WO2000006974A1 - Dispositif de mesure de l'ecoulement polyphasique de fluides gazeux - Google Patents

Dispositif de mesure de l'ecoulement polyphasique de fluides gazeux Download PDF

Info

Publication number
WO2000006974A1
WO2000006974A1 PCT/CN1999/000043 CN9900043W WO0006974A1 WO 2000006974 A1 WO2000006974 A1 WO 2000006974A1 CN 9900043 W CN9900043 W CN 9900043W WO 0006974 A1 WO0006974 A1 WO 0006974A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
gas
measurement device
phase
liquid
Prior art date
Application number
PCT/CN1999/000043
Other languages
English (en)
French (fr)
Inventor
Jianwen Dou
Original Assignee
Lanzhou Haimo Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Haimo Technologies Co., Ltd. filed Critical Lanzhou Haimo Technologies Co., Ltd.
Priority to GB0101831A priority Critical patent/GB2361322B/en
Priority to AU30228/99A priority patent/AU3022899A/en
Priority to US09/744,742 priority patent/US6532826B1/en
Publication of WO2000006974A1 publication Critical patent/WO2000006974A1/zh
Priority to NO20010471A priority patent/NO335941B1/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/712Measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means

Definitions

  • the invention belongs to the technical field of multi-phase flow measurement, and in particular, relates to a flow measurement device suitable for gas-liquid multi-phase flow, especially oil-gas-water three-phase flow. Background technique
  • Gas-liquid multiphase flow measurement technology is one of the key technologies to determine the success of the oil and gas industry in the future, especially for the development of oil and gas fields in marine, desert, and polar environments.
  • important progress has been made in the research of gas-liquid multiphase flow measurement technology both at home and abroad.
  • most of the existing gas-liquid multiphase flow flow measurement devices can only be applied to one or more flow patterns. Therefore, one of the technical difficulties in the current gas-liquid multiphase flow measurement technology field is how to effectively adjust and control the gas-liquid multiphase flow flow pattern.
  • the present inventor applied for a Chinese utility model patent application entitled "Segment Generation Device and Three-phase Flow Measurement Device for Oil, Gas and Water Using the Device"
  • An object of the present invention is to provide a gas-liquid multiphase flow flow measurement device that can adapt to a variety of flow patterns and is suitable for installation in an unmanned environment.
  • the present invention provides a gas-liquid multiphase flow device, which is installed on a section of a gas-liquid multiphase flow passage pipe and is used to measure the flow of each phase in the gas-liquid multiphase flow.
  • a static slug generating device and a cross-correlation flow measuring device sequentially installed on a gas-liquid multi-phase flow passing pipe; a multi-phase flow adjusting device sequentially installed on the gas-liquid multi-phase flow passing pipe And a multiphase flow phase fraction measurement device, wherein the multiphase flow adjustment device is located downstream of the cross-correlation flow measurement device, or the multiphase flow phase fraction measurement device is located upstream of the static slug generation device
  • a data acquisition and data processing device that collects and processes measurement data of the multi-phase ⁇ mesh fraction measurement device and the cross-correlation flow measurement device, and calculates a flow rate of each phase in the gas-liquid multi-phase flow.
  • the device may further include: a throttling type flow measuring device installed on the gas-liquid multiphase flow passage pipe, located downstream of the multiphase flow adjusting device, and measuring the multiphase ⁇ mesh fraction The devices are adjacent to or at the same position; and a temperature measuring device and a pressure measuring device are respectively installed on the gas-liquid multiphase flow-through pipeline.
  • the gas-liquid multiphase flow measurement device provided by the present invention has a simple structure and a small pressure loss.
  • the device does not have any moving parts, can prevent the occurrence of mechanical failures, and can run reliably for a long time. , Desert, polar oil field installation and use in unmanned environments.
  • the device can be applied to a variety of flow patterns with high measurement accuracy and a wide range of applications. Overview of the drawings
  • FIG. 1 is an embodiment of a gas-liquid multiphase flow measurement device according to the present invention.
  • FIG. 2 is another embodiment of the gas-liquid multiphase flow measurement device according to the present invention.
  • Figures 3 to 7 show various implementations of the static slug generating device used in the present invention. Best Mode of the Invention
  • FIG. 1 shows an embodiment of a gas-liquid multiphase flow measurement device according to the present invention.
  • a static mixing device 2 a multi-phase 3 ⁇ 4 mesh fraction measurement device 3, a static slug generation device 4 and a cross-correlation flow measurement device 5 are sequentially installed in a section of gas-liquid multi-phase flow through-flow
  • a data acquisition and data processing device 6 collects and processes the measurement data of the multi-phase ⁇ mesh fraction measurement device 3 and the cross-correlation flow measurement device 5, and calculates each of the gas-liquid multi-phase flows.
  • Phase flow value For example, when measuring oil, gas and water three-phase flow, the multi-phase
  • the flow phase fraction measuring device 3 measures the phase fraction f of three phases of oil, gas, and water.
  • the static mixing device 2 is installed upstream of the multi-phase flow phase fraction measurement device 3, and mixes the measured gas-liquid multi-phase flow, which can effectively eliminate gas-liquid slippage and measurement.
  • the static slug generation device 4 is installed upstream of the cross-correlation flow measurement device, which can generate benefits
  • the cross-correlation measurement of slug flow patterns improves the measurement range and measurement accuracy of the cross-correlation flow measurement device 5.
  • the multi-phase 3 ⁇ 4 mesh fraction measurement device 3 must be installed immediately downstream of the static mixing device 2; the cross-correlation flow measurement device 5 must be installed immediately near the static
  • the sludge generating device 4 is located downstream; and the static mixing device 2 may be either upstream of the static slug generating device 4 or downstream thereof.
  • this embodiment may further include a throttling flow measurement device (not shown), which is installed on the gas-liquid multiphase flow-through pipeline 1 and is located downstream of the static mixing device 1 As an auxiliary measurement device, it is adjacent to or at the same position as the multi-phase meshing rate measurement device 3, which helps to improve measurement accuracy and widen the measurement range.
  • a throttling flow measurement device (not shown), which is installed on the gas-liquid multiphase flow-through pipeline 1 and is located downstream of the static mixing device 1 As an auxiliary measurement device, it is adjacent to or at the same position as the multi-phase meshing rate measurement device 3, which helps to improve measurement accuracy and widen the measurement range.
  • FIG. 2 shows still another embodiment of the gas-liquid multiphase flow measurement device of the present invention.
  • a slug generation device 201, a cross-correlation flow measurement device 5, a static shunt device 202, a multi-phase; a mesh fraction measurement device 3 and a throttling flow measurement device 203 are sequentially installed in A section of gas-liquid multiphase flows through the pipeline 1; a temperature transmitter 205 and a pressure transmitter 206 are respectively installed on the pipeline between the upstream and downstream sensors of the cross-correlation flow measurement device 5; a data acquisition And data processing device 6 for the cross-correlation flow measurement device 5, the multi-phase 3 ⁇ 4 mesh fraction measurement device 3, the throttling flow measurement device 203, the temperature transmitter 205, and the pressure change
  • the electrical signals output by devices such as the transmitter 206 perform data acquisition and data processing and output measurement results.
  • the static shunt device 202 includes a buffer pipe section 207 and a bypass pipe section. 208;
  • the buffer tube section 207 has an inflow end, an outflow end, and a bypass end, and in the direction of gravity, the position of the outflow end is lower than the positions of the inflow end and the bypass end;
  • the inflow end and the outflow end of the buffer pipe section 207 are respectively connected to the gas-liquid multiphase flow through-flow pipe 204; one end of the bypass pipe section 208 is connected to the bypass end of the buffer pipe section 207, so The other end of the bypass pipe section 208 is connected to the gas-liquid multi-phase flow through-flow pipe 1 at a position downstream of the multi-phase mesh fraction measurement device 3 and the throttled flow measurement device 203.
  • the static shunt device 202 By using the static shunt device 202, a part of the gas can be shunted through the bypass pipe section 208 under high gas-containing conditions, so that the multi-phase 3 ⁇ 4 mesh fraction measurement device 3 and the throttling flow measurement can be performed.
  • the gas-liquid multiphase flow of the device 203 maintains a low gas content, thereby improving the measurement accuracy of the liquid phase flow rate and the phase fraction.
  • the total flow rate of the gas-liquid multiphase flow is measured by using the cross-correlation flow measurement device 5, and each of the liquids is measured by using the multiphase mesh fraction measurement device 3 and the throttling flow measurement device 203.
  • the phase flow and gas phase flow can be obtained by subtracting the total liquid phase flow from the total gas-liquid multiphase flow.
  • the temperature transmitter 205 and the pressure transmitter 206 are used to measure the temperature and pressure of the measured fluid, and the flow measurement value under actual conditions can be converted into the standard conditions. Traffic value.
  • the multi-phase mesh fraction measurement device 3 and the throttling flow measurement device 203 must be installed immediately downstream of the static shunt device 202; the cross-correlation flow measurement device 5 must be installed at a position immediately downstream of the static slug generating device 201; and the static shunt device 202 may be either upstream of the static slug generating device 201 or downstream thereof.
  • the throttling flow measurement device 203 in this embodiment can achieve a more ideal measurement effect under high gas-containing conditions, but this is not necessary.
  • the rest of this embodiment constitutes a complete gas-liquid multiphase flow measurement device; in this case, the data acquisition and The data processing device 6 calculates the total flow Q of the gas-liquid multiphase flow based on the measurement data of the cross-correlation flow measurement device 5, and according to the multi-phase flow phase fraction measurement device 3 and the upper correlation of the cross-correlation flow measurement device 5
  • the measurement data of the downstream sensor calculates the phase fraction f of each phase of the gas-liquid multiphase flow, where i represents each phase in the gas-liquid multiphase flow. Then calculate the flow rate Qi of each phase in the gas-liquid multiphase flow according to the following formula:
  • i each phase in the gas-liquid multiphase flow.
  • the static slug generation device used in the present invention has multiple implementations.
  • the static slug generating device used in the present invention may be composed of one or more blind tee devices.
  • a blind tee device 301 is installed on the gas-liquid multiphase flow passage pipe 1 to form a static slug generation device.
  • the blind tee device 301 includes a tee tube 302 and a The blind plate 303; the inflow end and the outflow end of the blind tee device 301 are respectively connected to the gas-liquid multiphase flow through the flow pipe 1, and the blind plate 303 is installed on the blind end of the blind tee device 301.
  • the first blind tee device 301 and the second blind tee device 401 are sequentially installed on the gas-liquid multi-phase flow through the pipeline 1, forming a static slugger with good effect. Device.
  • the static slug generating device used in the present invention may also be composed of one or more inverted U-tubes. As shown in FIG. 5, the first inverted piping tube 501 and the second inverted U-tube 502 are sequentially installed on the gas-liquid multi-phase flow passage pipe 1, which constitutes a static slug with good effect. Device.
  • the static slug generating device used in the present invention may also be composed of one or more broken line pipes. As shown in FIG. 6, a broken line pipe 601 is installed on the gas-liquid multiphase flow passage pipe 1 to constitute a static slug generating device.
  • the static slug generating device used in the present invention can also be composed of any combination of a blind tee device, a broken line tube, and an inverted U-shaped tube. As shown in FIG. 7, a broken line pipe 601 and an inverted U-shaped pipe 501 are sequentially installed on the gas-liquid multi-phase flow passage pipe 1 to constitute a static slug generating device with better effect.
  • a gas-liquid multiphase flow measurement device is installed on a horizontal transmission line of ⁇ 50. Tested. As shown in FIG. 1, the over-flow pipeline 1 is a seamless steel pipe with an inner diameter of 50 mm, and is connected to the gas-liquid multi-phase flow transmission pipeline (not shown) through a flange; the cross-correlation flow measurement device 5 is composed of It consists of two single-energy gamma-ray densitometers sequentially installed on the gas-liquid multi-phase flow through-flow pipe 1.
  • the multi-phase 3 ⁇ 4 mesh fraction measurement device 3 uses a dual-energy gamma-ray phase splitter;
  • the throttling flow measurement device 203 uses a Venturi flowmeter;
  • the temperature measurement device 205 and the pressure measurement device 206 each use a platinum resistance temperature change Transmitter and piezoresistive pressure transmitter;
  • the buffer pipe section 207 uses a seamless steel pipe with an inner diameter of 150mm, and the bypass pipe 208 uses a seamless steel pipe with an inner diameter of 30mm;
  • the data acquisition and data processing Device 6 consists of a personal computer-based timing counting and analog-to-digital conversion interface circuit and an industrial PC.
  • the above experiment is performed in the range of water content of 0-100% and gas content of 10% -95%.
  • the test results show that the gas-liquid multiphase flow measurement device of the present invention can be applied to bubble flow, air mass flow, and laminar flow. , Slug flow, annular flow and other flow patterns, and achieve high measurement accuracy within the above test range.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

气液多相流流量测量装置 技术领域
本发明属于多相流测量技术领域, 具体地讲, 涉及一种适用于气液多 相流尤其是油气水三相流的流量测量装置。 背景技术
气液多相流流量测量技术是决定未来油气工业成功的关键技术之一, 尤其是对于海洋、 沙漠、 极地等环境中的油气田开发而言。 近年来, 国内 外在气液多相流流量测量技术的研究方面已经取得了重要的进展。 但是, 由于气液多相流的流型的复杂性和多变性, 现有的绝大多数的气液多相流 流量测量装置还只能适用于某一种或几种流型。 因此, 目前气液多相流测 量技术领域中的技术难点之一就是如何有效地调整和控制气液多相流的流 型。 在目前已有的技术中, 本发明人申请的名称为 "段塞发生装置以及 使用该装置的油气水三相流量测量装置" 的中国实用新型专利申请
97229522.4给出了一种气液多相流流型调整和流量测量的技术方案, 并且 已经在陆上油田的油气生产实践中得到了成功的应用。 但是, 上述装置中 包含有可动部件, 在海洋、 沙漠、 极地油田的无人环境中不适用; 在无人 环境中, 测量装置的可靠性超越了其他所有的技术要求, 是用户需要考虑 的首要因素。 因此, 开发研究无可动部件的、 能够适用于多种流型的气液 多相流流量测量技术是目前多相流技术在海洋、 沙漠、 极地油田中推广应 用所需要解决的最重要的问题之一。 发明内容
本发明的目的在于提供一种能够适应多种流型并且适于安装在无人环 境中的气液多相流流量测量装置。
为实现上述目的, 本发明提供了一种气液多相流流量装置, 安装在一 段气液多相流过流管道上, 用于测量气液多相流中各相的流量, 其特征在 于包括: 顺序安装在气液多相流过流管道上的静态段塞发生装置和互相关 流量测量装置; 顺序安装在所述气液多相流过流管道上的多相流调整装置 和多相流相分率测量装置 , 其中所述多相流调整装置位于所述互相关流量 测量装置的下游, 或者所述多相流相分率测量装置位于所述静态段塞发生 装置的上游; 还包括: 数据采集和数据处理装置, 对所述多相^ 目分率测 量装置和所述互相关流量测量装置的测量数据进行采集和处理, 计算气液 多相流中各相的流量。
此外, 该装置还可以包括: 一个节流式流量测量装置,安装在所述气 液多相流过流管道上位于所述多相流调整装置下游并且与所述多相 ^^目分 率测量装置相邻或相同的位置上; 以及, 一个温度测量装置和一个压力测 量装置, 分别安装在所述气液多相流过流管道上。
本发明所提供的气液多相流流量测量装置结构简单, 压力损失小, 尤 其是该装置没有任何可动部件, 可以杜绝机械故障的发生, 并能长期可靠 地运行, 因此非常适合于在海洋、 沙漠、极地油田的无人环境中安装使用。 此外, 该装置能够适用于多种流型, 具有较高的测量精度和较宽的适用范 围。 附图概述
通过以下结合附图对本发明的较佳实施例的详细说明, 本发明的其他 优点将会更加明显。
图 1是本发明的气液多相流流量测量装置的一种实施方式。
图 2是本发明的气液多相流流量测量装置的又一种实施方式。
图 3至图 7分别示出了本发明中所釆用的静态段塞发生装置的多种实 现方式。 本发明的最佳实施方式
图 1示出了本发明的气液多相流流量测量装置的一种实施方式。 在图 1 中, 一个静态混合装置 2, 一个多相¾ ^目分率测量装置 3 , —个静态段 塞发生装置 4和一个互相关流量测量装置 5顺序安装在一段气液多相流过 流管道 1上, 一个数据采集和数据处理装置 6对所述多相^ ^目分率测量装 置 3和所述互相关流量测量装置 5的测量数据进行采集和处理, 计算出气 液多相流中各相的流量值。 例如, 在油气水三相流进行测量时, 所述多相 流相分率测量装置 3测量出油、 气、 水三相的相分率 f。、 fg和 f、、, 所述互 相关流量测量装置 5 测量出油气水三相流的总流量 Q, 那么, 油、 气、 水三相流各相的流量 Q。、 Qg和 Q、、就可以根据下列公式计算得到:
Figure imgf000005_0001
Qg= Q fg (2)
Q、、= Qx fv (3)
在本实施例中, 所述静态混合装置 2安装在所述多相流相分率测量装 置 3的上游, 对被测的气液多相流进行混合, 能够有效地消除气液滑脱现 象和测量截面上相浓度分布不均匀的现象, 从而大大提高多相 ^目分率的 测量精度和代表性; 所述静态段塞发生装置 4安装在所述互相关流量测量 装置的上游, 能够产生有利于互相关测量的段塞流流态, 从而提高互相关 流量测量装置 5的测量范围和测量精度。 需要说明的是, 所述多相¾^目分 率测量装置 3必须安装在紧靠所述静态混合装置 2的下游的位置上; 所述 互相关流量测量装置 5必须安装在紧靠所述静态段塞发生装置 4的下游的 位置上;而所述静态混合装置 2既可以在所述静态段塞发生装置 4的上游, 也可以位于其下游。
还需要说明的是,本实施例中还可以包括一个节流式流量测量装置 (未 示出),安装在所述气液多相流过流管道 1上位于所述静态混合装置 1的下 游并且与所述多相¾^=目分率测量装置 3相邻或相同的位置上, 作为辅助测 量装置, 有助于提高测量精度和拓宽测量范围。
图 2示出了本发明的气液多相流流量测量装置的又一种实施方式。 在 图 2中, 一个段塞发生装置 201、 一个互相关流量测量装置 5, 一个静态 分流装置 202, —个多相;; 目分率测量装置 3和一个节流式流量测量装置 203顺序安装在一段气液多相流过流管道 1上; 一个温度变送器 205和一 个压力变送器 206分别安装在所述互相关流量测量装置 5的上、 下游传感 器之间的管道上; 一个数据采集和数据处理装置 6对所述互相关流量测量 装置 5、 所述多相¾^目分率测量装置 3、 所述节流式流量测量装置 203、 所述温度变送器 205和所述压力变送器 206等装置输出的电信号进行数据 采集和数据处理并输出测量结果。
如图 2所示, 所述静态分流装置 202由一个緩冲管段 207和旁通管段 208组成; 所述緩冲管段 207有一个流入端、 一个流出端和一个旁通端, 并且, 在重力方向上, 所述流出端的位置低于所述流入端和所述旁通端的 位置; 所述緩冲管段 207的流入端和流出端分别连接在所述气液多相流过 流管道 204上; 所述旁通管段 208的一端连接在所述緩冲管段 207的旁通 端上, 所述旁通管段 208的另一端连接在所述气液多相流过流管道 1上位 于所述多相 目分率测量装置 3和所述节流式流量测量装置 203的下游的 位置上。 使用所述静态分流装置 202 , 能够在高含气的条件下通过所述旁 通管段 208将一部分气体分流, 使得通过所述多相¾ ^目分率测量装置 3和 所述节流式流量测量装置 203 的气液多相流保持较低的含气率,从而提高 液相流量和相分率的测量精度。
在本实施例中, 利用所述互相关流量测量装置 5测量气液多相流的总 流量, 利用所述多相 目分率测量装置 3和所述节流式流量测量装置 203 测量液体中各相的流量, 气相流量可以通过气液多相流总流量减去液相总 流量得到。 此外, 本实施例中使用了所述温度变送器 205和所述压力变送 器 206, 对被测流体的温度和压力进行测量, 就能够将实际状况下的流量 测量值换算成为标准状况下的流量值。
同样需要说明的是, 所述多相 目分率测量装置 3和所述节流式流量 测量装置 203必须安装在紧靠所述静态分流装置 202的下游的位置上; 所 述互相关流量测量装置 5必须安装在紧靠所述静态段塞发生装置 201的下 游的位置上;而所述静态分流装置 202既可以在所述静态段塞发生装置 201 的上游, 也可以位于其下游。
还需要进一步说明的是, 本实施例中使用所述节流式流量测量装置 203 在高含气条件能够达到更为理想的测量效果, 但这并不是必需的。 在 一般情况下, 即使不包括所述节流式流量测量装置 203 , 本实施例中的其 余部分也构成了一个完整的气液多相流测量装置; 在这种情况下, 所述数 据采集和数据处理装置 6根据所述互相关流量测量装置 5的测量数据计算 气液多相流的总流量 Q, 根据所述多相流相分率测量装置 3 和所述互相 关流量测量装置 5的上、 下游传感器的测量数据计算气液多相流各相的相 分率 f 其中 i代表气液多相流中的各相。 再根据以下公式计算出气液多 相流中各相的流量 Qi:
Figure imgf000007_0001
其中 i代表气液多相流中的各相。
本发明所采用的静态段塞发生装置有多种实现方式。
本发明所釆用的静态段塞发生装置可以由一个或多个盲三通装置构 成。 如图 3所示, 一个盲三通装置 301安装在气液多相流过流管道 1上, 构成了一个静态段塞发生装置; 所述盲三通装置 301 , 包括一个三通管 302 和一个盲板 303; 所述盲三通装置 301的流入端和流出端分别连接在气液 多相流过流管道 1上,所述盲板 303安装在所述盲三通装置 301的盲端上。 另外, 如图 4所示, 第一个盲三通装置 301和第二个盲三通装置 401顺序 安装在气液多相流过流管道 1上, 构成了一个效果较好的静态段塞发生装 置。
本发明所采用的静态段塞发生装置还可以由一个或多个倒装 U 型管 构成。 如图 5所示, 第一个倒装 ϋ型管 501和第二个倒装 U型管 502顺 序安装在气液多相流过流管道 1上, 构成了一个效果较好的静态段塞发生 装置。
本发明所采用的静态段塞发生装置还可以由一个或多个折线管构成。 如图 6所示, 一个折线管 601安装在气液多相流过流管道 1上, 构成了一 个静态段塞发生装置。
本发明所采用的静态段塞发生装置还可以由盲三通装置、 折线管和倒 装 U型管等装置中的任意几种组合而成。 如图 7 所示, 一个折线管 601 和一个倒装 U型管 501顺序安装在气液多相流过流管道 1上, 构成了一 个效果较好的静态段塞发生装置。
在本发明人所进行的实验中, 用柴油、 空气和自来水混合后形成油气 水三相流, 将一个才艮据本发明的气液多相流流量测量装置安装在 φ50 的水 平输送管线上进行了试验。 如图 1 所示, 所述过流管道 1 为内径 50mm 的无缝钢管, 通过法兰连接在所述气液多相流输送管道(未示出)上; 所 述互相关流量测量装置 5由顺序安装在所述气液多相流过流管道 1上的两 个单能 γ射线密度计组成; 所述多相¾ ^目分率测量装置 3采用了一个双能 γ 射线相分率计; 所述节流式流量测量装置 203采用了一个文丘利流量计; 所述温度测量装置 205和所述压力测量装置 206分别采用了铂电阻温度变 送器和压阻式压力变送器; 所述緩沖管段 207采用内径为 150mm的无缝 钢管, 而所述旁通管道 208 则采用了内径为 30mm 的无缝钢管; 所述数 据采集和数据处理装置 6由基于个人计算机的定时计数和模数转换接口线 路和一台工业 PC机组成。 上述实验在含水率 0-100%和含气率 10%-95% 的范围内进行, 试验结果表明, 本发明的气液多相流流量测量装置能够适 用于气泡流、 气团流、 层状流、 段塞流、 环状流等多种流型, 并且在上述 试验范围内达到较高的测量精度。
应该注意的是, 上面所述的各种较佳的实施方式只是用于说明本发 明, 并不构成对本发明的限制。
虽然以上结合附图详细描述了本发明的实施例, 但是对于本领域内熟 练的技术人员, 仍可以对上述实施方式作出各种修改和变更而不违背本发 明的实质和范围。 因此, 本发明的范围仅由所附权利要求限定。

Claims

权 利 要 求
1. 气液多相流流量测量装置, 安装在一段气液多相流过流管道上, 用于 测量气液多相流中各相的流量, 其特征在于包括:
一个静态段塞发生装置和一个互相关流量测量装置, 沿着气液多相流流动 方向顺序安装在所述气液多相流过流管道上;
一个多相流调整装置和一个多相流相分率测量装置, 沿着气液多相流流动 方向顺序安装在所述气液多相流过流管道上,
其中所述多相流调整装置位于所述互相关流量测量装置的下游, 或者所述 多相流相分率测量装置位于所述静态段塞发生装置的上游;
所述气液多相流流量测量装置还包括:
一个数据釆集和数据处理装置, 对所述多相¾^目分率测量装置和所述互相 关流量测量装置的测量数据进行采集和处理, 计算气液多相流中各相的流 量。
2. 如权利要求 1所述的气液多相流流量测量装置, 其特征在于还包括: 一个节流式流量测量装置,安装在所述气液多相流过流管道上位于所述多 相流调整装置下游并且与所述多相流相分率测量装置相邻或相同的位置 上。
3. 如权利要求 1或 2所述的气液多相流流量测量装置, 其特征在于还包 括: 一个温度测量装置和一个压力测量装置, 分别安装在所述气液多相流 过流管道上。
4. 如权利要求 1或 2所述的气液多相流流量测量装置, 其特征在于: 所 述静态段塞发生装置包括至少一个盲三通装置。
5. 如权利要求 4所述的气液多相流流量测量装置, 其特征在于: 所述盲 三通装置由一个三通管和一个盲板组成; 所述三通管有一个流入端、 一个 流出端和一个盲端; 所述盲板与所述三通管的盲端相连接。
6. 如权利要求 1或 2所述的气液多相流流量测量装置, 其特征在于: 所 述静态段塞发生装置包括至少一个倒装 U型管。
7. 如权利要求 1或 2所述的气液多相流流量测量装置, 其特征在于: 所 述静态段塞发生装置包括至少一个折线型管。
8. 如权利要求 1或 2所述的气液多相流流量测量装置, 其特征在于: 所 述多相流调整装置是一个静态混合装置。
9. 如权利要求 1所述的气液多相流流量测量装置, 其特征在于: 所述多 相流调整装置是一个静态分流装置。
10. 如权利要求 9 所述的气液多相流流量测量装置, 其特征在于: 所述 静态分流装置包括一个緩冲管段和旁通管段; 所述緩冲管段有一个流入 端、 一个流出端和一个旁通端, 并且, 在重力方向上, 所述流出端的位置 低于所述流入端和所述旁通端的位置; 所述緩沖管段的流入端和流出端分 别连接在所述气液多相流过流管道上; 所述旁通管段的一端连接在所述緩 冲管段的旁通端上, 所述旁通管段的另一端连接在所述气液多相流过流管 道上位于所述多相¾^目分率测量装置的下游的位置上。
11. 如权利要求 10所述的气液多相流流量测量装置, 其特征在于: 所述 静态分流装置的緩冲管段的口径远远大于所述气液多相流过流管道的口径 和所述静态分流装置的旁通管段的口径。
12. 如权利要求 2 所述的气液多相流流量测量装置, 其特征在于: 所述 多相流调整装置是一个静态分流装置。
13. 如权利要求 12所述的气液多相流流量测量装置, 其特征在于: 所述 静态分流装置包括一个緩冲管段和旁通管段; 所述緩沖管段有一个流入 端、 一个流出端和一个旁通端, 并且, 在重力方向上, 所述流出端的位置 低于所述流入端和所述旁通端的位置; 所述緩冲管段的流入端和流出端分 别连接在所述气液多相流过流管道上; 所述旁通管段的一端连接在所述緩 冲管段的旁通端上, 所述旁通管段的另一端连接在所述气液多相流过流管 道上位于所述多相流相分率测量装置和所述节流式流量测量装置的下游的 位置上。
14.如权利要求 13所述的气液多相流流量测量装置, 其特征在于: 所述静 态分流装置的緩冲管段的口径远远大于所述气液多相流过流管道的口径和 所述静态分流装置的旁通管段的口径。
PCT/CN1999/000043 1998-07-28 1999-04-01 Dispositif de mesure de l'ecoulement polyphasique de fluides gazeux WO2000006974A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB0101831A GB2361322B (en) 1998-07-28 1999-04-01 Apparatus for measuring flow rates of individual phases of gas/liquid multiphase flow
AU30228/99A AU3022899A (en) 1998-07-28 1999-04-01 A measuring device for the gas-liquid flow rate of multiphase fluids
US09/744,742 US6532826B1 (en) 1998-07-28 1999-04-01 Measuring device for the gas-liquid flow rate of multiphase fluids
NO20010471A NO335941B1 (no) 1998-07-28 2001-01-26 Apparat for å måle strømningsmengden av de enkelte fasefraksjoner i en flerfasefluidstrøm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN98217706.2 1998-07-28
CN98217706U CN2349553Y (zh) 1998-07-28 1998-07-28 气液多相流流量测量装置

Publications (1)

Publication Number Publication Date
WO2000006974A1 true WO2000006974A1 (fr) 2000-02-10

Family

ID=5242497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1999/000043 WO2000006974A1 (fr) 1998-07-28 1999-04-01 Dispositif de mesure de l'ecoulement polyphasique de fluides gazeux

Country Status (6)

Country Link
US (1) US6532826B1 (zh)
CN (1) CN2349553Y (zh)
AU (1) AU3022899A (zh)
GB (1) GB2361322B (zh)
NO (1) NO335941B1 (zh)
WO (1) WO2000006974A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883769B2 (en) 2003-06-18 2011-02-08 3M Innovative Properties Company Integrally foamed microstructured article

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068652A1 (en) * 1999-05-10 2000-11-16 Schlumberger Holdings Limited Flow meter for multi-phase mixtures
NO321302B1 (no) * 2003-08-18 2006-04-24 Fmc Kongsberg Subsea As Fremgangsmåte og anordning for fluidprøvetaking fra en undersjøisk flerfase-rørstrømning
CN1332183C (zh) * 2005-08-10 2007-08-15 陈宇 流体的流量检测装置
US7880133B2 (en) * 2006-06-01 2011-02-01 Weatherford/Lamb, Inc. Optical multiphase flowmeter
CN101255791B (zh) * 2008-04-09 2011-05-25 浙江大学 油气水多相流流量测量装置
CN101333925B (zh) * 2008-05-23 2013-02-13 安东石油技术(集团)有限公司 油气水三相在线不分离流量测量系统
US20100011876A1 (en) * 2008-07-16 2010-01-21 General Electric Company Control system and method to detect and minimize impact of slug events
US8536883B2 (en) * 2010-04-29 2013-09-17 Schlumberger Technology Corporation Method of measuring a multiphase flow
EP2474816A1 (en) * 2010-06-30 2012-07-11 Services Pétroliers Schlumberger An apparatus for measuring at least one characteristic value of a multiphase fluid mixture
GB2487436B (en) * 2011-01-24 2013-10-09 Framo Eng As Conduit for a hydrocarbon transport pipeline,related method and system
CN102087298A (zh) * 2011-01-25 2011-06-08 兰州海默科技股份有限公司 伽马射线截面成像装置、多相流流量测量装置及测量方法
CN102392939A (zh) * 2011-09-06 2012-03-28 中国石油集团工程设计有限责任公司 多相流计量系统及计量方法
EP2788726B1 (en) * 2011-12-06 2019-10-09 Schlumberger Technology B.V. Multiphase flowmeter
CN102435245B (zh) * 2012-01-06 2014-01-15 兰州海默科技股份有限公司 一种蒸汽流量计量装置及计量方法
US9383476B2 (en) 2012-07-09 2016-07-05 Weatherford Technology Holdings, Llc In-well full-bore multiphase flowmeter for horizontal wellbores
US9347807B2 (en) * 2012-11-15 2016-05-24 General Electric Company Multi-phase ultrasonic pipe flow meter
CA2932002C (en) * 2013-12-13 2022-08-02 Shell Internationale Research Maatschappij B.V. Method of interpreting nmr signals to give multiphase fluid flow measurements for a gas/liquid system
CN103884393A (zh) * 2014-03-27 2014-06-25 辽宁石油化工大学 一种测量高温高压湿蒸汽流量的方法与装置
US11359951B2 (en) 2015-04-30 2022-06-14 Schlumberger Technology Corporation Multiphase flow meters and related methods
US9963956B2 (en) 2015-07-07 2018-05-08 Schlumberger Technology Corporation Modular mobile flow meter system
US10422220B2 (en) * 2016-05-03 2019-09-24 Schlumberger Technology Corporation Method and systems for analysis of hydraulically-fractured reservoirs
US10416015B2 (en) 2016-07-07 2019-09-17 Schlumberger Technology Corporation Representative sampling of multiphase fluids
US10670575B2 (en) 2017-03-24 2020-06-02 Schlumberger Technology Corporation Multiphase flow meters and related methods having asymmetrical flow therethrough
NO347826B1 (en) 2017-08-31 2024-04-08 Fmc Kongsberg Subsea As Separation type multiphase flow meter apparatus
CN107861167B (zh) * 2017-10-31 2019-07-12 广东石油化工学院 一种γ射线监测包覆管道多相流流态诱发腐蚀异常的方法
NO20181382A1 (en) * 2018-10-26 2020-04-27 Roxar Flow Measurement As Flow measuring system
US20220099466A1 (en) * 2019-01-28 2022-03-31 The Texas A&M University System Method and device to measure multiphase flow
CA3128757A1 (en) * 2020-08-24 2022-02-24 Cenovus Energy Inc. Mass liquid fluidity meter and process for determining water cut in hydrocarbon and water emulsions
CN113281454A (zh) * 2021-05-28 2021-08-20 金川镍钴研究设计院有限责任公司 一种液体羰基镍原料的实验室定量检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493886A1 (en) * 1991-01-03 1992-07-08 Texaco Development Corporation Multiphase flow rate monitoring means and method
EP0684458A2 (en) * 1994-05-27 1995-11-29 Schlumberger Holdings Limited Multiphase flow meter
EP0690292A2 (en) * 1994-06-27 1996-01-03 Texaco Development Corporation Multi-phase fluid flow monitor and method
EP0738880A2 (en) * 1992-03-17 1996-10-23 Agar Corporation Incorporated Apparatus and method for measuring two- or three- phase fluid flow utilizing one or more momentum flow meters and a volumetric flow meter
CN1182873A (zh) * 1996-11-19 1998-05-27 窦剑文 油气水三相流量测量装置及测量方法
CN2293799Y (zh) * 1996-10-09 1998-10-07 西安交通大学 油气水三相流量仪
CN2311758Y (zh) * 1997-11-07 1999-03-24 窦剑文 段塞发生装置及使用该装置的油汽水三相流量测量装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396063A (en) * 1981-11-16 1983-08-02 Mobil Oil Corporation Process and system for providing multiple streams of wet steam having substantially equal quality for recovering heavy oil
US4574827A (en) * 1983-09-29 1986-03-11 Exxon Production Research Co. Method and apparatus for splitting two-phase flow at pipe tees
US4574837A (en) * 1983-09-29 1986-03-11 Exxon Production Research Co. Method and apparatus for splitting two-phase gas-liquid flows having a known flow profile
GB8817348D0 (en) 1988-07-21 1988-08-24 Imperial College Gas/liquid flow measurement
DE4027047A1 (de) * 1990-08-27 1992-03-05 Rexroth Mannesmann Gmbh Ventilanordnung zur lastunabhaengigen steuerung mehrerer hydraulischer verbraucher
US5390547A (en) 1993-11-16 1995-02-21 Liu; Ke-Tien Multiphase flow separation and measurement system
US5589642A (en) 1994-09-13 1996-12-31 Agar Corporation Inc. High void fraction multi-phase fluid flow meter
US5570744A (en) * 1994-11-28 1996-11-05 Atlantic Richfield Company Separator systems for well production fluids
WO1998022783A1 (fr) * 1996-11-19 1998-05-28 Jianwen Dou Dispositif et procede pour mesurer le debit pour un fluide a trois phases
WO1999005482A1 (en) * 1997-07-28 1999-02-04 Texaco Development Corporation Reduction in overall size, weight and extension of dynamic range of fluid metering systems
US6089039A (en) * 1998-03-12 2000-07-18 Yamauchi; Noriyuki Air conditioner and condenser used therefor
US6234030B1 (en) * 1998-08-28 2001-05-22 Rosewood Equipment Company Multiphase metering method for multiphase flow

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493886A1 (en) * 1991-01-03 1992-07-08 Texaco Development Corporation Multiphase flow rate monitoring means and method
EP0738880A2 (en) * 1992-03-17 1996-10-23 Agar Corporation Incorporated Apparatus and method for measuring two- or three- phase fluid flow utilizing one or more momentum flow meters and a volumetric flow meter
EP0684458A2 (en) * 1994-05-27 1995-11-29 Schlumberger Holdings Limited Multiphase flow meter
EP0690292A2 (en) * 1994-06-27 1996-01-03 Texaco Development Corporation Multi-phase fluid flow monitor and method
CN2293799Y (zh) * 1996-10-09 1998-10-07 西安交通大学 油气水三相流量仪
CN1182873A (zh) * 1996-11-19 1998-05-27 窦剑文 油气水三相流量测量装置及测量方法
CN2311758Y (zh) * 1997-11-07 1999-03-24 窦剑文 段塞发生装置及使用该装置的油汽水三相流量测量装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883769B2 (en) 2003-06-18 2011-02-08 3M Innovative Properties Company Integrally foamed microstructured article

Also Published As

Publication number Publication date
NO335941B1 (no) 2015-03-30
CN2349553Y (zh) 1999-11-17
US6532826B1 (en) 2003-03-18
NO20010471D0 (no) 2001-01-26
GB0101831D0 (en) 2001-03-07
GB2361322B (en) 2002-09-25
AU3022899A (en) 2000-02-21
NO20010471L (no) 2001-03-28
GB2361322A (en) 2001-10-17

Similar Documents

Publication Publication Date Title
WO2000006974A1 (fr) Dispositif de mesure de l'ecoulement polyphasique de fluides gazeux
CN101363745B (zh) 多相流计量方法及多相流质量流量计
EP1305579B1 (en) A meter for the measurement of multiphase fluids and wet gas
CN108291829B (zh) 多相流测量系统和方法
Johnson et al. Heat transfer and pressure drop for turbulent flow of air-water mixtures in a horizontal pipe
JP2790260B2 (ja) 1つまたはそれ以上の運動量流量計と1つの体積流量計を使用して二相または三相流体の流量を測定するための装置と方法
WO2013102312A1 (zh) 一种蒸汽流量计量装置及计量方法
WO2004102131A1 (fr) Regulateur d'ecoulement a trois phases pour huile, gaz et eau, et procede et appareil de mesure de l'ecoulement a trois phases pour huile, gaz et eau
Ahmed et al. Development of two-phase flow downstream of a horizontal sudden expansion
Hua et al. Wet gas meter based on the vortex precession frequency and differential pressure combination of swirlmeter
WO2017133588A1 (zh) 一种油气水三相流量计
Tan et al. Mass flow rate measurement of oil-water two-phase flow by a long-waist cone meter
CN102147385A (zh) 基于单截面阻抗式长腰内锥传感器的多相流测量方法
EA010415B1 (ru) Расходомер для многофазного потока
US20040187598A1 (en) Restriction flowmeter
Tan et al. Experimental and numerical design of a long-waist cone flow meter
RU2319003C1 (ru) Способ определения массового расхода газожидкостной смеси
JPH08271309A (ja) 多相流流量計
Li et al. Mass flowrate measurement of wet steam using combined V-cone and vortex flowmeters
WO1998022783A1 (fr) Dispositif et procede pour mesurer le debit pour un fluide a trois phases
CN208075946U (zh) 一种油气水三相流量计
Sun et al. Influence of bluff body shape on wall pressure distribution in vortex flowmeter
CN106017588B (zh) 一种多相流计量系统及方法
贺登辉 et al. Online measurement of gas and liquid flow rate in wet gas base on single V-cone throttle
CN217151918U (zh) 一种油气水三相流量计

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: GB

Ref document number: 200101831

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09744742

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA