5-d]pyrimidin-2-one compounds and their use in treating csbp/p38 kinase mediated diseases |
JP4524072B2 (en) * | 2000-10-23 | 2010-08-11 | グラクソスミスクライン・リミテッド・ライアビリティ・カンパニー | New compounds |
US20040092532A1 (en) * | 2001-10-19 | 2004-05-13 | Griswold Don E | Use of p38 inhibitors for the treatment of smoke inhalation |
US20040097473A1 (en) * | 2001-10-19 | 2004-05-20 | Griswold Don E | Use of p38 inhibitors for the treatment of smoke inhalation |
-
1999
- 1999-08-17 CA CA002341370A patent/CA2341370A1/en not_active Abandoned
- 1999-08-17 JP JP2000565884A patent/JP2003525201A/en not_active Withdrawn
- 1999-08-17 DE DE69917296T patent/DE69917296T2/en not_active Expired - Lifetime
- 1999-08-17 ES ES99942232T patent/ES2221426T3/en not_active Expired - Lifetime
- 1999-08-17 AT AT99942232T patent/ATE266399T1/en not_active IP Right Cessation
- 1999-08-17 EP EP99942232A patent/EP1112070B1/en not_active Expired - Lifetime
- 1999-08-17 WO PCT/US1999/018640 patent/WO2000010563A1/en active IP Right Grant
- 1999-08-17 US US09/762,809 patent/US6599910B1/en not_active Expired - Fee Related
-
2003
- 2003-03-26 US US10/401,249 patent/US7223760B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0162217A1 (en) * | 1984-03-16 | 1985-11-27 | Ciba-Geigy Ag | 1,2,4-Triazacycloalcadiene derivatives |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0539550B1 (en) * | 1991-05-25 | 1996-03-20 | ITT Automotive Europe GmbH | Windscreen cleaning installation, especially for motor vehicles |
US7301021B2 (en) | 1997-07-02 | 2007-11-27 | Smithkline Beecham Corporation | Substituted imidazole compounds |
US6599910B1 (en) | 1998-08-20 | 2003-07-29 | Smithkline Beecham Corporation | Substituted triazole compounds |
WO2001009106A1 (en) * | 1999-08-02 | 2001-02-08 | Smithkline Beecham P.L.C. | Diamino-1,2,4-triazole-carboxylic and derivatives as gsk-3 inhibitors |
WO2002040476A1 (en) * | 2000-11-16 | 2002-05-23 | Smithkline Beecham Corporation | Pyridyl-substituted triazoles as tgf inhibitors |
WO2002072576A1 (en) * | 2001-03-09 | 2002-09-19 | Pfizer Products Inc. | Benzimidazole anti-inflammatory compounds |
WO2002088113A1 (en) * | 2001-04-30 | 2002-11-07 | The Procter & Gamble Company | Triazole compounds useful in treating diseases associated with unwanted cytokine activity |
US6727364B2 (en) | 2001-04-30 | 2004-04-27 | The Procter & Gamble Company | Triazole compounds useful in treating diseases associated with unwanted cytokine activity |
US6787555B2 (en) | 2001-04-30 | 2004-09-07 | The Procter & Gamble Company | Triazole compounds useful in treating diseases associated with unwanted cytokine activity |
WO2002094814A1 (en) * | 2001-05-08 | 2002-11-28 | Schering Aktiengesellschaft | 3,5-diamino-1,2,4-triazoles as kinase inhibitors |
US6790846B2 (en) | 2001-05-24 | 2004-09-14 | The Procter & Gamble Company | Isoxazolone compounds useful in treating diseases associated with unwanted cytokine activity |
US6919346B2 (en) | 2001-05-24 | 2005-07-19 | The Procter & Gamble Company | Isoxazolone compounds useful in treating diseases associated with unwanted cytokine activity |
AU2002359291C1 (en) * | 2001-10-23 | 2008-11-20 | Merck Serono Sa | Azole derivatives and pharmaceutical compositions containing them |
US7541375B2 (en) | 2001-10-23 | 2009-06-02 | Laboratoires Serono Sa | Azole derivatives and pharmaceutical compositions containing them |
WO2003035626A3 (en) * | 2001-10-23 | 2003-11-06 | Applied Research Systems | Azole derivatives and pharmaceutical compositions containing them |
AU2002359291B8 (en) * | 2001-10-23 | 2008-04-17 | Merck Serono Sa | Azole derivatives and pharmaceutical compositions containing them |
AU2002359291B2 (en) * | 2001-10-23 | 2008-04-03 | Merck Serono Sa | Azole derivatives and pharmaceutical compositions containing them |
US7253199B2 (en) | 2001-10-23 | 2007-08-07 | Applied Research Systems Ars Holding N.V. | Azole derivatives and pharmaceutical compositions containing them |
CN100338042C (en) * | 2001-11-09 | 2007-09-19 | 安斯泰来制药有限公司 | Triazole derivatives as cyclooxygenase (COX) inhibitors |
US6927230B2 (en) | 2001-11-09 | 2005-08-09 | Fujisawa Pharmaceutical Co., Ltd. | Triazole derivatives |
WO2003040110A1 (en) | 2001-11-09 | 2003-05-15 | Fujisawa Pharmaceutical Co., Ltd. | Triazole derivatives as cyclooxygenase (cox) inhibitors |
JP2007169290A (en) * | 2001-11-09 | 2007-07-05 | Astellas Pharma Inc | Triazole derivative |
WO2003042211A1 (en) * | 2001-11-15 | 2003-05-22 | Smithkline Beecham Corporation | Phenyl substituted triazoles and their use as selective inhibors of akl5 kinase |
EP1707205A2 (en) | 2002-07-09 | 2006-10-04 | Boehringer Ingelheim Pharma GmbH & Co. KG | Pharmaceutical compositions of anticholinergics and p38 kinase inhibitors in the treatment of respiratory diseases |
WO2004014900A1 (en) * | 2002-08-09 | 2004-02-19 | Eli Lilly And Company | Benzimidazoles and benzothiazoles as inhibitors of map kinase |
US7320995B2 (en) | 2002-08-09 | 2008-01-22 | Eli Lilly And Company | Benzimidazoles and benzothiazoles as inhibitors of map kinase |
US7268139B2 (en) | 2002-08-29 | 2007-09-11 | Scios, Inc. | Methods of promoting osteogenesis |
WO2004046120A3 (en) * | 2002-11-15 | 2004-08-12 | Vertex Pharma | Diaminotriazoles useful as inhibitors of protein kinases |
WO2004046120A2 (en) * | 2002-11-15 | 2004-06-03 | Vertex Pharmaceuticals Incorporated | Diaminotriazoles useful as inhibitors of protein kinases |
US7902239B2 (en) | 2002-11-15 | 2011-03-08 | Vertex Pharmaceuticals Incorporated | Diaminotriazoles useful as inhibitors of protein kinases |
US7279469B2 (en) | 2002-11-15 | 2007-10-09 | Vertex Pharmaceuticals Incorporated | Diaminotriazoles useful as inhibitors of protein kinases |
JP2007501257A (en) * | 2003-08-06 | 2007-01-25 | バーテックス ファーマシューティカルズ インコーポレイテッド | Aminotriazole compounds useful as inhibitors of protein kinases |
US7226920B2 (en) | 2003-08-06 | 2007-06-05 | Vertex Pharmaceuticals Inc. | Aminotriazole compounds useful as inhibitors of protein kinases |
AU2004263148B2 (en) * | 2003-08-06 | 2008-08-21 | Vertex Pharmaceuticals, Incorporated | Aminotriazole compounds useful as inhibitors of protein kinases |
US7598245B2 (en) | 2003-08-06 | 2009-10-06 | Vertex Pharmaceuticals Incorporated | Aminotriazole compounds useful as inhibitors of protein kinases |
WO2005013982A1 (en) * | 2003-08-06 | 2005-02-17 | Vertex Pharmaceuticals Incorporated | Aminotriazole compounds useful as inhibitors of protein kinases |
JP4889489B2 (en) * | 2003-08-06 | 2012-03-07 | バーテックス ファーマシューティカルズ インコーポレイテッド | Aminotriazole compounds useful as inhibitors of protein kinases |
US7244441B2 (en) | 2003-09-25 | 2007-07-17 | Scios, Inc. | Stents and intra-luminal prostheses containing map kinase inhibitors |
EP2116245A2 (en) | 2004-08-07 | 2009-11-11 | Boehringer Ingelheim International GmbH | EGFR kinase inhibitor combinations for treating respiratory and gastrointestinal disorders |
EP2878297A1 (en) | 2004-12-24 | 2015-06-03 | Boehringer Ingelheim International GmbH | Medicaments for the treatment or prevention of fibrotic diseases |
EP2384751A1 (en) | 2004-12-24 | 2011-11-09 | Boehringer Ingelheim International Gmbh | Medicaments for the treatment or prevention of fibrotic diseases |
EP1676574A2 (en) | 2004-12-30 | 2006-07-05 | Johnson & Johnson Vision Care, Inc. | Methods for promoting survival of transplanted tissues and cells |
WO2006117657A1 (en) * | 2005-05-03 | 2006-11-09 | Ranbaxy Laboratories Limited | Triazolone derivatives as anti-inflammatory agents |
WO2007049820A1 (en) | 2005-10-28 | 2007-05-03 | Takeda Pharmaceutical Company Limited | Heterocyclic amide compound and use thereof |
WO2008142031A1 (en) | 2007-05-18 | 2008-11-27 | Institut Curie | P38alpha as a therapeutic target in bladder carcinoma |
EP2527335A1 (en) * | 2011-04-26 | 2012-11-28 | King Saud University | Triazole compounds as anti-inflammatory agents |
US8829016B2 (en) | 2011-04-26 | 2014-09-09 | King Saud University | Triazole compounds as potential anti-inflammatory agents |
WO2012146362A1 (en) * | 2011-04-26 | 2012-11-01 | King Saud University | Triazole compounds as potential anti-inflammatory agents |
WO2013049591A2 (en) * | 2011-09-29 | 2013-04-04 | Verseon Corporation | Dual inhibitor compounds and methods of use thereof |
WO2013049591A3 (en) * | 2011-09-29 | 2013-05-23 | Verseon Corporation | Dual inhibitor compounds and methods of use thereof |
US11452713B2 (en) | 2016-02-29 | 2022-09-27 | University Of Florida Research Foundation, Incorporated | Chemotherapeutic methods for treating low-proliferative disseminated tumor cells |
US10342786B2 (en) | 2017-10-05 | 2019-07-09 | Fulcrum Therapeutics, Inc. | P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD |
US10537560B2 (en) | 2017-10-05 | 2020-01-21 | Fulcrum Therapeutics. Inc. | P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD |
US11291659B2 (en) | 2017-10-05 | 2022-04-05 | Fulcrum Therapeutics, Inc. | P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD |
US11479770B2 (en) | 2017-10-05 | 2022-10-25 | Fulcrum Therapeutics, Inc. | Use of p38 inhibitors to reduce expression of DUX4 |
WO2022195579A1 (en) | 2021-03-15 | 2022-09-22 | Saul Yedgar | Hyaluronic acid-conjugated dipalmitoyl phosphatidyl ethanolamine in combination with non-steroidal anti-inflammatory drugs (nsaids) for treating or alleviating inflammatory diseases |
Also Published As
Publication number | Publication date |
---|---|
EP1112070A1 (en) | 2001-07-04 |
US20030229110A1 (en) | 2003-12-11 |
US7223760B2 (en) | 2007-05-29 |
DE69917296T2 (en) | 2005-05-25 |
ATE266399T1 (en) | 2004-05-15 |
ES2221426T3 (en) | 2004-12-16 |
CA2341370A1 (en) | 2000-03-02 |
JP2003525201A (en) | 2003-08-26 |
EP1112070A4 (en) | 2002-01-02 |
DE69917296D1 (en) | 2004-06-17 |
US6599910B1 (en) | 2003-07-29 |
EP1112070B1 (en) | 2004-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6599910B1 (en) | Substituted triazole compounds | |
AU760527C (en) | Novel 2-alkyl substituted imidazole compounds | |
US6335340B1 (en) | compounds of heteroaryl substituted imidazole, their pharmaceutical compositons and uses | |
US6774127B2 (en) | Pyrazole and pyrazoline substituted compounds | |
US6362193B1 (en) | Cycloalkenyl substituted compounds | |
WO1999001136A1 (en) | Novel substituted imidazole compounds | |
US6610695B1 (en) | Aryloxy substituted pyrimidine imidazole compounds | |
WO1999001130A1 (en) | Novel substituted imidazole compounds | |
US6548503B1 (en) | Pyridin-4-yl or pyrimidin-4-yl substituted pyrazines | |
US6469018B1 (en) | Compounds | |
AU737637C (en) | Novel substituted imidazole compounds | |
NZ520906A (en) | 2(alkyl)-, 5(4-pyrimidinyl)- substituted imidazole derivatives and pharmaceuticals thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2341370 Country of ref document: CA Ref country code: CA Ref document number: 2341370 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999942232 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09762809 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1999942232 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1999942232 Country of ref document: EP |