WO2000002104A1 - Commande predictive utilisant des moyens de mise en oeuvre a niveaux definis reduits - Google Patents

Commande predictive utilisant des moyens de mise en oeuvre a niveaux definis reduits Download PDF

Info

Publication number
WO2000002104A1
WO2000002104A1 PCT/JP1999/003519 JP9903519W WO0002104A1 WO 2000002104 A1 WO2000002104 A1 WO 2000002104A1 JP 9903519 W JP9903519 W JP 9903519W WO 0002104 A1 WO0002104 A1 WO 0002104A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
control
sequence
term
time
Prior art date
Application number
PCT/JP1999/003519
Other languages
English (en)
French (fr)
Inventor
Takehiko Futatsugi
Hiroo Sato
Original Assignee
Adtex Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP1998/002968 external-priority patent/WO1999046647A1/ja
Application filed by Adtex Inc. filed Critical Adtex Inc.
Priority to AU43946/99A priority Critical patent/AU4394699A/en
Publication of WO2000002104A1 publication Critical patent/WO2000002104A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B21/00Systems involving sampling of the variable controlled
    • G05B21/02Systems involving sampling of the variable controlled electric

Definitions

  • a control value is predicted using a response function, and an operation value calculated as a value that matches a target value and a predicted value is changed to a settable value and output. It relates to a control method that corrects with the integrated value of the error caused by the change to the settable value so that constant bias does not occur even if the operation means with insufficient resolution is used.
  • ⁇ and ⁇ represent continuous sum and continuous product for the subscripts i, j, k, l, tn, n.
  • ⁇ ⁇ may indicate a sequence representing the sum.
  • the control device comprises an input means for R and S, an output means for C, and a means for processing periodically. And means for determining C according to the difference between R and S (called an arithmetic unit and represented by U).
  • U comes with a storage device, which stores the initial data required for programming and control.
  • the input device W, etc. such as when the output value is not output normally due to the above, etc., various sensors, communication means, etc. are attached.
  • These programs, data, or timer T signals can also be obtained externally using communication means.
  • the performance of convenience devices has been improved, and most of the peripheral devices originally attached to the control device are in the parent device or connected to the network, and the main body of the control device is S, R, C , Often, it's just a function that returns C based on D.
  • the calculation between input and output values is a device that transfers numerical values that act as machine cams and gears.
  • input values obtained by observation and settings are pre-processed, then control calculations are performed, and the obtained values are post-processed and output.
  • preprocessing include conversion of voltage and current values to power values, conversion of thermocouple electromotive force to temperature, freezing point detection, and signal / noise ratio.
  • 0N / 0FF control with operation levels of 0 and 1 is an operation method with two levels, and a control system with a control cycle of 10 seconds is an operation method with 11 levels. If the control value is calculated as any other value, it must be selected. This operation is called digitalization (quantization), and fitting to a value is called rounding to that value. When the operation value is fixed to a certain level, the control value also reaches the value (attained level, reached value) determined by that level. The number of attained levels is the same as the set level, N + 1 R *. R * i. ⁇ 11. Minimum set value C *. Corresponds to Achievement level! ⁇ .
  • Is the limit value of the control value, and the attainment level R corresponding to the maximum set value C * N is the other limit value.
  • the range between these limits is the controllable range, which is usually smaller.
  • the post-processing of such an operation value involves digitization, integerization, and linear correction, as well as the operation value calculated as a power value. There are various methods such as conversion of AC into phase angles, etc.
  • the present invention also relates to this post-processing
  • the expression of inputting and outputting values used in control calculations includes the necessary pre-processing and post-processing. .
  • Special numbers are numbers or Greek letters, and general numbers are symbols starting with a letter.
  • the number representing the order of a sequence is called the term order. Subscripts are added to the right of the symbol that represents the sequence, and the term at that position is expressed as the term, the general term is expressed as the n-th term, the limit is expressed as the term, and the term is enclosed within to express the sequence.
  • a sequence in which all terms are 0 is called a zero sequence, and is represented by "0".
  • the left regular sequence is combined with the left regular sequence and 0, and is represented by "[,) 0".
  • the term is larger than a certain term that is not 0.
  • a term in which all terms are 0 is called a term, and the term of the term is called a term, which is denoted by prefixing ⁇ to the sequence.
  • a finite sequence is finite with one or more nonzero terms.
  • Arbitrary time points can be taken as item 0, and past data can be easily used in a sequence.
  • the finite sequence of the first place X and the last place ⁇ is "[X, ⁇ , the left regular sequence of the first place is' ⁇ [1.]", and the sequence of more than three terms is zero. It is represented by "shi 3)".
  • shi 3 Defines the addition and subtraction of a sequence by term-wise addition and subtraction.
  • integer (A10) ae [,) a . ® ⁇ ® l / a n n 1, integer ( ⁇ ') follows the practices of ordinary algebraic rules, subtraction method and the multiplicative method When mixed, we will start with multiplication, division, and addition / subtraction in order from the left.
  • the associative rules, commutative rules, distribution rules, and power rules are established by the definition of the four arithmetic operations. However, division and non-negative powers are limited to left regular sequences.
  • a k becomes a sequence in which the k-th term is 1 and the other terms are 0, Make the nk term of any sequence the n term. Also, any sequence is represented by a formal urent series with its terms. ⁇ — One force Z operator.
  • is the reciprocal sequence of ⁇ .
  • (I) is a recurrence formula for r, simply by assuming ce (,-l>, de (, -1) and the condition (W), the coefficients bi of other terms become 0, and Therefore, the state vector for expressing the past as in the past is not necessary.
  • f a / (lq) e (l,) g ⁇ b / (lq) e (l.) (V)
  • rl fl Co + gi do
  • (ffi) is a recurrence formula with coefficients of finite sequences l and q, so g can be easily calculated by setting the first place of f.g to 1.
  • the control system can be represented by a linear differential equation.
  • the control cycle is ⁇ . ⁇ . ⁇ .
  • the intelligent disturbance d considers the disturbance generated programmatically in the standard model, as well as c.
  • the delay from generation to observation and measure it with nT Let the resulting d be d n- ⁇ . If this delay is a clear d n - 2 and d n - treats as past of the data to be et as of 3.
  • the settings C: and D: are ignored when thinking in a connected system, and when making the transition to a discrete system. After making this assumption, review it after the results are obtained.
  • ⁇ - n r fA- n c + gA- n d (B21) ⁇ - n r, A -n c, ⁇ - n 0-th term is the original of the n-th term of the d,, it has become a ⁇ . Reformed and A- n r, A- return n c, the A _n d r, the cd and a shog (H>. That is, only the left regular basis sequence condition, can turn any time to the 0th Section You.
  • t ⁇ > e for continuous systems and t ⁇ n > for discrete systems with n ⁇ k> q Indicates the delay of rising.
  • t 1 large
  • the rate of change of t n is ri / t and decreases rapidly with increasing t, but the rate of change of e is constant at 1 1.
  • n ⁇ k> q can not be converted into a finite sequence unless (1-qA) k + 1, but if a large number of terms is accepted, the higher order of l (l_qA) h n ⁇ k> q Can be regarded as .0.
  • sequence equation (I) is associated with the constant coefficient differential equation ( ⁇ ).
  • sequence operation that represents differences is essentially different from differentiation, and cannot be completely shifted. In the method just described, this appears as an unnaturalness to the assumption of digitalization.
  • a ⁇ n r fA ⁇ n c + gA _n d (B28)
  • a ⁇ n r qA " n r + aA ⁇ n c + b A ⁇ n d (B29) _ _n r, ⁇ - n c.
  • the first term of n d is the -n term, and the 0th term is the original n. If ⁇ — n r. A— n c, A— n d is harmed to r, c, d again, Return to ⁇ ) ( ⁇ ), that is, any point can be set as the 0th term in (I) ( ⁇ ).
  • q indicates the effect accumulated inside the result r and is a response function that describes phenomena such as useful effects and resonance effects. Phenomena such as resonance or reverberation, where the result does not disappear immediately, can be regarded as a memory effect that caused the result.
  • Phenomena such as resonance or reverberation, where the result does not disappear immediately, can be regarded as a memory effect that caused the result.
  • the energy captured in r as a memory value eventually stops moving toward equilibrium. This is represented by q, and q can be thought of as the response function of the memory effect.
  • a and b are response functions excluding memory effects. In other words, they are response functions that take memory effects into account.
  • (I) ( ⁇ ) is an invariant equation as long as it uses a variable that is a left-regular sequence, and the natural variables are r, c, and d.
  • the oscillating element can eliminate the effect of oscillation by considering the energy as a set (sum), so the pole is a positive real number less than i. Instead of capturing sound as vibrations of the air, we interpret it in terms of sound intensity.
  • temperature control as a model, the area around the temperature control point is wrapped in multiple layers, such as air and heat insulating material, with small heat transfer partitions. Even if it is exposed, there is still a multi-environment around the laboratory bench, the II laboratory, and the research building.
  • the thermal equilibrium in these multiple environmental barriers increases from the inside to the outside and the time constant increases.
  • the array of poles represents multiple spaces. While immediate control is a good answer in a reasonably small space, it can integrate long-term observations. Then, the effect of the outside space is observed one after another. Poles for which no change can be observed during a moderate number of control periods are actually negligible. Also, the contribution of a small (exact value: in principle, abbreviate this adjective) pole term becomes negligible during a small control period, so it is removed from q and the number of a and b terms is increased. Can be approximated. In other words, the poles that are effectively selected are almost equal in size, so they can be represented by the average pole plus the order.
  • a practical control model can be represented by a single pole with less than one positive real value, with a large number of terms a and b. Even if it is represented by multiple poles, as long as the number of terms a and b is not insufficient, processing can be performed with positive poles less than 1 with no large difference in values.
  • the control cycle is determined by evaluating the control pulsation. So I explain pulsation.
  • a term m that can be regarded as an > m 0 exists immediately after the term (FIG. 4). Five).
  • g and b are the same.
  • Such a response function satisfies (D1KD2) and is equivalent to the approximation used in the Jiggler and Nichols sensitivity methods known for the PID control auto-tuning method. Therefore, pulsation is evaluated based on these assumptions (D1) and (D2).
  • Pulsation means that the control value increases or decreases by increasing or decreasing the operation value in the semi-settling state.
  • the other is when it is usually fixed at one operating level and only occasionally moves to the next level for one point in time.
  • fn F (nT) -F ((n-l) T).
  • the control cycle can be determined based on the response function.
  • the determination of 6Jq, wa, ob is determined by analyzing the control system if it is represented by a constant coefficient differential equation. 'If you can also determine q, a. B by analysis, you do not need to calculate from r, c, d. If it cannot be obtained by analysis, it is assumed that wq, ⁇ a, and wb are sufficiently large. As a result of the identification, terms that can be regarded as almost 0 may be deleted or left as they are. If none of the terms is considered to be 0 and the control state is not good, increase wq, wa, and try again. If q, a, and b cannot be predicted at all, the response function is obtained by preliminary measurements such as [P1] [P2], assuming wq-i.
  • [P1] Determine appropriate values for wa, wb, and ojq based on analysis, experience, design, assumptions, etc., and calculate a, b, q using the least squares method with (I) as the observation equation.
  • n m is selected so that e m "is about 0.2 to 0.7.
  • the operation value C is changed in a direction to eliminate the difference E (deviation) between the control value and the target value S.
  • E ⁇ SR E ⁇ SR
  • C is calculated by calculating PID, etc. for E, but this calculation method is also a criterion ⁇ .
  • To determine the stability of the control can determine the E in the case where the input norm ⁇ one 1 of the C control system. This operation ⁇ ⁇ ⁇ is called loop transmission.
  • Means that ⁇ means that ⁇ is an input value and C is an output value, while ⁇ means that C is an input value and ⁇ is an output value.
  • the loop transfer method determines that the absolute value of ⁇ approaches 0 as a stable control state.
  • the method of calculating C that satisfies a specific settling condition using the control system norm is defined as a standard adaptive control (Ivfadel Reference Adaptive System: RAS) A)
  • RAS Reference Adaptive System
  • MRAS uses ⁇ - 1 for ⁇ . Therefore, since C is the condition for calculating C using ⁇ , stability is not much of an issue.
  • PID which breaks down from the unstable state of oscillation.
  • MRAS reaches a stable state with high accuracy at high speed ⁇ Due to high accuracy, in stable state, if the noise is large, It is buried in noise, and if the noise is low, R and C change only by about 12 digits
  • the noise has no information on the response function and the number of digits is small
  • the accuracy of the response function calculation is insufficient for the data, and if you continue to identify the response function based on these data, the response function will be significantly different from a true control system.
  • r and cd data are accumulated, but reliable information (a large signal-to-noise ratio and a rich data set with a large number of digits) , And when the output value is not corrected due to the operation of the safety circuit or when the operation is not abnormal, such as when the operation is disabled), and identify q, b. If you do not make a selection, you will suddenly break down in RAS as in the past. Without such a mind of the brave, you can identify the response function in parallel with the control and realize automatic tuning. Identifying the response function with only certain information can avoid this situation. In MRAS, the operation value is determined as follows.
  • the method of determining c in (E4) is called the reciprocal sequence method.
  • a— 1 a «— 1 ⁇ ⁇ ⁇ —. a a (i) n C n ten j. n Aj, "(E5) a (i) is Ai, a zero point of a is the coefficient at the time of the partial fraction decomposition of a- 1.
  • the (E24) IT need not be a left-regular sequence.
  • the intellectual disturbance d can be used even if it is a planned value.
  • c ° (E23) r ° qr ° 10; + bd (M)
  • Co Co (E27) Co-Co-C-i (E28)
  • the causal relationship is expressed in the form of a recurrence equation, and the transfer equation (I) (() is recognized. As for the method, it has become a very simple expression.
  • Each of the control methods described above reflects the intellectual disturbance in the control value prediction and is involved in setting the operation value, realizing the so-called feedforward.
  • high-resolution means Due to the high temperature, instability, foaming, and limitations of the materials that can be used, it is often impossible or impossible to use operation means (high-resolution means) with a sufficient number of setting levels (high-resolution means). Modern control theory discusses whether observation is possible (observable) or control is possible (controllable). Controls that required higher resolution than low-resolution operation means were not considered controllable, and there were no prescriptions. The traditional technique is essentially a prescription for high resolution of measurements and settings.
  • FIG.2 is the case where output value Co is just rounded.
  • IS-R I ⁇ 0.5F « is the dead zone (the range of target values that cause bias).
  • the decimal point has no meaning as a target value.
  • Cn When trying'll output C n, the possible values close to C n is assumed to be an In Cj. In other words, it is rounded to Int (Cn) and output. Even if Cn is calculated with a real value such as double precision or quadruple precision, Cn will be output via a DA converter and will be an integer value. Integer values are not always in increments of one, but for simplicity of explanation, integers in increments of 0, 1, 2, 3, ... are used.
  • the rounding method can be any method as long as the same method is used, such as rounding down, rounding up, and rounding. Rounding error U n at this time, will be (F2).
  • U n of is the correction value in consideration of the rounding errors.
  • the expected value of c n -Int (c n ) is 0.5 or less, PC first 99/03519
  • Co Co-C-! (F6)
  • Total correction (5 is added to determine the output value (rounding) (F4), and new data is added to the total correction for the next cycle (F5).
  • the advantage of this method is that the change of the manipulated value exceeding 1 digit can be maintained with the conventional MRAS, so high-precision and high-speed control is possible, and the constant bias is eliminated only in the case of 1 digit or less. Inducing pulsation. In the usual case, pulsations are hated and are considered merely noise. However, it is an essential element in eliminating bias. Similar to the present invention, the post-processing in the opposite direction is performed, and in order to suppress information deficiency and noise amplification caused by quantization, the value of co calculated by MRAS is reduced as the metastable state is approached. A post-processing method has been proposed. ) ⁇ The effectiveness of this method can be easily confirmed.
  • FI G. 1 illustrates the concept of the control system. Based on the input of the target value S. control value R, intellectual disturbance D, and abnormal signal input device W, the program (I to I) stored in the storage device M periodically according to the timer. ) To calculate and output the operation value C.
  • Timer U Computing device M: Storage device
  • I Input the set value S, control value R, intellectual disturbance 'D, and take the difference r.d between R and D.
  • Check that r, c, and d are signals with a sufficient number of digits and sufficiently larger than the level of noise or the like.
  • m Identify the response function only when the input signal is a sufficiently large signal and the input abnormal signal w is normal, and obtain a, b, q; i, F.
  • V Operation value to make the control value coincide with the target value at a future time point (from the X time point to the Y time point) Correction of the value: Calculate gc '.
  • Operation value C ' Set value C by adding the correction value ⁇ to. , Add the rounding error to S, and make it to the next control cycle.
  • Fig. 2 is an example of a typical MRAS control graph when the operating value is simply rounded to the set level and output to a low-resolution operating means.
  • R * ⁇ - . ⁇ , R * ⁇ + i is the control level
  • ⁇ 7T is the control point
  • FIG. 3 is a graph showing the operation state according to the present invention.
  • FI G. 5 is an example of reading graphs from f to a in the case of.
  • the graph of the exponential function using the pole whose period is converted from T 'to T is drawn from each point of f, and the difference is read as a.
  • the point at which f starts to take on the exponential function is &. Best mode for carrying out the invention
  • ro qir-i + ,, - + q ⁇ 1 jQr- ⁇ i ) q + aic-i + '''+ a4) a C- (! 1 ) a + bi Qi + - , -+ ba.b io) d
  • r:: r-..., r-, c-...,, d-..., d- and various least-squares methods, successive identification methods, finite identification methods, etc. Identifies and corrects each term q and..., q q , ai,- ⁇ ', a aa , b..., of the response function.
  • Fc ' SR ° [ ⁇ a, ⁇ a + ⁇ q] c "e [0, ⁇ q] (DC °) Rounding the post-processing of the manipulated value to the set level Int AO, processing of the present invention IntBO, etc.
  • Post-processing IntC () is considered separately, and IntCO is performed first.
  • the accuracy of the refrigerant supply can be controlled more simply by controlling the open time than with the conventional inverter and pulse valve.
  • the present invention has a great effect that the MRAS can be used for the control that can use only the low-resolution operation means, and the fast, accurate, and feed-forward and the automatic tuning can make the control easy.
  • the feedforward is to reflect intellectual disturbances in the control value prediction and to participate in the setting of the operation value.
  • Automatic tuning is the identification of a response function that is performed in parallel with control, and even those who are crying about suddenly breaking out of a control state that is more drooling can be done using the method of Reference B). Even if this method is not used, pre-measurement only at the start of control and automatic tuning without follow-up is possible.
  • Both the present invention and Reference B are techniques that can be more easily understood and judged as compared with the previous method by expressing the method control theory using a left regular sequence. Even if the idea of the present invention can be obtained by the expression using the conventional Z-transform and the state vector, it seems difficult to determine whether it can be solved by the idea.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Complex Calculations (AREA)

Description

明 細 書 設定水準数の少ない操作手段を用いた予測制御 技術分野
この発明は、 応 関数を用いて制御値を予測し、 目檁値と予測値とを一 致させる値として算出された操作値を設定可能な値に変更して出力する 前に、 今までの設定可能な値への変更で生じた誤差の積算値で補正する ことにより、 分解能が不十分な操作手段を用いても恒常的な偏りが生じ な'いようにする制御方法に関します。 背景技術
≡で定義、 →で帰結、 で同値、 で要素、 ·で非要素、 ョで存在、 つで否定、 Vで全て、 Λでかつ、 Vで又は、 Min()で最小値、 MaxOで最 大値、 In )で整数化、 sgn()で符号、 IIで絶対値、 1で転置行列、 !で階 乗、 Cn. mで二項係数 Cn. m = n!/m! m)し limで極限、 3で d/dt、 f(1°で 3kf≡dkf/citK、f (°)で f、 f 'で f (1)、 Sで S 、 で
TO S を表します。
( η ·- 1 > T
ηの k次多項式 c。+c1n+〜+Cknk であること n<k> で表します。
∑, Πは添え字 i, j,k,l,tn, nについて連統和,連統積を表します。 i, j.k,l, m,nの範囲は、 i = l〜+∞のように、 ∑ , Πの使用前に最も新しく 定義さ れた範囲とします。 ただし、 その式が書かれた行に記述されていればそ の範囲とします ∑は、 和分を表す数列を示す場合もあり ます。
FIG.1に示す様にデジタル制御では周期的に、 ある値(制御値と言い、 Rで表す)を目標値(設定値とも言い、 Sで表す)に一致(整定と言う)させ るための値(操作値と言い、 Cで表す)を変化させます。 従って、 制御装 置は、 Rと Sの入力手段と Cの出力手段と、 周期的に処理するための手段 と、 Rと Sとの差に応じた Cの决定手段(演算装置と言い、 Uで表す)とを有 しています。 Uには記憶装置 付属し、 プログラムと制御に必要な初期 値データが納められています。 必要に応じて表示装置、 管報装置、 安全 装置、 入手が可能な外乱値(可知的外乱と言い、 Dで表す)や制御状態の 異常時(制御系が切断されたり、 安全装置が作動する等で出力値が正常 に出力されない状態)等の入力装置 W等や各種センサーや通信手段等が付 属します。 通信手段を用いて、 外部からこれらのプログラムやデータあ るいはタイマー Tの信号を入手する事もできます。 最近ではコンビユー 夕の高性能化が進み、 本来制御装置に付属していた周辺装置の大半が親 装置の中やネッ ト ワークで繋がれる所にあり、 制御装置の本体は、 S, R, C, Dに基づいた Cを返す単なる関数になつている場合が少なく ありません。 即ち、 デジタル制御装 ¾では入出力値間の演算が機械のカムや歯車の役 をする数値の受け渡しをする装置となっています。 実際の制御では、 観 測や設定によって得られる入力値を、 前処理してから制御の演算をし、 得られた数値を後処理してから出力します。 電圧値や電流値から電力値 への換算、,熱電対の起電力から温度への換算、 氷点捕正、 信号/雑音比. 改善のための統計処理等が前処理の例になり ます。 デジタル制御では設 定可能な操作値(操作水準)が有限個 〜. C になり、 設定値が間 隔厶 C* = C*i -C*i の飛び飛びになり ます。 操作水準が 0と 1の 0N/0FF制 御は設定値が 2水準の操作手段で、 制御周期が 10秒の制御系で整数秒だ け ONさせる操作方法は 1 1水準の操作手段です。 制御値がこれら以外の値 として算出されても、 いずれかの値にせざるを得ません。 この操作がデ ジタル化(量子化)と呼ばれ、 値に当てはめることをその値に丸めると言 います。 操作値をある水準に固定すると制御値もその水準によって決ま る値(到達水準,到達値)に到達します。 この到達水準の数は、 設定水準 同じ N+ 1個の R*。 . R* i . ヽ11 になり ます。 最小の設定値 C*。に対応する. 到達水準!^。がー方の制御値の限界値であり、 最大の設定値 C*Nに対応す る到達水準 R が他方の限界値です。 この両限界値の間が制御可能範囲 で、 許容される範囲は通常これより狭く なり ます。 制御可能範囲を設定 水準数で除した値が制御値の平均分解能になり、 個々の到達値の問隔厶 iTi +1-ίΤίが微視的な分解能になり ます。 不揃いな分解能でも、 i 番目の の目盛りを C+, = N' (R*; -R*。)/(R -!? *。)にすると、 どの iでも C *1当たりの^の変化幅が同じになります。 この操作を操作手段の線形補' 正と言います。 元々微視的な分解能が一定であれば、 操作値の目盛りが (To - O. C =1, '',, C+ N=Nになり、 操作値の静的な特性 (操作値 1当た りの制御値の変化幅)が 1になります。 このような操作値の後処理にはこ の様なデジタル化、 整数化、 線形補正の他に、 電力値として算出された 操作値を交流の位相角への換算等色々あり ます。 本発明もこの後処理に 関します。 制御の演算で用いる値を入出力すると言う表現に、 必要な前 処理や後処理の実施を含めることにします。
特殊な数列を数字またはギリ シャ文字で、 一般の数列を英字で始まる 記号を用います。 数列の位笸を表す番号を、 項位と言います。 数列を表 す記号の右に下付き文字で項位を付けてその項位の項を、 一般項を第 n 項で、 極限値を第 項で表し、 項を 内に入れてその数列を表します。 a=: {an} = { -.. _ a-2 , a-i , ao , a.i . 2 , ·--} a»≡ 1 i ra(n->∞)an ( Al) (a+b/c)n = x « d三 a+b/c Λ dn = x (ΑΙ' ) 時系列等を第 0項から始まり、 第 1項,第 2項,…と無限に統く 数列(右無限 数列と言い、 " (0,)" で表す)で表すことが広く行われています。
{ao,a1 ,a2.a3,a4, --}e (0,) (A2) この数列では、 過去を表現することが不自由ですので、 負の項位もある 数列(両無限数列と言い、 " (.)" で表す)を用いることにします。
{ ■·· , a-s , a-2 , a-i . ao , ai , a2 , a¾ , , ··· } に ) ( A2 ) 0でないある項より小さな項位になる項が全て 0になる場合、 その項を初 項と言い、 初項の項位を初位と言い数列の前に なを付けて表します。 初 項がある数列を左正則数列と言い、 その集合を " [,)" で表します。 { …, 0, 0, 0, aaa≠ 0, a 十 1 , a +2 " +3 , a«a +4 ,… } e [ , ) ( A2") 例えば数列 a,式 b+cの初位はな a, cc (b+c)です。
全ての項が 0である数列を零数列と言い " 0" で表わします。
左正則数列と 0と併せて左正則的数列と言い、 " [,)0" で表します。 0でないある項より も項位が大きい.全ての項が 0となる項を終項と言い、 終項の項位を終位と言い数列の前に ωを付けて表します。
{··· , aua -s , a ,a - 3,a<«a - 2 , a - i,a ≠0, 0, 0, 0, ·■·} ( , ] (A2つ 終項がある左正則数列を有限数列と言い、 " [,]" で表します。
有限数列は 0でない項の数が 1以上の有限になり ます。
{■·· , 0, 0, 0, a«a , + ι . ·■· , awa -1 ,
Figure imgf000006_0001
, 0, 0.0. ·■·} e [, ] (A2、) 有限数列の初項から終項までの項の数を有限数列の項数と言い、 数列を 表す記号の前に yを付けて表します。
r a≡ ) a- a a+1 (A3) 数列 aの項位が X未満と Y超の項を 0として aを計算する場合、 X. Υ, Y - X+1を 便宜上初位,終位,項数と言い、 aa. cwa, r aで表します。
実際の計算では主に左正則的数列や有限'数列を用います。 右無限数列の 代わり に左正則的数列を用いると次の様な便利さがあり ます。
(1)從来の制御理論の表現がほぼそのまま使える。
(表現が煩雑になる時だけ、 独自の表現を用いれば良い。 )
(2)伝達方程式が漸化式形の一次方程式になる。
(3)任意の時点を第 0項に採れ、数列で過去のデータを容易に使える。
(状態ベクト ル等にしなく ても、 有限個の項で過去を表せる。 )
(4) Z演算子が数列になり、 左正則的数列の演算は実数の代数同様に計算 できる 。(交換則ゃ(^=8 )ゃ還元則( =0=^=0 8=0)が成立) 数学で、 実数の開区間: 半開区間: 閉区間を .丫); .丫), ,丫] : ,丫] のように表すことがあり ます。 これに倣って、 ある関係、 例えば A=Bが 数列の第) (項〜第 Y項の間で成立つことを A=B [X,Y]と表します。
Χ≤η≤ Υ Λ an = bn A=B [X. Y] (A4) X未満の項位の項が 0であることを " (X," で、 Xが初位であることを '' [X." で、 項位 Y超の項が 0であることを ' ' ΥΓ で、 Yが終位であることを " ΥΓ で表し、 " (X." 又は " [X," と " ΥΓ 又は ' ' ΥΓ' とを組にしてこの様な 性質を持つ集合を袠します。 いずれの場合でも、 " ョ X≠-w Λ〔Χ." を
" [," で、 " ョ Υ≠∞ ΛΥΓ を " ]" で表し、 " [- w , " " (-∞." を
"て," と、 " ∞】" " ∞)" を ";)" と峪記します。
例えば、 初位 X,終位 Υの有限数列が " [X, ΥΓ で、 初位 1の左正則数列が '■ [ 1. ) " で、 3超の項位の項が 0である数列が " し 3)" で表されます。 数列の加法と減法を項毎の加法と減法で定義します。
{an}土 {bn}≡{an±bn} (A5) 数列の乗法を Cauchy積(畳み込み convolutionとも言う)で定義します。
{an} . {bn}ョ {(a'b)n=∑ai bn- i } i =-∞〜c (A6) 0-{an}≡0 (Α6' ) 乗法記号(·)は省略しても良いことにします。 左正則数列同士の積は双 方に初項があるので、 任意の項が有限回の積和になり ます。
a. b£ [ , ) ab≡ {(ab) n <ea fab = 0.、210ノ <zii b -«a ab = ELe* Dab ,
(ab) n >a a +at> = 3·α» bn— 十1 bn -o* — l +'·· +an - <»bbab } L , ) ( A6 この稹 abの初項が a。abab≠0となり、 稜が左正則数列になり ます。
a. be [ , ) =ί> (ab) == a a+α b (A7) このことを逆に表現すると、 還元則になり ます。
a b€ [, )0 Λ ab= 0 = a= 0 V b= 0 (A7* ) 有限数列同士の積は、 有限数列になり ます。
a, bS [,〕 => a' bミ ί (ab " a a b = 0, (ab " =aa = a ,
( ab) n = aa b -iua b― aaa bn - α& +a0a + 1 bn - aa - 1 +'·, +an - ab bob , (ab) <ua b =a)a + ωϋ = b , (ab) n > <ua b = 0} S [ , ] ( A6° ) a, be [. ] => a; (ab) = ω a+ω b (A7") a,bG [, )が^えられたとき、 ae = bを満たす ce [,)を積の定義を用いて 初項から一項ずっ籴めることができます
a, b6 [ , ) {Cn = (a/b)n}≡ {cn < Cc = 0, c«c =«8 -ab = aaa/bab ,
Cn > ac = (SL'、+ (iti一 ba b + l Cn — 1一 b«b +2 Cn — 2 bn + <rb— ac C acノ /bab} ( Αθ) a, b€ [ , ) = (a/b) = a; a-α b (A9) この を算出する方法を、 左正則数列同士の除法の定義とします。 左正則数列同士であれば、 自由に除法ができ商が左正則数列になります。 0で割ることはできませんが、 0を左正則数列で割つた商は 0とします。 be [, ) => 0/b≡0 (Αδ' ) 累乗を定義します。ただし、 左正則数列以外の非正累乗は定義しません。 a^a.a^^a-a" n 1,整数 (A10) ae[,) a。ョ πョ l/an n 1,整数 (ΑΙΟ' ) 通常の代数規則の慣行に倣い、 加減法と乗除法が混ざった時ほ、 乗法、 除法、 加減法の順に左から実行することにします。
Figure imgf000008_0001
四則演算の定義により 結合則,交換則,分配則.指数則が成り立ちます。 但し、 除法と非負累乗は左正則数列の場合に限り ます。
(a土 b) ±c = a±(b±c) (ab)c = a(bc) (A12〉 a+b= b+a ab= ba ( A13) a(b±c) = ab±ac (b± c) /a= b/a± c/a (A14) anam=an +m an/am = anm (an)m = anm (A15) 第 0項が で他の項が 0の数列を数字リで表すと、 リは任意の数列 {an の 各項を リ倍します。 即ち数列リはスカラーリと同一視できます。
リヨ {''-, D, リ。=リ, 0, --'}, リ {an} = { u an}, -{an}≡ {-an} (A16) V = 0の時の数列 0は加法の単位元でかつ乗法の零元になり、 リ = 1の時 の数列 1は乗法の単位元になり ます。
Os {0} - {■-· , 0, 0.0. ··-} , 1≡ {■·· .0.0. ^ 1, 0.0. ···} (A17) a± 0=a, 0a= 0, la= a (A18) 第 1項が 1で、 他の項が 0である左正則数列を Λと定義します。
Λ≡ {··· , 0, 0, Λι = 1, 0, 0,■■·} (A19) すると、 Akは、 第 k項が 1で、 他の項が 0である数列になり、 任意の数列 の第 n-k項を第 n項にします。 また、 任意の数列が、 その項による形式的 な urent級数で表されます。 Λ—1力 Z演算子になっています。
Λη≡ {···, 0.0,
Figure imgf000009_0001
1, 0, 0, --} (A20) Afcian} = {an-¾} (A an}), = an-k (Α20· )
{an} =∑ a, i --∞〜oo (A21)
1- Λとなる数列 Δと任意の数列 n}との積が {an}の差分になり ます。 Δョ 1— Λ Δ { n} = {an-an-i} (A22) 数列 aが数列 Aの差分であるとき、 差分になる数列を小文字で、 元の数列 を大文字で表すことにします。 初位が 0で、 非負の項位の項が全て 1とな る数列∑と任意の数列 {an}との積が、 {an}の和分になり ます。
∑は、 Δの逆数列になっています。
∑≡ {··· , 0, 0, ∑。 = 1, 1 , 1. '',} ∑ a= {∑am m= a a〜n} (Α23)
∑厶 =厶∑ = 1 Σ = Δ— 1 (Α24) 数列 rnを低い項位の項 rn -し -2, rn_3,…と既知の数列 c. ci〈いく つで も良いが便宜上 2個とする)を用いて表す式を漸化式と言います。
ΤΛ = (ac) n+(bd) n +qi rn -l +q2rn-2+q3rn-3 + --- 〈A25) r = ac+bd+qr ( I )
Figure imgf000010_0001
漸化式( I )を C,dが原因で rが結果とする因果関係とみると、 rnには cn -し
Cn - 2 , Cn - 3 , …:dn - . dn -S . dn -3 ,…のみが関与できます。 即ち、 qと同様 に a,bの初位が 1以上になり ます。
a= {· ·, 0, 0.a>,a2.■··}£ (1.) b= {···, 0, 0. bi , b2, ·■■} e (1, ) (A26" ) しかし、 この表現では過去に遡った無限個のデータを必要とし、 理論的 な解析ならともかく、 実際の計算ができません。 そこで、 応答関数を有 限数列と仮定して、 有限個のデータで済むようにします。
ae (1. co l bed. ^b] qe (l, ω¾] (
Γη = ai Cn -i +■·· +aaa Cn - +bi dn -l +··' +bcibdn - (..a +qi rn -l +■·■ +qaq Γη - ,ο ( I ' ) この(IV)の条件が付いた( I )を伝達方程式、 係数 q, a, bを応答関数と言 います。 この式で過去のデータだけで未来を予測する場合は、 cn- … . -<^ : -し £1 ; 1^ -1 , ー, 1^ - の 0) &+6 &+ 0^個の項で済みます。
( I )が rについての漸化式なので、 ce (,- l〉,de (, - 1)と仮定するだけで 条件(W)により、 これら以外の項はその係数 biが 0になり、 自動的に 排除されます。 従って、 從来のように過去を表すための状態ベク ト ルは 不要になり ます。 ( I )は有限数列が係数ですが、 rが両辺にあるため計 算で不都合を来す場合があります。 そこで、 ( I )を少し変形してみます。 r-qr = ac+bd, ( l-q)r = ac+ba
r^(a/(l-q))c+(b/(l-q))d (A27) ここで、 数列 f, gを( V)で定義すると( Π〉が得られます。
f=a/(l-q)e(l,) g≡b/(l-q)e(l.) ( V) r = f c+gd= {f icn - 2十… +gidn- i+g2 dn _2 + .''} ( E ) r l = f l Co +gi do
fa = f l Ci +fsCo +gi di +gado Γ3 = f i C2十 fsCi +fsCo十 gids+gzdi十 gado ··· ( Π ' )
(Π)は, c,dが有限数列になり、 rnを初項から特定の有限項だけ計算す る場合等に利用されます。 (V)を少し変形してみます。
f ( 1-q) = a f-fq= a. g( 1-q) =b g-gq== b
f = a+qf g= b+qg (HI)
(ffi)は、 有限数列 l,qを係数にした漸化式になっているので、 f.gの初位 を 1とすることで容易に gを算出できます。
f 1 = ai ΐζ— a2+qi f l T 3 = as +qi f 2 +q2 f ι …
gi = i gz― b2+qi gi ga = ba +qi g2 +q2 gi … ( Π ' ) a, b, qを正味関数 net function, f , gを総体関数 gross functionと言いま す。 ( I )( II)は数列の線形方程式として最も一般的な形になついます。 即ち、 因果関係を数列の線形方程式で表現できるとすれば、 これらの方 程式と同値な表現か変数 r,c,dを増減させた表現になり ます。 従って、 形式論理的にはこれで十分です。 しかし、 従来の制御論との繋がりを明 らかにしておかないと、 豊富な科学的財産を利用し難く なり ます。 そこ で、 次の仮定をして〈 Ι )(Π)を導出します。
Α:制御系が線形微分方程式で表現できる。
Β:制御開始以前の時点 Τ。より過去では制御系が平街状態になつている。
C:制御周期を Τとする。 Τ。≡ηοΤとする。
D:結果 rは連続的に変化し、 時刻 nTでの瞬間値を rnとする。
E:時刻 nTで原因 c,dが cn -^ dn-iから ,^に階段的に変化する。
時刻 nT前後での僅かな時間差に注意します。 操作値 cの時刻 nTでの瞬時 値は cn で、 rn等を用いて cnを算出するための僅かな時間の後に cnが出 力されます。 可知的外乱 dは'プログラム的に発生させる外乱を標準モデ ルに考え、 cと同様に考えます。 プログラム的な発生でなく、 dの効果を 測定して dを得る場合は発生から観測までの遅れを考慮し、 nTで観測さ れた dを dn- ^と します。 この遅れが明瞭であれば dn-2や dn- 3のようにさ らに過去のデータとして扱います。 ただし、 佤定 C: ,D:は連統系で考え るときには無視され、 離散系に移行する時に.この仮定をした後、 結果が 得られてから見直します。
先ず、 次の定係数線形微分方程式を考えます。
Q( d )p= 0
Q( <3 )ョ u0 +∑ Um<5 m= Π ( «5 - ) m l〜 wq = 1 (Bl) 定数; i mに対し 3— ! mが交換可能(3 - ro)(<9-^ n)r=(5- ? n)(<9 -/m) rであるので微分作用素を因数分解をしました。 (B1)の mが全て異なる とき、 (B4)より 一般解が(B2)となり ます。
Figure imgf000012_0001
Pm(t)se"mt (<9- m)Pm(t) -0 (B3) Q ( P=∑Rm(n' (<9— ))(<3 m)ejmt =0 1 = 0〜 ως, ^πι (B4)
(Β4)·の Π'は、 1≠ inについて積をとることを意味します。
重根 m= m + 1 =〜=j m+hがある場合は、 (BS)〜(B7)より、 (Β3' )と定 義し直すことで、 重根の有無によらず一般解が(Β2)のままになり ます。 { d - λ m)t"e"fflt =(n/t+^ m- i m)t"eimt =ntn 1 mt (B5) ( Θ ~ λ m)ntne"mi = n eimt (B6) ( d - m)HneJmt =0 0=nく lc (B7)
Pm = e'mt ,pm+i = teJmt , ...i Pm = tkmeJmt .■••,pm+h = th-1eimt
Pm(t)≡tkmeimt (Β3' ) p(t)の Rmを RF mにした f(t)と条件(B8)を満たす ojq - 1階まで微分可能な 関数 c(t)とのコーシ一積(B9)を調べてみます。
Figure imgf000012_0002
f(t)=∑RF mPm(t) QO)f(t) = 0 (Β2' ) rc(t)≡ 5 f(t-x)c(x)dx (B9) 5rc(t)
Figure imgf000013_0001
+ 5 Γ (t-x)c(x)dx (BIO) S rc(t)-∑f (mj J (0)c(j ) (t)十 S c(x)f (m> (t-x)dx
j = O-ra-1 (BIO' )
Q(3 )rc(t) =∑umf -1 —" (0)clj ) (t)+ J c(x)QC5)f(t-x)dx
=∑u (m_1 1 (0) 5jc(t)+0
F(8 )≡∑ vm-! d m_1- vm-i≡∑ umf (n"m) (0) n=m〜 iijci (Bl 1) Q(<5)rc(t)=F(<5)c(t) (ΒΙ' ) (t)が方程式(ΒΓ )を満たしています。
Vm-tを RFnを用いて表すことで、 Vm- iに対する RPnの方程式を得ます。 ∑ Yn. m-IRFn = Vm-l Il,in=l〜iiJq (B12)
Yu. m-l≡ ∑ Uk mPn <Κ) ( 0) k=0〜 CJ q_m (B13) 即ち、 定係数微分方程式(ΒΓ )の右辺の係数 Vm に対する(B12)を満たす RF nを用いた(B2' )の re )が(ΒΓ )の特殊解、 o q個の任意定数 I ^を用い て(B2)で表される P(t)と re(t)との和が(ΒΓ )の一般解になり ます。
Q(5 )(rc (t)+p(t)) = F(5 )c(t)+0=F(5)c(t) (B14) c(t〉を原因、 rc(t)+p(t)を結果とみなすと、 c(t)が t T0で 0となる場合 の解は t≤T。で 0となる必要があり ます(原因無しに結果無し)が、 (B9)よ り分かるように rc(t)がこの条件を満たすので P(t) = 0となります。
と ^を満たす解^ との和 ニ :!を考ぇます。 g(t)≡∑RGmPro(t) (B2") rd(t)≡ g(t-x)d(x)dx (B8") Q(<5)rd(t)=G(5)d(t) G(^)≡∑n d m~l (Bl") Q(5)r(t) = Q(3)(f(t)+g(t))-F(5)c(t)+G(5)d(t)
Q(5)r(t)=F(5)c(t)+G(5 )d(t) (ΒΓ ) r(t)= I f(x)c(t-x)dx+ g(x)d(t-x)dx (Β8') すると t)は、 定係数微分方程式(Bl°)を満たし、 (B8°)が成立します。 (886)で ョ 1111)で、 。 ^ が!!丁で^- ^-!ょり cn,dnに階段的に 変わるとすると、 積分が区分積分の和になり ます。
Figure imgf000014_0001
l〜n-n。 (B15)
Γ
Figure imgf000014_0002
{f lCn-l +fZCn-2+--- +gl dn-l +g2dn -2+-" } ( Π ) f≡ {fn = 0. fn¾l = I pf(t)dt} g≡ { gn0 = 0 , gn 1 = n g ( t ) d t } ( B i 6 ) そして、 各区分積分の値は項位 nの多項式と指数関数の稜和になり ます q(m) ≡eJmT (B17) tlcmeimtdt=[∑tk,r,-i e^wt (-I)1 km!/((km-i)! λ j +,)] ―
ί =0 ί n - i ) T
= ∑ Yi . m{nkm i -(n- l)Km— /Q(m) }qcm)n-n<km>q(m) n (B18) i =o
Yi , m≡Tk m ; (-l)1 km! /((km-i ) ! λ ^ + 1 ) (B18' ) 指数 qtno≡ mTに掛かる多項式を、 係数多項式と言います。 fn ¾し gn≥1 の nkmqlm) nの係数を R'F m.R'G mとすると(B19)となり ます。
fn ¾ 1 = ZK Fmnkmq(m) " Π1= 1〜 0 Q , f no = 0
gn -.l = ∑ R' Gmnk mq(m).n , gn0 = 0 (B19) この結果は、 定係数微分方程式で表される制御系に、 適当なデジタル化 の条件を付して得られましたが、 c, dのデジタル化の仮定は wq- 1階迄の 微分可能であるという条件を満たしませんので、 超関数的な解釈をする か、 階段的な変化を滑らかな変化の極限的近似と解釈する必要がありま す。 また、 むだ時間要素を定係数微分方程式で無理に表そうとすると、 高次な微分方程式になり ます。 しかし、 (B16)で考えるとむだ時間がな い時の f, gをむだ時間だけ項をシフ ト することで表せます。 c, dの階段的 な変化を m項分遅らせて実施したとします。
r = fA-mc+gA"md=(A-mf)c + (A"mg)d (B20) これを、 c,dの mTのむだ時間があった場合とみなすと、 その応答関数 f. gが m項ずれ、 初位が m÷lになった Λ— mi, A— になっています。 c,dの階 段的実施を、 m+1回に分けて、 pi +pB A ^ +.' PmA -"1 にしたとすると、 (pi+--"+PmA"m)f , (Pi '+PmA—つ gに修正すれば済みます。
r= (Pl+...+PmA-m)fc+(pi+-'-+pmA"-m)gd (Β20· ) 階段的な実施を 0.5Τ遅らせたとすると、 (B15)の f(t),g(t)に対する積分 範囲がずれるだけです。 項位 nが k項ずれて n-きになっても、 πの m次多項 式は nの m次多項式のままです。 つまり、 原因 c, dを一定の規則に従って 変化きせて設定するのならば無限に細かい階段的な変化をしても高位の f, gはにすること、 即ち任意の規則的な変化でも良いことになり ます。 c, dで異なつたむだ時間要素も考えて表すと(Β19' )になり ますが、 極 Q( m) の次数 ω<¾は、 元の微分方程式の階数のまま不変です。 fn ≥1同士、 gn 1 同士が混合された部分を、 fnn f ,
Figure imgf000015_0001
とすると、 次式になり ます。
fn≥,f =∑ R"F mnk,T,(l(m) ή in=l〜 CiJq , fn≤o = 0
gn S fl g =∑ R"GmrlK mq(m) " , n SD = 0 (Β19' ) このむだ時間要素の導入で、 むだ時間 ¾素を考慮しない場合の定係数微 分方程式の q(m) , kmを用いて袠せることになり、 (Π)の c, d, rは、 T。より 過去では 0になることを前提にしましたが、 どの時点を t = 0、 即ち数列 c, d, rの第 0項にしなければならないという制約がありません。 それだけで なく、 ある時点を第 0項に選んでも任意の nに対し(H)の両辺に Λ を乗 じると(B21)になり ます。
Λ— nr = fA— nc+gA— nd (B21) Λ— nr, A-nc, Λ— ndの第 0項が元の第 n項 , ,^になっています。 改め て A—nr, A— nc, A_ndを r,c.dと書ぐと(H〉に戻り ます。 即ち、 左正則的 数列だけが条件で、 任意の時点を第 0項にできます。
x
Figure imgf000015_0002
となる場合、 qを Xの極と言い、 (Ι-ςΛ)χの第 n+1項以降が
Figure imgf000015_0003
になり、 xが左正則数列であれば ( l-qA)h slc +1 が有限数列になり ます。
xn
Figure imgf000015_0004
(l-qA)x e [ a x, m) (B22) (( 1-qA) X )n≥m + i =qnCo-qqn _1 Co = 0
xn≥m = n<k qn ((l-qA)x )n≥m + i =n<k_1 >qn (Β22') i=0~k,j=0~k-l,l=j + l'^k
((1-QA)X )n +i Sm +
Figure imgf000016_0001
+ 1∑ c. Ci . ,· nj Xn≥m = n<k qn ¾ (l-qA)h≥k+1x 6 [ a x, m+h"l) (B22") (B22")は(B22) (Β22' )により数学的帰納法により証明されます。 χの m 項以降が異なる {n<kい qi}, {n<k2 2},…, {n<kL>qL}の一次式ならば、 数列の乗法が可換則を満たすことより次が成り立ちます。
q≡l-n(l-qn ) +1 = l-n(l-q(m) Λ) 1=1〜L. ΠΡ1〜 (B2S)
Figure imgf000016_0002
e [ a x, m+ jq-l) (B22° ) この様に、 左正則数列 fの高位部(項位の大なる部分)が、 指数関数と項 位 nの多項式との積和になれば有限数列 q, (l-q):fが得られ、 指数関数的 な近似が可能ならば有限数列を用いた近似が可能になり ます。 極が重根 となる場合に言及しておく と、 連続系で t^>e"、 離散系で n<k >qの形で t
Figure imgf000016_0003
立ち上がりの遅さを表します。 tが 1大きい時、 tnの変化 率は ri/tで tが大きく なると急に小さく なるが、 e の変化率は 1 1で一 定です。 n<k >qは(1- qA)k+1でなければ有限数列化できませんが、 多め の項数を認めれば、 l≤h≤kでつく つた(l_qA)hnく k>qの高位の項を.0と みなせます。 即ち、 むだ時間による有限数列 a, bの項数増加以上に項数 を增やすことで、 近似的に極の次数く k + l〉を減らせます。 項数を十分に 採れば、 全ての極に対して h= lとすることもできます。
しかるに、 (B19' )より f,gは(Β22Ίの前提を同じ(B23)の qで成立させて いるので(B24)となり、 この q, a, bを用いると( I )が得られます。
a≡ (l-q)f G [ a f≥ 1, ^a] b≡ (l-q)g€ [ f≥ \, ω b] (V' ) (l-q)r= (i-q)fc+(l-q)gd=ac+bd (B25) r = ac+bd+qr ( I ) qの項数 ω<¾はモデルになつた微分方程式の階数と同じであり、 a,bの項 数 ω a , ω bは更にむだ時間を加味した分が加算されるだけになり ます。 ( I )は、 q, a, bが有限数列であるので、 観測データを元に最小自乗法等 で算出することができ、 q,a. bより f , gを(m)で決定できます。
(瓜)は qの初位が 1であるので漸化式になつており、 a,bより f,gを算出す る公式になります。 このように、 制御系は有限数列を用いて( I〕で表す ことができます。 ( Ι )(Π)共に、 第 η-1時点以前の原因のみで、 第 η時点 の結果が表され、 因果関係が明瞭です。
以上のように、 定係数微分方程式(ΒΓ)にデジタル化の条件を付すと、 ( I )(Π)が得られます。 微分方程式(Β1Ίの係数と正味応答関数 q, a, bと の関係を一般的な場合について書き表すと煩雑すぎるので省略して諸式 を導出しましたが、 複雑な系ならば解析で求めるより も正味関数を同定 した方が実用的であるためです。 筒単な系ならば容易に求めることがで きるので、 以上の煩雑な導出の整理を兼ねて、 簡単な場合を紹介します。 熱抵抗 kの熱伝導で冷却される熱容量 Hの物体に熱: ¾cを与える場合、 温度を r,時間を tとすると方程式が d=0の場合の例 になり ます。 Hr' (t)+kr(t)=c(t) (ΒΓ)
(Β26)は積分因子 ekt /H/Hを乗じることで、 次のように解けます。
r'e /H+ ( k/H) r e" = ce /H /H (B26)
(rekt /H)' = (c/H)ekt/H (B2~) r(t)Gk t /H= ί (c(x)/H)ekx/Hdx (B27) r(t)= f(t-x)c(x)dx f(t)≡e"kt H/H (B8、) 制御周期 Tで測定した = r(nT)を元に cn = c(nT)を算出して出力します。 即ち、 操作値 c(t)は t = nTでのみ階段的に変化します。
r = fc m =∑ fi cn -i i =卜00 ( ii ) fn≥i = nf(t)dt= Ae-kt^u/K)dt = aiqin~l . f"。 = 0 (B19、) (B23、)
&x≡ (l-qi)/k, a≡ai Λ S [ 1, 1] (v) f = a/( 1-q) f-a+qf (Hi) r = qr+ac (i)
以上のように、 数列方程式( I )が定係数微分方程式(ΒΓ)に対応付け られます。 しかし、 差分を代表とする数列演算は微分と本質的に別物で あり完全な移行ができる訳ではあり ません。 今説明した方法でも、 デジ タル化の仮定に対する不自然さとしてこれが現れています。
ここで述べた導出方法以外にも、 次のような導出方法が知られています 9
① Ζ変換を用いて微分方程式から導出する。
②微分を単純に差^に置き換える近似を使う。
③ルンゲ-クッ タ法 Runge- Kutta method に倣って適当な次数迄の関数 展開で、 微分を差分に置き換える、
但し、 これらの導出方法では、 因果関係を原因と結果が同じ時点で混じ つた表現で記述するのが一般的です。
c'≡Ac,d'≡'Ad f ≡ A_1f G (0, ),g'≡ A_1ge (0, )
a'≡A_1f e(0,).b'≡A"lge(0,)
r-qr+ac+bd-qr + Λ— iaAc + A一1 bAd = qr十 a' c' b' d' ( I ")
Figure imgf000018_0001
+ a" 0 C' n +··· + ' <»a -1 C' n -wa +1 +b' 0 d' n+"- + ' ma -1 d' n -«.b +1
r = fc+gd = Λ_1ίΛο + Λ"^Λά=ΐ' c' +g' d' ( Π ") =f , oc Γ i c - 1 + '-.+g, od. n÷g, j
即ち、 時刻 nTでの瞬時値を使つた c' ,d'を用いた方程式( I ")(Π ")を導 出します。 上に示したように( I ")(Π")は( I )(Π)と同値な方程式です。 好みの問題ですが、 ( Iバ11〉の表現形で説明します。
( Ϊ )( Π)で r,c,dの初項は制御開始時点以前を含めたある時点ですが、 どの時点を第 0項にすると言う制約はあり ません。 ある時点を第 0項に選 んだとしても任意の nに対し( I )( Π)の両辺に Λ-πを乗じると(Β28)(Β29) になり ます。
A~nr = fA~nc+gA_nd (B28) A~nr = qA "nr+aA ~nc+b A ~nd (B29) Λ _nr, Λ -nc. Λ— ndの初項は第- n 項で、 第 0¾が元の第 n になってい ます。 改めて Λ— nr. A— nc, A— ndを r,c,dと害く と(Ι)(Π )に戻り ます。 即ち、 ( I )(Ε)で任意の時点を第 0項にできます。
( Π )の f , gの意味を考えてみます。 この状態で cが第 0時点の間だけ 1、 その他の時間は 0で、 d=0の場合を考えると、 r = f'l+g'0=fとなってい ます。 即ち、 fは cの単位パルス応答を表し、 cのパルス応答関数になり ます。 同様に gは dのパルス応答関数になり ます。
次に d=0 で cを階段的に変化させてみると、 r = i∑十 g0=∑fとなります ので、 F≡∑fが cのステップ応答関数となり ます。 同様に Gミ∑gが dの ステップ応答関数になり ます。 操作手段の特性は通常静的な数値で表さ れます。 例えば制御弁であれば所定の圧力差で、 開口度の変化 Γ当たり 流量を Akg/sec変化できると表現します。 静的というのは、 操作手段を 変化させてからの時間的な変化を無視し、 変化前が平衡状態になってい ると仮定し、 変化後充分な時間が経過して再び平衡状態になつたと仮定 したときの、 二平衡値の差で表現することです。 この静的特性を応答関 数で表現すると、 ステップ応答関数の極限値 F»,G になり ます。 q.a.bも f , gと同様にステツプ応答関数ですが、 結果でありかつ原因でもある rが 絡んでいます。 ベルが鳴る場合を考えてみましょ う。 ベルに瞬時の衝牮 を与えたとしても、 ベルは^く 鳴り饗きます。 瞬時の衝犟(c, d)はベル に変形(r = ac+bd)を与えます。 この変形(r)は、 歪みエネルギーと運動 エネルギーの和になり、 新たな変形(r = qr〉をもたらします。 変形はこ の総合効果(r = ac +bd+qr )です。 変形が周囲の空気に振動を年え続けて 音になり ます。 同じ衝搫変形であれば、 その後の効果 qはペルに依存し、 衝撃を与える手段 c , dには依り ません。 これは、 微分方程式からの導出 で見た通り です。 ただ、 多く の場合、 手段 c , dが違えば、 異なった衝撃 変形 ac . bdを与えます。 この様に、 qは結果 rの内部に蓄積される効果を 示し、 記慷効果や共鳴効果等の現象を記述する応答関数です。 共鳴や残 響のように結果が直ちに消滅しない現象を、 結果が自己の原因となつた 記億効果として捉えることができます。 記億として rに取り込まれたェ ネルギ一は、 やがて平衡状態に向かい変化を停止します。 これを表現す るのが qであり、 qを記憶効果の応答関数と考えることができます。 a, b は、 f , gと異なり記憶効果を除いた応答関数、 言い換えれば記憶効果を 考慮した応签関数と言えます。
倒立振子等のように放置すると暴走してしまう系もあり ますが、 制御 される多く の系は放っておく とやがて平衡状態に落ち着きます。 このよ うに 「原因 C. Dの変化を停止すると結果 Rがやがて平衡状態になる」 こと をエネルギー定理が成り立つと言います。 測定値や設定値は、 平衡状態 で 0とならない数値であるのが普通です。 温度単位を例に採ると、 制御 開始前に 25 であれば、 25°Cを差し引いた数値にしなければ、 左正則的 数列にできません。 この左正則的数列化した値を R. C, Dとします。
R= f C+gD ( CO R^ qR+aC+bD ( C2) ここで、 生の測定値や設定値でなく 差分で考えてみます。
r≡ Δ R, c≡ Δ C, dョ Δ ϋ ( C3) 差分は元の値が一定の時(平銜状態)で 0になり ます。 温度の例では 25 を引いても、 引かなく とも差分にすると等しく なります。 差分を使うと、 エネルギー定理が 「原因に dが 0になればやがて結果の rも 0になる」 にな り ます。 従って、 生の値が左正則的数列でなく とも、 制御開始より も適 当な時点より過去でずっと平衡であつたと仮定できれば差分値 r,c.dが 左正則的数列になります。 (C1)(C2)の両辺に'数列 Δを乗じ、 (C3)で置き 換えると( I )(Π)に戻り ます。 逆に( I )(Π)の両辺に∑を乗じ、 (C4)で 置き換えると (C1)(C2)になり ます。 即ち、 ( I )(Π )は左正則的数列とな る変数を使う限り不変な方程式で、 自然な変数が r, c, dとなり ます。
R二∑r, C=∑ c. D=∑d (C4) 定係数微分方程式より の導出で明らかなように、 応答関数 f.gを有限数 列化する qは本来原因となる dの性質でなく 結果 rの性質です。 そして、 エネルギー定理が成り立つ場合は平衡状態に単調減少もしく は単調減袞 振動していく ことが期待できます。 これを(Β20)·の ς(ί ) ,ςΐυ〉で表せばそ れらの絶対値が 1未満になり、 単調減少であれば 1未満の正値になります。 また、 振動要素がある時には、 極が一対以上の複素数で表され、 これら の極の間でエネルギ一交換が起こつていると考えられます。 音の圧力と 運動エネルギ一、 振り子の位置のエネルギ一と運動エネルギー、、 電磁波 の磁場と電場等、 皆その例です。 従って、 共役複素数対をセッ ト にして その総エネルギーを考えると単調減衰になります。 つまり、 振動要素は エネルギーをセッ ト (和)で考える事で振動の効果を除けますので極が i 未満の正の実数になり ます。 音を空気の振動として捕らえる代わりに、 音の強さで解釈することになります。 温度制御をモデルに考えると、 温 度制御をする点の周りを、 空気や断熱材等の熱伝達の小さな隔壁で多重 に包まれています。 露出していたとしても、 実験台周辺、 II験室、 研究 棟…と多重な環境になつている事に変わりあり ません。 これらの多重な 環境隔壁内での熱平衡は内側から外側に向かつて、 時定数が大きく なり ます。 つまり、 極の配列が、 多重な空間を表している事になり ます。 当 座の制御は、 適度に小さい空間内で充分な答ですが、 長時間の観測を統 けると、 次々に外の空間の効果が観測されて来ます。 適度な制御周期の 数の間に変化が観測できない極は、 実際には無視できます。 又、 小さい (絶对値の: 原則としてこの形容詞を略す)極の項の寄与は少ない制御周 期の間に無視できるようになり ますので、 qから外し、 a, bの項数を増や すことで近似できます。 即ち、 効果的に選ばれた極はほぼ等しい大きさ になりますので、 次数を加算した平均的な極で代表できることになり ま す。 これに、 極の低次数化近似を組み合わせると、 実用的な制御モデル では、 a, bの項数さえ多めに採れば正の実数値の 1未満の極一つで袠すこ とができます。 また、 複数の極で表す場合でも、 a, bの項数不足がなけ れば、 値に大差がない、 1未満の正の極で処理できます。
制御の周期は、 制御の脈動を評価して決めます。 それで脈動について 説明をします。 ステツブ応答関数 F=∑fは普通 FIG.4のような素直な形 になっており、 ピークとなる.項 の直後近く に an>m=0 と見なせる項位 mが存在します(FIG.5)。 g,bも同様です。 このような応答関数は(D1KD2) を満たし、 . PID制御のオート チューニング法で知られたジ一グラーと二 コルスの感度法で用いられた近似に相当します。 そこで こ(D1)(D2)の 仮定をして脈動を評価します。
fp- i 一 1 P - 1 «f, i >0 (DO
Figure imgf000022_0001
従つて静的特性が次のように近似できます。
IF»I = If 1+f2 + ---+fp+fp +i+f*+2+---) I ί= Ifo/d- i ) I (D3)
Figure imgf000022_0002
脈動を評価する時は、 通常操作値によって起こされる変化のみを考え、 外乱によつて起こされる変化は考えません。
d=0 (D5) 準整定状態(分解能や雑音を考慮した場合に、 ほぼ制御値が目標値に一 致している状態〉でない場合、 即ち、 目標値の変更や、 大きな外乱の発 生の直後での変化は脈動とは言いません。 準整定状態で、 操作値を増減 させることで、 制御値が増減することが脈動です。 この準整定状態での 操作値の変化として、 次の 2つ典型パターンを考えます。 1つは、 操作 値が時点毎に增減する場合で、 cの成分が ± 1を繰り返す場合です。
C = {Cn < = (_l)n1 , Cn so = 0>
Figure imgf000023_0001
もう一つが、 通常は一つの操作水準に固定されていて、 希に 1時点の間 だけ隣の水準に移る場合です、
c = {c o. - 1 = 0,co = 1 , c- 1 = -1} = 1 - Λ一厶
r = fc+gd= Δ f = {■··, ro = 0, f 1 , f2-f 1 , f3-f2, f4-f3, '··} (D6,) さて、 (D1)(D2)の近似で考えると、 (D7)(D7')となり ます。
If i-f2+f3-f4*---
Figure imgf000023_0002
Ifp/d+q I < I f P I (D7)
Ifn-fn-i Iく 。 - fP+1 l< lfP I (D7' ) 脈動の最大値が(D4)で評価できます。 o q=l、 制御周期を T'として得た q を Q' ,とすると、 周期丁とした時の qし は次のようになり ます。
qi=e JT=(e^' )τ τ' =q' iT/ (D9) 静的特性は周期に依存しません。
F~=F' ~ (mo) 操作水準を 0, 1,…とする時に、 制御水準が 0, 1,…となる単位を用いると F«= 1となり ます。
脈動の許容限度を εとする時、 制御周期を(D11' )を満たす Τにします。 £≤IF~(l-qi)l-IF»(l-q' ιτ τ' ) 1 0<q' i < 1, 0<τ τ' (Dll) q' ι τ/τ' ≤\-\ ε /F«l (T/T)log(q' ≤log(l-I ε /F- I )
T^T -log (卜 I £ /F»l)/log(q' i) (DID (Dll)で極が 2個以上の場合は次の様に考えられます。 ε≤ IF-d-q -'d-q..,) I≤ IF»(l-qi ) 1 (Dll") (DIDの二番目の不等号はどの q,'に対しても成り立つので I 1-qi |を最小 にする q«q、 即ち最大の極で評価することができます。 尤も、 これらは 脈動の粗い評価法なので、 あまり議論を深く せず、 1つの極で近似して 評価するのが妥当と思われます。 小さな極は、 応签関数の項数を余り増 やさずに省略できます。 従って大きいと言っても、 適度な制御周期数内 のデータで精度良く 測定できる大きさの極で評価することになり ます。 f,gは、 F' = ΣΓ ,G' =∑g 'を求め、 ?(1下')=?ヽ (1丁') = 0 となる時 刻 tの連続関数 F(t),G(t)で近似し、 f,g:a,bを得ます。
fn = F(nT)-F((n-l)T). . = G(nT) -G( (n~l) T) (D12) a≡ f-qf b≡ g-qg
ai = f l . as = f 2 +qi ai , s = f a +qi a≥ . ··■
bi = gi , b2 = g2 +qi bi , bs = g3 +qi b2 , '·' ( V " )
F(t),G(t)の近似法の例としては、 次の方法があり ます。
1) FIG.4のように∑ Γを滑らかな曲線で結んで、 t = nTでの差分を読みと り、 その差分 を得る。 g より gも同様にする。
2) mTく nT (m+l)T'となる mを求め、 F(nT) , G(nT)の値を内挿法で求める。 x= (nT-mT )/Τ'とする時の一次內揷法,二次内揷法は(D13)(D14)になる。 F(nT) = (F' m + l -F* m)x+F' m (D13) F(nT) = {(F' m+2-2F' m + J +F' m)x2-(F' m + 2-4F' m + i+3F' m)x+2F' m}/2 (D14)
3) F(t),G(t)に因果関係と静的特性、 即ち(D15)を満たす適当な関数を仮 定してその関数を回帰する。 例えば(D16)ならば、 その係数( , F^.F*2: G~,G*】, G )を最小自乗法で求める。
p(0) = G(0) = 0, F(∞) = F-, G(«°)=G" (D15) F(t) = F--(F-+F*it+F*2tz)eJt
G(t)=G -(G∞+G* " T 2) 1 (D16) F*i Λと し、 見なせな い
Figure imgf000025_0001
q( n Λ)2とし、 それ もだめならば 0 q=3,q=卜(卜 q") Λ)3とする。
項数を多く して、 OJQ= l, q=q( Λとすることもできる。
以上のように、 制御周期は応答関数を元に決めることができます。 そ こで応答関数の求め方を説明します。 6Jq, w a, o b の決定は制御系が定 係数微分方程式で表されるならばそれを解析して決定します。' 解析で q, a. bも決定できるならぱ、 r, c, dを元に算出する必要はあり ません。 解析 で得られない場合は充分に大きい wq, ω a, wbを仮定して同定します。 同定の結果、 ほぼ 0と見なせる項を削除しても、 放置しても構いません。 どの項も 0と見なし難く 、 制御状態も良好でなければ、 wq, wa, を大 きく して、 再度試行します。 q,a, bが全く 予測できない場合は、 wq- i を仮定して [P1]〔P2]等の予備測定で応答関数を得ます。
[P1]解析、 経験、 設計、 仮定等により wa, wb, ojqを適当な値を決めて、 ( I )を観測方程式とする最少自乗法で a, b,qを求める。
q= qr+ac+bd ( I ) rn rr C fn— 1 ■■•+qa)Qrn— +aiCn一 l +''' +aaiaCrt-wa +tnan—1 +'''+b >an—a)b
Figure imgf000025_0002
ki = qi (i =1~ ω q) . a, -0,5 (i = ω q+l〜 ω q+ ω a) , bi - ^… (i = ω q+ ω a+1 〜 ω q+ ω a+ OJ b)
Xn . j = Γη -i , Cn - ( ί - ! , dn - f i -( - ma )
k=(tXX)-ltXy (D17) wa, tob, の妥当性を間う場合は、 小さめの ω a, ojb, ω qから開始し、 同じ r, c, dのデータを用いて、 0;3. 0)1)を 1ずっ増減して再計算した時、 i/ja又は を 1増しても 0と見なせる a + i又は b^"が得られるだけで、 a, awa , b; の値がほぼ不変になれば、 この時の ω a, ω ΐ3を採用する。 o^qの妥当性を問う場合は、 wa, 0Jbがむだ時間を考慮しても大きく なり 過ぎる時に を 1ずつ増していった時に、 急激に oj a, co bが小さく なる ことがあれば、 その時の を採用する。 大きく しても効果がなければ、 できるだけ小さい ω ς≥ 1にし、 問題が無ければ 1にする。
ω a, ω b, ω q: a, b, q力 决まつたら、 f,sを求める。
f i
Figure imgf000026_0001
as +qi 2+ 2f I ■··
gi = bi gs = 2 +qi gi ga = bs +qi gz +q3 gi … ( ffi " )
[P2]操作値を C*。に保ち、 制御系が安定するのを待つ。 可知的外乱が、 プログラム的に発生するものであれば、 可知的外乱も一定にさる。 安定 したところで、 プログラム的に可知的外乱を発生できるならば可知的外 乱を階段的に発生させ、 可知的外乱を観測するのであれば可知的外乱の 発生が殆どない状態で階段に発生するのを待つ。 発生直前の 0T,変更後 の T, 2T, 3T,…での制御値を Ro , Rし R2 , RS , ''·とする。 この可知的外乱の階 段的変化幅を do = D。-D- 1とし、 制御値の差分 -β, -Ι^ , -!^-!^ , R3-R2 , を求める。 この差分を用い、 gを得る。
rョ厶 R= fc+gd= 0+g<lo g=r/do (D18) gi = ri /do , g2 = r2/do , g3 = rs/do , ··· (Dlo ノ . この状態が安定するのを待ち、 安定しており、 かつ、 できるだけ可知的 外乱の変化が無い時に、 操作値を C*Nに変更して、 その値に保ち、 変更 直前の 0T,変更後の T, 2T, 3T, "·での制御値を Ro , Rし , Ra ,…とする。 こ の間の可知的外乱の差分 d。 = D。-D- 1 , di = 0 0。, U = D2 - ,…と制御値 の差分 r, -RrRo . rs ^Rs- RL I^ RS-RZ.…を求める。
Co =C - C*。 (D19) r= fc+gd= fco+gd f - (r-gd)/co 〈D20) i = (n -gido)/co f2 = (ra-gi do-g2do)/co f3 = (r3-gi d3-g2(ii-g3do)/co ··· (D20' ) このようにして fが得られる。 十分に安定するまでの fのデータが得られ たら、 fが指数関数的に減少して 0に近づく 部分(高位部)に注目し、 時間 間隔を等しく した二点 fn,fn+mを採る。
Figure imgf000027_0001
mは em "が 0.2〜0.7 程度になるように選ぶ。
制御方法と安定性について説明します。 制御では制御値 と 目標値 Sと の差 E (乖離)をなく す方向に操作値 Cを変更します。
E≡S-R (El) 制御系に規範(モデル)を考え、 規範を積極的に利用して考察する方法を 近代制御理論と言います。 PID制御等では、 制御系いかんに拘わらず、 E に対する PID等の演算で Cを算出しますが、 この算出方法も一つの規範 Ψ になり ます。 制御の安定性を判断するには、 この Cを制御系の規範 Φ一1 の入力とした場合の Eを求めます。 この操作 Φ^Ψを一巡伝達と言いま す。 " ―い で、 Ψは、 Εを入力値, Cを出力値とするが、 Φは逆に Cを入 力値, Εを出力値とすることを表しています。 Φ— 1Ψを繰り返すことで、 Εの絶対値が 0に近づく 場合を安定な制御状態と判断するのが一巡伝達法 です。 制御系の規範を用いて特定の整定条件を満たす Cを算出する方法 を規範適応制御(Ivfadel Reference Adaptive System: RAS)と言います A)。 即ち、 MRASでは Ψに Φ—1を使っています。 従って、 Εは Φを使った C算出 条件そのものになるので、 安定性があまり問題にされませんでした。 実 際に MRASを試行すると、 確かに高速で精度の高い制御が実現します。 し かし、 安定した良妤な制御状態であったのが、 突然に破綻をおこすこと があり ます。 PIDで発振ぎみの不安定な状態から破綻するのと対照的で す。 この原田として、 規範が破壊する場合と、 Eは安定でも Cは安定(実 施可能)とは限らない場合があることが指摘され、 その対策が提案され ました 。 規範の破壊とは次に述べることです。 燃料等の消費される資 源と一緒に動く 系の場合や摩耗や劣化を考えると、 ゆっく り とではある が時間と共に応答関数が変化します。 このように応答関数が変化する場 合や予備的に得られた応答関数の精度が低い場合は制御中のデ一タを用 いて応答関数を次のようにして修正(このこと も同定と言う)する必要が あり ます。 現時点を第 0項に採り、 (.1 )を書き下すと次式になり ます。
Γο == qi r— 1 +-·· +qaj<j r— ai c一 1 +··· +a«ia c <ua +bi α— 1 ' ·· +b«/b d— ( I ) 即ち、 一次独立な q+ω a+ω b 組以上の(r , c., d) = (r , r- 1. r- 2 , , r-w c c- 3, ''',cia:d- d- 2 ··' . d を用いれば、 最小自乗法や逐次同定 法によ Ό (q, a, b) = (qi , q2.■·· , ςως ai , a2 ,■·■ , a^^ bi , bs , ---, b )を決 定(同定)できます。 MRASでは精度が高い安定状態に高速で到達します《 精度が高いため、 安定状態では、. 雑音が大きければ雑音に埋もれた状態 になり、 雑音が小さければ Rや Cが 1 2デジッ ト 程度しか変化しなく なり ます。 雑音には、 応答関数の情報があり ません。 また、 .デジッ ト 数が少 ないデータでは、 応答関数の算出精度が不足します。 これらのデ一タを 元に応答関数の同定を続けると、 応答関数が真の制御系と大きく 異なつ てしまい、 そのうち制御が不能な状態(破綻)になり ます。 制御の進行に つれ、 r, c.dのデータが蓄積されますが、 確実な情報(信号雑音比が大き く、 デジッ ト 数の豊富なデータ組、 かつ、 安全回路が働く などで出力値 が修正を受けたり操作が不能になつたり と言う様な異常状態でない時の データ)を選び、 q, , bを同定します。 このようなデータの選択をしない と、 従来'のように RASで突然の破綻を起こします。 このように破徒の心 配がなければ、 制御と平行して応答関数の同定が実施でき、 自動チュー ニングが実現します。 確かな情報のみで応答関数を同定すれば、 この事 態が避けられます。 MRASで、 操作値は次のようにして決定されます。 第- 1項迄の現実に出 力された値と、 第 0項以降の適当な仮定 (例えば以後不変 c° = 0 [0, ) とする) による値からなる操作値の差分を , 整定するための第 0項以 降の を修正値を c'とします。 dは利用できるもの (可知的外乱と言う) があれば、 過去,現在,未来(予定)に限らずに利甩します。 そして、 c = c' と した墦合の rを , c = c° +c'とした場合の r を r'と します。 (R で r°を 時点数算出し、 時点 [X, Y]で制御値 r'を目標値 sと一致させる c'を(Κ)又 は(Κ' )を用いて求めます。
r° = qr° +ac +bd [ a a, ω a J 1≤ a a (VI) r° = f c9 +gd (1°) r' =f (c° +c' )+gd c' e(0. ) (E2) fc' =r'— r° e (1, ) ( ) ac' = (l-q) (r' -r° ) (VM) f c' = e (K) ac' = ( l-q)e (Κ' ) s - r° s≡ Δ S [X, Y] (E3) もし(K)によって、 c'を求めると (E4)となり ます。 (E4)で cを決定す る方法を逆数列法と言います。
c, = ( 1-q) a-1 e (E4) n= o~ , i = 1 ~ L, j = 1 ~ J (l )
a— 1 =a« — 1 ∑ Λπ—。aa(i ) nCn十 j . nAj ,』 (E5) a( i )は aの零点であり Ai , は a—1を部分分数分解した時の係数です。
Figure imgf000029_0001
一 I
a a (E7) a一1の初位が- aなので、 c'の初位が 0以上になるためには、 eの初位が な a以上である必要があり ます。 即ち、 な a時点 たないと整定できませ ん。 この場合、 eを(E8)に変更せざるを得ません。
eaa <~Eな a = e】 +62 + ·', +eaa— 1十 eaa , ei = e¾ = ··· = eea -i <-0 (E8) また、 全ての零点の絶対値が 1未満ならば、 c'はやがて 0に づく ことが 期待できます。 しかし、 絶対値が 1超の零点があると項位が大きく なる につれて c'の絶対値が増大し統けます。 従って、 逆数列法は全ての零点 の絶対値が 1未満の場合にのみ安定な解を与えます。 東京にいる時、 二 ュ一ヨークから 10分以内に来て欲しいと言われたとします。 しかし切符 の手配、 空港迄の所要時間、 飛行時間、 ニューヨークの空港から現地迄 の時間等を要します。 10分後は、 確かに未来ですが、 少なく とも現在の 交通事情では不可能です。 短時間で行こうとすれば無理が生じます。 そ れで第 X時点以降の、 操作値(未知数)の項数と同じ数の時点経つてから 整定させることにします。 第 X-1時点以前は整定を問わず、 第 X時点では 整定し、 以後第 X+wc時点迄整定し続け有限回の操作で目的を達成させ ることにします。
(∑e)x = Ex = Sx-R°x: e = s-re [Χ+1, Χ+ωο] (Ε8' )
E=S-R° [X, Χ+ωο] (Ε8") ある方法 Φで c'を決定する時、 rは伝達方程式により c, d で記述できま すので Φは , d,sの関数になります。 c'に有限数列を仮定しているので、 c°に(E9)の条件を付けます。
ω c" < (ϋ c' = ω c (E9) c' = Φ(ο° , d:s) e (0, ωο) (E10) Co = C- 1 +c。。+c'。 (Ell) (Ell)の c'を使って C。を出力し、 次の制御周期に移り ます。 次の制御周 期で、 第 0項を.現時点にして Φを求めると次式になり ます。
c" = Φ(Λ— 1 (c°+c' ), A"ld: A_1s-si) (El 2) 即ち、 操作値 c。には前時点で修正値 c'が加わり、 予定値には現時点の実 現値 nによる修正が加わり ます。 この c"が前制御周期で求めた c'の項を 1だけ過去にシフト させただけのとき、 cが不動であると言います。
c" = A_1(c' -c' o) (E13) 有限数列を与える Φならば、 不動であれば有限な時点数絳過後に操作値 Cが一定に保持されます。 これは明らかに安定な制御です。 但し、 外乱 があったり 目揼値を変化し続けている場合は不動であることが期待でき ません 9 そこで、 目標値が固定され、 外乱がないとします。 (E14)の場 合、 (E15)(E16)が成立します。
d=o,se (O.X),c' Ε (0, c) (E14)
- 1 +q2 rn -2 ? £ ( 1 , a)
r = qr ac = 0, d= 0 [ ω Β-+ωο' +1, ) (E15)
Γ (i» a Γ ω a →■ - 1 "^"… Γ o»a 4- «;ς一 ― 0
ΓωΒ + 1— Γωί + ac +2 = ·" = 0
r = 0 〔 oj a+ ω c- 0) q十 1 , ω a+ ω c]
r = 0 [wa+wc + l,) (E16) (El 6)の前提(E17)が成り立つと(El 5)より (E18)が成り立ちます。
r = 0 I ω .+ ω c- ω q÷\ , ωζ,+ ω ο] (ΈΠ) f = 0 [ ω ^+ ω c- ω q+2, wa+wc + l] (E18) これは次の制御周期での解が cを 1時点過去にシフト させ、 = 0と言う 解になっていることを意味します。 .即ち、 cが不動です。 (E16)は dや Sが (E14)の時に成立すれば良いので、 一般の時は次式になり ます。
e = s一 r。 [ ω a+ ω c一 ω q+1 , ω a+ ω c」 E19) 従って(E9) (E20) (E21).が成り立てば不動な制御方法になり ます。
Χ≤ ω a+ω c-OJ q, a; a+ ω c≤ X+ ω c
C(j ≤X≤ wa+wc-oiq (E20) 0) q≤ ω c (E ) (E21)は、 c'の項数に最小偃 があることを示します c
そこで、 最小値の場合の(VII)に不動条件を付けます。
∑fc, =Fc* =E [ ω a, OJ a+ q] c' E ( 0, ω q) (K")
F ω a » F ω a - I , " * , F a - ως
F ω n + , F ω ¾ + - 1 ,… . Fwa
Figure imgf000032_0001
この解法を多点整定法と言い、 特に外乱を無視し(d=0)、 次式に限定し た場合を有限整定法と言います。 に(E23)の仮定をし、 c'を最小項数にした場合の多点整定法の手順を 述べると次のようになり ます。
c。による予測値 r。を R°にして、 第 1項から第 wa+fljq項迄求めます。
(E24)の ITは左正則的数列である必要はあり ません。
可知的外乱 dは、 利用できるものは、 予定値であっても利用します。 c° (E23) r° =qr°十 ;。 +bd (M )
R° = Λ R' +r° (E24) 次に、 第 ω a時点から第 ω a十 ω q時, 迄の目標値 , · ■, ',S + "。と ステツプ応答関数 F==∑fを用いた c'の方程式(K°)を解きます。
F= A+qF A=∑a ( )
Fc' =S-R° [oja, a十 wq] c' e [0, ω q] (D °) この c'の第 0項 c'。より得られる C。(注: c°。 = 0 (£23) )に後処理をした値 を C oとします。
C。 C-1 +C'。 (E25) 0·0 = Ιηί(0ο) (Ε26) そして、 改めて(E27M E28)として、 次の制御周期に備えます。
Co = C o ( E27) C o - Co -C- i ( E28) 漸化式の形で因果関係が表されることで、 伝達方程式( I ) ( Π )を認め、 多点整定法を標準手法とすれば、 極めて単純な表現形になつています。 こ こ に述べた制御法のいずれも可知的外乱を制御値の予測に反映して、 操作値の設定に関与させており、 所謂フ ィ ードフ ォ ワ ードを実現させて います《
このように、 単純かつ明快な方程式を解く だけで済むことが、 右連続数 列の代わりに左正則的数列を使つた醍醐味です。
操作対象が高温、 不安定、 発泡する、 扱える材質による制限等で十分 な設定水準数を持つ操作手段(高分解能手段)が不可能に近いか、 高価で 使用できない場合も少なく あり ません。 近代制御理論は、 観測が可能 (可観測)か、 制御が可能(可制御)かと言う視点で議論します。 そして、 低分解能な操作丰段による分解能以上を求める制御は、 可制御でないと され、 処方箋があり ませんでした。 從来の技術は本質的に測定値や設定 値の分解能が高い場合の処方箋です。
参考文献
Α) 高橋安人荖 システムと制御 上、 下 岩波書店 1978年
Β) ニ木剛彦ら, PCT国際特許出願 PCT/JP99/00837 平成 1 1年 2月 24日出願
C) ニ木剛彦ら, PCT国際特許出願 PCT/JP99/02369 平成 1 1年 5月 6日出願
D) 数学セミ ナ— vol . 21, no. 07, 1982 PP. 38〜44
E) 早原四郎-春木茂 新しい演算子法と離散解析関数論 撝書店
F) 岩波数学辞典 日本数学会編集 岩波書店 発明の開示 低分解能(少水準数)な操作手段を用いる場合でも、 目標値を挟む到達 水準(両側水準)間を往復することで生じる制御値の脈動(リ ップル)はあ る程度止むを得ないが、 制御値の時間的平均値が恒常的な差(偏り)を生 じることは、 避けなければなりません。 Aの温度を制御したい場合に、 A に供給する冷却媒体 Bの温度を制御する場合のように、 間接的な制御を する場合には、脈動は Bから Aに熱伝達する間にかなり緩和されます。 こ のような場合、 偏りは大きな問題ですが、 脈動は小さな問題になり ます。 この場合には、 脈動の許容値が大きく なります。
d= 0: ojq二 l. ioa二 1の場合を有限整定法によつて整定(制御値が目標値 に一致すること.)していく 様子を FIG.2, 3に示します。 FIG.2は出力値 Co を四捨五入しただけの場合です。 いずれも目標値が水準 R と水準 R + 1 との間に設定されたときに水準 R "の間の各点 a〜gから、 制御 によってどのように変化するかを示しています。 この様に操作値を整数 化しただけでは、 どの点から開始しても、. 恒常的な偏り を生じます。 この例では、 R ±0.5(1- q!) の間に 目標値があると恒常的な偏り を生じます。 = 0.5とすると全設定範囲の 50%にもなり ます。
通常、 操作値のステツプ応答関数 F=∑ ま単純増加関数になり、
IS-R I <0.5F«が不感带(偏りを生じる目標値の範囲〉になり ます。
これでは、 目標値として小数点以下の部分が意味を持ちません。
このように、 低い分解能の操作手段に単に整数化して出力したのでは、 高い精度が望めません。
この問題を以下のようにして解決します。
応答試験や理論解析等により、 制御周期 Tでの応答閱数 f , g;q, a, bの初 期値を求めます。 この初期値を用い、 本香の制御を実施します。 本番の 制御は、 規範適応制御 MRASを用います。 ただし、 少なく とも操作値が前 時点での設定氷準と同じか、 隣の設定水準になる場合(準整定状態)には、 MRASで得られた操作値に、 前制镧周期迄に操作値を設定水準に丸めた誤 差(丸め誤差と言う)を考慮した補正値を加えた値を設定水準に丸めて出 力します。 言い換えれば、 MRASに古典的な PID制御の 1(積分)で補正した 制御をします。 この具体的には、 次のようになり ます。
Cnを出力しょうとするときに、 Cnに近い設定可能な値が In Cjである と します。 つまり、 Int(Cn)に丸めて出力される訳です。 Cnを倍精度、 あるいは四倍精度等の実数値で計算したとしても、 Cnは DAコンバータを 経由して出力されますので整数値になり ます。 整数値は 1刻みとは限り ませんが、 説明の簡略化のため、 1刻みの整数 0, 1,2,3,…とします。 丸 め方は、 切り捨て、 切り上げ、 四捨五入等同じ方法を採用する限り どの 方法でも結構です。 この時の丸め誤差 Unは、 (F2)になり ます。
Figure imgf000035_0001
Un -C«-Int(Cn) -Cn-Int(Cn) (F2) この Unは 1未満の数値です。 四捨五入であれば、 ノイズなしに cnが 1万回 続けて 0.49あるいは- 0.49であっても、 隣の設定水準に移れません。 設 定水準数が少ない、 即ち分解能が低い操作手段を用いる場合は深刻な問 題になり ます。 が現時点での操作値の変化量ですから、 同じ符号の状 態が続けば、 このような状態が発生している訳です。 従って、 Unを積算 レて大数になることと、 の符号が偏ることは、 現象的に同じ場合にな り ます。 即ち、 LLと Cnの符号の非負の係数による一次式で表される数値 であれば等価な役割になります。
Un = p(cn-Int(cn))+p' *sgn(cn-lnt(cn)) (F^ )
(F2,)の Unが丸め誤差を考慮した補正値です。 (F2)で定義される Unを稷 算した時に、 その絶対値が 1を超えたときに強制的に隣の水準に推移さ せるのは、 自然に感じられます。 しかし、 符号の場合には、 少し不自然 ですので、 その符号になるの cn-Int(cn)の期待値が 0.5以下と考えて、 PC冒 99/03519
34 推移の判断とします。 即ち、 (F3)を満たす ρ,ρ'ならば、 自由な ρ.ρ'の値 を採用します。
0≤ρ, ρ' 0く ρ+ρ' ρ+2·ρ'≤ 1 (F3) 以上の考察を元に、 現時点(第 0時点)での操作値の後処理として、 次の 処理をします。
Co = I nt (C - 1 co (5 (F4) δ = 6 +p(co-Int(co))+p* · sgn(co-Int(c0)) 0≤k≤ 1 (F5)
Co = Co-C-! (F6) 積算捕正 (5を加えて出力値を決定し(丸め)(F4)、 次周期に備えて積算補 正に新データを追加し(F5)、 実際の操作値の差分を記録します(F6 ここで、 kは通常 1にしますが、 あまり過去の影響を引きずりたく ない場 合は、 適宜 1より小さく します。 この補正は、 準整定状態即ち制御値が デジタル的に目標値に一致した状態で意味のある操作です。 操作値で言 うと、 前時点での設定水準と同じ(lnt(c = 0)か、 その隣の水準になる 時(Int(co) = ± l)にのみ意味があり ます。 即ち、 c。の絶対値が 2Δ(Τ以 上の場合は意味があり ません。 そこで、 Δ C*く llnt(c0) Iの場合にこの 後処理を初期化したい時には、 δ =0とする手銃を追加します。 また、 設定可能範囲を超えた状態(C。く C*。又は C く C。)が銃く と I 3 1が 2AC* を大きく 超え、 数値オーバ一フローを起こすことさえあり ます。 この状 態を避けるため、 Coく C*。や C*N<C。の場合に、 δ =0にするか、 いつも I δ 1く 1 2AC*等にしておく のが賢明です。
Co <C*o V C%<Co => δ =0 (F7)
1~2AC*< I S 1 0 = (1〜2厶 C*)sgn( δ ) (F7' ) 制御系の状態が、 摩耗、 資源利用、 環境変化等で変わり、 応答関数が それにつれて変化する場合や、 応答関数の初期値の精度が悪い場合等は、 精度の高い応答関数の同定ができる判断できるデータを用いて、 応答関 数を修正し、 適時に記憶装置に保存して、 今後の利用に備えます。
この方法の良い点は、 操作値の 1デジッ ト を超える変化は従来の MRASの ままにできるので高精度で高速な制御が可能であり、 1デジッ ト 以下の 場合のみ恒常的偏りをなく すための脈動を誘発する点にあり ます。 普通 の場合、 脈動は嫌われ者で、 単なる雑音としか考えません。 しかし、 偏 り をなく すには不可欠な耍素です。 本発明に似て、 しかも逆の方向の後 処理をとして、 量子化に伴う情報不足や雑音の増幅現象を抑えるため、 準安定状態に近づく に從ぃ MRASで算出される coの値を小さく する後処理 方法が提案されています Β ) ώ この方法の有効性は容易に確認できます。 しかし、 本発明での coの範 aより も広い範囲で、 この方法が実施されま すので、 この後処理に続いて本発明の後処理を実施することで、 両後処 理の長所をそのまま生かせます。 図面の簡単な説明
FI G. 1は、 制御系の概念を図式化したものです。 演算装置じで、 目標値 S. 制御値 R, 可知的外乱 D,異常信号入力装置 Wの入力を元に、 タイ マー丁に 従って周期的に、 記憶装置 Mに納められたプログラム( I 〜 I )に従って 操作値 Cを算出して出力します。
記号の説明
T:タイマ一 U:演算装置 M:記憶装置
S :目標値入力装置 R:制御値入力装置 C:操作値出力装置
W:異常信号入力装置 D:可知的外乱入力装置
ί〜 \ϊ:プログラム例
I :設定値 S ,制御値 R,可知的外乱' Dを入力し、 Rと Dの差分 r . dを採る。 Π: r , c , dが十分なデジッ ト 数でかつ雑音等のレベルリより も十分に大き な信号であるかを確かめる。 m :十分に大きな信号で、 入力した異常信号 wも正常を示している時にの み応答関数を同定し、 a, b, q ; i , Fを得る。
W:今後の操作俥の変化を 0と仮定( )した場合の制御値 Re , を利用で きる可知的外乱 dがあれば、 それも利用して予測する。
V:未来の時点(第 X時点〜第 Y時点)で制御値を目標値に一致させる操作 値の修正: gc 'を計算する。
操作値 C'。に補正値 δを加えて、 設定水準 C。に丸め、 その丸め誤差を Sに追加して、 次の制御周期に倔える。
FI G. 2は、 操作値を設定水準に丸めただけで、 分解能の低い操作手段に 出力した場合の典型的な MRASによる制御のグラフの例です。
a〜gのいずれから始めても、 目標値 Sと恒常的な差 ζを生じます。
R* η - . η , R* η + iは制御水準、 り〜 7Tは制御時点を表します
FI G. 3は、 本発明による操作状態を表すグラフです。
a〜gのいずれからの変化も、 目標値 Sを挟んだ脈動を繰り返します。
R*n -
Figure imgf000038_0001
は制御水準、 0〜7Tは制御時点を表します
FI G. 4は、 制御周期を T'から Tに変更する時の、 グラフを用いた応答関数 の修正方法を示します。 周期 Γでの Γの和分 F' =∑f 'を滑らかな曲線で 結び、 周期 Tでの値の差分 fを読みとり ます。
FI G. 5は、 の場合の fから aをグラフで読みとる例です。 周期を T' から Tへ変換をした極を用いた指数関数のグラフを fの各点から引き出し、 その差を aとして読むことを図示しました。 fが指数関数に乗り始めた点 が &になり ます。 発明を実施.する場合の最良の形態
制御の実態は様々であり、 常に最良の形態というものはあり ません。 それで簡単性を重視して説明します。 制御値の前処理、 制御周期の決定、 応答関数の同定、 応答関数を用いての予測した制御値を用いての操作値 の算出、 本発明を除く操作値の後処理等は、 公知の方法を用い、 現時点 を第 0項で表現します。
応答関数の同定と操作値の算出を略述すると次のようになり ます。
ro = qir-i+,,-+q<1jQr-<i)q+aic-i+'" +a4)a C-(!1)a +bi Q-i+-,- +ba.b i-o)d ( I ) を観測方程式として、 r。 : r- … , r- , c - … , , d- … , d- をもと に、 各種の最小自乗法、 遂次同定法、 有限同定法等により応答関数の各 項 qし … , q q, ai , -·' , aaa , b … , を同定ノ修正します。
cに(G1)の仮定をした c°による予測値 r。を R°にして、 第 I項から第
q項迄求めます。 (E24)の FTは左正則的数列である必要はありません 6 可知的外乱 dは、 利用できるものは、 予定値であっても利用します。
1) (E23) = qr° +ac° +bd CVI )
R° = Λ R° +r° (E24) 次に、 第 ω a時点から第 ω a+ q時点迄の目標値 , +ι . ••' , S0)a+£ ^と ス テツプ応答関数 F=∑ fを用いた c'の方程式(CT )を解きます。
F= A+qF A=∑a (ΒΓ )
Fc' = S-R° [ ω a, ω a+ω q] c" e [0, ω q] (DC° ) 操作値の後処理を設定水準に丸める処理 I nt AO, 本発明の処理 IntBO, その他の後処理 IntC()に分けて考え、先ず IntCOを実施します。
= (E25) C( 1 , o = IntC(Cc) c^O^C^O-C^ (Ε26' ) 次いで、 本発明の後処理を実施します。
C< 2, o = IntB(C , o)≡CM ) o + <5 (F4' ) そして、 最後に IntAOを実施して、 C< 3)。を出力します。
C(3)。 IntA(C(2)。) (E26。〉 I nt AOの実施後次の制御周期に備え操作値を是正し、 を更新します。 (5 = ό C ( 3 ) 0 -C ( 1 )。 (F5,) 厶 C*く I 5 i δ = A C* - sgn( δ ) ( F7 " )
Figure imgf000040_0001
本発明を冷媒を使つた温度制御に応用して、 冷媒供.給を開時間を制御す るだけで従来のインバータとパルス弁を用いた以上の精度が実現しまし た。 冷媒用の制御弁は、 流量を制御する部分で発泡し、 流量にヒ ステリ シスが現れ、 再現性が悪いのが普通です。 耝ぃ時間制御の開閉弁で勝る とも劣らない制御が実現できたことは、 部品の経済性とともに大きな価 値があり ます
本発明は低分解能の操作手段しか使えない制御に MRASが利用できる効果 は大きく、 髙速、 正確、 かつ、. フ ィ ード フ ォ ワードや自動チューニング が容葛な制御を可能にします。 フ ィ ード フ ォ ワードは、 可知的外乱を制 御値の予測に反映して、 操作値の設定に関与させることです。 自動チュ —ニングは制御と平行して実施する応答関数の同定で、 よだれが出るほ どすばらしい制御状態からの突然の破綻に泣いていた人も、 文献 B)の方 法を用いれば可能です。 この方法を用いなく とも、 制御開始時のみの予 備測定で追随性の無い自動チューニングであれば可能です。 本発明も文 献 B)も方法制御論に左正則的数列を用いた表現により以前と比べると容 易に理解でき、 判断が可能になった技術です。 従来の Z変換と状態ぺク ト ルとを用いた表現では本発明のアイデァは出せても、 それで解決でき るかの判断は困難と思われます。

Claims

請 求 の 範 囲
1.未来の制御値を推定し、制御値を目標値に整定させる操作値を求める規 範適応制御において、算出された操作値に丸め誤差を考慮した補正値を加 えてから、操作値を設定水準に丸めて出力することを特徴とする制御方法
2.少なくとも準整定状態で、請求の範囲 1の算出された操作値に丸め誤差を 考慮した補正値を加えてから、操作値を設定水準に丸めて出力することを 特徴とする制御方法
PCT/JP1999/003519 1998-07-01 1999-06-30 Commande predictive utilisant des moyens de mise en oeuvre a niveaux definis reduits WO2000002104A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU43946/99A AU4394699A (en) 1998-07-01 1999-06-30 Predictive control using operating means with fewer set levels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP98/02968 1998-07-01
PCT/JP1998/002968 WO1999046647A1 (fr) 1998-03-09 1998-07-01 Appareil et procede de regulation

Publications (1)

Publication Number Publication Date
WO2000002104A1 true WO2000002104A1 (fr) 2000-01-13

Family

ID=14208533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003519 WO2000002104A1 (fr) 1998-07-01 1999-06-30 Commande predictive utilisant des moyens de mise en oeuvre a niveaux definis reduits

Country Status (2)

Country Link
AU (1) AU4394699A (ja)
WO (1) WO2000002104A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310201A (ja) * 1986-07-01 1988-01-16 Omron Tateisi Electronics Co 離散時間制御装置
JPS63128401A (ja) * 1986-11-18 1988-06-01 Hitachi Ltd 比例・積分形予測適応制御装置
JPH01204102A (ja) * 1988-02-08 1989-08-16 Yokogawa Electric Corp プロセス制御装置
JPH02249001A (ja) * 1989-03-22 1990-10-04 Mitsubishi Heavy Ind Ltd ディジタル操作量の演算装置
JPH0464107A (ja) * 1990-07-03 1992-02-28 Natl Space Dev Agency Japan<Nasda> アンテナ駆動装置
JPH04358201A (ja) * 1991-06-04 1992-12-11 Toshiba Corp プロセスコントローラ
JPH05250003A (ja) * 1992-03-05 1993-09-28 Matsushita Electric Ind Co Ltd ディジタル制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310201A (ja) * 1986-07-01 1988-01-16 Omron Tateisi Electronics Co 離散時間制御装置
JPS63128401A (ja) * 1986-11-18 1988-06-01 Hitachi Ltd 比例・積分形予測適応制御装置
JPH01204102A (ja) * 1988-02-08 1989-08-16 Yokogawa Electric Corp プロセス制御装置
JPH02249001A (ja) * 1989-03-22 1990-10-04 Mitsubishi Heavy Ind Ltd ディジタル操作量の演算装置
JPH0464107A (ja) * 1990-07-03 1992-02-28 Natl Space Dev Agency Japan<Nasda> アンテナ駆動装置
JPH04358201A (ja) * 1991-06-04 1992-12-11 Toshiba Corp プロセスコントローラ
JPH05250003A (ja) * 1992-03-05 1993-09-28 Matsushita Electric Ind Co Ltd ディジタル制御装置

Also Published As

Publication number Publication date
AU4394699A (en) 2000-01-24

Similar Documents

Publication Publication Date Title
Rioul Simple regularity criteria for subdivision schemes
Toprakseven Numerical solutions of conformable fractional differential equations by Taylor and finite difference methods
Tur Jaynes–Cummings model: Solutions without rotating-wave approximation
Wyczalkowska et al. Thermodynamic properties of sulfurhexafluoride in the critical region
Elgindy High-order, stable, and efficient pseudospectral method using barycentric Gegenbauer quadratures
WO2000002104A1 (fr) Commande predictive utilisant des moyens de mise en oeuvre a niveaux definis reduits
Fabien Parallel indirect solution of optimal control problems
Poirier Efficient evaluation of exponential and Gaussian functions on a quantum computer
Kulikov et al. The accurate continuous-discrete extended Kalman filter for continuous-time stochastic systems
Shi et al. Construction of σ-orthogonal polynomials and Gaussian quadrature formulas
Kulikova Hyperbolic SVD‐based Kalman filtering for Chandrasekhar recursion
Denton Monotone method for Riemann-Liouville multi-order fractional differential systems
Shukla et al. Optimisation of biochemical reactors—an analysis of different approximations of fed-batch operation
Imanova One the multistep method of numerical solution for Volterra integral equation
Wang et al. Singular expansions and collocation methods for generalized Abel integral equations
Bostan et al. Algebraic diagonals and walks
Majidian Efficient construction of FCC+ rules
JP2001516542A5 (ja)
Kerimov Overview of some new results concerning the theory and applications of the Rayleigh special function
Khalaf et al. Parallel algorithms for initial value problems: parallel shooting
Merlini et al. Spin ½ model in statistical mechanics and relation to a truncation of the Riemann ξ function in the Riemann Hypothesis
Chen et al. Sequential stabilizing spline algorithm for linear systems: Eigenvalue approximation and polishing
Xenophontos et al. Isogeometric analysis for singularly perturbed problems in 1-D: error estimates
Neau et al. Low complexity FIR filters using factorization of perturbed coefficients
Luo et al. CLA Formula aided fast architecture design for clustered Look-Ahead pipelined IIR digital filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AU BA BB BG BR CA CN CU CZ EE GD GE HU ID IL IN IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 558440

Kind code of ref document: A

Format of ref document f/p: F