WO1999067313A1 - Process for producing polyurethane foam - Google Patents

Process for producing polyurethane foam Download PDF

Info

Publication number
WO1999067313A1
WO1999067313A1 PCT/JP1999/003296 JP9903296W WO9967313A1 WO 1999067313 A1 WO1999067313 A1 WO 1999067313A1 JP 9903296 W JP9903296 W JP 9903296W WO 9967313 A1 WO9967313 A1 WO 9967313A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyurethane foam
polyol
acid
polyester polyol
Prior art date
Application number
PCT/JP1999/003296
Other languages
French (fr)
Japanese (ja)
Inventor
Akito Itoi
Koei Hosokawa
Yasutoshi Isayama
Atsushi Ishikawa
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to JP2000555961A priority Critical patent/JP3589423B2/en
Publication of WO1999067313A1 publication Critical patent/WO1999067313A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2410/00Soles

Definitions

  • the present invention relates to a method for producing a polyurethane foam. More specifically, the present invention relates to a method for producing a polyurethane foam having high mechanical strength and suitably used as shoe soles and the like. Background art
  • the polyurethane foam is removed from the molding die in comparison with the method using an isocyanate prepolymer obtained only from the polyester polyol.
  • the polyurethane foam obtained has a disadvantage in that the time required for removal (demolding time) is prolonged and the productivity is reduced, and a decrease in mechanical strength is observed in the obtained polyurethane foam.
  • An object of the present invention is to produce a polyurethane foam which has excellent mechanical strength, has very few pinholes and shrinkage on the surface, and is particularly suitable for use as a polyurethane foam for shoe soles in a short demolding time. It is to provide a method that can do this.
  • a method for producing a polyurethane foam by reacting the following components A and B,
  • Isocyanate-terminated prepolymer (hereinafter, simply referred to as "prepolymer") used in the component A means a reaction product of a polyisocyanate and a polyol which does not contain a free hydroxyl group.
  • the prepolymer is a polyisocyanate in a relative amount such that no free hydroxyl groups remain in the prepolymer (indicated by the number of isocyanate groups per hydroxyl group present in the reaction mixture, and so on). It is obtained by reacting a nate with a polyol. This relative amount is preferably 2 or more so that no free hydroxyl groups remain in the prepolymer.
  • the relative amount is preferably 50 or less, more preferably 30 or less, from the viewpoint of storage stability and liquidity at room temperature.
  • the “average number of hydroxyl functional groups” means the average number of functional groups of the polyol composition (1) assuming that the average number of active hydrogens per molecule of the starting materials used in the production is the average number of functional groups of the starting materials. Number of hydroxyl groups per molecule), but in practice is somewhat lower due to terminal unsaturation. Also, the “number of hydroxyl functional groups” indicates the number of hydroxyl groups per molecule.
  • the "isocyanate composition" used for the component A may contain free polysocyanate in addition to the prepolymer.
  • the polyester polyol in the component A is obtained by polycondensation of a polybasic acid component and a polyhydric alcohol component, and the molar ratio of the aromatic polybasic acid / aliphatic polybasic acid of the polybasic acid component is 0.05 to 0.4.
  • aromatic polybasic acid examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, fluoric anhydride, and 0-fluoric acid;
  • R 1 is an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryl alkyl group having 7 to 13 carbon atoms, a halogen atom, an alkoxy group having 1 to 4 carbon atoms, A hydroxyl group or an aryloxy group having 6 to 12 carbon atoms which may have a substituent;
  • R 2 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an arylalkyl group having 7 to 13 carbon atoms, a halogen atom, Or an aryloxy group having 6 to 12 carbon atoms which may have an alkoxy group, a hydroxyl group or a substituent which may have a substituent.
  • aromatic polybasic acids aromatic dicarboxylic acids, 4-methylfuranic anhydride, 1,4-naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid can be preferably used. Of these, terephthalic acid, phthalic anhydride and 0-fluoric acid are particularly preferred.
  • Aliphatic polybasic acids include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, nonamethylenedicarboxylic acid, decamethylenedicarboxylic acid, pendeca Methylene dicarboxylic acid, dodecamethylene dicarboxylic acid, tridecamethylene dicarboxylic acid, tetradecamethylene dicarboxylic acid, pendecamethylene dicarboxylic acid, hexadecamethylene acid, nonadecamethylene dicarboxylic acid, icosamethylene dicarboxylic acid, henicosamethylene dicarboxylic acid Saturated aliphatic dicarboxylic acids such as acid, docosamethylene dicarboxylic acid, tetracosamethylene dicarboxylic acid, octacosamethylene dicarboxylic acid, dotriacontamethylene dicarbox
  • saturated fatty acid-resistant Rubonic acid saturated fatty acid-resistant Rubonic acid, and also adipic acid, can be suitably used from the viewpoint of imparting excellent hydrolysis resistance and tensile strength to the obtained polyurethane foam in a well-balanced manner, and being highly safe and inexpensive. It is.
  • the polybasic acid component used in the present invention contains an aromatic polybasic acid and an aliphatic polybasic acid, but contains other polybasic acid components as long as the object of the present invention is not impaired. It may be.
  • the other polybasic acid component include halogen-containing dicarboxylic acids such as tetrabromophthalic acid.
  • the molar ratio of aromatic polybasic acid / aliphatic polybasic acid is set so that the solidification point is not increased, and a liquid is formed under molding conditions (molding temperature: about 40 to 50 ° C).
  • molding conditions molding temperature: about 40 to 50 ° C.
  • polyhydric alcohol components include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-propanediol, 1,4-butanediol, 1,5-pentenediol, and neopentyl. Glycol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, diethylene glycol, and the like.
  • the dihydric alcohol components can be used alone or in combination of two or more.
  • ethylene glycol and 1,4-butanediol can be suitably used from the viewpoint of obtaining a polyurethane foam having physical properties such as excellent tensile strength.
  • Ethylene glycol and 4-butanediol may be used alone or in combination.
  • the polyester polyol is obtained by polycondensing a polybasic acid component and a polyhydric alcohol component.
  • the reaction between the polybasic acid component and the polyhydric alcohol component is a condensation polymerization reaction. Since both ends of the ester polyol are always hydroxyl groups, the stoichiometric ratio of the COOH group of the polybasic acid component to the OH group of the polyhydric alcohol component (C ⁇ OH / OH) is more than 1. Preferably, it is slightly smaller.
  • the method of polycondensing the polybasic acid component and the polyhydric alcohol component is not particularly limited as long as it is a method usually employed when producing a polyester.
  • the polyester polyol obtained by polycondensation of the polybasic acid component and the polyhydric alcohol component preferably exhibits a liquid state at 40 ° C., and has a degree of restriction at 60 ° C. of 1 0 0 0 O m P a ⁇ s or less can be used ⁇
  • the polyether polyol used for the component A has an average number of hydroxy functional groups of 2 to 6 and a number average molecular weight of 1500 to 2000.
  • the average number of hydroxyl functional groups is set to 2 or more from the viewpoint of preventing the progress of molecular growth and deterioration of physical properties, and is 6 or less, preferably 4 or less, from the viewpoint of improving the flexibility of the polyurethane foam. Preferably it is 3 or less.
  • the number average molecular weight is set to 1500 or more from the viewpoint of hardly shrinking the polyurethane foam, and is set to 2000 or less from the viewpoint of shortening the demolding time.
  • polyether polyols examples include polyoxypropylene-based polyols having a number average molecular weight of 150 or more per hydroxyl group in which ethylene oxide is added to terminal hydroxyl groups of polyoxypropylene polyol (hereinafter referred to as PPG). ), Polyoxytetramethylene glycol (hereinafter referred to as PTMG) having a number average molecular weight of i500 or more obtained by ring-opening polymerization of tetrahydrofuran, and mixtures thereof.
  • PPG polyoxypropylene polyol
  • PTMG Polyoxytetramethylene glycol
  • PPG can be suitably used because it has a long repeating unit of an oxypropylene chain, and thus works effectively as a soft segment in the obtained polyurethane foam, and plays a role of improving elongation characteristics and bending characteristics. Things.
  • the molecular weight per hydroxyl group is calculated as the soft segment of the oxypropylene chain. From the viewpoint of effectively expressing all the roles, it is more than 1500, preferably more than 2000, more preferably more than 300, and from the point of viscosity of handling, less than 200, It is preferably at most 1500, and more preferably at most 800.
  • PPG is produced by using a compound having two or more active hydrogens as a starting material, subjecting it to a conventional ring-opening addition reaction of an alkylene oxide, and further adding ethylene oxide to the molecular terminals in a block-like manner.
  • a compound having two or more active hydrogens as a starting material, subjecting it to a conventional ring-opening addition reaction of an alkylene oxide, and further adding ethylene oxide to the molecular terminals in a block-like manner.
  • Starting materials for PPG include polyhydric alcohols, polyphenols, polyamines, alkanolamines and the like. Specific examples thereof include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, glycerin, trimethylolpropane, pennoerythritol, Examples include glycerin, dextrose, sucrose, bisphenol A, ethylenediamine, denatured products thereof, and the like. These can be used alone or in combination of two or more.
  • alkylene oxide to be subjected to the ring-opening addition reaction to the starting material examples include ethylenoxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and styrene oxide.
  • propylene oxide may be used alone, or propylene oxide may be used as a main component (50% by weight or more), and may be used in combination with other alkylene oxides so as to perform random copolymerization or block copolymerization. Is preferred.
  • a blockwise addition reaction of ethylene oxide is performed so that the terminal hydroxyl group becomes primary in order to increase the reactivity of urethanization in producing a polyurethane foam.
  • the primary hydroxylation ratio of terminal hydroxyl groups by ethylene oxide increases the reactivity of urethanization in the production of polyurethane foam, shortens the demolding time, reduces resinification speed and reduces foaming.
  • Polyurethane foam shrinks by improving the balance of From the viewpoint of preventing generation, it is preferably at least 50%, more preferably at least 70%.
  • the content of the oxechylene group present inside and at the terminal of the PPG is increased, the hydrophilicity is increased, water is attracted, and the hydrolysis resistance is reduced, so that the content of the oxyethylene group in the PPG is increased.
  • the amount is preferably 35% by weight or less, and from the viewpoint of the primary hydroxyl group termination ratio, the content of oxyethylene groups in PPG is preferably 5% by weight or more.
  • PPG may be composed of several types of polyoxyalkylene polyols as long as the molecular weight per hydroxyl group, the content of oxethylen groups, and the primary hydroxylation ratio of terminal hydroxyl groups in the polyether polyol as a whole are within the above ranges. May be mixed and prepared.
  • the PTMG has a property of improving mechanical properties such as strength from its molecular structure.
  • the number average molecular weight of PTMG is 150 or more, preferably 180 or more, from the viewpoint of the usefulness of the oxytetramethylene chain as a soft segment, and the point that the liquidity is maintained at the handling operation temperature. From this, it is set to not more than 2000, preferably not more than 3000, more preferably not more than 230.
  • organic polyisocyanate used for the component A examples include tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, and 4,4 'diphenyl.
  • Examples thereof include cyanate compounds and modified products thereof, for example, modified products of carposimid. These organic polysocyanate monomers may be used alone. Or it can be used as a mixture of two or more. Among them, 4,4 'diphenylmethane diisocyanate is used alone or It is particularly preferable to use the 4,4′-diphenylmethane diisocyanate in combination with its modified carpoimide.
  • the isocyanate composition of component A is obtained by reacting an organic polyisocyanate with a mixture of a polyester polyol and a polyether polyol, or by reacting a polyester polyol and a polyether polyol in order or in any order. Can be prepared. Further, a polyester isocyanate composition containing a polyester prepolymer obtained by reacting a polyester polyol and an organic polyisocyanate, and a polyether prepolymer obtained by reacting a polyether polyol with an organic polyisocyanate. May be used in admixture with the polyether-based isocyanate composition.
  • the polyester-based isocyanate composition and the polyether-based isocyanate composition may each contain a free organic polyisocyanate.
  • the polyester polyol “polyether polyol (weight ratio) is preferably 1/9 to 9/1, more preferably 1 Z 5 to 5/1.
  • the polyester-based isocyanate composition When the polyester polyol and the polyether-based composition are used as a mixture, the polyester polyol Z polyether polyol (weight ratio) calculated by calculation is preferably 1/9 to 9 Z 1, More preferably, it is 5 to 5/1.
  • an additive may be added as necessary.
  • additives examples include, for example, additives used when preparing the polyester polyol or polyether polyol, and hydrogen chloride gas, sulfurous acid, and sulfuric acid prepolymer to prevent the isocyanate prepolymer from self-polymerizing.
  • Acidic gas such as gas, acid chlorides such as acetyl chloride, benzoyl chloride and isophthalic acid chloride, and isocyanate self-polymerization inhibitor such as phosphoric acid, monoethyl phosphate and phosphoric acid compound such as getyl phosphate can be used.
  • additives may be used alone or in combination. These can be used in combination.
  • the NC 0% of the isocyanate composition is desirably 15% or more, preferably 17% or more, in order to prevent the viscosity from increasing so that molding with a low-pressure foaming machine becomes difficult. From the viewpoint of avoiding a decrease in the measuring accuracy of the foaming machine, the content is desirably 25% or less, preferably 22% or less.
  • polyester polyol or polyether polyol as the component B, those having an average number of hydroxyl functional groups of 2 to 6 and a number average molecular weight of 500 to 600 are preferable.
  • polyester polyols include ethylene glycol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, methylpentanediol, 1,6-hexanediol, trimethylolpropane, glycerin, At least one polyhydric alcohol such as pentaerythritol, diglycerin, dextrose, sorbitol, and at least one dibasic such as oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, dimer acid, etc.
  • polyester polyols and polyproprolactone polyols obtained by polycondensation with an acid examples thereof include polyester polyols and polyproprolactone polyols obtained by polycondensation with an acid, and the polyester polyols may contain a polyester polyol or a polycarbonate polyol used as the component A.
  • the polyether polyol examples include polyether polyols such as polypropylene glycol and polyoxytetramethylene glycol, and the polyether polyol may contain the polyether polyol used in the component A.
  • the polyester polyol and the polyether polyol can be used alone or in combination of two or more.
  • a polyester polyol obtained by condensation-polymerizing ethylene glycol and 1,4-butanediol with adipic acid or ethylene glycol and diethylene glycol with adipic acid is preferable.
  • a polyol having 2 to 6 hydroxyl functional groups and a molecular weight of 62 to 499 is preferable. 2 or more hydroxyl functional groups With, sufficient release properties and physical properties can be obtained, and when it is 6 or less, flexibility is improved. When the molecular weight is in this range, the demolding time is further shortened.
  • the amount thereof is preferably 2 to 30 parts by weight, more preferably 5 to 25 parts by weight, per 100 parts by weight of the polyester polyol or polyether polyol from the viewpoints of demolding properties and physical properties.
  • chain extenders include ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentenediol, methylpentenediol, and 6-hexanediol, trimethylethylpropane, Polyhydric alcohols such as glycerin, pen erythritol, diglycerin, dextrose, and sorbitol; aliphatic polyamines such as ethylenediamine and hexamethylenediamine; aromatic polyvalent amines; and jetanolamines And alkanolamines such as triphenylamine, diisopropanolamine and the like. These chain extenders can be used alone or in combination of two or more.
  • foaming agent examples include water, fluorocarbons such as trichlorofluoromethane, dichlorodifluoromethane, and trichlorodifluoroethane, as well as water. These foaming agents may be used alone or in combination of two or more. O Can be mixed and used
  • urethanization catalysts include triethylamine, triethylenediamine, N-methylmorpholin, N-ethylmorpholin, N, N, N ', N'-tetramethylhexamethylenediamine, and 1,2-dimethylimidazo.
  • Tertiary amines such as octyl, N, N'-ethyl pentylamine, tin (II) acetate, tin (II) octoate, tin (II) laurate, dibutyltin dilaurate, dibutyltin dimaleate, octyltin Examples include tin compounds such as diacetate and dibutyltin dichloride. These urethanization catalysts can be used alone or in combination of two or more.o
  • the B component may contain a foam stabilizer, a stabilizer, a pigment, and the like in appropriate amounts as necessary.
  • foam stabilizer include silicone surfactants such as dimethylpolysiloxane, polyoxyalkylenepolyol-modified dimethylpolysiloxane, and alkyleneglycol-modified dimethylpolysiloxane, fatty acid salts, sulfate salts, phosphate ester salts, and the like.
  • Anionic surfactants such as sulfonic acid salts are exemplified.
  • the stabilizer examples include dibutylhydroxytoluene, penyu erythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) probionet], isooctyl-3- (3,5-di- hindered phenolic radical scavengers such as t-butyl-4-hydroxyphenyl) propionate; antioxidants such as phosphites such as phosphorous acid, triphenylphosphite, triethylphosphite, and triphenylphosphine; (5-Methyl-2-hydroxyphenyl) benzotriazole, methyl-3- [3-t-butyl-5- (2H-benzotriyl-2-yl) -1-hydroxyphenyl] propionate and boron UV absorbers such as condensates with ethylene glycol, and the like.
  • the pigment examples include an inorganic pigment typified by a transition metal salt, an organic pigment typified by an azo compound, and carbon powder, but the present invention is not limited to only these examples.
  • both the A component and the B component are liquid at 40 ° C., they are suitably used, for example, at a molding temperature of about 40 to 50 ° C. without any problem when producing polyurethane foam. Is what you can do.
  • the component A and the component B are mixed and stirred by a molding machine at a mixing ratio in which the equivalent of the isocyanate in the component A and the equivalent of the hydroxyl group reacting with the fusocyanate in the component B and the equivalent of water are calculated.
  • the polyurethane foam can be molded by injecting into a molding die and foaming. More specifically, for example, foaming machines such as an automatic mixing injection foaming machine and an automatic mixing injection foaming machine after adjusting the temperature of the component A and the component B to about 4 TC using a tank or the like, respectively.
  • Polyurethane foam can be formed by reacting A component and B component using Wear.
  • the mixture can be formed into a molded product such as a shoe sole or the like by using a molding die whose temperature is usually controlled to about 40 to 60 ° C.
  • the molded article density of the polyurethane foam obtained by the production method of the present invention is 0.15 to 1.0 g / g from the viewpoint that sufficient mechanical strength is obtained and the density is reduced. It is practical to have a cm 3 , preferably between 0.2 and 0.6 g / cm 3 .
  • polyester polyols A to G shown in Table 1 which were in a liquid state at 40 ° C. were obtained.
  • the acid value was measured according to JIS K0070
  • the hydroxyl value was measured according to JIS K0070
  • the viscosity was measured according to JIS Z 8803
  • the freezing point was measured according to JIS K0065.
  • the number average molecular weight was calculated from the hydroxyl value. table 1
  • the NCO% was measured according to ASTM-D 1638-74, and the viscosity was measured according to JIS Z 8803.
  • the component A (isocyanate composition) 10 described in Table 2 was not able to be prepared because the degree of distortion of the polyester diol G was extremely high and it was not possible to drop it at 40 ° C.
  • PTMG-1000 Hodogaya Chemical Industry Co., Ltd., trade name (number average molecule fllOOO. Average number of hydroxy functional groups 2.0. No terminal ethylene oxide added)
  • PTMG-2000 Hodogaya Chemical Industry Co., Ltd., trade name (Number average molecular weight 2000. Average number of hydroxy functional groups 2.0. No addition of terminal ethylene oxide)
  • Polyester polyol in the amount shown in Table 3 [Raw material monomers: ethylene glycol, diethylene glycol and adipic acid, ethylene glycol diethylene glycol (molar ratio): 1/1, number average molecular weight: 220, average hydroxyl Number of functional groups: 2], ethylene glycol as chain extender [molecular weight: 62, number of hydroxyl functional groups: 2], water as foaming agent, foam stabilizer [silicone foam stabilizer, manufactured by Dow Chemical Company, product name: DC-193], a urethanization reaction catalyst (manufactured by Kao Corporation, trade name: AS-615-60C) and a pigment (manufactured by Union Chemical Co., trade name: P-505). Charged, the temperature was adjusted to 40 ° C, and the mixture was stirred to obtain B component 1-3. Table 3 shows the obtained degree of B component.
  • An automatic mixing type injection foaming machine (Polyurethane Engineering Co., Ltd., Model MU-200), which mixes any one of B components 1 to 3 obtained in Preparation Example and one of A components 1 to 7 obtained in Production Example 2. 3 S, Model No. 6- 0 18), foamed under the following molding conditions, and made with a 1 O mm x 100 mm x 30 O mm polyurethane foam sheet and shoe sole forming mold A bottom molded body was produced.
  • Density Freeform density 0.1 2 to 32 g / cm 3
  • the demolding time of the molded shoe sole under the above molding conditions (the shortest time that can be taken out without causing scratches on the surface) was measured. The results are shown in Table 4.
  • the density, hardness, tensile strength (tensile strength), elongation at break and tear strength of the molded article, and appearance of the shoe sole molded article were examined according to the following methods. . The results are shown in Table 4. [Final physical properties of sheet]
  • Density of the molded body 1 0 mmx 1 00 mmx 30 0 mm weighed polyurethane foam sheet over bets, measured hardness was divided by the volume 30 0 cm 3 (Asker C) : determined according to SRIS 0101
  • a polyurethane foam and a molded shoe sole were produced in the same manner as in Examples 1 to 9, except that the A component 8 to 9 or 11 to 16 obtained in Production Example 2 was used.
  • Example 1 as compared with the case where the aromatic polybasic acid is not contained in the polyester polyol used in the component A as in Comparative Examples 1 and 2, or the content thereof is low, the shoe sole molded body The demolding time can be shortened, and the tensile properties and the like in the final physical properties are greatly improved. '
  • Example 5 the type of polyether polyol used in the component A or the average number of hydroxyl functional groups was changed from Example 1, but sufficient demolding properties, effects of final physical properties and appearance improvement were obtained. Is recognized.
  • Example 1 in which the A component contains a polyether polyol is a polyether polyol.
  • Comparative Example 3 which does not contain, there is no pinhole or shrinkage on the surface of the molded article, and the molded article has an excellent appearance.
  • Example 5 no pinholes or shrinkage were observed on the surface of the molded article, and the molded article had an excellent appearance as compared with Comparative Example 4 in which the molecular weight of the polyether polyol used as the component A was reduced.
  • Example 7 In Example 7 and Comparative Examples 5 and 6, the NCO% of the component A was reduced, but Example 7 had excellent demolding properties and physical properties as compared with Comparative Example 5, and Comparative Example 6 It has an excellent appearance in comparison with. In particular, Example 7 has no surface pinholes.
  • Comparative Example 7 in which the polyester polyol in the component A did not contain an aromatic polybasic acid and no polyester polyol was used, the demolding time of the shoe sole was long, the physical properties were poor, and the molded product was poor. There are many pinholes on the surface, shrinkage is observed, and the appearance of the molded product is defective.
  • Examples 8 to 9 and Comparative Examples 8 to 10 were prepared so that the density of the compact was 0.35 g / cm 3 .
  • Example 8 is superior in hardness and various strengths as compared with Comparative Example 8 in which the component A (isocyanate composition) in which the aromatic polybasic acid was not used was used.
  • Comparative Examples 9 to 10 in which the component A (isocyanate composition) containing no polyether polyol was used, in Examples 8 to 9, pinholes and shrinkage were observed on the surface of the molded body. It has good appearance and excellent physical properties.
  • the demolding time of a molded object can be shortened and productivity can be improved.
  • the polyurethane foam obtained by the production method of the present invention can be suitably used as a polyurethane foam for shoe soles and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

A process for producing a polyurethane foam which comprises reacting: an isocyanate composition (ingredient A) containing an isocyanate-terminated prepolymer obtained by condensation-polymerizing a polyester polyol resulting by reacting a polybasic acid ingredient comprising an aromatic polybasic acid and an aliphatic polybasic acid in a molar ratio of 0.05 to 0.4 with a polyhydric alcohol ingredient and a polyether polyol having two to six functional hydroxyl groups on the average and a number-average molecular weight of 1,500 to 20,000 with an organic polyisocyanate; with a polyol ingredient (ingredient B) comprising a polyester polyol or polyether polyol, a chain extender, a foaming agent, and a catalyst for urethane formation. By the process, a polyurethane foam which has excellent mechanical strength, is significantly reduced in the development of pinholes or shrinkage marks on the surface, and is suitable for use especially as a shoe sole can be produced in a short demolding time.

Description

明 細 書 ポリウレタンフォームの製造法 技術分野  Description Manufacturing method of polyurethane foam Technical field
本発明は、 ポリウレタンフォームの製造法に関する。 さらに詳しくは、 高機械 的強度を有し、 靴底等として好適に用いられるポリウレ夕ンフオームの製造法に 関する。 背景技術  The present invention relates to a method for producing a polyurethane foam. More specifically, the present invention relates to a method for producing a polyurethane foam having high mechanical strength and suitably used as shoe soles and the like. Background art
従来、 寸法安定性が良好であり、 収縮が小さい低密度のポリウレタンフォーム の製造法としては、 ポリエステルポリオールと、 特定のポリエーテルポリオール とを有機ポリイソシァネートと反応させて得られたイソシァネ一トプレポリマー を用いる方法が提案されている 〔特開平 2— 1 0 5 8 1 4号公報〕 。  Conventionally, as a method for producing a low-density polyurethane foam having good dimensional stability and small shrinkage, an isocyanate obtained by reacting a polyester polyol with a specific polyether polyol with an organic polyisocyanate is used. A method using a prepolymer has been proposed [Japanese Unexamined Patent Publication (Kokai) No. 2-105584].
しかしながら、 この方法は、 プレボリマ一の一部にポリエーテルポリオール成 分を用いるため、 ポリエステルポリオールのみから得られたイソシァネートプレ ポリマーを用いる方法と対比して、 ポリウレタンフォームを成形金型から取り出 す時間 (脱型時間) が長くなり、 生産性が低下するという欠点があるとともに、 得られるポリウレタンフォームには機械的強度の低下が認められるという欠点が ある。  However, in this method, since a polyether polyol component is used for a part of the prepolymer, the polyurethane foam is removed from the molding die in comparison with the method using an isocyanate prepolymer obtained only from the polyester polyol. In addition, the polyurethane foam obtained has a disadvantage in that the time required for removal (demolding time) is prolonged and the productivity is reduced, and a decrease in mechanical strength is observed in the obtained polyurethane foam.
機械的強度に優れたポリウレタンフオームの製造法としては、 テレフ夕ル酸成 分 Z脂肪酸多塩基酸のモル比が 0 . 0 5〜0 . 3であるポリエステルポリオール を原料として用いる方法が提案されている 〔特開平 9一 3 0 2 0 6 5号公報〕 。 この方法によれば、 機械的強度に優れたポリウレタンフォームが得られるが、 近年、 収縮がより小さく、 寸法安定性がより優れたポリウレタンフォームの開発 が待ち望まれている。 本発明の目的は、 優れた機械的強度を有し、 しかも表面にピンホールや収縮の 発生が非常に少なく、 特に靴底用ポリウレタンフォームとして好適に使用しうる ポリウレタンフォームを短い脱型時間で製造することができる方法を提供するこ とにある。 As a method for producing a polyurethane foam having excellent mechanical strength, there has been proposed a method using a polyester polyol having a molar ratio of terephthalic acid component Z fatty acid polybasic acid of 0.05 to 0.3 as a raw material. [Japanese Unexamined Patent Publication No. Hei 9-310265]. According to this method, a polyurethane foam having excellent mechanical strength can be obtained. In recent years, however, a polyurethane foam having less shrinkage and more excellent dimensional stability has been developed. Is eagerly awaited. An object of the present invention is to produce a polyurethane foam which has excellent mechanical strength, has very few pinholes and shrinkage on the surface, and is particularly suitable for use as a polyurethane foam for shoe soles in a short demolding time. It is to provide a method that can do this.
本発明の上記及び他の目的は、 以下の記載から明らかになるであろう。 発明の開示  The above and other objects of the present invention will become apparent from the following description. Disclosure of the invention
本発明によれば、  According to the present invention,
以下の A成分と B成分とを反応させるポリウレタンフォームの製造法、 A method for producing a polyurethane foam by reacting the following components A and B,
( A成分) 芳香族多塩基酸/脂肪族多塩基酸のモル比が 0 , 0 5〜0 . 4である 多塩基酸成分と多価アルコール成分との縮重合によって得られたポリエステルポ リオールと、 平均ヒドロキシル官能基数 2〜 6及び数平均分子量 1 5 0 0〜2 0 0 0 0を有するポリエーテルポリオールとを有機ポリイソシァネートと反応させ て得られたイソシァネート末端プレボリマーを含むイソシァネート組成物 ( B成分) ポリエステルポリオール又はポリエーテルポリオールと、 鎖延長剤と (A component) A polyester polyol obtained by polycondensation of a polybasic acid component and a polyhydric alcohol component having a molar ratio of aromatic polybasic acid / aliphatic polybasic acid of 0.5 to 0.4. An isocyanate composition containing an isocyanate-terminated prevolimer obtained by reacting an organic polyisocyanate with a polyether polyol having an average hydroxyl functional group number of 2 to 6 and a number average molecular weight of 1500 to 2000 ( B component) polyester polyol or polyether polyol, and chain extender
、 発泡剤と、 ウレタン化反応触媒とを含むポリオール成分 A polyol component containing a foaming agent and a urethanation reaction catalyst
が提供される。 発明を実施するための最良の形態 Is provided. BEST MODE FOR CARRYING OUT THE INVENTION
A成分に用いられる 「イソシァネート末端プレボリマ一」 (以下、 単に 「プレ ポリマ一」 とレ、う) とは、 遊離のヒドロキシル基を含まない、 ポリイソシァネー トとポリオールとの反応生成物を意味する。 このプレボリマーは、 プレボリマー 内に遊離のヒドロキシル基が残らないような相対的な量 (反応混合物中に存在す る水酸基 1個あたりのイソシァネート基の数で示す、 以下同様) でポリイソシァ ネートとポリオールとを反応させることによって得られる。 この相対的な量は、 プレボリマ一内に遊離のヒドロキシル基が残存しないようにするために、 2以上 であることが好ましい。 この相対的な量が 2よりも大きい場合には、 遊離のポリ ィソシァネート、 すなわちポリオールと反応しなかったポリィソシァネートが残 留することがある。 この遊離のポリイソシァネートは、 A成分のイソシァネート 組成物の N C〇%に影響を与える。 この相対的な量は、 保存安定性と室温での液 状性の観点から、 5 0以下が好ましく、 3 0以下がより好ましい。 "Isocyanate-terminated prepolymer" (hereinafter, simply referred to as "prepolymer") used in the component A means a reaction product of a polyisocyanate and a polyol which does not contain a free hydroxyl group. The prepolymer is a polyisocyanate in a relative amount such that no free hydroxyl groups remain in the prepolymer (indicated by the number of isocyanate groups per hydroxyl group present in the reaction mixture, and so on). It is obtained by reacting a nate with a polyol. This relative amount is preferably 2 or more so that no free hydroxyl groups remain in the prepolymer. If the relative amount is greater than 2, free polysocyanate, ie, polysocyanate that has not reacted with the polyol, may remain. This free polyisocyanate affects the NC% of the A component isocyanate composition. The relative amount is preferably 50 or less, more preferably 30 or less, from the viewpoint of storage stability and liquidity at room temperature.
「平均ヒドロキシル官能基数」 とは、 製造において用いられる出発原料の平均 した 1分子あたりの活性水素の数が出発原料の平均官能基数であると仮定した場 合のポリオール組成物の平均官能基数 ( 1分子あたりのヒドロキシル基の数) を 示すが、 実際は末端不飽和のためいく らか低い。 又、 「ヒドロキシル官能基数」 とは、 1分子あたりのヒドロキシル基の数を示す。  The “average number of hydroxyl functional groups” means the average number of functional groups of the polyol composition (1) assuming that the average number of active hydrogens per molecule of the starting materials used in the production is the average number of functional groups of the starting materials. Number of hydroxyl groups per molecule), but in practice is somewhat lower due to terminal unsaturation. Also, the “number of hydroxyl functional groups” indicates the number of hydroxyl groups per molecule.
A成分に用いられる 「イソシァネート組成物」 は、 プレボリマ一以外に遊離の ボリィソシァネートを含んでいてもよい。  The "isocyanate composition" used for the component A may contain free polysocyanate in addition to the prepolymer.
A成分におけるポリエステルポリオールは、 多塩基酸成分と多価アルコール成 分を縮重合させることによって得られるものであり、 多塩基酸成分の芳香族多塩 基酸/脂肪族多塩基酸のモル比が 0 . 0 5〜0 . 4のものである。  The polyester polyol in the component A is obtained by polycondensation of a polybasic acid component and a polyhydric alcohol component, and the molar ratio of the aromatic polybasic acid / aliphatic polybasic acid of the polybasic acid component is 0.05 to 0.4.
芳香族多塩基酸としては、 例えば、 テレフタル酸、 イソフタル酸、 無水フ夕ル 酸、 0—フ夕ル酸等の芳香族ジカルボン酸類、 式:  Examples of the aromatic polybasic acid include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, fluoric anhydride, and 0-fluoric acid;
Figure imgf000005_0001
Figure imgf000005_0001
〔式中、 R 1 は炭素数 1〜4のアルキル基、 炭素数 6〜 1 2のァリール基、 炭素 数 7〜1 3のァリールアルキル基、 ハロゲン原子、 炭素数 1〜4のアルコキシ基 、 水酸基又は置換基を有していてもよい炭素数 6〜 1 2のァリールォキシ基を示 す〕 で表されるフタル酸誘導体、 式: (In the formula, R 1 is an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryl alkyl group having 7 to 13 carbon atoms, a halogen atom, an alkoxy group having 1 to 4 carbon atoms, A hydroxyl group or an aryloxy group having 6 to 12 carbon atoms which may have a substituent; A phthalic acid derivative represented by the formula:
Figure imgf000006_0001
Figure imgf000006_0001
〔式中、 R 2 は水素原子、 炭素数 1 〜 4のアルキル基、 炭素数 6〜 1 2のァリ一 ル基、 炭素数 7〜 1 3のァリールアルキル基、 ハロゲン原子、 炭素数 1 〜 4のァ ルコキシ基、 水酸基又は置換基を有していてもよい炭素数 6〜 1 2のァリールォ キシ基を示す〕 で表されるナフ夕レン誘導体等が挙げられ、 これらは単独で又は 2種以上を混合して用いることができる。 これらの芳香族多塩基酸の中では、 芳 香族ジカルボン酸類、 4 一メチル無水フ夕ル酸、 1 , 4—ナフタレンジカルボン 酸及び 2 , 6 —ナフ夕レンジカルボン酸は、 好適に使用しうるものであり、 なか でも特にテレフタル酸、 無水フタル酸及び 0—フ夕ル酸が好ましい。 Wherein R 2 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an arylalkyl group having 7 to 13 carbon atoms, a halogen atom, Or an aryloxy group having 6 to 12 carbon atoms which may have an alkoxy group, a hydroxyl group or a substituent which may have a substituent.) A mixture of more than one species can be used. Among these aromatic polybasic acids, aromatic dicarboxylic acids, 4-methylfuranic anhydride, 1,4-naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid can be preferably used. Of these, terephthalic acid, phthalic anhydride and 0-fluoric acid are particularly preferred.
脂肪族多塩基酸としては、 例えば、 シユウ酸、 マロン酸、 コハク酸、 グルタル 酸、 アジピン酸、 ピメリン酸、 スベリン酸、 ァゼライン酸、 セバシン酸、 ノナメ チレンジカルボン酸、 デカメチレンジカルボン酸、 ゥンデカメチレンジカルボン 酸、 ドデカメチレンジカルボン酸、 トリデカメチレンジカルボン酸、 テトラデカ メチレンジカルボン酸、 ペン夕デカメチレンジカルボン酸、 へキサデカメチレン ン酸、 ノナデカメチレンジカルボン酸、 ィコサメチレンジカルボン酸、 ヘンィコ サメチレンジカルボン酸、 ドコサメチレンジカルボン酸、 テトラコサメチレンジ カルボン酸、 ォク夕コサメチレンジカルボン酸、 ドトリアコンタンメチレンジ力 ルボン酸等の飽和脂肪族ジカルボン酸、 マレイン酸、 フマル酸、 ィタコン酸等の 不飽和脂肪族ジカルボン酸、 ダイマー酸、 クェン酸、 酒石酸、 スピクリスポール 酸等が挙げられ、 これらの脂肪族多塩基酸は、 それぞれ単独で又は 2種以上を混 合して用いることができる。 これらの脂防族多塩基酸の中では、 飽和脂防族ジカ ルボン酸が、 更にはアジピン酸が、 得られるポリウレタンフォームに、 優れた耐 加水分解性及び引張り強度をバランスよく付与し、 安全性が高く、 安価であると いう観点から、 好適に使用しうるものである。 Aliphatic polybasic acids include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, nonamethylenedicarboxylic acid, decamethylenedicarboxylic acid, pendeca Methylene dicarboxylic acid, dodecamethylene dicarboxylic acid, tridecamethylene dicarboxylic acid, tetradecamethylene dicarboxylic acid, pendecamethylene dicarboxylic acid, hexadecamethylene acid, nonadecamethylene dicarboxylic acid, icosamethylene dicarboxylic acid, henicosamethylene dicarboxylic acid Saturated aliphatic dicarboxylic acids such as acid, docosamethylene dicarboxylic acid, tetracosamethylene dicarboxylic acid, octacosamethylene dicarboxylic acid, dotriacontamethylene dicarboxylic acid, maleic acid, fumaric acid, itaconic acid Unsaturated aliphatic dicarboxylic acids, dimer acids, Kuen acid, tartaric acid, spiculisporic acid and the like, and these aliphatic polybasic acids can be used alone or two or more of them combined mixed. Among these fatty acid-resistant polybasic acids, saturated fatty acid-resistant Rubonic acid, and also adipic acid, can be suitably used from the viewpoint of imparting excellent hydrolysis resistance and tensile strength to the obtained polyurethane foam in a well-balanced manner, and being highly safe and inexpensive. It is.
本発明に用いられる多塩基酸成分は、 芳香族多塩基酸と脂肪族多塩基酸とを含 有するものであるが、 本発明の目的を阻害しない範囲内で、 他の多塩基酸成分が 含まれていてもよい。 該他の多塩基酸成分としては、 例えば、 テトラブロモフタ ル酸等のハロゲン含有ジカルボン酸等が挙げられる。  The polybasic acid component used in the present invention contains an aromatic polybasic acid and an aliphatic polybasic acid, but contains other polybasic acid components as long as the object of the present invention is not impaired. It may be. Examples of the other polybasic acid component include halogen-containing dicarboxylic acids such as tetrabromophthalic acid.
前記多塩基酸成分において、 芳香族多塩基酸/脂肪族多塩基酸のモル比は、 凝 固点が高くならないようにし、 成形条件 (成形温度: 4 0〜5 0 °C程度) で液状 を呈するようにするために、 0 . 0 5以上、 好ましくは 0 . 0 8以上とすること が望ましく、 成形する際の射出や注入を容易にする観点から、 0 . 4以下、 好ま しくは 0 . 2以下とすることが望ましい。  In the above-mentioned polybasic acid component, the molar ratio of aromatic polybasic acid / aliphatic polybasic acid is set so that the solidification point is not increased, and a liquid is formed under molding conditions (molding temperature: about 40 to 50 ° C). In order to exhibit the above, it is desirable to set it to not less than 0.05, preferably not less than 0.08, and from the viewpoint of facilitating injection and injection at the time of molding, it is preferably not more than 0.4, more preferably not more than 0.08. It is desirable to be 2 or less.
多価アルコール成分としては、 例えば、 エチレングリコール、 プロピレングリ コ一ル、 1, 3—プロパンジオール、 1 , 4—プロパンジオール、 1 , 4ーブ夕 ンジオール、 1 , 5—ペン夕ンジオール、 ネオペンチルグリコール、 1 , 6—へ キサンジオール、 1 , 7—ヘプ夕ンジオール、 1 , 8—オクタンジオール、 1 , 9—ノナンジオール、 1, 1 0 —デカンジオール、 ジエチレングリコール等が挙 げられ、 これらの多価アルコール成分は、 それぞれ単独で又は 2種以上を混合し て用いることができる。 これらの多価アルコール成分の中では、 エチレングリコ —ル及び 1 , 4 一ブタンジオールは、 優れた引張り強度等の物性を有するポリウ レタンフォームを得る観点から、 好適に使用しうるものである。 エチレングリコ ール及びし 4—ブタンジオールは、 それぞれ単独で用いてもよく、 併用しても よい。  Examples of polyhydric alcohol components include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-propanediol, 1,4-butanediol, 1,5-pentenediol, and neopentyl. Glycol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, diethylene glycol, and the like. The dihydric alcohol components can be used alone or in combination of two or more. Among these polyhydric alcohol components, ethylene glycol and 1,4-butanediol can be suitably used from the viewpoint of obtaining a polyurethane foam having physical properties such as excellent tensile strength. Ethylene glycol and 4-butanediol may be used alone or in combination.
ポリエステルポリオ一ルは、 多塩基酸成分と多価アルコール成分とを縮重合さ せることによって得られる。  The polyester polyol is obtained by polycondensing a polybasic acid component and a polyhydric alcohol component.
多塩基酸成分と多価アルコ一ル成分との反応が縮重合反応であり、 得られるポ リエステルポリオールの両末端が必ず水酸基であることから、 化学量論的には、 多塩基酸成分の C O O H基と多価アルコール成分の O H基との当量比 〔C〇O H / O H) が 1よりも若干小さいことが好ましい。 The reaction between the polybasic acid component and the polyhydric alcohol component is a condensation polymerization reaction. Since both ends of the ester polyol are always hydroxyl groups, the stoichiometric ratio of the COOH group of the polybasic acid component to the OH group of the polyhydric alcohol component (C〇OH / OH) is more than 1. Preferably, it is slightly smaller.
多塩基酸成分と多価アルコール成分とを縮重合させる方法としては、 通常、 ポ リエステルを製造する際に採用されている方法であればよく、 特に限定はない。 多塩基酸成分と多価アルコール成分とを縮重合させることによって得られるポ リエステルポリオールには、 作業性の観点から、 好ましくは 4 0 °Cで液状を呈し 、 6 0 °Cにおける拈度が 1 0 0 0 O m P a · s以下のものを用いることができる ο  The method of polycondensing the polybasic acid component and the polyhydric alcohol component is not particularly limited as long as it is a method usually employed when producing a polyester. From the viewpoint of workability, the polyester polyol obtained by polycondensation of the polybasic acid component and the polyhydric alcohol component preferably exhibits a liquid state at 40 ° C., and has a degree of restriction at 60 ° C. of 1 0 0 0 O m P a · s or less can be used ο
A成分に用いられるポリエーテルポリオ一ルは、 平均ヒ ドロキシル官能基数 2 〜 6及び数平均分子量 1 5 0 0〜2 0 0 0 0を有するものである。 平均ヒドロキ シル官能基数は、 分子成長が進行し、 物性の低下が生じないようにする観点から 2以上とされ、 ポリウレタンフォームの柔軟性の向上の観点から 6以下、 好まし くは 4以下、 より好ましくは 3以下とされる。 又、 数平均分子量は、 ポリウレタ ンフォームを収縮しがたくする観点から 1 5 0 0以上とされ、 脱型時間の短縮を 図る観点から 2 0 0 0 0以下とされる。  The polyether polyol used for the component A has an average number of hydroxy functional groups of 2 to 6 and a number average molecular weight of 1500 to 2000. The average number of hydroxyl functional groups is set to 2 or more from the viewpoint of preventing the progress of molecular growth and deterioration of physical properties, and is 6 or less, preferably 4 or less, from the viewpoint of improving the flexibility of the polyurethane foam. Preferably it is 3 or less. The number average molecular weight is set to 1500 or more from the viewpoint of hardly shrinking the polyurethane foam, and is set to 2000 or less from the viewpoint of shortening the demolding time.
ポリエーテルポリオールとしては、 ポリォキシプロピレンポリオールの末端水 酸基にエチレンォキシドが付加された水酸基 1個あたりの数平均分子量が 1 5 0 0以上であるポリオキシプロピレン系ポリオール (以下、 P P Gという) 、 テト ラヒドロフランの開環重合で得られる数平均分子量 i 5 0 0以上のポリオキシテ トラメチレングリコール (以下、 P T M Gという) 、 それらの混合物等が挙げら れる。  Examples of polyether polyols include polyoxypropylene-based polyols having a number average molecular weight of 150 or more per hydroxyl group in which ethylene oxide is added to terminal hydroxyl groups of polyoxypropylene polyol (hereinafter referred to as PPG). ), Polyoxytetramethylene glycol (hereinafter referred to as PTMG) having a number average molecular weight of i500 or more obtained by ring-opening polymerization of tetrahydrofuran, and mixtures thereof.
P P Gは、 ォキシプロピレン鎖の繰り返し単位が長いため、 得られるポリウレ タンフォーム中でソフ トセグメントとして有効に働き、 伸び特性や屈曲特性を良 好にするという役割を果たすので、 好適に使用しうるものである。 P P Gにおい て、 水酸基 1個あたりの分子量は、 ォキシプロピレン鎖のソフトセグメントとし ての役割を有効に発現させる点から、 1 5 0 0以上、 好ましくは 2 0 0 0以上、 より好ましくは 3 0 0 0以上とされ、 取扱いの粘度の点から、 2 0 0 0 0以下、 好ましくは 1 5 0 0 0以下、 より好ましくは 8 0 0 0以下とされる。 PPG can be suitably used because it has a long repeating unit of an oxypropylene chain, and thus works effectively as a soft segment in the obtained polyurethane foam, and plays a role of improving elongation characteristics and bending characteristics. Things. In PPG, the molecular weight per hydroxyl group is calculated as the soft segment of the oxypropylene chain. From the viewpoint of effectively expressing all the roles, it is more than 1500, preferably more than 2000, more preferably more than 300, and from the point of viscosity of handling, less than 200, It is preferably at most 1500, and more preferably at most 800.
P P Gは、 2以上の活性水素を有する化合物を出発原料として、 これに通常の アルキレンォキシドの開環付加反応を行ない、 更にエチレンォキシドを分子末端 にプロック的に付加する方法等によって製造することができる。  PPG is produced by using a compound having two or more active hydrogens as a starting material, subjecting it to a conventional ring-opening addition reaction of an alkylene oxide, and further adding ethylene oxide to the molecular terminals in a block-like manner. Can be.
P P Gの出発原料としては、 多価アルコール、 多価フエノール、 ポリアミ ン、 アルカノールァミン等が挙げられる。 その具体例としては、 エチレングリコール 、 ジエチレングリコール、 プロピレングリコール、 ジプロピレングリコール、 ネ ォペンチルグリコール、 1 , 4—ブタンジオール、 1 , 6—へキサンジオール、 グリセリン、 トリメチロールプロパン、 ペン夕エリスリ トール、 ジグリセリン、 デキストロース、 シュ一クロース、 ビスフエノール A、 エチレンジァミン、 それ らの変性物等が挙げられ、 これらは、 それぞれ単独で又は 2種以上を混合して用 いることができる。  Starting materials for PPG include polyhydric alcohols, polyphenols, polyamines, alkanolamines and the like. Specific examples thereof include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, glycerin, trimethylolpropane, pennoerythritol, Examples include glycerin, dextrose, sucrose, bisphenol A, ethylenediamine, denatured products thereof, and the like. These can be used alone or in combination of two or more.
前記出発原料に開環付加反応されるアルキレンォキシドとしては、 例えば、 ェ チレンォキシド、 プロピレンォキシド、 1 , 2—ブチレンォキシド、 2 , 3—ブ チレンォキシド、 スチレンォキシド等が挙げられる。 それらの中では、 プロピレ ンォキシドを単独で使用するか、 又はプロピレンォキシドを主成分 ( 5 0重量% 以上) とし、 これと他のアルキレンォキシドとがランダム共重合又はブロック共 重合するように併用することが好ましい。  Examples of the alkylene oxide to be subjected to the ring-opening addition reaction to the starting material include ethylenoxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and styrene oxide. Among them, propylene oxide may be used alone, or propylene oxide may be used as a main component (50% by weight or more), and may be used in combination with other alkylene oxides so as to perform random copolymerization or block copolymerization. Is preferred.
前記出発原料とアルキレンォキシドとの反応後には、 ポリウレタンフォームを 製造する際のウレタン化の反応性を高めるために、 末端水酸基が 1級化するよう にエチレンォキシドのブロック的な付加反応を行なうことが好ましい。 エチレン ォキシドによる末端水酸基の 1級化率 ( 1級水酸基数/全水酸基数) は、 ポリウ レタンフォームを製造する際のウレタン化の反応性を高め、 脱型時間を短縮させ 、 樹脂化速度と泡化速度のバランスを向上させてポリウレタンフォームに収縮が 発生しないようにする観点から、 5 0 %以上であることが好ましく、 7 0 %以上 であることがより好ましい。 After the reaction between the starting material and the alkylene oxide, a blockwise addition reaction of ethylene oxide is performed so that the terminal hydroxyl group becomes primary in order to increase the reactivity of urethanization in producing a polyurethane foam. Is preferred. The primary hydroxylation ratio of terminal hydroxyl groups by ethylene oxide (the number of primary hydroxyl groups / the total number of hydroxyl groups) increases the reactivity of urethanization in the production of polyurethane foam, shortens the demolding time, reduces resinification speed and reduces foaming. Polyurethane foam shrinks by improving the balance of From the viewpoint of preventing generation, it is preferably at least 50%, more preferably at least 70%.
ところで、 P P Gの内部及び末端に存在するォキシェチレン基の含有率が高く なると、 親水性が増加し、 水分が引きつけられてしまい、 耐加水分解性が低下す るので、 P PG中のォキシエチレン基の含有量は 3 5重量%以下であることが好 ましく、 末端水酸基の 1級化率の観点から、 PPG中のォキシエチレン基の含有 量は 5重量%以上であることが好ましい。 なお、 PPGは、 ポリエーテルポリオ ール全体としての水酸基 1個あたりの分子量、 ォキシェチレン基の含有量及び末 端水酸基の 1級化率が前記範囲内にあれば数種のポリオキシアルキレンポリオ一 ルを混合して調製してもよい。  By the way, when the content of the oxechylene group present inside and at the terminal of the PPG is increased, the hydrophilicity is increased, water is attracted, and the hydrolysis resistance is reduced, so that the content of the oxyethylene group in the PPG is increased. The amount is preferably 35% by weight or less, and from the viewpoint of the primary hydroxyl group termination ratio, the content of oxyethylene groups in PPG is preferably 5% by weight or more. Note that PPG may be composed of several types of polyoxyalkylene polyols as long as the molecular weight per hydroxyl group, the content of oxethylen groups, and the primary hydroxylation ratio of terminal hydroxyl groups in the polyether polyol as a whole are within the above ranges. May be mixed and prepared.
前記 PTMGは、 その分子構造から強度等の機械的特性を向上させる性質を有 する。 PTMGの数平均分子量は、 ォキシテトラメチレン鎖のソフトセグメント としての有用性の観点から、 1 5 0 0以上、 好ましくは 1 8 0 0以上とされ、 取 扱い作業温度において液状性を維持する点から、 2 0 0 0 0以下、 好ましくは 3 0 0 0以下、 より好ましくは 2 3 0 0以下とされる。  The PTMG has a property of improving mechanical properties such as strength from its molecular structure. The number average molecular weight of PTMG is 150 or more, preferably 180 or more, from the viewpoint of the usefulness of the oxytetramethylene chain as a soft segment, and the point that the liquidity is maintained at the handling operation temperature. From this, it is set to not more than 2000, preferably not more than 3000, more preferably not more than 230.
A成分に用いられる有機ポリイソシァネートの具体例としては、 トリレンジィ ソシァネー ト、 m—フエ二レンジイソシァネー ト、 p—フエ二レンジイソシァネ ート、 キシリ レンジイソシァネート、 4, 4 ' ージフエニルメタンジイソシァネ —ト、 へキサメチレンジイソシァネート、 イソホロンジイソシァネート、 ポリメ チレンポリフエニルジイソシァネート、 3, 3' —ジメチルー 4, 4 ' —ビフエ 二レンジイソシァネート、 3, 3 ' —ジメチルー 4, 4 ' ージフエニルメタンジ イソシァネート、 3, 3—ジクロロ一 4, 4 ' ービフエ二レンジイソシァネー ト 、 1 , 5—ナフ夕レンジイソシァネート等の有機ポリイソシァネート化合物、 そ れらの変性体、 例えばカルポジイミ ド変性体等が挙げられ、 これらの有機ポリィ ソシァネートモノマ一は、 単独で又は 2種以上を混合して用いることができる。 それらの中では、 4, 4 ' ージフヱニルメタンジイソシァネートの単独使用又は 該 4, 4 ' ージフエニルメタンジイソシァネートとそのカルポジイミ ド変性体と の併用は、 特に好ましい。 Specific examples of the organic polyisocyanate used for the component A include tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, and 4,4 'diphenyl. Enylmethanediisocyanate, hexamethylenediisocyanate, isophoronediisocyanate, polymethylenepolyphenyldiisocyanate, 3,3'-dimethyl-4,4'-biphenyldienediisocyanate, 3,3'-Dimethyl-4,4 'diphenylmethane diisocyanate, 3,3-dichloro-1,4,4'-biphenylenediisocyanate, 1,5-naphthyl diisocyanate Examples thereof include cyanate compounds and modified products thereof, for example, modified products of carposimid. These organic polysocyanate monomers may be used alone. Or it can be used as a mixture of two or more. Among them, 4,4 'diphenylmethane diisocyanate is used alone or It is particularly preferable to use the 4,4′-diphenylmethane diisocyanate in combination with its modified carpoimide.
A成分のイソシァネート組成物は、 有機ポリイソシァネートを、 ポリエステル ポリオールとポリエーテルポリオールとの混合物と反応させるか、 又はポリエス テルポリオール及びポリエーテルポリオールとを順に又はいずれかの順序で反応 させることによって調製することができる。 又、 ポリエステルポリオールと有機 ポリィソシァネ一トとを反応させて得られたポリエステルプレボリマーを含むポ リエステル系ィソシァネート組成物と、 ポリエーテルポリオールと有機ポリィソ シァネートとを反応させて得られたポリエーテルプレボリマーを含むポリエーテ ル系イソシァネート組成物とを混合して用いてもよい。 前記ポリエステル系イソ シァネート組成物及びポリエーテル系イソシァネ一ト組成物は、 それぞれ遊離の 有機ポリイソシァネートを含んでいてもよい。 ポリエステルポリオール "ポリエ 一テルポリオ一ル (重量比) は、 1 / 9〜9 / 1であることが好ましく、 1 Z 5 ~ 5 / 1であることがより好ましい。 又、 前記ポリエステル系イソシァネート組 成物とポリエーテル系ィソシァネ一ト組成物とを混合して用いる場合には、 計算 により求められるポリエステルポリオール Zポリエーテルポリオール (重量比) は、 1 / 9〜9 Z 1であることが好ましく、 1 / 5〜5 / 1であることがより好 ましい。  The isocyanate composition of component A is obtained by reacting an organic polyisocyanate with a mixture of a polyester polyol and a polyether polyol, or by reacting a polyester polyol and a polyether polyol in order or in any order. Can be prepared. Further, a polyester isocyanate composition containing a polyester prepolymer obtained by reacting a polyester polyol and an organic polyisocyanate, and a polyether prepolymer obtained by reacting a polyether polyol with an organic polyisocyanate. May be used in admixture with the polyether-based isocyanate composition. The polyester-based isocyanate composition and the polyether-based isocyanate composition may each contain a free organic polyisocyanate. The polyester polyol “polyether polyol (weight ratio) is preferably 1/9 to 9/1, more preferably 1 Z 5 to 5/1. Also, the polyester-based isocyanate composition When the polyester polyol and the polyether-based composition are used as a mixture, the polyester polyol Z polyether polyol (weight ratio) calculated by calculation is preferably 1/9 to 9 Z 1, More preferably, it is 5 to 5/1.
なお、 A成分のイソシァネート組成物を調製する際には、 必要により、 添加剤 を添加してもよい。  When preparing the isocyanate composition of the component A, an additive may be added as necessary.
前記添加剤としては、 例えば、 前記ポリエステルポリオール又はポリエーテル ポリオールを調製する際に必要により用いられる添加剤をはじめ、 前記ィソシァ ネートプレボリマーが自己重合するのを防止するために、 塩化水素ガス、 亜硫酸 ガス等の酸性ガス、 塩化ァセチル、 塩化べンゾィル、 イソフタル酸クロリ ド等の 酸塩化物、 燐酸、 燐酸モノェチル、 燐酸ジェチル等の燐酸化合物等のイソシァネ ート自己重合防止剤を用いることができる。 これらの添加剤は、 単独で又は 2種 以上を混合して用いることができる。 Examples of the additives include, for example, additives used when preparing the polyester polyol or polyether polyol, and hydrogen chloride gas, sulfurous acid, and sulfuric acid prepolymer to prevent the isocyanate prepolymer from self-polymerizing. Acidic gas such as gas, acid chlorides such as acetyl chloride, benzoyl chloride and isophthalic acid chloride, and isocyanate self-polymerization inhibitor such as phosphoric acid, monoethyl phosphate and phosphoric acid compound such as getyl phosphate can be used. These additives may be used alone or in combination. These can be used in combination.
イソシァネート組成物の N C 0 %は、 粘度が高くなつて低圧発泡機での成形が 困難とならないようにするために、 1 5 %以上、 好ましくは 1 7 %以上であるこ とが望ましく、 粘度が低くなつて発泡機の計量精度が低くなることを避ける観点 から、 2 5 %以下、 好ましくは 2 2 %以下であることが望ましい。  The NC 0% of the isocyanate composition is desirably 15% or more, preferably 17% or more, in order to prevent the viscosity from increasing so that molding with a low-pressure foaming machine becomes difficult. From the viewpoint of avoiding a decrease in the measuring accuracy of the foaming machine, the content is desirably 25% or less, preferably 22% or less.
B成分のポリエステルポリオール又はポリエーテルポリオールとしては、 平均 ヒドロキシル官能基数 2〜 6及び数平均分子量 5 0 0〜 6 0 0 0を有するものが 好ましい。 ポリエステルポリオールの例としては、 エチレングリコール、 ジェチ レングリコール、 プロピレングリコール、 1 , 4—ブタンジオール、 1 , 5—ぺ ンタンジオール、 メチルペン夕ンジオール、 1 , 6—へキサンジオール、 トリメ チロールプロパン、 グリセリン、 ペン夕エリスリ トール、 ジグリセリン、 デキス トロース、 ソルビトール等の少なくとも 1種の多価アルコールと、 シユウ酸、 マ ロン酸、 コハク酸、 アジピン酸、 セバチン酸、 ダイマー酸等の少なく とも 1種の 二塩基酸とを縮重合させて得られたポリエステルポリオールやポリ力プロラク ト ンポリオール等が挙げられ、 該ポリエステルポリオールは、 A成分で用いられる ポリエステルポリオールやポリカーボネ一トポリオール等を含有していてもよい 。 ポリエーテルポリオールの例としては、 ポリプロピレングリコール、 ポリオキ シテトラメチレングリコール等のポリエーテルポリオール等が挙げられ、 該ポリ エーテルポリオールは、 A成分で用いられるポリエーテルポリオールを含有して いてもよい。 ポリエステルポリオール及びポリエーテルポリオールは、 それぞれ 単独で又は 2種以上を混合して用いることができる。 それらの中では、 物性向上 の観点から、 エチレングリコール及び 1 , 4—ブタンジオールとアジピン酸とを 、 又はエチレングリコール及びジエチレングリコールとアジピン酸とを縮重合さ せて得られたポリエステルポリオールが好ましい。  As the polyester polyol or polyether polyol as the component B, those having an average number of hydroxyl functional groups of 2 to 6 and a number average molecular weight of 500 to 600 are preferable. Examples of polyester polyols include ethylene glycol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, methylpentanediol, 1,6-hexanediol, trimethylolpropane, glycerin, At least one polyhydric alcohol such as pentaerythritol, diglycerin, dextrose, sorbitol, and at least one dibasic such as oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, dimer acid, etc. Examples thereof include polyester polyols and polyproprolactone polyols obtained by polycondensation with an acid, and the polyester polyols may contain a polyester polyol or a polycarbonate polyol used as the component A. Examples of the polyether polyol include polyether polyols such as polypropylene glycol and polyoxytetramethylene glycol, and the polyether polyol may contain the polyether polyol used in the component A. The polyester polyol and the polyether polyol can be used alone or in combination of two or more. Among them, from the viewpoint of improving the physical properties, a polyester polyol obtained by condensation-polymerizing ethylene glycol and 1,4-butanediol with adipic acid or ethylene glycol and diethylene glycol with adipic acid is preferable.
B成分に用いられる鎖延長剤としては、 ヒドロキシル官能基数 2 ~ 6及び分子 量 6 2〜 4 9 9を有するポリオールが好ましい。 ヒドロキシル官能基数が 2以上 では十分な脱型性や物性が得られ、 6以下では柔軟性が向上する。 又、 分子量が この範囲では、 脱型時間がより短縮される。 その量は、 脱型性と物性の観点から 、 ポリエステルポリオール又はポリエーテルポリオール 1 0 0重量部あたり 2〜 3 0重量部が好ましく、 5〜2 5重量部がより好ましい。 As the chain extender used for the component B, a polyol having 2 to 6 hydroxyl functional groups and a molecular weight of 62 to 499 is preferable. 2 or more hydroxyl functional groups With, sufficient release properties and physical properties can be obtained, and when it is 6 or less, flexibility is improved. When the molecular weight is in this range, the demolding time is further shortened. The amount thereof is preferably 2 to 30 parts by weight, more preferably 5 to 25 parts by weight, per 100 parts by weight of the polyester polyol or polyether polyol from the viewpoints of demolding properties and physical properties.
鎖延長剤の代表例としては、 エチレングリコール、 ジエチレングリコール、 プ ロピレングリコール、 1 , 4—ブタンジオール、 1 , 5—ペン夕ンジオール、 メ チルペン夕ンジオール、 し 6—へキサンジオール、 トリメチ口一ルプロパン、 グリセリン、 ペン夕エリスリ トール、 ジグリセリン、 デキストロース、 ソルビト ール等の多価アルコール、 エチレンジァミン、 へキサメチレンジァミン等の脂肪 族多価ァミ ン、 芳香族多価ァミ ン、 ジェタノ一ルァミ ン、 トリェ夕ノ一ルァミ ン 、 ジイソプロパノールァミン等のアルカノ一ルァミン等が挙げられる。 これらの 鎖延長剤は、 単独で又は 2種以上を混合して用いることができる。  Representative examples of chain extenders include ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentenediol, methylpentenediol, and 6-hexanediol, trimethylethylpropane, Polyhydric alcohols such as glycerin, pen erythritol, diglycerin, dextrose, and sorbitol; aliphatic polyamines such as ethylenediamine and hexamethylenediamine; aromatic polyvalent amines; and jetanolamines And alkanolamines such as triphenylamine, diisopropanolamine and the like. These chain extenders can be used alone or in combination of two or more.
発泡剤としては、 例えば、 水をはじめ、 トリクロ口フルォロメタン、 ジクロロ ジフルオルメタン、 トリクロロジフルォロェタン等のフルォロカ一ボン類等が挙 げられ、 これらの発泡剤は、 単独で又は 2種以上を混合して用いることができる o  Examples of the foaming agent include water, fluorocarbons such as trichlorofluoromethane, dichlorodifluoromethane, and trichlorodifluoroethane, as well as water.These foaming agents may be used alone or in combination of two or more. O Can be mixed and used
ウレタン化反応触媒としては、 例えば、 トリェチルァミン、 トリエチレンジァ ミ ン、 N—メチルモルホリ ン、 N—ェチルモルホリ ン、 N, N, N' , N' —テ トラメチルへキサメチレンジァミン、 1 , 2—ジメチルイミダゾ一ル、 N, N' 一ジェチルペンジルアミン等の第 3級アミン、 酢酸錫 (I I) 、 オクタン酸錫 (I I ) 、 ラウリン酸錫 (I I) 、 ジブチル錫ジラウレート、 ジブチル錫ジマレート、 ジ ォクチル錫ジアセテート、 ジブチル錫ジクロリ ド等の錫化合物等が挙げられる。 これらのウレタン化触媒は、 単独で又は 2種以上を混合して用いることができる o  Examples of urethanization catalysts include triethylamine, triethylenediamine, N-methylmorpholin, N-ethylmorpholin, N, N, N ', N'-tetramethylhexamethylenediamine, and 1,2-dimethylimidazo. Tertiary amines such as octyl, N, N'-ethyl pentylamine, tin (II) acetate, tin (II) octoate, tin (II) laurate, dibutyltin dilaurate, dibutyltin dimaleate, octyltin Examples include tin compounds such as diacetate and dibutyltin dichloride. These urethanization catalysts can be used alone or in combination of two or more.o
なお、 B成分は、 必要により、 整泡剤、 安定剤、 顔料等を適宜適量で含んでい てもよい。 整泡剤としては、 例えば、 ジメチルポリシロキサン、 ポリオキシアルキレンボ リオ一ル変性ジメチルポリシロキサン、 アルキレングリコール変性ジメチルポリ シロキサン等のシリコーン系界面活性剤、 脂肪酸塩、 硫酸エステル塩、 燐酸エス テル塩、 スルホン酸塩等の陰ィォン系界面活性剤等が挙げられる。 The B component may contain a foam stabilizer, a stabilizer, a pigment, and the like in appropriate amounts as necessary. Examples of the foam stabilizer include silicone surfactants such as dimethylpolysiloxane, polyoxyalkylenepolyol-modified dimethylpolysiloxane, and alkyleneglycol-modified dimethylpolysiloxane, fatty acid salts, sulfate salts, phosphate ester salts, and the like. Anionic surfactants such as sulfonic acid salts are exemplified.
安定剤としては、 例えば、 ジブチルヒドロキシトルエン、 ペン夕エリスリチル ーテトラキス 〔3— ( 3 , 5—ジ— t—ブチル— 4ーヒドロキシフエニル) プロ ビオネ一ト〕 、 ィソォクチルー 3— ( 3 , 5—ジー tーブチルー 4ーヒドロキシ フエニル) プロピオネート等のヒンダードフヱノール系ラジカル捕捉剤、 亜燐酸 、 トリフエニルフォスファイ ト、 トリェチルフォスファイ ト、 トリフエ二ルフォ スフィン等の亜燐酸化合物等の酸化防止剤; 2— ( 5—メチルー 2—ヒドロキシ フエニル) ベンゾトリアゾール、 メチル— 3— 〔3— t—プチル— 5— ( 2 H - ベンゾトリ了ゾ一ルー 2—ィル) 一 4ーヒドロキシフヱニル〕 プロピオネートと ボリエチレングリコールとの縮合物等の紫外線吸収剤等が挙げられる。  Examples of the stabilizer include dibutylhydroxytoluene, penyu erythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) probionet], isooctyl-3- (3,5-di- hindered phenolic radical scavengers such as t-butyl-4-hydroxyphenyl) propionate; antioxidants such as phosphites such as phosphorous acid, triphenylphosphite, triethylphosphite, and triphenylphosphine; (5-Methyl-2-hydroxyphenyl) benzotriazole, methyl-3- [3-t-butyl-5- (2H-benzotriyl-2-yl) -1-hydroxyphenyl] propionate and boron UV absorbers such as condensates with ethylene glycol, and the like.
顔料としては、 例えば、 遷移金属塩に代表される無機顔料、 ァゾ化合物に代表 される有機顔料、 炭素粉等が挙げられるが、 本発明はかかる例示のみに限定され るものではない。  Examples of the pigment include an inorganic pigment typified by a transition metal salt, an organic pigment typified by an azo compound, and carbon powder, but the present invention is not limited to only these examples.
A成分及び B成分は、 いずれも、 4 0 °Cで液状であるので、 例えば、 4 0〜5 0 °C程度の成形温度でも何ら問題なくポリゥレタンフォームを製造する際に好適 に使用することができるものである。  Since both the A component and the B component are liquid at 40 ° C., they are suitably used, for example, at a molding temperature of about 40 to 50 ° C. without any problem when producing polyurethane foam. Is what you can do.
本発明においては、 A成分と B成分とを、 A成分におけるイソシァネート当量 と B成分中のィフシァネートと反応するヒドロキシル基及び水の当量が計算上一 致する混合比率で成形機により、 混合、 攪拌し、 成形型に注入し、 発泡させるこ とにより、 ボリウレタンフォームを成形することができる。 より具体的には、 例 えば、 A成分と B成分をそれぞれタンク等を用いて、 通常 4 (TC程度に調温した のち、 自動混合注入型発泡機、 自動混合射出型発泡機等の発泡機を用いて A成分 と B成分とを反応させることにより、 ポリウレタンフォームを成形することがで きる。 In the present invention, the component A and the component B are mixed and stirred by a molding machine at a mixing ratio in which the equivalent of the isocyanate in the component A and the equivalent of the hydroxyl group reacting with the fusocyanate in the component B and the equivalent of water are calculated. The polyurethane foam can be molded by injecting into a molding die and foaming. More specifically, for example, foaming machines such as an automatic mixing injection foaming machine and an automatic mixing injection foaming machine after adjusting the temperature of the component A and the component B to about 4 TC using a tank or the like, respectively. Polyurethane foam can be formed by reacting A component and B component using Wear.
A成分と B成分とを混合したのち、 通常、 4 0〜6 0°C程度に調温された成形 金型によってゥレ夕ン靴底等の成形体に成形することができる。  After the component A and the component B are mixed, the mixture can be formed into a molded product such as a shoe sole or the like by using a molding die whose temperature is usually controlled to about 40 to 60 ° C.
かく して、 本発明の製造法によって得られるポリウレタンフォームの成形体密 度は、 十分な機械的強度が得られ、 かつ低密度化が図られる意味から、 0. 1 5 〜1. 0 g/cm3 、 好ましくは 0. 2〜0. 6 g/cm3 であることが実用的 である。 製造例 1 (ポリエステルポリオール A〜Gの製造) Thus, the molded article density of the polyurethane foam obtained by the production method of the present invention is 0.15 to 1.0 g / g from the viewpoint that sufficient mechanical strength is obtained and the density is reduced. It is practical to have a cm 3 , preferably between 0.2 and 0.6 g / cm 3 . Production Example 1 (Production of polyester polyols A to G)
4つ口フラスコ内に、 表 1に示す種類及び量の脂肪族多塩基酸、 芳香族多塩基 酸及び多価アルコールを仕込んだのち、 攪拌棒、 脱水管、 窒素ガス導入管及び温 度計を該フラスコに装着した。  After charging the aliphatic polybasic acids, aromatic polybasic acids, and polyhydric alcohols of the types and amounts shown in Table 1 into a four-necked flask, a stir bar, a dehydrating tube, a nitrogen gas introducing tube, and a thermometer are installed. The flask was attached.
次に、 窒素ガスをフラスコ内に導入し、 発生する水を留去させ、 2 2 0 °Cにま で昇温した。  Next, nitrogen gas was introduced into the flask, the generated water was distilled off, and the temperature was raised to 220 ° C.
フラスコ内の内容物が透明になったのを確認した後、 徐々に減圧し、 さらに水 を留去させた。  After confirming that the contents in the flask became transparent, the pressure was gradually reduced, and water was further distilled off.
得られた反応液の酸価が 1 KOHmg/ g以下になるまで反応を続けることにより、 4 0 °Cで液状を呈する表 1に示すポリエステルポリオール A〜Gを得た。  By continuing the reaction until the acid value of the obtained reaction solution became 1 KOH mg / g or less, polyester polyols A to G shown in Table 1 which were in a liquid state at 40 ° C. were obtained.
得られたポリエステルポリオール A〜Gの物性として、 酸価、 水酸基価、 粘度 、 凝固点及び数平均分子量を調べた。 その結果を表 1に示す。  As physical properties of the obtained polyester polyols A to G, an acid value, a hydroxyl value, a viscosity, a freezing point and a number average molecular weight were examined. The results are shown in Table 1.
なお、 酸価は JIS K 0070 、 水酸基価は JIS K 0070 、 粘度は JIS Z 8803、 凝固点は JIS K 0065 に準拠して測定した。 数平均分子量は水酸基価から算出し た。 表 1 The acid value was measured according to JIS K0070, the hydroxyl value was measured according to JIS K0070, the viscosity was measured according to JIS Z 8803, and the freezing point was measured according to JIS K0065. The number average molecular weight was calculated from the hydroxyl value. table 1
Figure imgf000016_0001
Figure imgf000016_0001
(注)  (note)
EG: エチレングリ コール  EG: Ethylene glycol
1, 4 -BD: 1, 4一ブタンジオール 製造例 2 (A成分 1 1 6の製造)  1, 4-BD: 1, 4-butanediol Production Example 2 (Production of A component 1 16)
4つ口フラスコ内に、 4, 4' ージフエニルメタンジイソシァネートを仕込み 、 6 0°Cに調温し、 攪拌棒、 脱水管、 窒素ガス導入管及び温度計を装着した。 次に、 フラスコ内の内容物を激しく攪拌しながら、 窒素気流中で製造例 1で得 られた表 1に示すボリエステルポリオール A Gのいずれかを 60 °Cで徐々に滴 下し、 フラスコ内の温度を 6 0 70°Cに保持して 2時間反応させた。  In a four-necked flask, 4,4'-diphenylmethane diisocyanate was charged, the temperature was adjusted to 60 ° C, and a stir bar, a dehydration tube, a nitrogen gas inlet tube, and a thermometer were attached. Next, while vigorously stirring the contents in the flask, one of the polyester polyols AG shown in Table 1 obtained in Production Example 1 was gradually dropped at 60 ° C in a nitrogen stream, and The reaction was performed for 2 hours while maintaining the temperature at 6070 ° C.
次に、 フラスコ内に、 カルポジイミ ド変性 MD I (日本ポリウレタン (株) 製 、 商品名 : コロネート MX) を添加し、 さらに 1時間熟成させて表 2に示す組成 からなるイソシァネ一ト組成物を得た。 得られたイソシァネート組成物の物性を 表 2に示す。 Next, Karposimid-modified MDI (manufactured by Nippon Polyurethane Co., Ltd., trade name: Coronate MX) was added to the flask, and the mixture was aged for 1 hour to obtain an isocyanate composition having the composition shown in Table 2. Was. Physical properties of the obtained isocyanate composition See Table 2.
なお、 NCO%は ASTM-D 1638-74、 粘度は JIS Z 8803に準拠して測定した。 なお、 表 2に記載の A成分 (イソシァネート組成物) 1 0は、 ポリエステルボ リオール Gの拈度が非常に高く、 40°Cで滴下することができないため、 調製で きなかった。 The NCO% was measured according to ASTM-D 1638-74, and the viscosity was measured according to JIS Z 8803. In addition, the component A (isocyanate composition) 10 described in Table 2 was not able to be prepared because the degree of distortion of the polyester diol G was extremely high and it was not possible to drop it at 40 ° C.
表 2 Table 2
A成分の種類 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16A component type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.4' -ジフエニルメ夕ンジ 4.4'-Diphenyl
^シァネ-ト 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 (重 S部)  ^ Cinet 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 (Heavy S part)
ホ:リエステルポリオ-ル A B c D A A C E F G A E A A E C  E: polyester polyol A B c D A A C E F G A E A A E C
(ffiffi部) 37.1 37.1 37.1 37.1 53.4 35.9 37.1 37.1 37.1 37.1 54.0 37.1 78 34 78 54 ポリエ-テルポリオ-ル EL Eし EL EL EL EL EL EL EL EL  (ffiffi) 37.1 37.1 37.1 37.1 53.4 35.9 37.1 37.1 37.1 37.1 54.0 37.1 78 34 78 54 Polyether polyol EL E EL EL EL EL EL EL EL EL EL
(重 fi部) -510 -510 -510 -510 -510 -850 -510 -510 -510 -510  (Heavy fi part) -510 -510 -510 -510 -510 -850 -510 -510 -510 -510
18.5 18.5 18.5 18.5 26.7 17.5 18.5 18.5 18.5 18.5  18.5 18.5 18.5 18.5 26.7 17.5 18.5 18.5 18.5 18.5
ポリエステルポリオ-ル / Polyester polyol /
:リエ-テルポリオ-ル 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 1/0 2/1 1/0 2/1 1/0 1/0 : Rie terpoliol 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 1/0 2/1 1/0 2/1 1 / 0 1/0
(fflffi比) (fflffi ratio)
カルボジイミ F変性  Carbodiimi F denaturation
MD1 (重量部) 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 物 NCO% 21.6 21.6 21.6 21.6 18.6 21.6 21.6 21.6 21.6 21.6 18.5 18.5 21.6 21.5 21.6 MD1 (parts by weight) 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 NCO% 21.6 21.6 21.6 21.6 18.6 21.6 21.6 21.6 21.6 21.6 18.5 18.5 21.6 21.5 21.6
40°Cでの粘 210 225 225 220 430 220 260 195 195 245 420 550 200 235 270 性 C! (mPa-s) Viscosity at 40 ° C 210 225 225 220 430 220 260 195 195 245 420 550 200 235 270 Properties C! (MPa-s)
(注)  (note)
Eし - 510:旭硝子 (株) 製、 商 名 (数平均分子 S4000, 平均ヒドロキシ官能基数 2.0, 末端エチレンオキサイ ド付加あり)  E-510: Asahi Glass Co., Ltd., trade name (number average molecule S4000, average number of hydroxy functional groups 2.0, with terminal ethylene oxide added)
EL-850:旭硝子 (株) ¾、 商 u名 (数平均分子 Λ7000. 平均ヒドロキシ官能 ¾数 3.0. 末端ェチレンォキサイ ド付加あり) EL-850: manufactured by Asahi Glass (Co.) ¾, quotient u name (.. The number average molecular Λ7000 average hydroxy functionality ¾ number 3.0 terminal Echirenokisai de Yes addition)
PTMG-1000 :保土谷化学工業 (株) 製、 商品名 (数平均分子 fllOOO. 平均ヒドロキシ官能基数 2.0. 末端エチレンォキサイド付加なし) PTMG-2000 :保土谷化学工業 (株) 製、 商品名 (数平均分子量 2000. 平均ヒドロキシ官能基数 2.0. 末端エチレンォキサイ ド付加なし) PTMG-1000: Hodogaya Chemical Industry Co., Ltd., trade name (number average molecule fllOOO. Average number of hydroxy functional groups 2.0. No terminal ethylene oxide added) PTMG-2000: Hodogaya Chemical Industry Co., Ltd., trade name (Number average molecular weight 2000. Average number of hydroxy functional groups 2.0. No addition of terminal ethylene oxide)
T fc— T fc—
o 調製例 (8成分 1〜3の調製) o Preparation example (Preparation of 8 components 1-3)
表 3に示す量のボリエステルポリオ一ル 〔原料モノマー :エチレングリコール 、 ジエチレングリコール及びアジピン酸、 エチレングリコ一ル ジエチレングリ コール (モル比) : 1 / 1、 数平均分子量: 2 2 0 0、 平均ヒドロキシル官能基 数: 2〕 、 鎖延長剤としてエチレングリコール 〔分子量: 6 2、 ヒドロキシル官 能基数: 2〕 、 発泡剤として水、 整泡剤 〔シリコーン整泡剤、 ダウ ·ケミカル社 製、 商品名 : D C— 1 9 3〕 、 ウレタン化反応触媒 〔花王 (株) 製、 商品名 : A S— 6 5 1 — 6 0 C〕 及び顔料 〔ユニオン ·ケミカル社製、 商品名 : P— 5 0 5 〕 を仕込み、 4 0 °Cに調温し、 攪拌し、 B成分 1〜3を得た。 得られた B成分の 拈度を表 3に併記する。  Polyester polyol in the amount shown in Table 3 [Raw material monomers: ethylene glycol, diethylene glycol and adipic acid, ethylene glycol diethylene glycol (molar ratio): 1/1, number average molecular weight: 220, average hydroxyl Number of functional groups: 2], ethylene glycol as chain extender [molecular weight: 62, number of hydroxyl functional groups: 2], water as foaming agent, foam stabilizer [silicone foam stabilizer, manufactured by Dow Chemical Company, product name: DC-193], a urethanization reaction catalyst (manufactured by Kao Corporation, trade name: AS-615-60C) and a pigment (manufactured by Union Chemical Co., trade name: P-505). Charged, the temperature was adjusted to 40 ° C, and the mixture was stirred to obtain B component 1-3. Table 3 shows the obtained degree of B component.
なお、 粘度は J IS Z 8803 に準拠して測定した。 表 3  The viscosity was measured according to JIS Z 8803. Table 3
B成分の種類 1 2 3 Type of B component 1 2 3
B ポリエステルポリオール 100 100 100  B Polyester polyol 100 100 100
 Success
分 エチレングリ] -ル(鎖延長剤) 13 15 17  Min Ethylene glycol] -yl (chain extender) 13 15 17
 of
組 水 (発泡剤) 0.7 0.9 1. 15  Water (foaming agent) 0.7 0.9 1.15
 Success
整泡剤 0. 5 0. 5 0. 5 ウレタン化反応触媒 1.5 1. 5 1.4  Foam stabilizer 0.5 0.5 0.5 0.5 Urethane-forming reaction catalyst 1.5 1.5 1.4
 Department
顔料 5 5 5 物 40°Cでの粘度 2300 2100 2000  Pigment 5 5 5 Object Viscosity at 40 ° C 2300 2100 2000
性 (mPa's) 実施例 1〜 9 (MPa's) Examples 1 to 9
調製例で得られた B成分 1〜3のいずれかと、 製造例 2で得られた A成分 1〜 7のいずれかとを自動混合型射出発泡機 (ポリウレタンエンジニアリ ング社製、 形式 MU— 2 0 3 S、 型番 6— 0 1 8 ) に仕込み、 以下の成形条件にて発泡させ 、 1 O mm x 1 0 0 mm x 3 0 O mmのポリウレタンフオームシ一ト及び靴底成 形金型により靴底成形体を作製した。  An automatic mixing type injection foaming machine (Polyurethane Engineering Co., Ltd., Model MU-200), which mixes any one of B components 1 to 3 obtained in Preparation Example and one of A components 1 to 7 obtained in Production Example 2. 3 S, Model No. 6- 0 18), foamed under the following molding conditions, and made with a 1 O mm x 100 mm x 30 O mm polyurethane foam sheet and shoe sole forming mold A bottom molded body was produced.
〔成形条件〕 〔Molding condition〕
混合温度:イソシァネートプレボリマー及びポリオール成分の温度をいずれ も 3 5〜4 5 °Cに調節。  Mixing temperature: Both the temperature of the isocyanate prepolymer and the polyol component were adjusted to 35 to 45 ° C.
反応性 クリームタイム 5 1 0秒間  Reactive cream time 5 10 seconds
ストリ ングタイム 1 5 3 0秒間  String time 1 5 3 0 seconds
ライズタイム 3 5 6 0秒間  Rise time 3 5 6 0 seconds
タックフリータイム 3 0 5 5秒間  Tack free time 3 0 5 5 seconds
モールド:金型温度 4 5 5 5 °C  Mold: Mold temperature 4 5 5 5 ° C
離型剤 シリコーン及びヮックス  Release agent Silicone and Pax
密度 : フリーフオーム密度 0 . 1 2〜 3 2 g / c m 3 Density: Freeform density 0.1 2 to 32 g / cm 3
熟成条件:常温下で 1週間  Aging condition: 1 week at normal temperature
〔脱型性〕 (Removability)
前記成形条件による靴底成形体の脱型時間 (表面に傷を発生させずに取り出せ る最短時間) を測定した。 その結果を表 4に示す。 次に、 得られたシートの最終物性として、 成形体の密度、 硬度、 引張強度 (抗 張力) 、 破断伸度及び引裂強度、 並びに靴底成形体の外観を以下の方法にしたが つて調べた。 その結果を表 4に示す。 〔シートの最終物性〕 The demolding time of the molded shoe sole under the above molding conditions (the shortest time that can be taken out without causing scratches on the surface) was measured. The results are shown in Table 4. Next, as the final physical properties of the obtained sheet, the density, hardness, tensile strength (tensile strength), elongation at break and tear strength of the molded article, and appearance of the shoe sole molded article were examined according to the following methods. . The results are shown in Table 4. [Final physical properties of sheet]
成形体の密度: 1 0 mmx 1 00 mmx 30 0 mmのポリウレタンフォームシ ートの重量を測定し、 体積 30 0 cm3 で除して測定 硬度 (Asker C) : SRIS 0101 に準拠して測定 Density of the molded body: 1 0 mmx 1 00 mmx 30 0 mm weighed polyurethane foam sheet over bets, measured hardness was divided by the volume 30 0 cm 3 (Asker C) : determined according to SRIS 0101
引張強度: JIS 1号ダンベルを用いて JIS K 6301に準拠して測定 Tensile strength: Measured according to JIS K 6301 using JIS No. 1 dumbbell
破断伸度: JIS 1号ダンベルを用いて JIS K 6301 に準拠して測定 Elongation at break: Measured according to JIS K 6301 using JIS No. 1 dumbbell
引裂強度: JIS K 7311に準拠して測定 Tear strength: Measured in accordance with JIS K 7311
〔靴底成形体の外観〕 (Appearance of molded shoe sole)
目視にて観察し、 以下の評価基準に基づいて評価 Observe visually and evaluate based on the following evaluation criteria
(A) 表面ピンホールの評価基準  (A) Evaluation criteria for surface pinholes
◎:表面ピンホールが全くない  ◎: No surface pinholes
〇:表面ピンホールが殆ど見当たらない  〇: Almost no pinholes on the surface
X :表面ピンホールが目立つか又は非常に多い  X: Surface pinholes are conspicuous or extremely large
(B) 収縮の評価基準  (B) Evaluation criteria for shrinkage
〇:収縮がなし  〇: No shrinkage
X :収縮があり X: There is shrinkage
表 4 Table 4
Figure imgf000022_0001
Figure imgf000022_0001
比較例 1〜 1 0 Comparative Examples 1 to 10
製造例 2で得られた A成分 8〜9又は 1 1〜 1 6を用いたほかは、 実施例 1〜 9と同様にしてポリウレタンフォ一ムシ一ト及び靴底成形体を作製した。  A polyurethane foam and a molded shoe sole were produced in the same manner as in Examples 1 to 9, except that the A component 8 to 9 or 11 to 16 obtained in Production Example 2 was used.
靴底成形体の脱型時間並びに得られたボリウレタンフォームシートの物性及び 靴底成形体の外観を実施例 1〜 9と同様にして調べた。 その結果を表.5に示す。 The demolding time of the shoe sole molded article, the physical properties of the obtained polyurethane foam sheet, and the appearance of the shoe sole molded article were examined in the same manner as in Examples 1 to 9. Table 5 shows the results.
表 5 Table 5
Figure imgf000023_0001
Figure imgf000023_0001
以上の結果に基づいて、 実施例及び比較例について考察する。 Examples and comparative examples will be considered based on the above results.
実施例 1では、 比較例 1及び 2のように A成分に用いられているボリエステル ポリオール中に芳香族多塩基酸が含有されていないか、 又は含有量が低い場合と 比べて、 靴底成形体の脱型時間を短縮することができ、 しかも最終物性で引張強 度等が大幅に向上している。 '  In Example 1, as compared with the case where the aromatic polybasic acid is not contained in the polyester polyol used in the component A as in Comparative Examples 1 and 2, or the content thereof is low, the shoe sole molded body The demolding time can be shortened, and the tensile properties and the like in the final physical properties are greatly improved. '
実施例 2〜4については、 A成分に用いられているポリエステルポリオール中 の芳香族多塩基酸の種類又は多価アルコールの種類を代えても十分な脱型性、 最 終物性及び外観向上の効果が認められる。  Regarding Examples 2 to 4, the effect of sufficient demolding property, final property and appearance improvement even when the kind of aromatic polybasic acid or the kind of polyhydric alcohol in the polyester polyol used in the component A is changed. Is recognized.
実施例 5及び 6については、 A成分に用いられているポリエーテルポリオ一ル の種類又は平均ヒドロキシル官能基数を実施例 1から変更したが、 十分な脱型性 、 最終物性及び外観向上の効果が認められる。  In Examples 5 and 6, the type of polyether polyol used in the component A or the average number of hydroxyl functional groups was changed from Example 1, but sufficient demolding properties, effects of final physical properties and appearance improvement were obtained. Is recognized.
A成分にポリエーテルボリオールを含む実施例 1は、 ポリエーテルポリオール を含まない比較例 3と比べて成形体の表面にピンホール及び収縮がなく、 優れた 外観を有している。 Example 1 in which the A component contains a polyether polyol is a polyether polyol. As compared with Comparative Example 3 which does not contain, there is no pinhole or shrinkage on the surface of the molded article, and the molded article has an excellent appearance.
実施例 5は、 A成分に用いられているポリエーテルポリオールの分子量を低く した比較例 4と比べて、 成形体の表面にピンホール及び収縮が見られず、 優れた 外観を有する。  In Example 5, no pinholes or shrinkage were observed on the surface of the molded article, and the molded article had an excellent appearance as compared with Comparative Example 4 in which the molecular weight of the polyether polyol used as the component A was reduced.
実施例 7並びに比較例 5及び 6は、 A成分の N C O %を低く したものであるが 、 実施例 7は、 比較例 5と対比して優れた脱型性及び物性を有し、 比較例 6と対 比して優れた外観を有する。 特に、 実施例 7は、 表面ピンホールが全く見られな い。  In Example 7 and Comparative Examples 5 and 6, the NCO% of the component A was reduced, but Example 7 had excellent demolding properties and physical properties as compared with Comparative Example 5, and Comparative Example 6 It has an excellent appearance in comparison with. In particular, Example 7 has no surface pinholes.
A成分中のポリエステルポリオールに芳香族多塩基酸を含有せず、 かつポリェ 一テルポリオ一ルも用いられていない比較例 7では、 靴底の脱型時間が長く、 物 性が悪く、 さらに成形体の表面にピンホールが多発し、 収縮が見られ、 成形体の 外観に欠点がある。  In Comparative Example 7, in which the polyester polyol in the component A did not contain an aromatic polybasic acid and no polyester polyol was used, the demolding time of the shoe sole was long, the physical properties were poor, and the molded product was poor. There are many pinholes on the surface, shrinkage is observed, and the appearance of the molded product is defective.
実施例 8〜9及び比較例 8〜1 0は、 成形体の密度が 0 . 3 5 g / c m 3 とな るように調製したものである。 芳香族多塩基酸が使用されていない A成分 (イソ シァネート組成物) が用いられた比較例 8と対比して、 実施例 8は、 硬度及び各 種強度に優れている。 また、 ポリエーテルポリオールを含まない A成分 (イソシ ァネート組成物) が使用された比較例 9〜1 0と対比して、 実施例 8〜9は、 成 形体の表面にピンホール及び収縮が観察されず、 外観が良好であり、 しかも各種 物性にも優れたものである。 産業上の利用可能性 Examples 8 to 9 and Comparative Examples 8 to 10 were prepared so that the density of the compact was 0.35 g / cm 3 . Example 8 is superior in hardness and various strengths as compared with Comparative Example 8 in which the component A (isocyanate composition) in which the aromatic polybasic acid was not used was used. In addition, in contrast to Comparative Examples 9 to 10 in which the component A (isocyanate composition) containing no polyether polyol was used, in Examples 8 to 9, pinholes and shrinkage were observed on the surface of the molded body. It has good appearance and excellent physical properties. Industrial applicability
本発明の製造法によれば、 成形体の脱型時間を短縮させることができ、 生産性 を向上させることができる。  ADVANTAGE OF THE INVENTION According to the manufacturing method of this invention, the demolding time of a molded object can be shortened and productivity can be improved.
さらに、 本発明の製造法によれば、 成形体の表面にピンホール、 収縮等を発生 させることなく、 引張強度等の最終物性に優れたポリウレタンフォームを得るこ とができる。 Furthermore, according to the production method of the present invention, it is possible to obtain a polyurethane foam having excellent final physical properties such as tensile strength without generating pinholes, shrinkage, etc. on the surface of the molded article. Can be.
したがって、 本発明の製造法で得られたポリウレタンフォームは、 靴底用ポリ ウレタンフォーム等として好適に使用しうるものである。  Therefore, the polyurethane foam obtained by the production method of the present invention can be suitably used as a polyurethane foam for shoe soles and the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . 以下の A成分と B成分とを反応させるポリウレタンフォームの製造法。1. A method for producing a polyurethane foam by reacting the following components A and B.
( A成分) 芳香族多塩基酸 Z脂肪族多塩基酸のモル比が 0 . 0 5〜0 . 4である 多塩基酸成分と多価アルコール成分との縮重合によって得られたポリエステルポ リオールと、 平均ヒドロキシル官能基数 2〜 6及び数平均分子量 1 5 0 0〜2 0 0 0 0を有するポリエーテルポリオールとを有機ポリイソシァネートと反応させ て得られたイソシァネート末端プレボリマーを含むイソシァネート組成物(A component) Aromatic polybasic acid Z Polyester polyol obtained by polycondensation of polybasic acid component and polyhydric alcohol component having a molar ratio of aliphatic polybasic acid of 0.05 to 0.4 An isocyanate composition containing an isocyanate-terminated prevolimer obtained by reacting an organic polyisocyanate with a polyether polyol having an average hydroxyl functional group number of 2 to 6 and a number average molecular weight of 1500 to 2000
( B成分) ポリエステルポリオール又はポリエーテルポリオールと、 鎖延長剤と 、 発泡剤と、 ウレタン化反応触媒とを含むポリオール成分。 (Component B) A polyol component containing a polyester polyol or polyether polyol, a chain extender, a foaming agent, and a urethanization reaction catalyst.
2 . B成分に用いられるポリエステルポリオール又はポリエーテルポリオール が、 平均ヒドロキシル官能基数 2〜6及び数平均分子量 5 0 0〜6 0 0 0を有す る請求項 1記載のポリウレタンフォームの製造法。 2. The process for producing a polyurethane foam according to claim 1, wherein the polyester polyol or polyether polyol used in the component B has an average number of hydroxyl functional groups of 2 to 6 and a number average molecular weight of 500 to 600.
3 . B成分に用いられる鎖延長剤が、 ヒドロキシル官能基数 2〜6及び分子量 6 2〜4 9 9を有するポリオールである請求項 1又は 2記載のポリウレタンフォ ームの製造法。 3. The process for producing a polyurethane foam according to claim 1, wherein the chain extender used in the component B is a polyol having 2 to 6 hydroxyl functional groups and a molecular weight of 62 to 499.
4 . B成分に用いられる鎖延長剤の量が、 ポリエステルポリオール又はポリェ 一テルポリオ一ル 1 0 0重量部あたり 2〜3 0重量部である請求項 1〜3いずれ か記載のポリウレ夕ンフォームの製造法。 4. The amount of the chain extender used in the component B is 2 to 30 parts by weight per 100 parts by weight of the polyester polyol or polyester polyol, and the polyurethane foam according to any one of claims 1 to 3. Manufacturing method.
5 . イソシァネート組成物の N C〇%が 1 5〜2 5重量%である請求項 1〜4 レ、ずれか記載のポリウレタンフォームの製造法。 5. The process for producing a polyurethane foam according to any one of claims 1 to 4, wherein the NC content of the isocyanate composition is 15 to 25% by weight.
PCT/JP1999/003296 1998-06-22 1999-06-21 Process for producing polyurethane foam WO1999067313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000555961A JP3589423B2 (en) 1998-06-22 1999-06-21 Manufacturing method of polyurethane foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17508898 1998-06-22
JP10/175088 1998-06-22

Publications (1)

Publication Number Publication Date
WO1999067313A1 true WO1999067313A1 (en) 1999-12-29

Family

ID=15990047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003296 WO1999067313A1 (en) 1998-06-22 1999-06-21 Process for producing polyurethane foam

Country Status (5)

Country Link
JP (1) JP3589423B2 (en)
CN (1) CN1122058C (en)
ID (1) ID28836A (en)
MY (1) MY128201A (en)
WO (1) WO1999067313A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708251B2 (en) * 2006-04-19 2011-06-22 日本ポリウレタン工業株式会社 Foamed polyurethane elastomer, method for producing the same and railroad pad
CN102504181B (en) * 2011-09-30 2014-05-07 无锡双象化学工业有限公司 Resin used for polyurethane cold-resistant flexible middle/low-density shoes and preparation method thereof
CN107922560B (en) * 2015-08-18 2019-04-05 三井化学株式会社 The manufacturing method of blown polyurethane materials, molded product and blown polyurethane materials
CN109627746B (en) * 2018-11-23 2021-04-06 贵州航天天马机电科技有限公司 Large negative pressure polyurethane front end fragile protective cover and forming method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105814A (en) * 1988-08-19 1990-04-18 Imperial Chem Ind Plc <Ici> New isocyanate composition
JPH04185626A (en) * 1990-11-21 1992-07-02 Nippon Polyurethane Ind Co Ltd Production of flexible polyurethane foam
JPH05506688A (en) * 1990-05-04 1993-09-30 ダウ イタリア ソチエタ ペル アツィオニ Microporous polyurethane polymer made from isocyanate-terminated poly(oxytetramethylene) glycol prepolymer
JPH06206967A (en) * 1992-08-05 1994-07-26 Imperial Chem Ind Plc <Ici> Reaction system for manufacturing of microporous elastomer
JPH09302065A (en) * 1996-03-12 1997-11-25 Kao Corp Production of polyurethane foam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105814A (en) * 1988-08-19 1990-04-18 Imperial Chem Ind Plc <Ici> New isocyanate composition
JPH05506688A (en) * 1990-05-04 1993-09-30 ダウ イタリア ソチエタ ペル アツィオニ Microporous polyurethane polymer made from isocyanate-terminated poly(oxytetramethylene) glycol prepolymer
JPH04185626A (en) * 1990-11-21 1992-07-02 Nippon Polyurethane Ind Co Ltd Production of flexible polyurethane foam
JPH06206967A (en) * 1992-08-05 1994-07-26 Imperial Chem Ind Plc <Ici> Reaction system for manufacturing of microporous elastomer
JPH09302065A (en) * 1996-03-12 1997-11-25 Kao Corp Production of polyurethane foam

Also Published As

Publication number Publication date
JP3589423B2 (en) 2004-11-17
CN1122058C (en) 2003-09-24
ID28836A (en) 2001-07-05
MY128201A (en) 2007-01-31
CN1306549A (en) 2001-08-01

Similar Documents

Publication Publication Date Title
US6987160B2 (en) Thermoplastic polyurethane
RU2073027C1 (en) Process for preparing polyurethane and composition for preparation thereof
US5070172A (en) Process for producing polyurethane
AU2003251923A1 (en) Aromatic polyester polyols
TW593389B (en) (Polyurea)polyurethanes with improved physical properties
EP1012198B1 (en) Low viscosity polyester polyols and polyurethane foams prepared therefrom
WO1999067313A1 (en) Process for producing polyurethane foam
JP5767111B2 (en) Viscosity reducing agent for polyether polyol
JP3737733B2 (en) Polyurethane foam
JP2003147057A (en) Polycarbonate diol
JP4583918B2 (en) Production method of polyurethane foam
JP3781150B2 (en) Method for producing polyurethane foam
CN110366572A (en) Shock proof thermoplastic polyurethane, its preparation and use
JP3100349B2 (en) Method for producing polyurethane foam
JP3755971B2 (en) Method for producing polyurethane foam
JP3396023B2 (en) Manufacturing method of polyurethane foam
JP3791865B2 (en) Method for producing polyurethane foam
JP2001098045A (en) Flexible polyurethane foam composition and flexible polyurethane foam contained therein
JPH09263618A (en) Production of polyurethane for shoe sole
JP2631237B2 (en) Method for producing wet heat resistant flexible polyurethane foam
KR20020076345A (en) Polyester polyols and the use of polyester polyols for producing pur cast elastomers that have an improved resistance to hydrolysis
JPH04258630A (en) Polyol composition for urethane and flexible urethane foam
JP2004115820A (en) Polyisocyanate for flexible polyurethane foam
JP2004115819A (en) Polyisocyanate for flexible polyurethane foam
JP2002047330A (en) Polyurethane foam

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99807536.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID JP VN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1200001175

Country of ref document: VN