WO2000000656A1 - Material compuesto de alta resistencia al desgaste y piezas obtenidas con el mismo - Google Patents

Material compuesto de alta resistencia al desgaste y piezas obtenidas con el mismo Download PDF

Info

Publication number
WO2000000656A1
WO2000000656A1 PCT/ES1999/000199 ES9900199W WO0000656A1 WO 2000000656 A1 WO2000000656 A1 WO 2000000656A1 ES 9900199 W ES9900199 W ES 9900199W WO 0000656 A1 WO0000656 A1 WO 0000656A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
lubricant
mixture
material according
powder
Prior art date
Application number
PCT/ES1999/000199
Other languages
English (en)
French (fr)
Inventor
Jesús PEÑAFIEL VERCHER
Juan Antonio Bas Carbonell
Cesar Molins Bartra
Original Assignee
Aplicaciones De Metales Sinterizados, Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES9801378A external-priority patent/ES2150368B1/es
Priority claimed from ES9900852A external-priority patent/ES2164526B1/es
Application filed by Aplicaciones De Metales Sinterizados, Sa filed Critical Aplicaciones De Metales Sinterizados, Sa
Publication of WO2000000656A1 publication Critical patent/WO2000000656A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0221Using a mixture of prealloyed powders or a master alloy comprising S or a sulfur compound

Definitions

  • the present invention concerns a composite material of high wear resistance, sintered, obtained from mixtures of metal powders for powder metallurgy containing a metal base powder (mainly iron or steel), one or more alloying component powders, a pressing lubricant and a powder that is a solid lubricant that remains in the material after the powder metallurgical process, such that said material has a high wear resistance and a low coefficient of friction, as well as a moderate-high mechanical resistance that makes it suitable for parts subjected to alternative friction in any part of its body, such as guides for rods and pistons of a cushion cylinder, guides for valve stems and hoods for valve stems, among others.
  • This material is presented with two variants related to its porosity: 1) Low porosity material (from 1 to 10%) for dry work, and 2) High porosity material (from 10 to 25%) impregnated with work oil as High performance self-lubricating bearing.
  • the material according to the invention is designed in accordance with said first variant to be applied to friction parts that are installed in equipment that works with little or no lubrication and for this purpose several of these parts are described and claimed.
  • the material of this invention according to the said second variant is designed to be used in the manufacture of self-lubricating bearings subjected to high pressures (P) and speeds (V) and consequently operating under high P-V values.
  • the invention also concerns a bearing obtained from said material.
  • the technique of manufacturing parts using powder metallurgy consists basically in compacting a mixture of powders in a matrix that has the appropriate form of the negative of the piece to be compacted and sintering the compacted in an oven at a variable temperature and adequate and controlled atmosphere, depending on the material.
  • the result is a porous structural piece with good mechanical characteristics and excellent dimensional accuracy.
  • alloy elements it is very common to add one or more alloy elements to the base powder to increase the strength of the sintered part or some other property thereof, such as machinability, hardness, elongation or physical properties.
  • These alloy elements are usually graphite, copper, nickel and molybdenum, in addition to others in smaller proportion.
  • a solid powder lubricant is also added to grease the powder and allow compaction and further extraction of the compacted part of the die, known as a pressing lubricant.
  • This product can be Zn stearate or ethylene bis-stearamide wax, among others.
  • Sintered parts are used in many applications, especially as mechanical components for different industries. Within these components, many of them are subject to friction during their service, so it is essential that the material has adequate wear resistance.
  • the first way is achieved by carrying out a surface heat treatment on the material, thereby achieving a considerable increase in the surface hardness of the piece through a tempering transformation.
  • the second way is by impregnating the porosity of the piece with a lubricating liquid, in such a way that the friction surface of a piece has a permanent and intrinsic lubrication to the piece itself, or externally providing a lubricating fluid.
  • Another possible solution to improve wear resistance is to mix with the base powder and additives a powder of a solid lubricant, such that after sintering this solid lubricant is incorporated into the part.
  • these are parts with a cylindrical inner diameter, manufactured at low density (15-30% volume porosity), in which an operation of filling the porosity with a liquid lubricant is performed using techniques of vacuum, called impregnation.
  • impregnation techniques of vacuum
  • the bearing is able to maintain an autonomous greasing of the shaft and, therefore, avoid the use of complementary greasing systems, either by the lubricant contained in its porosity that flows externally forming a wedge of oil of grease, either by containing in its microstructure a solid lubricant, or both at the same time.
  • These types of bearings are called self-lubricants.
  • the performance or efficiency of a self-lubricating bearing depends on several factors.
  • the first is the material with which the bearing is manufactured.
  • the second is the type of impregnating lubricant.
  • the third is the surface finish of the inner diameter of the bearing (roughness) and its dimensional accuracy (taper, eccentricity).
  • the priority of each of these parameters depends on the application. In general, when it is desired to design a sintered self-lubricating bearing for a specific application, all factors must be taken into account at the same time, depending on the working conditions of the bearing. These conditions are usually expressed by the PV factor, which is defined as the product of the pressure (force on the projected surface) and the linear working speed. The higher the PV, the more requested the bearing works.
  • the value of PV at which a bearing can work depends basically on the material of the bearing and an appropriate type of lubricating oil. The PV values are given in the International System in
  • the reference P-Vs for self-lubricating bearings are 1, 834 Mpa-m / s at 1 m / s.
  • the impregnation lubricant is very varied, and depends mainly on the temperature and the P-V.
  • P-V When the P-V is increased, it is also necessary to increase the viscosity of the lubricant so that the hydrodynamic film that is created does not break and, therefore, the bearing can resist wear.
  • the additives contained in the lubricant which can be extreme pressure additives for high-load jobs, thickeners for high-speed jobs, antioxidants, etc.
  • the base of the lubricant can be selected based on these recitals or even depending on the working temperature of the bearing.
  • This base can be a paraffinic mineral oil, synthetic polyalphaolefin type oils, silicones, polyglycols, diesters or polytetrafluoroethylene, or fats.
  • oil is of the utmost importance, the choice of bearing material is decisive. In general, we can talk about two clearly differentiated materials: bronze and steel.
  • the bronze used for self-lubricating bearings has a chemical composition of 90% Cu and 10% Sn, with contents of Pb and Zn ⁇ 2%.
  • Bronze is widely used for its ability to dissipate heat during friction, since it has a thermal conductivity greater than that of iron, low coefficient of friction and good corrosion resistance.
  • graphite powder 5% maximum
  • MoS 2 powder is added to increase its resistance to wear and reduce the coefficient of friction of work. These compounds are suitable because graphite is not combined with bronze, and MoS 2 is stable during sintering of the bronze, which is performed at 820 ° C maximum.
  • the steel used for self-lubricating bearings is usually alloys
  • the present invention provides a compacted and sintered dry and fluid powder composition
  • a compacted and sintered dry and fluid powder composition comprising (a) an iron or steel base powder, (b) a certain amount of at least one alloy component and (c) a certain amount (limited in function of the mechanical and tribological properties of the desired part) of a solid lubricant powder.
  • the addition of the solid lubricant allows to manufacture a material by powder metallurgy that has high wear resistance and low coefficient of friction. In other words, the material has little tendency to wear due to low friction of one piece against another piece, and also has little tendency to wear the counter part.
  • the final material also has a moderate-high mechanical strength and excellent dimensional accuracy.
  • the solid lubricant used must be stable against the sintering temperature and atmosphere, that is, its chemical composition must not vary, and may or may not be partially combined with the matrix, that is thermodynamically stable. It has been found that the solid lubricant that meets these characteristics and resists sintering temperatures, in accordance with the principles of this invention is MnS.
  • the base alloy or matrix can be any of the usual in powder metallurgy depending on the desired mechanical strength and subsequent secondary treatments. Carbon steels or alloy steels powders can be used. For applications with high corrosion resistance, the mixture of base metal powders is stainless.
  • the proportion of solid lubricant can range between 0.5 and 15% by weight depending on the desired mechanical and tribological characteristics. Above these percentages, as will be seen in the description that follows, it is not feasible to obtain parts with adequate strength.
  • Patent ES-A-549.415 refers to a process for producing a mixture of iron powders containing manganese sulphide for the production of sintered bodies although its purpose is to improve the working capacity of sintered steel, that is to say machining or machining without affecting dimensional change during sintering or deterioration of the characteristic forces of finished sintered bodies.
  • the purpose, starting products and recommended ideal proportions of manganese sulphide (0, 3- 0, 15%) differ radically from the object of the present invention.
  • the manufacturing process corresponds to the usual of powder metallurgical materials, that is, a mixture of powders, compaction and sintering.
  • the powder mixture must contain an additive that prevents segregation of the components and provides creep to said mixture, such as that described in patent application ES-A-2093548 (AMES), of the same applicant. Subsequent operations are permissible, such as a calibration, a tempering heat treatment or different machining.
  • the compaction pressure depends on the density to be achieved, and the sintering temperature can range between 1,000 and 1,300 ° C.
  • powder of some high hardness compound such as WC, NbC, TiC, TaC, TiN, TiCN, etc.
  • the mixture with the rest of the powders can be elementary or by mechanical alloy, the former being preferred for its greater accessibility.
  • an additional component in order to manufacture self-lubricating bearings, in addition to components (a) to (c) an additional component is used, that is (d), consisting of a fluid lubricant that permeates your pores.
  • solid and liquid lubricants allows self-lubricating bearings to be manufactured using powder metallurgy which have high wear resistance and low coefficient of friction, that is, ability to work at a high PV.
  • the bearing has little tendency to wear due to low friction with the shaft it contains and also has little tendency to wear the shaft.
  • the material also has a moderate-high mechanical strength and excellent dimensional accuracy.
  • the liquid lubricant used must be formed by a base oil with extreme pressure additives, and with thickeners to fix the mobility of the oil.
  • the proportion of liquid lubricant must be between 10 and 25% by volume of the bearing formed.
  • the proportion of solid lubricant indicated above (between 0.5 and 1.5% by weight) and the subsequent strength must also be compatible with a porosity of the material that can be of the order of 1 to 25% by volume.
  • a usual process for powder metallurgical bearings is carried out, that is, to produce a mixture of powders that is compacted, sintered and calibrated.
  • a porosity impregnation with a liquid lubricant is provided as the final operation of the process.
  • the compaction pressure depends on the density to be achieved, normally ranges from 200 to 1000 Mpa, and the sintering temperature can range between 1, 000 and 1, 300 ° C.
  • the P-V of the self-lubricating bearings manufactured with the materials of this invention, for dry work, is located at 1 MPa-m / s and for works with oil lubrication it reaches values of 5 MPa-m / s.
  • Fig. 1 shows a partial longitudinal section of a cylinder of a shock absorber, including a rod guide and a piston constructed according to conventional technique, based on the conjunction of at least two parts of materials of different characteristics and specific functionality.
  • Fig. 2 illustrates in side elevation and partial section a guide for the rod of a shock absorber with the left half sectioned, constructed as a single piece body based on the material here recommended.
  • Fig. 4 shows a guide, and valve hood made of the material described in the invention.
  • Fig. 5 is a graph showing the influence of the proportion of solid lubricant on tensile strength.
  • Fig. 6 is a first photograph showing a fingerprint made on a Fe-1, 5% Mo-0.6% C-1% MnS material.
  • Fig. 7 is a second photograph of a footprint with an increase in the percentage of MnS (10%) in the material.
  • Fig. 8 is a second graph illustrating the wear resistance as a function of the percentage of MnS that the material integrates.
  • a shock absorber cylinder 1 comprising a rod 2 guided by one end by a guide comprising a support piece 3, and a bushing 4 of high friction resistance such as a DU bearing marketed under the GLACIER brand and consisting of a composite material consisting of a metal support coated with a layer of polytetrafluoroethylene and with a load (usually of Pb), designed to operate without lubrication.
  • a bushing 4 of high friction resistance such as a DU bearing marketed under the GLACIER brand and consisting of a composite material consisting of a metal support coated with a layer of polytetrafluoroethylene and with a load (usually of Pb), designed to operate without lubrication.
  • the piston 5 also comprises a cylindrical wall 6, on which a layer 7 of friction-resistant material is applied, for example by co-extrusion, with the consequent difficulty in manufacturing.
  • said rod and piston guide can be manufactured in the form of a single piece body 8 and 9 all of a material such as that described in this invention, which greatly facilitates its obtaining.
  • Figure 4 shows hoods 10 and guides 1 1 of valve stems 1 2 of a diesel engine. Parts 10 and 1 1 have been manufactured entirely by powder metallurgy and have been tested in a test engine located at IVECO-PEGASO in Barcelona.
  • the engine test was carried out by covering the hole that the rocker arm has to lubricate the valve cap, so there was no direct lubricant input.
  • the chemical composition of the material used and its manufacturing process were optimized from the results of wear of a motor test This test was carried out with an IVECO model 8060.41 diesel engine. It is a 6000 cm 3 engine with 6 cylinders in line. It develops 1 67 KW of power at 2,900 rpm, and the torque is 690 Nm at 1400 rpm. The engine was powered by an additional electric motor without diesel combustion.
  • the proposed material is applicable to the manufacture of various components that work at friction with reduction or elimination of their lubrication, highlighting the possibility of variation of the tribological characteristics of the product thanks to the versatility of chemical composition (different percentages of components, and in particular of the solid lubricant MnS, used) that allows the manufacturing process by powder metallurgy.
  • the porosity of the sintered material offers the possibility of autonomous lubrication of the component by impregnation with liquid lubricant.
  • the graph in Fig. 5 shows the influence of the proportion of solid lubricant on tensile strength.
  • the wear resistance can be evaluated comparatively from a test by means of a cylinder and a rotating ring, "cylinder-on-ring" type, in which the cylinder is the material to be evaluated and the ring is made of standardized rapid steel of 62 HRC hardness.
  • the test consists in rotating the ring, while the cylinder is at rest and is subjected to hertzian pressure. The friction between both pieces produces a footprint on the material tested. The larger the footprint, the lower the wear resistance. For example, the photograph in Fig. 6 shows the footprint made on
  • the material referred to in this invention allows, as it has been indicated above, the manufacture of various parts subjected to friction with little or no lubrication provided.
  • the proportion of Mns and the final heat treatment characteristics will be particular depending on the desired application.
  • parts such as guides for dampers and plungers of said dampers.
  • component parts of the diesel engine valve train for trucks and in particular valve guides, seats and valve hoods.
  • Material 1 Fe-1, 5% Mo-5% MnS-0.7% C at density 6.6 g / cm 3 .
  • Material 2 Fe-20% Cu-0.5% C at density 6.9 g / cm 3 .
  • Material 3 Cu-10% Sn-4% C at density 6.8 g / cm 3 .
  • Materials 1 and 2 were sintered at 1.120 ° for 20 minutes in an endothermic atmosphere with a dew point of + 5 ° C and a carbon potential of 0.8%.
  • Material 3 was sintered at 800 ° C for 20 minutes in an endothermic atmosphere with a dew point of + 5 ° C and a carbon potential of 0.2%.
  • Sintered bearings were calibrated at a pressure such that the porosity of the resulting bearing was 9% by volume. This assumes a density of 6.9 g / cm 3 for the bearings of Material 1, and 7.3 g / cm 3 for the bearings of Materials 2 and 3. The roughness in the inner diameter of the bearings was 1, 5 Ra maximum.
  • the bearings were assembled on various 0, 1 Ra roughness axes and tested in a dry tribological machine (non-impregnated bearings) under two different pressures (0.5 and 1 Mpa) and constant speed of 0.5 m / s during 2 hours.
  • the PVs tested were 0.25 and 0.5 Mpa-m / s.
  • a pressure of 0.5 Mpa it is observed that the Fe-20% Cu-0.5% C steel seizes with the shaft after 5 seconds of testing due to the high coefficient of friction generated.
  • the graphite bronze behaves well, appreciating a bearing wear of 0.010 mm and a dry friction coefficient of 0.28.
  • Fe-1, 5% Mo-5% MnS-0.7% C steel wears 5 times less than the previous one, but its coefficient of friction is higher, 0, 58.
  • Example 2 The same Material of Example 2 was taken and bearings of this material were manufactured as explained in said example, but at a final density of 5.9 g / cm 3 corresponding to a porosity of 20%.
  • the impregnated bearings were tested on the same tribological machine as in Example 2 at a pressure of 0.5 MPa and a speed of 10 m / s for 2 hours.
  • the shaft used was made of steel F-1 540 UNE or DIN 1 .5732, with hardness of 59 HRC and roughness 0, 1 Ra.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

Material compuesto de alta resistencia al desgaste y piezas obtenidas con el mismo, cuya matriz es una mezcla de polvos metálicos compactada entre 200 a 1000 MPa y sinterizada comprendiendo un polvo con base de hierro o acero, uno o varios polvos de componentes aleantes, un lubricante de prensado en un porcentaje global inferior al 10 % en peso y MnS como lubricante sólido, en una proporción de un 0,5 % a un 10 %, en peso, según las características mecánicas y tribológicas deseadas, siendo la resistencia a la tracción del material 6 veces inferior a la esperada sin dicho lubricante sólido, con un agente ligante de todos los componentes, incorporando la mezcla, además del C, un polvo de alta dureza y para realizar cojinetes autolubricantes la porosidad del material es de un 1 a un 25 % en volumen e impregnada con un lubricante mineral o sintético.

Description

Material compuesto de alta resistencia al desgaste y piezas obtenidas con el mismo
CAMPO DE LA INVENCIÓN. La presente invención concierne a un material compuesto de alta resistencia al desgaste, sinterizado, obtenido a partir de mezclas de polvos metálicos para pulvimetalurgia conteniendo un polvo base metálico (fundamentalmente hierro o acero), uno o varios polvos de componentes aleantes, un lubricante de prensado y un polvo que es un lubricante sólido que permanece en el material después del proceso pulvimetalúrgico, de tal manera que dicho material posee una alta resistencia al desgaste y un bajo coeficiente de fricción, así como una resistencia mecánica moderada-alta que le hace adecuado para piezas sometidas a rozamientos alternativos en cualquier parte de su cuerpo, tales como guías para vastagos y émbolos de un cilindro amortiguador, guías para vastago de válvulas y capuchas para vastago de válvulas entre otras.
Este material se presenta con dos variantes relativas a su porosidad: 1 ) Material de baja porosidad (del 1 al 10%) para trabajo en seco, y 2) Material de alta porosidad (del 10 al 25%) impregnado de aceite para trabajo como cojinete autolubricante de altas prestaciones.
El material según la invención está concebido de acuerdo con dicha primera variante para ser aplicado en piezas sometidas a fricción que estén instaladas en equipos que trabajen con escasa o ninguna lubricación y a tal efecto se describen y reivindican varias de dichas piezas. El material de esta invención conforme a la citada segunda variante está concebido para ser utilizado en la fabricación de cojinetes autolubricantes sometidos a altas presiones (P) y velocidades (V) y en consecuencia operando bajo unos altos valores de P-V. La invención también concierne a un cojinete obtenido a partir del citado material.
DESCRIPCIÓN DE CONOCIMIENTOS ANTERIORES.
La técnica de fabricación de piezas mediante pulvimetalurgia consiste básicamente en compactar una mezcla de polvos en una matriz que tiene la forma adecuada del negativo de la pieza a compactar y sinterizar el compactado en un horno a una temperatura variable y atmósfera adecuada y controlada, dependiendo del material. El resultado es una pieza estructural porosa con buenas características mecánicas y excelente precisión dimensional.
Es muy usual añadir al polvo base uno o más elementos de aleación para aumentar la resistencia de la pieza sinterizada o alguna otra propiedad de ésta, como por ejemplo la maquinabilidad, la dureza, el alargamiento o las propiedades físicas. Estos elementos de aleación suelen ser grafito, cobre, níquel y molibdeno, además de otros en menor proporción. También se añade un lubricante sólido en polvo para engrasar el polvo y permitir la compactación y ulterior extracción de la pieza compactada de la matriz , conocido como lubricante de prensado. Este producto puede ser estearato de Zn o cera de etilen bis-estearamida, entre otros.
Como ejemplos de antecedentes del sector pueden citarse las patentes ES-A-8205367 (HOGANAS) y ES-A-8602213 (ALLIAGES FRITTES METAFRAN) .
Las piezas sinterizadas se emplean en multitud de aplicaciones, sobre todo como componentes mecánicos para diferentes industrias. Dentro de estos componentes, gran cantidad de ellos se encuentran sometidos a fricción durante su servicio, por lo que es imprescindible que el material posea una adecuada resistencia al desgaste.
Normalmente, existen dos maneras de mejorar la resistencia al desgaste: aumentando la dureza del material o aportando lubricación, o ambas. La primera manera se logra efectuando un tratamiento térmico superficial sobre el material, con lo cual se consigue aumentar considerablemente la dureza superficial de la pieza mediante una transformación de temple. La segunda manera es impregnando la porosidad de la pieza con un líquido lubricante, de tal manera que la superficie de fricción de una pieza posea un engrase permanente e intrínseco a la propia pieza, o bien aportando externamente un fluido lubricante.
Otra posible solución para mejorar la resistencia al desgaste es mezclar con el polvo base y los aditivos un polvo de un lubricante sólido, de tal manera que tras la sinterización este lubricante sólido se encuentra incorporado a la pieza.
Dentro de esta línea, en ocasiones se realizan adiciones de grafito en copos tanto en piezas de hierro como de bronce con el objetivo de aumentar la capacidad autolubricante del material. El problema es que se produce una considerable merma de las propiedades mecánicas, y además el grafito se combina en parte con el hierro base, pudiendo producir fragilidad. En el caso particular de cojinetes de bronce, en ocasiones se añade M0S2 para el mismo propósito. Este lubricante sólido no es adecuado para aceros, ya que descompone térmicamente a 850°C, temperatura inferior a la habitual de sinterización del hierro.
En cuanto a los cojinetes sinterizados, éstos son unas piezas con un diámetro interior cilindrico, fabricadas a baja densidad (15-30% de porosidad en volumen), en las cuales se realiza una operación de llenado de la porosidad con un lubricante líquido mediante técnicas de vacío, llamada impregnación. Cuando el cojinete es montado en una máquina, conteniendo un eje que gira, el cojinete es capaz de mantener un engrase autónomo del eje y, por tanto, evitar la utilización de sistemas de engrase complementarios, bien sea por el lubricante contenido en su porosidad que fluye externamente formando una cuña de aceite de engrase, bien por contener en su microestructura un lubricante sólido, o ambos a la vez. A este tipo de cojinetes se les denomina autolubricantes.
El rendimiento o eficacia de un cojinete autolubricante depende de varios factores. El primero es el material con que está fabricado el cojinete.
El segundo es el tipo de lubricante de impregnación. El tercero es el acabado superficial del diámetro interior del cojinete (rugosidad) y su precisión dimensional (conicidad, excentricidad). La prioridad de cada uno de estos parámetros depende de la aplicación. En general, cuando se desea diseñar un cojinete autolubricante sinterizado para una aplicación específica, se deben tener en cuenta todos los factores a la vez, dependiendo de las condiciones de trabajo del cojinete. Estas condiciones se suelen expresar mediante el factor P-V, que se define como el producto de la presión (fuerza sobre la superficie proyectada) y la velocidad lineal de trabajo. Cuanto más alto es el P-V, más solicitado trabaja el cojinete. El valor de P-V al que puede trabajar un cojinete depende básicamente del material del cojinete y de un apropiado tipo de aceite lubricante. Los valores de P-V están dados en el Sistema Internacional en
MPa-m/s. Los P-V de referencia de los cojinetes autolubricantes son de 1 ,834 Mpa-m/s a 1 m/s.
El lubricante de impregnación es muy variado, y depende principalmente de la temperatura y del P-V. Cuando se aumenta el P-V, es necesario aumentar también la viscosidad del lubricante para que la película hidrodinámica que se crea no se rompa y, por tanto, el cojinete pueda resistir el desgaste. También intervienen de manera importante los aditivos que contiene el lubricante, que pueden ser aditivos de extrema presión para trabajos a alta carga, espesantes para trabajos a alta velocidad, antioxidantes, etc. Por último, la base del lubricante puede ser seleccionada en función de estos considerandos o incluso en función de la temperatura de trabajo del cojinete. Esta base puede ser un aceite mineral parafínico, aceites sintéticos tipo polialfaolefinas, siliconas, poliglicoles, diésteres o politetrafuoroetileno, o grasas. Aunque la elección del aceite es de suma importancia, la elección del material del cojinete es determinante. En general, se puede hablar de dos materiales claramente diferenciados: el bronce y el acero.
El bronce empleado para cojinetes autolubricantes tiene una composición química del 90%Cu y 10%Sn, con contenidos de Pb y Zn < 2%. El bronce es muy utilizado por su capacidad de disipación de calor durante el rozamiento, ya que tiene una conductividad térmica mayor que la del hierro, bajo coeficiente de fricción y buena resistencia a la corrosión. Para aumentar su resistencia al desgaste y disminuir el coeficiente de fricción de trabajo, se suele añadir grafito en polvo (5% máximo) y en ocasiones MoS2 en polvo. Estos compuestos son adecuados porque el grafito no se combina con el bronce, y el MoS2 es estable durante la sinterización del bronce, que se realiza a 820°C máximo. En general, si se emplea un lubricante de impregnación de viscosidad 68 cSt aditivado, el bronce es apto para trabajar entre P-V = 1 ,8 y 1 ,9 MPa-m/s como máximo s/norma MPIF standard 35.
El acero empleado para cojinetes autolubricantes suele ser aleaciones
Fe-C o Fe-Cu-C. La utilización de elementos aleantes está limitada porque el cojinete debe ser calibrado para conseguir alta precisión dimensional, o sea que el acero no debe ser muy duro. Sus ventajas respecto al bronce residen en que es más económico, presenta mayor resistencia al desgaste, y posee una resistencia mecánica mayor, pero tiene como inconvenientes que el coeficiente de fricción de trabajo es superior, y que su resistencia a la corrosión es más baja. Dadas sus características, el acero se emplea para P-V = 1 ,2 a 2,1 Mpa-m/s como máximo. El acero no admite adiciones de los aditivos sólidos mejoradores de la fricción que se usan para el bronce, como el grafito. El grafito se combina en parte con el hierro, pudiendo producir fragilidad y ruido, y el MoS2 no es estable durante la sinterización del acero a > 1.050°C porque descompone a 850°C.
DESCRIPCIÓN DE LA INVENCIÓN.
La presente invención proporciona una composición de polvos secos y fluidos compactada y sinterizada que comprende (a) un polvo base hierro o acero, (b) una cierta cantidad de al menos un componente de aleación y (c) una cierta cantidad (limitada en función de las propiedades mecánicas y tribológicas de la pieza deseada) de un polvo de lubricante sólido. La adición del lubricante sólido permite fabricar un material mediante pulvimetalurgia que posee alta resistencia al desgaste y bajo coeficiente de fricción. En otras palabras, el material tiene poca tendencia a desgastarse a causa de una baja fricción de una pieza contra otra pieza, y además tiene poca tendencia a desgastar la contrapieza. El material final posee asimismo una resistencia mecánica moderada-alta y una excelente precisión dimensional.
El lubricante sólido empleado debe ser estable frente a la temperatura y la atmósfera de sinterización, es decir, no debe variar su composición química, y puede o no combinarse parcialmente con la matriz, es decir termodinámicamente estable. Se ha encontrado que el lubricante sólido que cumple estas características y que resiste las temperaturas de sinterización, conforme a los principios de esta invención es el MnS. La aleación base o matriz puede ser cualquiera de las habituales en pulvimetalurgia en función de la resistencia mecánica deseada y de posteriores tratamientos secundarios, Se pueden usar aceros al carbono o polvos de aceros aleados. Para aplicaciones de alta resistencia a la corrosión, la mezcla de polvos metálicos de base es inoxidable.
La proporción de lubricante sólido puede oscilar entre un 0,5 y un 15% en peso en función de las características mecánicas y tribológicas deseadas. Por encima de estos porcentajes, tal como se verá en la descripción que sigue, no es factible obtener piezas con una resistencia adecuada.
En la patente ES-A-549.415 (HOGANAS) se refiere un procedimiento para producir una mezcla de polvos de hierro que contiene sulfuro de manganeso para la producción de cuerpos sinterizados si bien su propósito es mejorar la capacidad de trabajo del acero sinterizado, es decir el trabajado a máquina o mecanizado sin que afecte el cambio dimensional durante la sinterización o deterioro de las fuerzas características de los cuerpos sinterizados terminados. La finalidad, productos de partida y proporciones ideales recomendadas del sulfuro de manganeso (0, 3- 0, 15%) difieren radicalmente del objeto de la presente invención. El proceso de fabricación corresponde al habitual de los materiales pulvimetalúrgicos, es decir, una mezcla de los polvos, una compactación y una sinterización. La mezcla de polvos debe contener un aditivo que evite segregación de los componentes y proporcione fluencia a dicha mezcla, tal como el descrito en la solicitud de patente ES-A-2093548 (AMES), del mismo solicitante. Son admisibles operaciones posteriores, como un calibrado, un tratamiento térmico de temple o diferentes mecanizaciones. La presión de compactación depende de la densidad que se desea alcanzar, y la temperatura de sinterización puede oscilar entre 1 .000 y 1 .300°C.
Para mejorar la resistencia al desgaste, es posible añadir también, a la mezcla de polvos a sinterizar, polvo de algún compuesto de alta dureza, como por ejemplo WC, NbC, TiC, TaC, TiN, TiCN, etc. La mezcla con el resto de polvos puede ser elemental o bien mediante aleado mecánico, prefiriéndose la primera por su mayor accesibilidad. En el caso de aplicación del material según la invención, en su variante de alta porosidad, para fabricar cojinetes autolubricantes, además de los componentes (a) a (c) se utiliza -un componente adicional, es decir (d), consistente en un lubricante fluido que impregna sus poros. La adición de los lubricantes sólidos y líquidos permite fabricar cojinetes autolubricantes mediante pulvimetalurgia los cuales poseen alta resistencia al desgaste y bajo coeficiente de fricción, es decir aptitud para trabajar a un alto P-V. En otras palabras, el cojinete tiene poca tendencia a desgastarse a causa de una baja fricción con el eje que contiene y además tiene poca tendencia a desgastar el eje. El material posee asimismo una resistencia mecánica moderada-alta y una excelente precisión dimensional.
El lubricante líquido empleado debe estar formado por un aceite base con aditivos de extrema presión, y con unos espesantes para fijar la movilidad del aceite. La proporción de lubricante líquido debe estar entre un 10 y un 25% en volumen del cojinete formado.
La proporción de lubricante sólido indicada anteriormente (entre un 0,5 y un 1 5% en peso) y la subsiguiente resistencia ha de ser compatible también con una porosidad del material que puede ser del orden de un 1 a un 25% en volumen. Para la producción de cojinetes se procede a un proceso de habitual para los cojinetes pulvimetalúrgicos, es decir, elaborar una mezcla de polvos que es compactada, sinterizada y calibrada. Además está prevista una impregnación de la porosidad con un lubricante líquido como operación final del proceso. La presión de compactación depende de la densidad que se desea alcanzar, normalmente oscila entre 200 y 1000 Mpa, y la temperatura de sinterización puede oscilar entre 1 .000 y 1 .300°C.
El P-V de los cojinetes autolubricantes fabricados con los materiales de esta invención, para trabajos en seco, se sitúa a 1 MPa-m/s y para trabajos con lubricación con aceite alcanza unos valores de 5 MPa-m/s.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
En los dibujos adjuntos se han representado, a título de ejemplo varias de las referidas piezas construidas con el material según la invención. o
En dichos dibujos:
La Fig. 1 muestra una sección longitudinal parcial de un cilindro de un amortiguador, incluyendo una guía del vastago y un émbolo construidos según técnica convencional, en base a la conjunción de por lo menos dos partes de materiales de características distintas y funcionalidad específica.
La Fig. 2 ilustra en alzado lateral y sección parcial una guía para el vastago de un amortiguador con la mitad de la izquierda seccionada, construida como cuerpo monopieza en base al material aquí preconizado.
En la Fig. 3 se grafía en alzado lateral y sección parcial un émbolo para amortiguador construido en forma de cuerpo monopieza, empleando el material según la invención.
La Fig. 4 muestra una guía, y capucha de válvula fabricados con el material descrito en la invención.
La Fig. 5 es una gráfica que muestra la influencia de la proporción de lubricante sólido en la resistencia a la tracción.
La Fig. 6 es una primera fotografía que muestra una huella realizada sobre un material de Fe-1 ,5%Mo-0,6%C-1 %MnS.
La Fig. 7 es una segunda fotografía de una huella con aumento del porcentaje de MnS (10%) en el material. La Fig. 8 es una segunda gráfica que ilustra la resistencia al desgaste en función del porcentaje de MnS que integre el material.
DESCRIPCIÓN EN DETALLE DE UNOS EJEMPLOS DE REALIZACIÓN
Conforme a la Fig. 1 , en la misma se aprecia un cilindro 1 de amortiguador, que comprende un vastago 2 guiado por un extremo por una guía que comprende una pieza de soporte 3, y un casquillo 4 de elevada resistencia a la fricción tal como un cojinete DU comercializado bajo la marca GLACIER y que consiste en un material compuesto formado por un soporte metálico revestido de una capa de politetrafluoretileno y con carga (generalmente de Pb), concebido para funcionar sin lubricación. Independientemente del costo del citado casquillo, la fabricación de una tal guía exige unas operaciones de encaje del citado casquillo 4 en el interior del soporte 3 y una ulterior verificación. Asimismo en el caso del émbolo 5, el mismo comprende también una pared cilindrica 6, sobre la cual se aplica una capa 7 de material resistente a la fricción, por ejemplo por co-extrusión, con la consiguiente dificultad en la fabricación. Por el contrario, y tal como muestran las Figs. 2 y 3, dicha guía de vastago y émbolo pueden fabricarse en forma de cuerpo monopieza 8 y 9 todas ellas de un material como el descrito en esta invención, lo que facilita notablemente su obtención.
En base al material obtenido según el procedimiento descrito se han fabricado también piezas componentes del tren de válvulas de un motor
Diesel. El objetivo era, en este caso, eliminar o reducir la lubricación de los balancines para reducir la polución atmosférica debida a partículas de aceite, fenómeno conocido por la denominación inglesa "blow-by" .
En la figura 4 se han representado unas capuchas 10 y guías 1 1 de unos vastagos 1 2 de válvulas de un motor Diesel. Las piezas 10 y 1 1 se han fabricado íntegramente mediante pulvimetalurgia y se han ensayado en un motor de pruebas ubicado en IVECO-PEGASO en Barcelona.
Dada la condición autolubricante significativa en el material descrito, el ensayo de motor se realizó tapando el orificio que posee el balancín para lubricar el capuchón de la válvula, con lo cual no hubo aporte de lubricante directo.
La composición química del material empleado y su proceso de fabricación (granulación de la mezcla de los productos en polvo, compactación de dicha mezcla y sinterización de los compactos, y tratamiento térmico de endurecimiento superficial) se optimizaron a partir de los resultados de desgaste de un ensayo sobre motor. Este ensayo se realizó con un motor Diesel de camión modelo 8060.41 de IVECO. Se trata de un motor de 6000 cm3 de 6 cilindros en línea. Desarrolla 1 67 KW de potencia a 2.900 r.p.m, y el par es de 690 N.m a 1400 r.p.m. El motor funcionó accionado por un motor eléctrico adicional sin combustión de gasoil.
Con un material conteniendo los siguientes porcentajes de componentes: polvo atomizado de (Fe- 1 ,5%Mo), 0,5% C y 5% de SMn templado y revenido se efectuó un ensayo final con el mismo motor Diesel, pero accionado por combustión de gasoil. El ensayo duró 800 horas, y se realizó bajo un ciclo de funcionamiento consistente en diferentes fases de aceleración máxima y ralentí variando a la vez la carga del motor.
Se obtuvo un desgaste muy bajo tanto de la guía de válvula como de las capuchas. El resultado con lubricación reducida fue similar a lo que se obtiene con capuchas de acero cementado y guías de válvula de fundición trabajando con aporte directo de lubricación. El desgaste de las capuchas del material preconizado fue de 30 μm máximo, mientras que el de las guías de válvula no superó las 10 μm. La aplicación del material propuesto a la construcción de capuchas y guías de válvula determina las siguientes ventajas:
- reducción del "blow-by" de un 40% mínimo al no aportar lubricación directa al capuchón;
- reducción del costo de fabricación de los balancines al ahorrar el taladrado del orificio de aporte de lubricante al capuchón;
- reducción del costo de fabricación del capuchón al evitar mecanizaciones.
El material propuesto es aplicable a la fabricación de diversos componentes que trabajan a fricción con reducción o eliminación de su lubricación, siendo de destacar la posibilidad que ofrece de variación de las características tribológicas del producto gracias a la versatilidad de composición química (porcentajes diversos de los componentes, y en particular del lubricante sólido MnS, empleado) que permite el proceso de fabricación mediante pulvimetalurgia. Además, la porosidad del material sinterizado ofrece la posibilidad de engrase autónomo del componente mediante impregnación con lubricante líquido.
DESCRIPCIÓN EXPERIMENTAL - EJEMPLOS Ejemplo 1 Se tomó como aleación base un polvo de composición Fe-1 ,5%Mo
(Astaloy Mo, Hóganás AB) . Se mezcló con él un 0,6% de grafito (Grade 1651 , South western Graphite Co) y diferentes porcentajes de MnS (Hóganás AB) de granulometría < 60 mieras, además de un 0,6% de cera de etilen bis- estearamida como lubricante de prensado (Wax C PM, Hoescht Ibérica S.A.). La mezcla resultante se prensó a 600 MPa de presión y se sinterizó a 1 .1 20°C durante 20' en una atmósfera de N y un 5% de H2 seca o con un punto de rocío de -20 °C.
La gráfica de la Fig. 5 muestra la influencia de la proporción de lubricante sólido en la resistencia a la tracción. Cuanto más lubricante sólido, menor es la resistencia a la tracción, el límite elástico, el alargamiento y la tenacidad, lo que limita el porcentaje de lubricante sólido para una aplicación concreta de la pieza a obtener.
La resistencia al desgaste se puede evaluar comparativamente a partir de un ensayo mediante un cilindro y una anilla giratoria, tipo "cylinder-on- ring", en el que el cilindro es el material a evaluar y la anilla es de acero rápido normalizado de 62 HRC de dureza. El ensayo consiste en hacer girar la anilla, mientras que el cilindro se encuentra en reposo y está sometido a una presión hertziana. La fricción entre ambas piezas produce una huella en el material ensayado. Cuanto más grande es la huella, menor es la resistencia al desgaste. Por ejemplo, la fotografía de la Fig. 6 muestra la huella realizada sobre
2 el material Fe-1 ,5%Mo-0,6%C-1 %MnS. Su superficie es de 19,5 mm bajo una presión hertziana de 350 N/mm2 y una velocidad del elemento móvil de
1 m/s. Si se aumenta el porcentaje de MnS hasta el 10% (fotografía de la
Fig. 7), bajo las mismas condiciones operativas, la superficie de la huella
2 disminuye a 3,4 mm , lo cual demuestra el efecto beneficioso de la adición de dicho producto como lubricante sólido.
En la gráfica de la fig. 8 se muestra la resistencia al desgaste en función del porcentaje de MnS que integre el material. En ordenadas se ha indicado la pérdida de peso en % mientras que en abeisas se indica el porcentaje de MnS del material. Las condiciones operativas son una presión hertziana de 350 N/mm2 y una velocidad del elemento móvil de 1 m/s, al igual que en los ejemplos de las fotografías de las Figs. 6 y 7.
El material al que concierne esta invención permite, tal como se ha indicado anteriormente, la fabricación de diversas pieza sometidas a fricción con escasa o ninguna lubricación aportada. La proporción de Mns y las características de tratamiento térmico finales serán particulares en función de la aplicación deseada. Así, con el material obtenido conforme al procedimiento descrito es posible realizar piezas tales como guías para amortiguadores y émbolos de dichos amortiguadores. También se han producido piezas componentes del tren de válvulas de motores Diesel para camiones, y en concreto guías de válvula, asientos y capuchas de válvula. Ejemplo 2
Se prensaron cojinetes cilindricos de 1 6 mm. 0ext x 10 mm 0¡nt x 1 6 mm altura de tres materiales:
Material 1 : Fe-1 ,5%Mo-5%MnS-0,7%C a densidad 6,6 g/cm3. Material 2: Fe-20%Cu-0,5%C a densidad 6,9 g/cm3. Material 3: Cu-10%Sn-4%C a densidad 6,8 g/cm3.
Los materiales 1 y 2 se sinterizaron a 1 .1 20° durante 20 minutos en una atmósfera endotérmica con un punto de rocío de + 5°C y un potencial de carbono de 0,8%. El material 3 se sinterizó a 800°C durante 20 minutos en una atmósfera endotérmica con un punto de rocío de + 5°C y un potencial de carbono de 0,2%.
Los cojinetes sinterizados se calibraron a una presión tal que la porosidad del cojinete resultante fue del 9% en volumen. Esto supone una densidad de 6,9 g/cm3 para los cojinetes del Material 1 , y 7,3 g/cm3 para los cojinetes de los Materiales 2 y 3. La rugosidad en el diámetro interior de los cojinetes fue de 1 ,5 Ra máximo.
Los cojinetes se ensamblaron en diversos ejes de rugosidad 0, 1 Ra y se probaron en una máquina tribológica en seco (cojinetes no impregnados) bajo dos presiones distintas (0,5 y 1 Mpa) y velocidad constante de 0,5 m/s durante 2 horas. Los P-V ensayados fueron de 0,25 y 0,5 Mpa-m/s. A presión de 0,5 Mpa, se observa que el acero Fe-20%Cu-0,5% C gripa con el eje tras 5 segundos de ensayo debido al alto coeficiente de fricción generado. El bronce con grafito se comporta bien, apreciando un desgaste del cojinete de 0,010 mm y un coeficiente de fricción en seco de 0,28. El acero Fe-1 ,5%Mo-5%MnS-0,7%C se desgasta 5 veces menos que el anterior, pero su coeficiente de fricción es más alto, 0, 58.
Al aumentar la presión a 1 Mpa, el cojinete de bronce con grafito sigue dando un coeficiente de fricción más bajo que el Fe-1 ,5%Mo-5%MnS- 0,7%C, pero, en cambio, el cojinete de bronce con grafito se desgasta 0,48 mm, mientras que el de acero Fe-1 ,5%Mo-5%MnS-0,7%C sólo se desgasta 0,002 mm. Ejemplo 3
Se tomó el mismo Material del ejemplo 2 y se fabricaron cojinetes de este material tal como se explica en dicho ejemplo, pero a una densidad final de 5,9 g/cm3 que corresponde a una porosidad del 20%.
Se tomó otro Material denominado 4, de bronce autolubricante de composición 90% de Cu y 10% de Sn de densidad 6,8 g/cm3 de porosidad. 20% correspondiente al tipo o código CT-1000-K26 de MPIF estándar 35. Los cojinetes se impregnaron con dos lubricantes distintos: uno, base mineral ISO VG 1 50 llamado lubricante A y otro, base sintética ISO VG 220, llamado lubricante B.
Los cojinetes impregnados se probaron en la misma máquina tribológica del ejemplo 2 a una presión de 0,5 MPa y velocidad de 10 m/s durante 2 horas.
El eje empleado fue de acero F-1 540 UNE o DIN 1 .5732, con dureza de 59 HRC y rugosidad 0, 1 Ra.
Los cojinetes del Material 4, tanto impregnados con lubricantes A o B, se gripan inmediatamente, mientras que los cojinetes del Material 1 , impregnados con el aceite A aguantan el ensayo 100 minutos y con el aceite
B resisten el ensayo de 2 horas.
Estos ensayos muestran que los nuevos materiales, desarrollados en esta patente con porosidad del 10 al 25% e impregnados con adecuados aceites de lubricación tienen un PV mayor en 2,5 veces más que los materiales de bronce autolubricantes convencionales.

Claims

REIVINDICACIONES 1 .- Material compuesto de alta resistencia al desgaste, sinterizado, cuya matriz se ha obtenido a partir de una mezcla de polvos metálicos compactada y sinterizada que comprende un polvo con base de hierro o de acero con un tamaño máximo de partícula de 300 mieras, uno o varios polvos de componentes aleantes, con un tamaño máximo de partícula de 1 50 mieras y en un porcentaje global inferior al 10 % en peso, un lubricante de prensado y un lubricante sólido, caracterizado porque: dicho lubricante sólido es un sulfuro metálico, térmicamente estable a las temperaturas de sinterización comprendidas entre 1 1 10 a 1300
°C, cuyo lubricante sólido participa en dicha mezcla en una proporción de un 0,5% a un 1 5%, preferiblemente de 2,5 al 10% en peso, en función de las características mecánicas y tribológicas deseadas, con la limitación de que la resistencia a la tracción del material no alcance un valor 6 veces inferior al esperado sin la incorporación de dicho lubricante sólido al material sinterizado, operando bajo unas presiones de compactación de 200 a 1000 MPa; y se utiliza un agente ligante de todos los componentes que además facilita la fluencia de la mezcla. 2.- Material compuesto, según la reivindicación 1 , caracterizado porque el sulfuro metálico incorporado es MnS.
3.- Material compuesto, según la reivindicación 1 , caracterizado porque a dicha mezcla se le añade además del C un polvo de un compuesto de alta dureza. 4.- Material compuesto, según la reivindicación 3, caracterizado porque el compuesto de alta dureza es WC, NBC, TiC, TaC, TiN o TiCN.
5.- Material compuesto, según la reivindicación 4, caracterizado porque el compuesto de alta dureza está mezclado con el resto de polvos de manera elemental o bien mediante aleado mecánico. 6.- Material compuesto, según la reivindicación 1 , y porque su matriz está constituida en su mayor parte por un polvo de acero atomizado, conteniendo según las aplicaciones aleados con el Fe metales como el Mo, Mn, Ni, Cr, a cuya matriz se le añaden los componentes de las reivindicaciones 3-5. '.- Material, según -una cualquiera de las reivindicaciones anteriores, caracterizado porque el lubricante sólido participa en dicha mezcla en una proporción de un 0,5% a un 10%, preferiblemente de un 2,5 a un
5% en peso y porque se opera bajo unas presiones de compactación de 600 a 1000 MPa.
8.- Material, según una cualquiera de las reivindicaciones 1 a 6, caracterizado porque la porosidad del material es de un 1 a un 25% en volumen y está impregnada con un lubricante mineral o sintético.
9.- Material, según una cualquiera de las reivindicaciones 1 a 6, caracterizado porque la porosidad del material es de un 1 a un 25% en volumen y está impregnada con un lubricante mineral o sintético, que es un aceite especial con aditivos de extrema presión y espesantes. 10.- Material, según la reivindicación 1 , caracterizado porque para aplicaciones de alta resistencia a la corrosión, la mezcla de polvos metálicos de base es inoxidable.
1 1 .- Una guía para vastago de un cilindro amortiguador, caracterizada porque está constituida mediante un cuerpo monopieza de un material compuesto según una de las reivindicaciones 1 a 7.
1 2.- Un émbolo para un cilindro amortiguador, caracterizado por estar constituido en forma de cuerpo monopieza de un material compuesto según una de las reivindicaciones 1 a 7.
13.- Una guía para vastago de válvula, caracterizada porque está constituida mediante un cuerpo monopieza de un material compuesto según una de las reivindicaciones 1 a 7.
14.- Una capucha para vastago de válvula, caracterizada por estar constituida por un cuerpo monopieza de un material compuesto según una de las reivindicaciones 1 a 7. 1 5.- Un cojinete autolubricante, caracterizado porque está constituido mediante un cuerpo monopieza de un material compuesto según una de las reivindicaciones 8 ó 9.
1 6.- Un cojinete autolubricante, según la reivindicación 1 5, caracterizado porque la proporción de lubricante de impregnación está comprendida entre un 10 y un 25% en volumen del cojinete formado.
17.- Un cojinete autolubricante según la reivindicación 16, caracterizado porque trabajando en seco alcanza un P-V de 1 MPa-m/s, máximo, e impregnado con aceites lubricantes, con una proporción de lubricante líquido comprendida entre un 10 y un 25% en volumen del cojinete formado, alcanza un P-V = 5 MPa -m/s, máximo.
PCT/ES1999/000199 1998-06-30 1999-06-29 Material compuesto de alta resistencia al desgaste y piezas obtenidas con el mismo WO2000000656A1 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES9801378A ES2150368B1 (es) 1998-06-30 1998-06-30 Material compuesto de alta resistencia al desgaste y piezas desarrolladas con el mismo.
ESP9801378 1998-06-30
ES9900852A ES2164526B1 (es) 1999-04-23 1999-04-23 Material compuesto para cojinetes autolubricantes de altas prestaciones y cojinete obtenido con el mismo.
ESP9900852 1999-04-23

Publications (1)

Publication Number Publication Date
WO2000000656A1 true WO2000000656A1 (es) 2000-01-06

Family

ID=26155163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000199 WO2000000656A1 (es) 1998-06-30 1999-06-29 Material compuesto de alta resistencia al desgaste y piezas obtenidas con el mismo

Country Status (1)

Country Link
WO (1) WO2000000656A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2356222A1 (es) * 2011-02-15 2011-04-06 Sinterizados Y Metalurgia De Solsona, S.A. Procedimiento para la fabricación de cojinetes deslizantes sinterizados.
EP2781283A1 (en) * 2013-03-19 2014-09-24 Hitachi Chemical Company, Ltd. Iron base sintered sliding member and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918923A (en) * 1972-08-16 1975-11-11 Riken Piston Ring Ind Co Ltd Wear resistant sintered alloy
WO1993024260A1 (en) * 1992-05-27 1993-12-09 Höganäs Ab PARTICULATE CaF2 AGENT FOR IMPROVING THE MACHINABILITY OF SINTERED IRON-BASED POWDER
WO1998025720A1 (en) * 1996-12-10 1998-06-18 Höganäs Ab Agglomerated iron-based powders

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918923A (en) * 1972-08-16 1975-11-11 Riken Piston Ring Ind Co Ltd Wear resistant sintered alloy
WO1993024260A1 (en) * 1992-05-27 1993-12-09 Höganäs Ab PARTICULATE CaF2 AGENT FOR IMPROVING THE MACHINABILITY OF SINTERED IRON-BASED POWDER
WO1998025720A1 (en) * 1996-12-10 1998-06-18 Höganäs Ab Agglomerated iron-based powders

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOLTON J D ET AL: "PHASE REACTIONS AND CHEMICAL STABILITY OF CERAMIC CARBIDE AND SOLIDLUBRICANT PERTICULATE ADDITONS WITHIN SINTERED HIG SPEED STEEL MATRIX", POWDER METALLURGY,GB,METALS SOCIETY. LONDON, vol. 36, no. 4, pages 267-274, XP000425641, ISSN: 0032-5899 *
KRENTSCHER, B. ET AL: "P/M components for valve train applications in automotive engines", DIFFUS. DEFECT DATA, PT. B (1990), B8-9(SINTERING MULTIPHASE MET. CERAM. SYST.), 369-79, 1990, XP000853662 *
MADAN D S: "Effect of manganese sulfide (MnS) on properties of high performance P/M alloys and applications", PROCEEDINGS OF THE 1992 POWDER METALLURGY WORLD CONGRESS. PART 4 (OF 9);SAN FRANCISCO, CA, USA JUN 21-26 1992, vol. 4, 1992, Adv Powder Metall;Advances in Powder Metallurgy; Secondary Operations, Quality, and Standards 1992 Publ by Metal Powder Industries Federation, Princeton, NJ, USA, pages 245 - 267, XP000853504 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2356222A1 (es) * 2011-02-15 2011-04-06 Sinterizados Y Metalurgia De Solsona, S.A. Procedimiento para la fabricación de cojinetes deslizantes sinterizados.
WO2012110676A1 (es) * 2011-02-15 2012-08-23 Sinterizados Y Metalurgia De Solsona, S.A. Procedimiento para la fabricación de cojinetes deslizantes sinterizados
EP2781283A1 (en) * 2013-03-19 2014-09-24 Hitachi Chemical Company, Ltd. Iron base sintered sliding member and method for producing same
US9744591B2 (en) 2013-03-19 2017-08-29 Hitachi Chemical Company, Ltd. Iron base sintered sliding member and method for producing same

Similar Documents

Publication Publication Date Title
CN102062149B (zh) 高性能铁基粉末冶金含油自润滑轴承及其生产工艺
JP5247329B2 (ja) 鉄系焼結軸受およびその製造方法
CN103201397B (zh) Cu基烧结含油轴承
JP5378530B2 (ja) 耐摩耗性が向上した滑り軸受け及びその製造方法
US20160215820A1 (en) Sliding member and method for producing same
EP1300481B1 (en) Powder metal valve guide
RU2618976C2 (ru) Новый металлический порошок и его использование
US8216338B2 (en) Bearing having improved consume resistivity and manufacturing method thereof
JP5588879B2 (ja) プレアロイ銅合金粉末鍛造連接棒
US10428873B2 (en) Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
ATE221965T1 (de) Gleitlager
KR960014640B1 (ko) 고하중용 미끄럼 접촉구조
CN102471853A (zh) 铁系烧结滑动部件及其制造方法
KR102139401B1 (ko) 2중/3중 층의 밸브 가이드
RU1836191C (ru) Способ изготовлени направл ющей клапана двигател внутреннего сгорани и материал дл направл ющей клапана двигател внутреннего сгорани
JP6424983B2 (ja) 鉄系焼結含油軸受
CN107663615B (zh) 一种高强度高自润滑铁基合金及制备方法和应用
WO2000000656A1 (es) Material compuesto de alta resistencia al desgaste y piezas obtenidas con el mismo
JP4619302B2 (ja) すべり軸受及びその製造方法
CN105828988A (zh) 粉末压坯制机械部件及其制造方法
JP2019065323A (ja) 鉄系焼結軸受及び鉄系焼結含油軸受
KR100518248B1 (ko) 건설 기계용 소결 슬라이딩 베어링
US6833018B1 (en) Powder metal materials including glass
RU222219U1 (ru) Кольцо металлокерамическое для подшипника скольжения стрелочного привода
US20220136561A1 (en) Wear resistant, highly thermally conductive sintered alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA