WO2000004627A1 - Circuit for regulated power supply for a charge - Google Patents

Circuit for regulated power supply for a charge Download PDF

Info

Publication number
WO2000004627A1
WO2000004627A1 PCT/DE1999/002105 DE9902105W WO0004627A1 WO 2000004627 A1 WO2000004627 A1 WO 2000004627A1 DE 9902105 W DE9902105 W DE 9902105W WO 0004627 A1 WO0004627 A1 WO 0004627A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
voltage
oscillator
circuit
series
Prior art date
Application number
PCT/DE1999/002105
Other languages
German (de)
French (fr)
Inventor
Bernhard Streich
Thomas Schuhbauer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2000004627A1 publication Critical patent/WO2000004627A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0041Control circuits in which a clock signal is selectively enabled or disabled

Definitions

  • the invention relates to a circuit for regulated voltage supply to a load, with a series circuit comprising a capacitor and a choke coil, a free-wheeling diode being connected in parallel to the series circuit and a switching element connected in series, which is controlled by an oscillator in such a way that in Operation of the circuit, the capacitor is charged in pulses and the load is supplied by a voltage across the capacitor.
  • a generic circuit is used in known devices. However, such a circuit cannot be documented in writing. With such circuits, electronic components from the network are driven with AC or DC voltage without the need for a voltage converter in a conventional manner.
  • the above-mentioned circuit delivers a low voltage with a low power loss starting from usually available input control voltages, e.g. of approx. 12 volts, for supplying electronic components.
  • the pulse-pause ratio of the oscillator must be matched very precisely to the power consumption of the connected electronic components. The electrical energy with which the capacitor must be recharged depends on this pulse-pause ratio, since this is withdrawn from the capacitor by the load.
  • the invention is therefore based on the object of improving a circuit of the type mentioned above in such a way that the circuit provides the required extra-low voltage for loads of different sizes with low power dissipation when an AC power supply with DC and AC voltage in the range from 50 to 500 volts is provided on the network side is provided.
  • the object is achieved in that a control element is connected in parallel with the capacitor, with which the connection duration of the switching element can be varied depending on the voltage at the capacitor. This represents a solution with a low component expenditure, which enables the adaptation to loads of different sizes in a simple manner.
  • control element has a comparator which, depending on the reference voltages present on the input side, is dependent on the
  • Voltage on the capacitor are derived, which controls the switching on and off of the oscillator.
  • An optocoupler is also used to isolate the potential between the high voltage on the capacitor and the voltage potential at which the oscillator is located.
  • control element has an optocoupler, the transmitter diode of which is supplied with current above a threshold value of the voltage across the capacitor, the changing resistance of the transistor associated with the optocoupler resulting in a change in the pulse-pause ratio of the oscillator.
  • a transformer is advantageously provided, the primary winding of which is connected in series with the capacitor and the supply voltage of the oscillator is coupled in via its secondary winding.
  • a particularly advantageous embodiment is present when the support is designed by means of a rod choke with a surrounding winding which is applied to a tube.
  • FIG. 1 shows a basic structure of a voltage supply power supply for connection to a mains universal power supply
  • FIG. 2 shows a circuit of the voltage supply power supply according to FIG. 1 with a comparator as a control element
  • FIG. 5 shows a circuit with an optocoupler as a control element
  • FIG. 6 shows a circuit using a transformer for supplying power to an oscillator with reduced power loss
  • FIG. 7 shows a transformer in the form of a cylinder.
  • FIG. 1 shows the basic structure of a voltage supply power supply unit for connection to a mains universal power supply with AC or DC voltage of 50 to 500 volts as it is based on the embodiments described below in accordance with FIGS. 2, 4 and 5.
  • the voltage supply power supply has a rectifier bridge 1 on the input side, to which a voltage block 2 is connected, which is connected to an oscillator 3.
  • a series circuit comprising a capacitor 4, a choke coil 5 and a switching element 6 is connected in parallel with the voltage block 2 and is controlled via the oscillator 3.
  • the oscillator 3 supplied via the voltage block 2 operates at a fixed frequency and a fixed pulse-pause ratio.
  • the switching element 6, for example a transistor, is controlled and opened in accordance with this pulse-pause ratio, so that the capacitor 4 can accordingly charge in a pulsed manner via the supply voltage present at the output of the rectifier bridge 1.
  • a low voltage for supplying a load L is formed on the capacitor 4. The level of this extra-low voltage depends on the one hand on the size of the load L and the connection time of the switching element 6, ie the length of the charge pulses with which the capacitor 4 is charged.
  • a control element 7 is connected in parallel in the capacitor 4. With this the connection time of the
  • Switching element 6 varies depending on the level of the low voltage on the capacitor 4.
  • the control member 7 is connected to the oscillator 3 for this purpose.
  • a freewheeling diode 8 is connected in parallel with the series connection, consisting of the capacitor 4 and the choke coil 5, which results in a recharging of the capacitor 4 due to the magnetic energy stored in the choke coil 5 after the current flow through the switching element 6 has been interrupted.
  • FIG. 2 shows a detailed circuit diagram of the power supply described above.
  • the rectifier bridge 1 On the input side, it has the rectifier bridge 1 already mentioned, on the output side of which is the series circuit comprising the capacitor 4, the inductor 5 and the transistor 6.
  • the freewheeling diode 8 is connected in parallel with the series connection of the capacitor 4 and the choke coil 5.
  • the voltage supply block 2 here has a diode 10 and a parallel circuit connected in series therewith, which on the other hand is connected to the negative pole of the rectifier bridge 1.
  • One parallel branch contains a series connection of an ohmic resistor 11 and a Zener diode 12.
  • In the other parallel branch there is a series connection of an ohmic resistor 13, a transistor 14 and a capacitor 16.
  • the base of the transistor 14 is at a connection point 15 between the ohmic Wi - The state 11 and the Zener diode 12 of the other parallel branch switched on.
  • a capacitor is connected in parallel with the Zener diode 12
  • the oscillator 3 is at the connection point
  • connection terminals 22 for the voltage supply of a load L are parallel to the capacitor 4.
  • the control element 7, which is also parallel to the capacitor 4, is essentially formed here from a comparator 23, on the input side of which the voltage on the capacitor 4 reduced by means of a voltage divider is used as the threshold value to be monitored is created.
  • the operational amplifier 23 is connected to the oscillator 3 via an optocoupler 24.
  • the voltage supply power supply unit is used to connect to a DC mains voltage or AC mains voltage in the range of, for example, 50 to 500 volts. Accordingly, a voltage is established at the voltage block 2, the transistor 14 of which, in the series regulator principle, provides a supply voltage for the downstream oscillator 3 with a low current consumption which is below 500 ⁇ A.
  • the control supply voltage at the output of the rectifier bridge 1 is also applied to the series circuit, consisting of the capacitor 4, the choke coil 5 and the switching element 6, as a conclusion about the rectifier 1. By switching the switching element 6 on and off, a low voltage is set at the capacitor 4, the level of which can be influenced by the ratio of switching the switching element 6 on and off, which is done here in particular by the control by the oscillator 3.
  • the low voltage on the capacitor 4 is kept between two threshold values by means of the compensator 23, in that the oscillator 3 is switched off by the above-mentioned feedback when the upper threshold value is exceeded and the oscillator 3 is switched on when the value falls below the lower threshold value.
  • the optocoupler 24 which is interposed in the feedback is used for potential isolation since the low voltage is generated at a comparatively high potential, while the oscillator 3 is at a low potential.
  • FIGS. 3, 5 show the low voltage U c on the capacitor 4 for the load, which is regulated by the oscillator 3 and serves to supply the load L, using two diagrams.
  • the upper diagram according to FIG. 3 shows the one located on the capacitor 4 and regulated with the aid of the oscillator 3
  • Low voltage U c which fluctuates between an upper and a lower threshold value corresponding to the reference voltages at the comparator 23.
  • the signal 21 at the output of the oscillator 3, which controls the switching element 6, is plotted in the lower diagram according to FIG. It shows that the oscillator 3 is switched on when the lower threshold value is reached after the capacitor 4 has been discharged by the applied load L. Then, like a burst packet, pulses with a fixed pulse-pause ratio are given by the oscillator 3 to the switching element 6, as a result of which the capacitor 4 is charged in a pulse-like manner.
  • the optocoupler 24 switches off the oscillator 3, which in turn causes the voltage U c on the capacitor 4 to subside.
  • FIG. 5 shows an exemplary embodiment of a circuit which corresponds in principle to that in FIG. 1 and is constructed in substantial parts in the same way as the circuit in accordance with FIG Circuit differs according to Figure 2.
  • an optocoupler 25 with a Zener diode 26 and an ohmic resistor 27 is connected in parallel to the capacitor 4 in the circuit according to FIG.
  • the control current of the transmission diode of the optocoupler 25 depends on the level of the voltage U c at the capacitor 4.
  • the pulse width of the oscillator 3 is defined with the branch consisting of the ohmic resistor 29, the ohmic resistor 28 and the diode 30.
  • the pause time of the oscillator 3 can be determined with the branch starting verän- 32 and the diode 33 from the ohmic resistance countries'.
  • a zener diode 34 is located in parallel with the capacitor 4, and the voltage across the capacitor 4 is limited by its zener voltage.
  • the low voltage on the capacitor 4, which depends on the duration of the switching element 6, is adjusted here by adjusting the pulse width of the oscillator 3 via the optocoupler 25.
  • the following exemplary embodiment according to FIG. 6 essentially has the difference compared to the circuit according to FIG. 4 that the inductance of the inductor 5 is formed here by a transformer 41.
  • the voltage induced in the secondary winding of the transformer 41 is buffered with a capacitor 34 and limited by a zener diode 35.
  • This voltage is coupled into the supply voltage of the oscillator 3 via a diode gate with the diodes 36 and 37.
  • the series regulator of the voltage block 2 supplies the oscillator 3 only until the voltage on the secondary winding of the transformer 41 is higher than that of the series regulator. This means that the oscillator 3 supplies itself.
  • the power loss normally occurring in voltage block 2 as a result of the reduction of the supply voltage to the supply voltage of oscillator 3 is avoided in this case. Otherwise, the structure and mode of operation correspond to the embodiment according to FIG. 5.
  • the transformer 41 of the exemplary embodiment according to FIG. 6 can be designed in a simple manner according to FIG. 7.
  • a further winding 39 is applied to a standard choke designed as a rod choke 38.
  • This consists of a tube 40 with a winding space, to which the winding 39 is applied.
  • the tube 40 is pushed into the standard throttle 38 and fixed.
  • the standard choke 38 makes a contribution to charging the capacitor 4 to the low voltage U c
  • the applied coil winding 39 is used for feedback and thus for the self-supply of the oscillator 3 in the manner described above.
  • the secondary winding can be adapt in terms of turns and wire cross-section in a simple 'way as circumstances require without a heat sink is required.

Abstract

The invention is based on a circuit known per se that provides a power supply for electronic components, charging a capacitor (4) in a pulse-like manner via a rectifier bridge (1) by means of an oscillator (3) and a circuit element (6), whereby an actuator (7) is added and mounted parallel to the capacitor (4). The actuator (7) controls the oscillator (3) as a function of a low capacitor (4) voltage and influences the connection time of the circuit element (6) via said oscillator (3).

