WO1999066604A9 - Multi-port communications device and associated methods - Google Patents

Multi-port communications device and associated methods

Info

Publication number
WO1999066604A9
WO1999066604A9 PCT/US1999/013491 US9913491W WO9966604A9 WO 1999066604 A9 WO1999066604 A9 WO 1999066604A9 US 9913491 W US9913491 W US 9913491W WO 9966604 A9 WO9966604 A9 WO 9966604A9
Authority
WO
Grant status
Application
Patent type
Prior art keywords
communications
plurality
circuit board
device according
communications device
Prior art date
Application number
PCT/US1999/013491
Other languages
French (fr)
Other versions
WO1999066604A8 (en )
WO1999066604A1 (en )
Inventor
Randal B Lord
Robert M Scharf
Original Assignee
Methode Electronics Of Florida
Randal B Lord
Robert M Scharf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01RLINE CONNECTORS; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/60Contacts spaced along planar side wall transverse to longitudinal axis of engagement
    • H01R24/62Sliding engagements with one side only, e.g. modular jack coupling devices
    • H01R24/64Sliding engagements with one side only, e.g. modular jack coupling devices for high frequency, e.g. RJ 45

Abstract

A communications device includes a multi-port jack housing having portions defining a plurality of recesses extending inwardly from the front for receiving respective mating plugs. Signal connectors are preferably positioned within each of the recesses and define respective communications ports. A circuit board is positioned within the multi-port jack housing and preferably extends adjacent the back. The communications device preferably includes at least one communications processor, either shared or switched, for example, mounted on the circuit board and connected to the plurality of communications ports for processing inbound and outbound communications signals. A communications processor preferably communicates with two or more of the communications ports. In embodiments including a plurality of communications processors, a communications bus is provided on the circuit board interconnecting the communications processors. The signal connectors may be electrical and/or optical, and may be compatible with an RJ-45 jack. An internal EMI shield may be provided in the circuit board.

Description

MULTI-PORT COMMUNICATIONS DEVICE AND ASSOCIATED METHODS

Related Application

The present application is a continuation-in- part of U.S. patent application serial no. 09/098,277 filed June 16, 1998. Field of the Invention

The present invention relates to the field of communications electronics, and, more particularly, to a communications device and related methods. Background of the Invention Digital communications over twisted copper wire pairs, or optical fiber pairs, are widely used for Local Area Networks (LANs), for example. The LAN typically connects multiple computer users to a server or other computer. A LAN transceiver, that is, a combination transmitter and receiver, is typically used to transmit data and receive data over the twisted pair or fiber pair.

A typical LAN 15 as in the prior art is shown in FIG. 1. The LAN 15 includes a pair of servers 16 connected to a plurality of user workstations

21. A hub 17 is connected on one side to the servers 16, and on the other side to the workstations 21. The hub 17 includes signal transceivers and associated circuitry for processing the signals between the servers 16 and workstations 21. A simplified prior art hub 17 with the overall housing removed for clarity is shown in FIG. 2. More particularly, the illustrated hub 17 includes a modular jack connector 22, which, in turn, may provide twelve ports 22a for connection to up to twelve workstations 21. A series of electrical conductors, not shown, are carried within each recess of the modular jack connector 22 and engage mating conductors on the corresponding jack or plug. One common port arrangement provides compatibility with a so-called "RJ-45" jack. Optical ports, such as including an optical detector and optical emitter, are also commonly used to establish inbound and outbound signal paths . The modular jack connector 22 is mounted onto a mother circuit board 24. The mother circuit board 24 also illustratively mounts three communications processors 26, such as may be provided by available integrated circuit packages . In addition, the mother board 24 illustratively mounts associated magnetic devices 27 for coupling to twisted wire pairs, for example. The magnetic devices 27 are typically small transformers.

The communications processor IC's 26 may be integrated quad-port repeaters such as the Model

LXT915 available from Level One of Sacramento, ,„,Λt 99/66604

-3-

California. Each of the communications processors 26 includes four transceivers for connection to four respective ports 22a. The communications processor IC's establish switched communications among the connected ports. Alternately, the communications processors may be integrated quad transceivers providing switched communication between ports. For example, each communications processor may be a Model AH104-QF ethernet transceiver available from Adhoc Technologies of San Jose, California.

The mother circuit board 24 would also typically mount a number of other components, not shown, such as for supplying power, providing various status indications, etc. An overall housing, not shown, would also typically be provided to protect the mother board 24 and other components . The hub 17 is typically a relatively bulky and expensive piece of equipment . Board-mounted shielding would typically be needed to shield the communications processors 26 from the magnetic devices 27. The magnetic devices

27 typically generate electromagnetic interference

(EMI) , and the communications processors 26 are typically susceptible to EMI. The housing may be made of an electrical conductor, to provide an overall EMI shield.

Another disadvantage of prior art LANs including one or more conventional hubs 17, is that the hubs are separate pieces of equipment from the servers 16. The hubs 17 need to be purchased, installed and maintained. In other words, the hubs 17 add cost and complexity, and may reduce the overall reliability of the LAN 15.

Summary of the Invention

In view of the foregoing background, it is therefore an object of the present invention to provide a communications device and associated method wherein the functions of a conventional hub can be provided in a more compact and convenient device, such as to be integrated in another device, to thereby reduce cost and increase reliability.

It is another object of the invention to provide such a communications device and associated method which is also resistant to EMI and which can be readily compatible with existing RJ-45 jacks and plugs .

These and other objects, features and advantages in accordance with the present invention are provided by a communications device comprising, in one embodiment, a multi-port jack housing having a front and a back, and including portions defining a plurality of recesses extending inwardly from the front for receiving respective mating plugs therein. Signal connector means are preferably positioned within each of the recesses and define a respective plurality of communications ports. Of course, each communications port establishes inbound and outbound signal paths with a respective mating plug. A circuit board is positioned within the multi-port jack housing and preferably extends adjacent the back thereof.

In addition, the communications device preferably includes at least one communications processor mounted on the circuit board and connected to the plurality of communications ports for processing inbound and outbound communications signals. The at least one communications processor preferably communicates with two or more of the communications ports. Accordingly, an extremely compact multi-port device is provided. The communications processor may be a shared communications processor or a switched communications processor, for example.

In some embodiments, the at least one communications processor comprises a plurality of shared communications processors. In these embodiments, a communications bus is provided on the circuit board interconnecting the plurality of shared communications processors. The shared communications processors include means for communicating with each other over this bus.

Two or more of the plurality of recesses may be positioned in side-by- side relation. In one particularly advantageous embodiment, the recesses are arranged in two tiers, with each tier comprising two or more recesses arranged in side- by- side relation. In addition, a respective communication processor may be provided for each group of four communications ports . Each communications processor preferably includes an integrated circuit. Each communications processor also preferably includes a plurality of transceivers for a corresponding group of communications ports. Another important aspect of the invention relates to shielding. More particularly, the circuit board preferably comprises an electrically conductive layer defining a first internal electromagnetic interference (EMI) shield. In embodiments wherein a plurality of communications processors are used, these are all preferably positioned on a first side of the circuit board. Moreover, EMI generating devices, such as circuit magnetics, are preferably positioned on the second side of the circuit board. Accordingly, a compact arrangement is facilitated without compromising performance caused by EMI .

Also relating to EMI, the communications device may preferably include an electrically conductive layer on outer surface portions of the multi-port jack housing defining an external EMI shield. This external EMI shield may be connected to the internal EMI shield.

There is a large installed base of existing communications ports and equipment compatible with the RJ-45 jack. Accordingly, in the communications device according to the invention each of the communications ports is preferably compatible with the RJ-45 jack. The signal connector means may comprise a plurality of electrical contacts, such as for twisted pair links. Alternately, the signal connector means may be optical and comprise an optical detector for inbound optical signals, and an optical emitter for outbound optical signals. Mixes of both formats may be provided in the communications device.

Another aspect of the invention relates to a method for making a communications device comprising a multi-port jack housing having a front and a back, and including portions defining a plurality of recesses extending inwardly from the front for receiving respective mating plugs therein. The method preferably comprises the steps of: positioning signal connector means within each 9/66604

-7- of the recesses and defining a respective plurality of communications ports, each communications port for establishing inbound and outbound signal paths with a respective mating plug; mounting at least one communications processor on a circuit board and connected to the plurality of communications ports for processing inbound and outbound communications signals; and positioning the circuit board within the multi-port jack housing and extending adjacent the back thereof.

Brief Description of the Drawings

FIG. 1 is a schematic diagram of a typical LAN as in the prior art .

FIG. 2 is a schematic plan view of a mother circuit board and related components mounted thereon in a hub as in the prior art and used in the LAN of FIG. 1.

FIG. 3 is a schematic diagram of a LAN including a server equipped with a communications device in accordance with the present invention. FIG. 4 is a front view of the communications device as shown in FIG. 3.

FIG. 5 is a rear view of the communications device as shown in FIG. 3, with the rear housing portion removed.

FIG. 6 is a fragmentary side view of the communications device as shown in FIG. 3.

FIG. 7 is a greatly enlarged cross-sectional view of the circuit board in the communications device as shown in FIG. 3.

FIG. 8 is a schematic diagram of a second embodiment of the communications device in accordance with the present invention.

FIG. 9 is a schematic diagram of a third embodiment of a communications device in accordance with the present invention. Detailed Description of the Preferred Embodiments

The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. Prime and double prime notation is used to indicate similar elements in alternate embodiments .

Referring initially to FIGS. 3-7, a first embodiment of a communications device 35 in accordance with the invention will now be described. As shown in FIG. 3, the communications device 35 may advantageously be incorporated into a server 33, which, in turn, is part of a LAN 30. As shown in the illustrated embodiment, the LAN 30 interconnects a plurality of user workstations 31. Twisted pair lines 32 may connect the workstations 31 to the respective ports of the respective communications devices 35. Of course, as will be readily appreciated by those skilled in the art, fiber cables may be used to connect the workstations, or a mixture of fiber and twisted pair lines may be used.

In addition, although the communications device 35 is shown incorporated into a server 33, it may also be advantageously be incorporated in other computer devices. The communications device 35 may be used, for example, in an integrated cable

TV modem and Ethernet hub, as will also be readily appreciated by those skilled in the art . Other applications are also contemplated by the invention .

The communications device 35 includes multi- port jack housing 36 having a front and a back, and including portions defining a plurality of recesses 37 extending inwardly from the front for receiving respective mating plugs, not shown. The multi-port jack housing 36 may be integrally molded plastic, for example, as will be readily understood by those skilled in the art. In the illustrated embodiment, six recesses 37 are positioned in side-by-side relation, and two tiers of such recesses are provided. Any number of recesses 37 may be provided as explained in greater detail below. The illustrated twelve-port arrangement provides a relatively compact, yet readily manufactured embodiment of the communications device 35. This arrangement provides a relatively high port density and is also rugged and reliable when formed using conventional plastic molding techniques.

Signal connector means are preferably positioned within each of the recesses 37 and define a respective plurality of communications ports 38. In the illustrated embodiment, a plurality of biased electrical contacts 41 are provided. The arrangement of the contacts 41 and the size and configuration of the recesses 37 are compatible with the ubiquitous RJ-45 jack, which is commonly used in LAN and other communications applications as will be readily understood by those skilled in the art . Other configurations of electrical contacts are also contemplated by the present invention. Each communications port 38 establishes inbound and outbound signal paths with a respective mating plug.

A relatively compact circuit board 45 is illustratively positioned within the multi-port jack housing 36 and extends across the entire back thereof as shown best in FIG. 5. Morever, the communications device 35 includes three communications processors 42 mounted on the circuit board and connected to the plurality of communications ports 38 for processing inbound and outbound communications signals. Each communications processor 42 communicates with four communications ports 38 in the illustrated embodiment. In other embodiments, other numbers of ports 38 can be handled by each processor.

Accordingly, an extremely compact multi-port device is provided.

Each communications processor 42 may be a shared communications processor provided, for example, by a commercially available integrated circuit offered by Level One under the designation LXT915. The communications processor 42 includes a plurality of transceivers for a corresponding group of communications ports 38. In the past, such ICs were positioned on relatively large and bulky mother boards as part of a hub as described above in the Background of the Invention section. In accordance with the present invention, the considerable signal processing capability of the IC is provided within the compact multi-port housing 36. Accordingly, the communications device 35 may be connected to a mother circuit board, such as of the server 33 (FIG. 3), or other similar computer device. A separate hub may then not be needed. Thus, the initial purchase cost, and maintenance costs may be less. In addition, the LAN 30 will be simpler and more robust.

The communications processor 42 may also be a switched communications processor Each switched communications processor 42 may be provided, for example, by a commercially available integrated circuit offered by Adhoc Technologies of San Jose, California, under the designation AH104-QF.

Although the communications processors 42 are shown as integrated circuit packages, that is, with an integrally molded layer and outwardly extending leads, the processors may also be provided by the individual circuit die without the package. In other words, the circuit board 45 may mount the individual integrated circuit die as will be readily appreciated by those skilled in the art. Mounting the individual circuit die requires considerable less surface area on the circuit board 45, which is necessarily relatively limited because of the compact dimensions of the multi-port housing 36 to be compatible with the RJ-45 jacks.

A plurality of pins 46 extend outwardly from the bottom edge of the circuit board 45 as shown in 66604

- 12-

FIG. 5. These pins 46 can be inserted into corresponding openings in a circuit board to which the communications device 35 is attached, such as the mother board of the server. The communications device 35 also illustratively includes a metal or other conductive layer 47 which covers the outer surface portions of the multi-port housing 36 to thereby provide an EMI shield. Accordingly, adjacent components will not interfere with the circuitry within the housing 36, and conversely, EMI will not be radiated outwardly from the housing. As would be readily understood by those skilled in the art, a back panel covers the circuit board 45. In addition, the outer EMI shield 47 would also include portions which cover the back panel .

Referring now more particularly to FIGS . 6 and 7, another important aspect of the present invention relates to internal EMI shielding. The circuit board 45 illustratively comprises an electrically conductive layer 51 between two dielectric layers 52. Of course, the circuit board

45 may also include other layers as will be appreciated by those skilled in the art . The electrically conductive layer 51 defines an internal electromagnetic interference (EMI) shield. The electrically conductive layer 47 which defines the external EMI shield may be connected to the electrically conductive layer 51 which defines the internal EMI shield. In embodiments including a plurality of communications processors 42, these are all preferably positioned on a first side of the circuit board 45. In the illustrated embodiment, the processors 42 are positioned adjacent the back of the multi-port housing 36.

The position could be reversed in other embodiments.

EMI generating devices, such as the illustrated circuit magnetics 54, are positioned on the second side of the circuit board 45. In embodiments of the communications device 35 including only a single communications processor 42, the magnetics 54 or other EMI generating devices are preferably on the opposite side from the processor. Accordingly, a compact arrangement is facilitated without compromising performance caused by EMI .

A second embodiment of the communications device 35' is schematically illustrated in FIG. 8.

In this embodiment two twisted pair ports 38' are provided, and two optical ports 55' are provided. The communications processor 42' is connected to four transceivers 56'. In other embodiments, the transceivers 56' may be part of the integrated circuit of the processor. Magnetics 54' are provided for interfacing the twisted pair ports 38'. Optical interfaces 57' are provided for interfacing the transceivers 56' to the optical ports 55 ' .

Considering now in greater detail the optical ports 56', each such port includes an optical detector 61' for inbound optical signals and an optical emitter 62' for outbound optical signals. Considered in slightly different terms, the optical detector 61' and optical emitter 62' provide the signal connector means.

This second embodiment illustrates a mix of both optical and twisted pair ports, and those of skill in the art will recognize that the ports can also be all optical or all twisted pair, for example, in other embodiments. The optical detector 61' and optical emitter 62' may be provided by any of a number of commercially available devices as will be readily appreciated by those skilled in the art. The communications device 35' includes a multi-port housing 36', circuit board mounting arrangement, and EMI shields as described above with reference to the embodiment as shown in FIGS. 3-7.

A third embodiment of the communications device 35" is explained with additional reference to FIG. 9. In this embodiment, two shared communications processors 42" are provided. In addition, an internal repeater bus 66" is provided for communications between the two shared communications processors 42". The internal repeater bus 66" is provided by appropriate traces on the circuit board, for example, as will be readily appreciated by those skilled in the art. The shared communications processors 42" include circuitry for communicating with each other over this bus as will also be readily appreciated by those skilled in the art.

More particularly, each of the processors 42" is illustrated with transceiver circuitry 56" for each port, as well as PHY circuitry portions 65" for each group of four ports 38". The PHY circuitry portions 65" provide the so-called physical layer interface to the associated computer or other equipment. The communications device 35" includes a multi-port housing 36", circuit board mounting arrangement, and EMI shields as described above with reference to the embodiment described above. The circuitry mounted within the compact multi-port housing 36" performs the following functions: encodes and serializes the outgoing data, decodes and deserializes the incoming data, and synchronizes data flowing to and from the ports to the system bus timing. In addition, all digital-to-analog conversion is accomplished for the outgoing signals, analog-to-digital conversion is performed for the incoming signals, the impedance to each line is matched, and isolation is provided against external over voltage/over current conditions. All of these functions are performed by the communications device 35" having the same or similar size as only the molded connector body of prior art hubs .

Another aspect of the invention relates to a method for making a communications device 35 comprising a multi-port jack housing 36 having a front and a back, and including portions defining a plurality of recesses 37 extending inwardly from the front for receiving respective mating plugs therein. The method preferably comprises the steps of : positioning signal connector means within each of the recesses 37 and defining a respective plurality of communications ports 38, each communications port for establishing inbound and outbound signal paths with a respective mating plug; mounting at least one communications processor 42 on a circuit board 45 and connected to the plurality of communications ports for processing inbound and outbound communications signals; and positioning the circuit board within the multi-port jack housing and extending adjacent the back thereof. The communications processor 42 may be a shared or switched communications processor as will be readily appreciated by those skilled in the art.

Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.

Claims

THAT WHICH IS CLAIMED IS:
1. A communications device comprising: a multi-port jack housing having a front and a back, and including portions defining a plurality of recesses extending inwardly from the front for receiving respective mating plugs therein; signal connector means within each of the recesses and defining a respective plurality of communications ports, each communications port for establishing inbound and outbound signal paths with a respective mating plug,- a circuit board within said multi-port jack housing and extending adjacent the back thereof; and at least one communications processor mounted on said circuit board and connected to said plurality of communications ports for processing inbound and outbound communications signals.
2. A communications device according to Claim 1 wherein said at least one communications processor comprises means for communicating with two or more of said communications ports.
3. A communications device according to Claim 1 wherein said at least one communications processor comprises a plurality of communications processors .
4. A communications device according to Claim 3 wherein each of said communications processors is connected to two or more of said communications ports.
5. A communications device according to Claim 3 wherein said plurality of communications processors comprise a plurality of shared communications processors, and further comprising a communications bus on said circuit board interconnecting said plurality of shared communications processors.
6. A communications device according to Claim 1 wherein said at least one communications processor comprises at least one shared communications processor.
7. A communications device according to Claim 1 wherein said at least one communications processor comprises at least one switched communications processor.
8. A communications device according to Claim 1 wherein two or more of the plurality of recesses are positioned in side-by-side relation.
9. A communications device according to Claim 1 wherein the plurality of recesses are arranged in two tiers, with each tier comprising two or more recesses arranged in side-by-side relation .
10. A communications device according to Claim 1 wherein said at least one communications processor comprises a respective communication processor for each group of four communications ports .
11. A communications device according to Claim 1 wherein said at least one communications processor comprises an integrated circuit.
12. A communications device according to Claim 1 wherein said at least one communications processor comprises a plurality of transceivers for a corresponding group of communications ports.
13. A communications device according to Claim 1 wherein said circuit board comprises an electrically conductive layer defining a first internal electromagnetic interference (EMI) shield.
14. A communications device according to Claim 13 wherein said at least one communications processor comprises a plurality of communications processors all positioned on a first side of said circuit board.
15. A communications device according to Claim 13 further comprising an electrically conductive layer on outer surface portions of said multi-port jack housing defining an external EMI shield.
16. A communications device according to
Claim 15 wherein said first internal EMI shield is electrically connected to said external EMI shield.
17. A communications device according to Claim 13 further comprising at least one EMI generating device positioned on a second side of said circuit board opposite the first side.
18. A communications device according to Claim 17 wherein said at least one EMI generating device comprises at least one magnetic device.
19. A communications device according to
Claim 1 wherein each of said communications ports is compatible with an RJ-45 jack.
20. A communications device according to Claim 1 wherein said signal connector means comprises a plurality of electrical contacts.
21. A communications device according to Claim 1 wherein said signal connector means comprises : an optical detector for inbound optical signals; and an optical emitter for outbound optical signals .
22. A method for making a communications device comprising a multi-port jack housing having a front and a back, and including portions defining a plurality of recesses extending inwardly from the front for receiving respective mating plugs therein, the method comprising the steps of: positioning signal connector means within each of the recesses and defining a respective plurality of communications ports, each communications port for establishing inbound and outbound signal paths with a respective mating plug; mounting at least one communications processor on a circuit board and connected to said plurality of communications ports for processing inbound and outbound communications signals,- and positioning the circuit board within said multi-port jack housing and extending adjacent the back thereof .
23. A method according to Claim 21 wherein the step of mounting at least one communications processor comprises mounting a plurality of communications processors.
24. A method according to Claim 21 further comprising the step of providing a communications bus on said circuit board interconnecting said plurality of communications processors.
25. A method according to Claim 21 wherein said at least one communications processor comprises an integrated circuit .
26. A method according to Claim 21 wherein said at least one communications processor comprises a shared communications processor.
27. A method according to Claim 21 wherein said at least one communications processor comprises a switched communications processor.
28. A method according to Claim 21 further comprising the step of providing an electrically conductive layer for said circuit board and defining a first internal electromagnetic interference (EMI) shield.
29. A method according to Claim 28 wherein the step of mounting said at least one communications processor comprises mounting a plurality of communications processors all on a first side of said circuit board.
30. A method according to Claim 28 further comprising the step of mounting at least one EMI generating device on a second side of said circuit board opposite the first side.
31. A method according to Claim 30 wherein said at least one EMI generating device comprises at least one magnetic device.
32. A method according to Claim 21 further comprising the step of providing an electrically conductive layer on outer surface portions of said multi-port jack housing defining an external EMI shield.
33. A method according to Claim 21 wherein each of said communications ports is compatible with an RJ-45 jack.
34. A method according to Claim 21 wherein the step of providing signal connector means comprises providing a plurality of electrical contacts .
35. A method according to Claim 21 wherein the step of providing signal connector means comprises providing: an optical detector for inbound optical signals; and an optical emitter for outbound optical signals .
PCT/US1999/013491 1998-06-16 1999-06-15 Multi-port communications device and associated methods WO1999066604A9 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US09098277 US6497588B1 (en) 1998-06-16 1998-06-16 Communications transceiver with internal EMI shield and associated methods
US09/098,277 1998-06-16
US09/137,407 1998-08-20
US09137407 US6308235B1 (en) 1998-06-16 1998-08-20 Multi-port communications device and associated methods
US09333462 US6344969B1 (en) 1998-06-16 1999-06-15 Switched multi-port communications device and associated methods
US09/333,334 1999-06-15
US09333334 US6324610B1 (en) 1998-06-16 1999-06-15 Shared multi-port communications device and associated methods
US09/333,462 1999-06-15

Publications (3)

Publication Number Publication Date
WO1999066604A1 true WO1999066604A1 (en) 1999-12-23
WO1999066604A8 true WO1999066604A8 (en) 2000-06-29
WO1999066604A9 true true WO1999066604A9 (en) 2000-08-10

Family

ID=27492979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/013491 WO1999066604A9 (en) 1998-06-16 1999-06-15 Multi-port communications device and associated methods

Country Status (1)

Country Link
WO (1) WO1999066604A9 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134995A1 (en) * 2004-12-17 2006-06-22 Masud Bolouri-Saransar Systems and methods for reducing crosstalk between communications connectors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742760A (en) * 1992-05-12 1998-04-21 Compaq Computer Corporation Network packet switch using shared memory for repeating and bridging packets at media rate
JPH0843691A (en) * 1994-07-27 1996-02-16 Hitachi Ltd Optical input/output interface
US5647767A (en) * 1995-02-06 1997-07-15 The Whitaker Corporation Electrical connector jack assembly for signal transmission

Also Published As

Publication number Publication date Type
WO1999066604A8 (en) 2000-06-29 application
WO1999066604A1 (en) 1999-12-23 application

Similar Documents

Publication Publication Date Title
US4978317A (en) Connector with visual indicator
US8282425B2 (en) Electrical connectors having open-ended conductors
US7314393B2 (en) Communications connectors with floating wiring board for imparting crosstalk compensation between conductors
US6080007A (en) Communication connector with wire holding sled
US5628647A (en) High frequency modular plug and cable assembly
US6356162B1 (en) Impedance compensation for a cable and connector
US5295869A (en) Electrically balanced connector assembly
US5967801A (en) Modular plug having compensating insert
US6655988B1 (en) Multi-port modular jack assembly with LED indicators
US6736673B1 (en) Multi-port modular jack assembly with signal conditioning
US5102353A (en) Electrical connectors
US20050136729A1 (en) Patch panel with crosstalk reduction system and method
US6113422A (en) Connector with circuit devices and indicators
US6802743B2 (en) Low noise communication modular connector insert
US7168993B2 (en) Communications connector with floating wiring board for imparting crosstalk compensation between conductors
US5896480A (en) Optical interconnection system
US7320624B2 (en) Communications jacks with compensation for differential to differential and differential to common mode crosstalk
US6096980A (en) Non-ohmic energy coupling for crosstalk reduction
US6358083B1 (en) Communications cabling system with serially connectable unique cable assemblies
US5169346A (en) Data connector/modular jack adapter and method for making
US6729906B1 (en) Signal conditioned modular jack assembly with improved shielding
US6270381B1 (en) Crosstalk compensation for electrical connectors
US6896557B2 (en) Dual reactance low noise modular connector insert
US5931703A (en) Low crosstalk noise connector for telecommunication systems
US6893270B2 (en) Paddle-card termination for shielded cable

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

CR1 Correction of entry in section i

Free format text: PAT. BUL. 51/99 UNDER (30) REPLACE THE EXISTING TEXT BY "09/098277 16.06.98 US 09/137407 20.08.98 US 09/333462 15.06.99 US 09/333334 15.06.99 US"

CFP Corrected version of a pamphlet front page
COP Corrected version of pamphlet

Free format text: PAGES 1/6-6/6, DRAWINGS, REPLACED BY NEW PAGES 1/7-7/7; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

AK Designated states

Kind code of ref document: C2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct app. not ent. europ. phase