Description

Beschreibungdescription
Schaltung zur geregelten Spannungsversorgung einer LastCircuit for regulated voltage supply to a load
Die Erfindung bezieht sich auf eine Schaltung zur geregelten Spannungsversorgung einer Last, mit einer Serienschaltung aus einem Kondensator und einer Drosselspule, wobei zur Serienschaltung eine Freilaufdiode parallel geschaltet ist und ein Schaltelement in Reihe liegt, das durch einen Oszillator der- art angesteuert wird, daß im Betrieb der Schaltung der Kondensator pulsartig aufgeladen wird und die Last durch eine am Kondensator liegende Spannung versorgt wird.The invention relates to a circuit for regulated voltage supply to a load, with a series circuit comprising a capacitor and a choke coil, a free-wheeling diode being connected in parallel to the series circuit and a switching element connected in series, which is controlled by an oscillator in such a way that in Operation of the circuit, the capacitor is charged in pulses and the load is supplied by a voltage across the capacitor.
Eine gattungsgemäße Schaltung wird bei bekannten Geräten an- gewandt. Druckschriftlich ist eine solche Schaltung jedoch nicht belegbar. Mit derartigen Schaltungen werden Elektronikkomponenten aus dem Netz mit Wechsel- oder Gleichspannung angesteuert, ohne daß in konventioneller Weise ein Spannungswandler erforderlich ist. Die oben genannte Schaltung liefert bei geringer Verlustleistung ausgehend von üblicherweise zur Verfügung stehenden EingangssteuerSpannungen eine Kleinspannung, z.B. von ca. 12 Volt, zur Versorgung von Elektronikkomponenten. Bei der oben erwähnten, bekannten Schaltung muß allerdings das Puls-Pausenverhältnis des Oszillators sehr genau auf den Stromverbrauch der angeschlossenen Elektronikkomponenten abgestimmt werden. Von diesem Puls-Pausenverhältnis hängt nämlich die elektrische Energie ab, mit der der Kondensator nachgeladen werden muß, da diese dem Kondensator durch die Belastung entzogen wird.A generic circuit is used in known devices. However, such a circuit cannot be documented in writing. With such circuits, electronic components from the network are driven with AC or DC voltage without the need for a voltage converter in a conventional manner. The above-mentioned circuit delivers a low voltage with a low power loss starting from usually available input control voltages, e.g. of approx. 12 volts, for supplying electronic components. In the known circuit mentioned above, however, the pulse-pause ratio of the oscillator must be matched very precisely to the power consumption of the connected electronic components. The electrical energy with which the capacitor must be recharged depends on this pulse-pause ratio, since this is withdrawn from the capacitor by the load.
Daher liegt der Erfindung die Aufgabe zugrunde, eine Schaltung der obengenannten Art dahingehend zu verbessern, daß die Schaltung für Lasten unterschiedlicher Größe bei geringer Verlustleistung die erforderliche Kleinspannung zur Verfügung stellt, wenn netzseitig eine Allstromansteuerung mit Gleich- und Wechselspannung im Bereich von 50 bis 500 Volt vorgesehen ist. Die Aufgabe wird dadurch gelöst, daß zum Kondensator ein Steuerglied parallel liegt, mit dem die Zuschaltdauer des Schaltelements abhängig von der Spannung am Kondensator variierbar ist. Dies stellt eine Lösung mit geringem Bauteile- aufwand dar, die auf einfache Weise die Anpassung an unterschiedlich große Lasten ermöglicht.The invention is therefore based on the object of improving a circuit of the type mentioned above in such a way that the circuit provides the required extra-low voltage for loads of different sizes with low power dissipation when an AC power supply with DC and AC voltage in the range from 50 to 500 volts is provided on the network side is provided. The object is achieved in that a control element is connected in parallel with the capacitor, with which the connection duration of the switching element can be varied depending on the voltage at the capacitor. This represents a solution with a low component expenditure, which enables the adaptation to loads of different sizes in a simple manner.
Eine besonders vorteilhafte Ausführungsform besteht, wenn das Steuerglied einen Komparator aufweist, der abhängig von den eingangsseitig anliegenden Referenzspannungen, die von derA particularly advantageous embodiment exists if the control element has a comparator which, depending on the reference voltages present on the input side, is dependent on the
Spannung am Kondensator abgeleitet werden, die Ein- und Ausschaltung des Oszillators steuert. Dabei wird außerdem zur Potentialtrennung zwischen der auf hohem Potential liegenden Spannung am Kondensator und dem Spannungspotential, auf dem der Oszillator liegt, ein Optokoppler eingesetzt.Voltage on the capacitor are derived, which controls the switching on and off of the oscillator. An optocoupler is also used to isolate the potential between the high voltage on the capacitor and the voltage potential at which the oscillator is located.
Eine weitere vorteilhafte Ausführungsform ist gegeben, wenn das Steuerglied einen Optokoppler aufweist, dessen Sendediode oberhalb eines Schwellwertes der Spannung am Kondensator mit Strom beaufschlagt ist, wobei der sich ändernde Widerstand des zum Optokoppler zugehörigen Transistors eine Veränderung des Puls-Pausenverhältnisses des Oszillators zur Folge hat.A further advantageous embodiment is provided if the control element has an optocoupler, the transmitter diode of which is supplied with current above a threshold value of the voltage across the capacitor, the changing resistance of the transistor associated with the optocoupler resulting in a change in the pulse-pause ratio of the oscillator.
Vorteilhafter Weise ist anstelle der Drossel ein Übertrager vorgesehen, dessen Primärwicklung in Reihe zum Kondensator liegt und über dessen Sekundärwicklung die VersorgungsSpannung des Oszillators eingekoppelt ist.Instead of the choke, a transformer is advantageously provided, the primary winding of which is connected in series with the capacitor and the supply voltage of the oscillator is coupled in via its secondary winding.
Eine besonders vorteilhafte Ausgestaltung liegt vor, wenn der Ubetrager durch eine Stabdrossel mit einer umliegenden Wicklung ausgeführt ist, die auf einer Röhre aufgebracht ist.A particularly advantageous embodiment is present when the support is designed by means of a rod choke with a surrounding winding which is applied to a tube.
Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand einer Zeichnung näher erläutert. Es zeigen: FIG 1 einen prinzipiellen Aufbau eines Spannungsversor-' gungsnetzteils zum Anschluß an eine Netz-Allstromversorgung, FIG 2 eine Schaltung des Spannungsversorgungsnetzteils gemäß FIG 1 mit einem Komparator als Steuerglied,An embodiment of the invention is explained below with reference to a drawing. Show it: 1 shows a basic structure of a voltage supply power supply for connection to a mains universal power supply, FIG. 2 shows a circuit of the voltage supply power supply according to FIG. 1 with a comparator as a control element,
FIG 3,4 zwei Diagramme zur Veranschaulichung der Wirkungsweise des gemäß FIG 2 als Steuerglied eingesetzten Komparators , FIG 5 eine Schaltung mit einem Optokoppler als Steuer- glied,3.4 shows two diagrams to illustrate the mode of operation of the comparator used as a control element in accordance with FIG. 2, FIG. 5 shows a circuit with an optocoupler as a control element,
FIG 6 eine Schaltung unter Einsatz eines Übertragers zur Spannungsversorgung eines Oszillators bei reduzierter Verlustleistung und FIG 7 einen Übertrager in Zylinderform.6 shows a circuit using a transformer for supplying power to an oscillator with reduced power loss, and FIG. 7 shows a transformer in the form of a cylinder.
Figur 1 zeigt den prinzipiellen Aufbau eines Spannungsversorgungsnetzteils zum Anschluß an eine Netz-Allstromversorgung mit Wechsel- oder Gleichspannung von 50 bis 500 Volt wie es den nachfolgend beschriebenen Ausführungsformen gemäß FIG 2, 4 und 5 zugrunde liegt. Das Spannungsversorgungsnetzteil weist eingangsseitig eine Gleichrichterbrücke 1 auf, an die ein Spannungsblock 2 angeschlossen ist, der mit einem Oszillator 3 in Verbindung steht. Parallel zum Spannungsblock 2 ist eine Reihenschaltung aus einem Kondensator 4, einer Dros- seispule 5 und einem Schaltelement 6 geschaltet, dessen An- steuerung über den Oszillator 3 erfolgt.FIG. 1 shows the basic structure of a voltage supply power supply unit for connection to a mains universal power supply with AC or DC voltage of 50 to 500 volts as it is based on the embodiments described below in accordance with FIGS. 2, 4 and 5. The voltage supply power supply has a rectifier bridge 1 on the input side, to which a voltage block 2 is connected, which is connected to an oscillator 3. A series circuit comprising a capacitor 4, a choke coil 5 and a switching element 6 is connected in parallel with the voltage block 2 and is controlled via the oscillator 3.
Der über den Spannungsblock 2 versorgte Oszillator 3 arbeitet mit einer festen Frequenz und einem festen Puls-Pausenver- hältnis. Das Schaltelement 6, z.B. ein Transistor, wird entsprechend diesem Puls-Pausenverhältnis angesteuert und geöffnet, so daß sich dementsprechend der Kondensator 4 pulsartig über die anstehende Speisespannung am Ausgang der Gleichrichterbrücke 1 aufladen kann. An dem Kondensator 4 bildet sich eine Kleinspannung zur Versorgung einer Last L aus. Die Höhe dieser Kleinspannung ist abhängig einerseits von der Größe der Last L sowie der Zuschaltdauer des Schaltelements 6, d.h. der Länge der Ladungsimpulse, mit denen der Kondensator 4 aufgeladen wird.The oscillator 3 supplied via the voltage block 2 operates at a fixed frequency and a fixed pulse-pause ratio. The switching element 6, for example a transistor, is controlled and opened in accordance with this pulse-pause ratio, so that the capacitor 4 can accordingly charge in a pulsed manner via the supply voltage present at the output of the rectifier bridge 1. A low voltage for supplying a load L is formed on the capacitor 4. The level of this extra-low voltage depends on the one hand on the size of the load L and the connection time of the switching element 6, ie the length of the charge pulses with which the capacitor 4 is charged.
Erfindungsgemäß wird im Kondensator 4 ein Steuerglied 7 pa- rallel geschaltet. Mit diesem wird die Zuschaltdauer desAccording to the invention, a control element 7 is connected in parallel in the capacitor 4. With this the connection time of the
Schaltelements 6 abhängig von der Höhe der Kleinspannung an dem Kondensator 4 variiert. Das Steuerglied 7 steht hierzu mit dem Oszillator 3 in Verbindung. Parallel zur Reihenschaltung, bestehend aus dem Kondensator 4 und der Drosselspule 5 ist eine Freilaufdiode 8 geschaltet, welche eine Nachladung des Kondensators 4 aufgrund der in der Drosselspule 5 gespeicherten magnetischen Energie zur Folge hat, nachdem der Stromfluß durch das Schaltelement 6 unterbrochen wurde.Switching element 6 varies depending on the level of the low voltage on the capacitor 4. The control member 7 is connected to the oscillator 3 for this purpose. A freewheeling diode 8 is connected in parallel with the series connection, consisting of the capacitor 4 and the choke coil 5, which results in a recharging of the capacitor 4 due to the magnetic energy stored in the choke coil 5 after the current flow through the switching element 6 has been interrupted.
Figur 2 zeigt einen detaillierten Schaltplan des oben beschriebenen Spannungsversorgungsnetzteils. Es weist eingangs- seitig die bereits erwähnte Gleichrichterbrücke 1 auf, an der ausgangsseitig die Reihenschaltung aus dem Kondensator 4, der Drosselspule 5 und dem Transistor 6 liegt. Parallel zur Rei- henschaltung aus dem Kondensator 4 und der Drosselspule 5 ist die Freilaufdiode 8 geschaltet. Der Spannungsversorgungsblock 2 weist hier eine Diode 10 sowie eine dazu in Reihe liegende Parallelschaltung auf, die andererseits mit dem Minuspol der Gleichrichterbrücke 1 verbunden ist. Der eine Parallelzweig enthält eine Reihenschaltung aus einem ohmschen Widerstand 11 und einer Zenerdiode 12. Im anderen Parallelzweig liegt eine Reihenschaltung aus einem ohmschen Widerstand 13 , einem Transistor 14 und einem Kondensator 16. Die Basis des Transistors 14 ist an einen Verbindungspunkt 15 zwischen dem ohmschen Wi- derstand 11 und der Zenerdiode 12 des anderen Parallelzweigs angeschaltet. Parallel zur Zenerdiode 12 ist ein KondensatorFigure 2 shows a detailed circuit diagram of the power supply described above. On the input side, it has the rectifier bridge 1 already mentioned, on the output side of which is the series circuit comprising the capacitor 4, the inductor 5 and the transistor 6. The freewheeling diode 8 is connected in parallel with the series connection of the capacitor 4 and the choke coil 5. The voltage supply block 2 here has a diode 10 and a parallel circuit connected in series therewith, which on the other hand is connected to the negative pole of the rectifier bridge 1. One parallel branch contains a series connection of an ohmic resistor 11 and a Zener diode 12. In the other parallel branch there is a series connection of an ohmic resistor 13, a transistor 14 and a capacitor 16. The base of the transistor 14 is at a connection point 15 between the ohmic Wi - The state 11 and the Zener diode 12 of the other parallel branch switched on. A capacitor is connected in parallel with the Zener diode 12
17 geschaltet. Der Oszillator 3 ist an den Verbindungspunkt17 switched. The oscillator 3 is at the connection point
18 zwischen dem Transistor 14 und dem Kondensator 16 angeschlossen. Er ist im wesentlichen aus zwei in Reihe liegenden Operationsverstärkern 19, 20 aufgebaut und entspricht hinsichtlich Aufbau und Wirkungsweise bekannten Schaltungen, wie z.B. aus dem Schrifttum "elrad", Verlag Heinz Heise, 1989, 1. Auflage, Band 1, Seite 23, Bild 4, zu entnehmen ist. Der* Ausgang 21 des Oszillators 3 ist mit der Basis des Transistors 6 verbunden.18 connected between the transistor 14 and the capacitor 16. It is essentially composed of two operational amplifiers 19, 20 and corresponds in terms of structure and mode of operation to known circuits, such as from the literature "elrad", Verlag Heinz Heise, 1989, 1st edition, volume 1, page 23, picture 4. The * output 21 of the oscillator 3 is connected to the base of the transistor 6.
Parallel zum Kondensator 4 liegen die Anschlußklemmen 22 zur Spannungsversorgung einer Last L. Das ebenfalls zum Kondensator 4 parallel liegende Steuerglied 7 ist hier im wesentlichen aus einem Komparator 23 gebildet, an dessen Eingangsseite die mittels Spannungsteiler reduzierte Spannung am Kon- densator 4 als zu überwachender Schwellwert angelegt ist. Ausgangsseitig ist der Operationsverstärker 23 über einen Optokoppler 24 mit dem Oszillator 3 verbunden.The connection terminals 22 for the voltage supply of a load L are parallel to the capacitor 4. The control element 7, which is also parallel to the capacitor 4, is essentially formed here from a comparator 23, on the input side of which the voltage on the capacitor 4 reduced by means of a voltage divider is used as the threshold value to be monitored is created. On the output side, the operational amplifier 23 is connected to the oscillator 3 via an optocoupler 24.
Das Spannungsversorgungsnetzteil dient zum Anschluß an eine Netz-Gleichspannung bzw. Netz-Wechselspannung im Bereich von z.B. 50 bis 500 Volt. Dementsprechend stellt sich eine Spannung am Spannungsblock 2 ein, dessen Transistor 14 im Längsreglerprinzip eine Versorgungsspannung für den nachgeschalteten Oszillator 3 mit einer geringen Stromaufnahme bereit- stellt, die unterhalb von 500 μA liegt. Die Steuerspeisespannung am Ausgang der Gleichrichterbrücke 1 liegt ebenfalls an der Reihenschaltung, bestehend aus dem Kondensator 4, der Drosselspule 5 und dem Schaltelement 6 als Rückschluß zum Gleichrichter 1 an. Durch Ein- und Ausschalten des Schaltele- ments 6 stellt sich am Kondensator 4 eine Kleinspannung ein, deren Höhe über das Verhältnis von Ein- und Ausschaltung des Schaltelements 6 beeinflußbar ist, was hier speziell über die Ansteuerung durch den Oszillator 3 erfolgt. Mittels des Kom- pensators 23 wird die Kleinspannung am Kondensator 4 zwischen zwei Schwellwerten gehalten, indem der Oszillator 3 bei Überschreiten des oberen Schwellwertes durch die oben erwähnte Rückkopplung abgeschaltet wird und bei Unterschreiten des unteren Schwellwertes die Zuschaltung des Oszillators 3 erfolgt. Der in der Rückkopplung zwischengeschaltete Optokopp- 1er 24 dient zur Potentialtrennung, da hier die Kleinspannung auf vergleichsweise hohem Potential erzeugt wird, während der Oszillator 3 auf niedrigem Potential liegt. In den Figuren 3, 5 ist die durch den Oszillator 3 geregelte, zur Spannungsversorgung der Last L dienende Kleinspannung Uc am Kondensator 4 für die Last anhand zweier Diagramme dargestellt. Das obere Diagramm gemäß Figur 3 zeigt die am Konden- sator 4 liegende, mit Hilfe des Oszillators 3 geregelteThe voltage supply power supply unit is used to connect to a DC mains voltage or AC mains voltage in the range of, for example, 50 to 500 volts. Accordingly, a voltage is established at the voltage block 2, the transistor 14 of which, in the series regulator principle, provides a supply voltage for the downstream oscillator 3 with a low current consumption which is below 500 μA. The control supply voltage at the output of the rectifier bridge 1 is also applied to the series circuit, consisting of the capacitor 4, the choke coil 5 and the switching element 6, as a conclusion about the rectifier 1. By switching the switching element 6 on and off, a low voltage is set at the capacitor 4, the level of which can be influenced by the ratio of switching the switching element 6 on and off, which is done here in particular by the control by the oscillator 3. The low voltage on the capacitor 4 is kept between two threshold values by means of the compensator 23, in that the oscillator 3 is switched off by the above-mentioned feedback when the upper threshold value is exceeded and the oscillator 3 is switched on when the value falls below the lower threshold value. The optocoupler 24 which is interposed in the feedback is used for potential isolation since the low voltage is generated at a comparatively high potential, while the oscillator 3 is at a low potential. FIGS. 3, 5 show the low voltage U c on the capacitor 4 for the load, which is regulated by the oscillator 3 and serves to supply the load L, using two diagrams. The upper diagram according to FIG. 3 shows the one located on the capacitor 4 and regulated with the aid of the oscillator 3
Kleinspannung Uc, die zwischen einem oberen und einem unteren Schwellwert entsprechend den Referenzspannungen am Komparator 23 schwankt. Im unteren Diagramm gemäß Figur 4 ist das am Ausgang des Oszillators 3 liegende Signal 21 aufgetragen, das das Schaltelement 6 steuert. Es zeigt, daß der Oszillator 3 bei Erreichen des unteren Schwellwertes nach Entladung des Kondensators 4 durch die anliegende Last L eingeschaltet wird. Daraufhin werden ähnlich einem Burst-Paket Pulse mit festem Puls-Pausenverhältnis durch den Oszillator 3 an das Schaltelement 6 gegeben, wodurch der Kondensator 4 pulsartig aufgeladen wird. Bei Erreichen der oberen Schwelle des Kompa- rators 23 erfolgt über den Optokoppler 24 eine Abschaltung des Oszillators 3, die wiederum ein Abklingen der Spannung Uc an dem Kondensator 4 zur Folge hat.Low voltage U c , which fluctuates between an upper and a lower threshold value corresponding to the reference voltages at the comparator 23. The signal 21 at the output of the oscillator 3, which controls the switching element 6, is plotted in the lower diagram according to FIG. It shows that the oscillator 3 is switched on when the lower threshold value is reached after the capacitor 4 has been discharged by the applied load L. Then, like a burst packet, pulses with a fixed pulse-pause ratio are given by the oscillator 3 to the switching element 6, as a result of which the capacitor 4 is charged in a pulse-like manner. When the upper threshold of the comparator 23 is reached, the optocoupler 24 switches off the oscillator 3, which in turn causes the voltage U c on the capacitor 4 to subside.
In Figur 5 ist ein Ausführungsbeispiel eine Schaltung dargestellt, die prinzipiell mit der in Figur 1 übereinstimmt und in wesentlichen Teilen in gleicher Weise aufgebaut ist wie die Schaltung nach Figur 2. Im folgenden wird daher nur auf den Aufbau eingegangen, soweit er von der oben beschriebenen Schaltung gemäß Figur 2 abweicht. Anstelle des Komparators 23 wird bei der Schaltung gemäß Figur 4 zum Kondensator 4 ein Optokoppler 25 mit Zenerdiode 26 und ohmschen Widerstand 27 parallelgeschaltet. Der Steuerstrom der Sendediode des Opto- kopplers 25 hängt von der Höhe der Spannung Uc am Kondensator 4 ab. Der Ausgang des Optokopplers 25 d.h. der dazugehörige Transistor, beeinflußt den Widerstand 28 durch seinen sich ändernden Parallelwiderstand. Mit dem Zweig bestehend aus dem ohmschen Widerstand 29, dem ohmschen Widerstand 28 und der Diode 30 wird die Pulsbreite des Oszillators 3 festgelegt. Seine Frequenz ist mit dem Kondensator 31 einstellbar. Die Pausenzeit des Oszillators 3 läßt sich mit dem Zweig beste- hend aus dem ohmschen Widerstand 32 und der Diode 33 verän-' dern. Parallel zum Kondensator 4 liegt eine Zenerdiode 34, durch deren Zenerspannung die Spannung am Kondensator 4 begrenzt wird. Die Kleinspannung am Kondensator 4, die von der Zuschaltdauer des Schaltelements 6 abhängt, wird hier durch Anpassung der Pulsbreite des Oszillators 3 über den Optokoppler 25 angepaßt.FIG. 5 shows an exemplary embodiment of a circuit which corresponds in principle to that in FIG. 1 and is constructed in substantial parts in the same way as the circuit in accordance with FIG Circuit differs according to Figure 2. Instead of the comparator 23, an optocoupler 25 with a Zener diode 26 and an ohmic resistor 27 is connected in parallel to the capacitor 4 in the circuit according to FIG. The control current of the transmission diode of the optocoupler 25 depends on the level of the voltage U c at the capacitor 4. The output of the optocoupler 25, ie the associated transistor, influences the resistor 28 by its changing parallel resistance. The pulse width of the oscillator 3 is defined with the branch consisting of the ohmic resistor 29, the ohmic resistor 28 and the diode 30. Its frequency can be adjusted with the capacitor 31. The pause time of the oscillator 3 can be determined with the branch starting verän- 32 and the diode 33 from the ohmic resistance countries'. A zener diode 34 is located in parallel with the capacitor 4, and the voltage across the capacitor 4 is limited by its zener voltage. The low voltage on the capacitor 4, which depends on the duration of the switching element 6, is adjusted here by adjusting the pulse width of the oscillator 3 via the optocoupler 25.
Das folgende Ausführungsbeispiel gemäß Figur 6 weist im Ver- gleich zur Schaltung gemäß Figur 4 im wesentlichen den Unterschied auf, daß die Induktivität der Drosselspule 5 hier durch einen Übertrager 41 gebildet ist. Die in der Sekundärwicklung des Übertragers 41 induzierte Spannung wird mit einem Kondensator 34 gepuffert und durch eine Zenerdiode 35 be- grenzt. Über ein Diodengatter mit den Dioden 36 und 37 wird diese Spannung in die VersorgungsSpannung des Oszillators 3 eingekoppelt. Hier versorgt der Längsregler des Spannungsblocks 2 den Oszillator 3 nur solange, bis die Spannung an der Sekundärwicklung des Übertragers 41 höher ist als die vom Längsregler. Dies bedeutet, daß der Oszillator 3 sich selbst versorgt. Die üblicherweise im Spannungsblock 2 auftretende Verlustleistung als Folge der Reduzierung der Speisespannung auf die Versorgungsspannung des Oszillator 3 wird hierbei vermieden. Im übrigen entsprechen Aufbau und Wirkungsweise der Ausführungsform gemäß Figur 5.The following exemplary embodiment according to FIG. 6 essentially has the difference compared to the circuit according to FIG. 4 that the inductance of the inductor 5 is formed here by a transformer 41. The voltage induced in the secondary winding of the transformer 41 is buffered with a capacitor 34 and limited by a zener diode 35. This voltage is coupled into the supply voltage of the oscillator 3 via a diode gate with the diodes 36 and 37. Here, the series regulator of the voltage block 2 supplies the oscillator 3 only until the voltage on the secondary winding of the transformer 41 is higher than that of the series regulator. This means that the oscillator 3 supplies itself. The power loss normally occurring in voltage block 2 as a result of the reduction of the supply voltage to the supply voltage of oscillator 3 is avoided in this case. Otherwise, the structure and mode of operation correspond to the embodiment according to FIG. 5.
Der Übertrager 41 des Ausführungsbeispiel gemäß Figur 6 kann in einfacher Weise gemäß Figur 7 ausgeführt sein. Auf eine als Stabdrossel 38 ausgeführte Standarddrossel wird eine wei- tere Wicklung 39 aufgebracht. Diese besteht aus einer Röhre 40 mit einem Wickelraum, auf die die Wicklung 39 aufgebracht wird. Die Röhre 40 wird in die Standarddrossel 38 hineingeschoben und fixiert. Während die Standarddrossel 38 einen Beitrag zur Aufladung des Kondensators 4 auf die Kleinspan- nung Uc liefert, dient die aufgebrachte Spulenwicklung 39 zur Rückspeisung und damit zur Selbstversorgung des Oszillators 3 in oben beschriebener Weise. Die Sekundärwicklung läßt sich hinsichtlich Windungszahl und Drahtquerschnitt in einfacher' Weise den erforderlichen Gegebenheiten anpassen, ohne daß ein Kühlkörper erforderlich wird. The transformer 41 of the exemplary embodiment according to FIG. 6 can be designed in a simple manner according to FIG. 7. A further winding 39 is applied to a standard choke designed as a rod choke 38. This consists of a tube 40 with a winding space, to which the winding 39 is applied. The tube 40 is pushed into the standard throttle 38 and fixed. While the standard choke 38 makes a contribution to charging the capacitor 4 to the low voltage U c , the applied coil winding 39 is used for feedback and thus for the self-supply of the oscillator 3 in the manner described above. The secondary winding can be adapt in terms of turns and wire cross-section in a simple 'way as circumstances require without a heat sink is required.

Claims

Patentansprüche claims
1. Schaltung zur geregelten Spannungsversorgung einer Last (L) , mit einer Serienschaltung aus einem Kondensator (4) und einer Drosselspule (5) , wobei zur Serienschaltung eine Freilaufdiode (8) parallelgeschaltet ist und ein Schaltelement (6) in Reihe liegt, das durch einen Oszillator (3) derart angesteuert wird, daß im Betrieb der Schaltung der Kondensator (4) pulsartig aufgeladen wird und die Last (L) durch eine am Kondensator (4) liegende Spannung (Uc) versorgt wird, d a d u r c h g e k e n n z e i c h n e t , daß zum Kondensator (4) ein Steuerglied (7) parallel liegt, mit dem die Zuschaltdauer des Schaltelements (6) abhängig von der Spannung (Uc) am Kondensator (4) variierbar ist.1. Circuit for the regulated voltage supply of a load (L), with a series circuit consisting of a capacitor (4) and a choke coil (5), with a free-wheeling diode (8) being connected in parallel and a switching element (6) lying in series through the series circuit an oscillator (3) is driven in such a way that the capacitor (4) is charged in a pulsed manner during operation of the circuit and the load (L) is supplied by a voltage (U c ) on the capacitor (4), characterized in that the capacitor ( 4) a control element (7) is connected in parallel, with which the connection duration of the switching element (6) can be varied depending on the voltage (Uc) on the capacitor (4).
2. Schaltung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Steuerglied (7) einen Komparator (23) aufweist, der abhängig von zwei eingangs- seitig anliegenden Referenzspannungen, die von der Spannung (Uc) am Kondensator (4) abgeleitet werden, die Ein- und Ausschaltung des Oszillators (3) steuert.2. A circuit according to claim 1, characterized in that the control member (7) has a comparator (23) which, depending on two reference voltages present on the input side, which are derived from the voltage (U c ) on the capacitor (4), the one - And switching off the oscillator (3) controls.
3. Schaltung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Steuerglied (7) einen Optokoppler (25) aufweist, dessen Sendediode oberhalb eines Schwellwertes der Spannung (Uc) am Kondensator (4) mit Strom beaufschlagt ist, wobei der sich ändernde Widerstand des zum Optokoppler (25) zugehörigen Transistors eine Veränderung des Puls-Pausenverhältnisses des Oszillators (3) zur Folge hat.3. A circuit according to claim 1, characterized in that the control member (7) has an optocoupler (25), the transmitting diode above a threshold value of the voltage (U c ) on the capacitor (4) is supplied with current, the changing resistance of the Optocoupler (25) associated transistor has a change in the pulse-pause ratio of the oscillator (3).
4. Schaltung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß anstelle der Drossel (5) ein Übertrager (41) vorgesehen ist, dessen Primärwicklung in Reihe zum Kondensator (4) liegt und über dessen Sekundärwicklung die VersorgungsSpannung des Oszillators (3) eingekoppelt ist. 4. A circuit according to claim 3, characterized in that a transformer (41) is provided instead of the choke (5), the primary winding of which is connected in series with the capacitor (4) and the supply voltage of the oscillator (3) is coupled in via its secondary winding.
5. Schaltung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß der Übertrager (41) durch eine Stabdrossel (38) mit einer umliegenden Wicklung (39) ausgeführt ist, die auf einer Röhre (40) aufgebracht ist. 5. A circuit according to claim 4, d a d u r c h g e k e n n z e i c h n e t that the transformer (41) by a rod choke (38) is carried out with a surrounding winding (39) which is applied to a tube (40).
PCT/DE1999/002105 1998-07-14 1999-07-08 Circuit for regulated power supply for a charge WO2000004627A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19831598.8 1998-07-14
DE19831598 1998-07-14

Publications (1)

Publication Number Publication Date
WO2000004627A1 true WO2000004627A1 (en) 2000-01-27

Family

ID=7874047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/002105 WO2000004627A1 (en) 1998-07-14 1999-07-08 Circuit for regulated power supply for a charge

Country Status (1)

Country Link
WO (1) WO2000004627A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1495466A (en) * 1966-05-27 1967-09-22 Thomson Houston Comp Francaise Improvements to series-type switched regulators for high efficiency DC power supplies
US3657572A (en) * 1970-11-20 1972-04-18 Trw Inc Power converter with self-synchronization and bias
GB2022943A (en) * 1978-06-12 1979-12-19 Siemens Ag A.C. to D.C. converter
US4357572A (en) * 1981-03-26 1982-11-02 Bell Telephone Laboratories, Incorporated Current flare out limit control for PWM converter
US4626768A (en) * 1984-01-18 1986-12-02 Steve Smith High-speed feedback circuit with ungrounded load
JPH03207261A (en) * 1990-01-08 1991-09-10 Nippondenso Co Ltd Constant voltage power source device
US5691889A (en) * 1995-12-13 1997-11-25 Unitrode Corporation Controller having feed-forward and synchronization features

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1495466A (en) * 1966-05-27 1967-09-22 Thomson Houston Comp Francaise Improvements to series-type switched regulators for high efficiency DC power supplies
US3657572A (en) * 1970-11-20 1972-04-18 Trw Inc Power converter with self-synchronization and bias
GB2022943A (en) * 1978-06-12 1979-12-19 Siemens Ag A.C. to D.C. converter
US4357572A (en) * 1981-03-26 1982-11-02 Bell Telephone Laboratories, Incorporated Current flare out limit control for PWM converter
US4626768A (en) * 1984-01-18 1986-12-02 Steve Smith High-speed feedback circuit with ungrounded load
JPH03207261A (en) * 1990-01-08 1991-09-10 Nippondenso Co Ltd Constant voltage power source device
US5691889A (en) * 1995-12-13 1997-11-25 Unitrode Corporation Controller having feed-forward and synchronization features

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 15, no. 479 (E - 1141) 5 December 1991 (1991-12-05) *

Similar Documents

Publication Publication Date Title
DE102005055160B4 (en) Control circuit for current and voltage control in a switching power supply
EP0705482B1 (en) Switching contactor driving circuitry
EP0136968A2 (en) Control device for driving an electromagnet with a starting current followed by a holding current
EP0096778A2 (en) Microphone
EP0247409B1 (en) Switching power supply having a primary chopping converter
DE3312209A1 (en) BARRIER SWINGER POWER SUPPLY
DE10231158A1 (en) DC converter
EP0118054A1 (en) Switching power supply with DC input
EP1532726B1 (en) Switching controller
EP0130411B1 (en) Electronic switching power supply
DE4007953C2 (en) DC-DC converter with switched capacitors
WO2000004627A1 (en) Circuit for regulated power supply for a charge
DE3701395C2 (en)
EP0266743B1 (en) Circuit arrangement for producing an internal supply voltage in a switching current supply
EP0635171B1 (en) Switched electronic supply unit
EP0581989B1 (en) Switching regulator with regulation of at least an output voltage
EP0027171A1 (en) Forward D.C. converter
DE3941420C1 (en)
DE4120147C2 (en)
EP0302433B1 (en) Flyback converter
EP0581109B1 (en) Circuit arrangement for controlling a switching element in a backregulator
DE3837561A1 (en) DC voltage converter operating on the principle of a single-ended forward converter
EP0515988B1 (en) Single-ended forward converter with a transformer and with a protection circuit for an electronic switch
EP0228582B1 (en) A circuit arrangement for generating an operating voltage and a horizontal deflection current
DE3903763A1 (en) CLOCKED POWER SUPPLY

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase