WO1999064740A1 - Sistema ola-aeromotriz de generacion de energia electrica - Google Patents

Sistema ola-aeromotriz de generacion de energia electrica Download PDF

Info

Publication number
WO1999064740A1
WO1999064740A1 PCT/ES1999/000174 ES9900174W WO9964740A1 WO 1999064740 A1 WO1999064740 A1 WO 1999064740A1 ES 9900174 W ES9900174 W ES 9900174W WO 9964740 A1 WO9964740 A1 WO 9964740A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
air mass
mass
duct
wave
Prior art date
Application number
PCT/ES1999/000174
Other languages
English (en)
French (fr)
Inventor
Benito Calvo Moral
Original Assignee
Benito Calvo Moral
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benito Calvo Moral filed Critical Benito Calvo Moral
Publication of WO1999064740A1 publication Critical patent/WO1999064740A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/24Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy to produce a flow of air, e.g. to drive an air turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the performance is not known, because to be able to determine it an in-depth study is necessary, since it depends on many variables (wave force, duct entrance section, initial duct volume that determines the mass Resident air, narrowing relationship in the duct of variable section, etc.), in any case it will always be equal to or greater than that of a wind turbine.
  • the objective of the proposed system is the generation of electrical energy by taking advantage of the "amount of movement" of ocean waves when they break against the coast.
  • the proposed system is composed of three systems, two of them known and commonly used in the current state of the art, and a third novel system in terms of its conceptualization.
  • the novelty of the proposed system is that third system, and the coupling of the three systems as a continuous system for obtaining electrical energy.
  • the two systems already used are: an electric power generating system; and a particle acceleration system by narrowing the section of a duct.
  • the novel system is the constant section duct where the "amount of movement" of the sea wave is used.
  • the engine that provides the necessary energy is water, the water of the oceans, the waves that occur in the oceans. These can be fully usable for obtaining energy by transforming the energy that the waves have by their own movement.
  • the places indicated for its use are steep coasts, cliffs, breakwaters, or breakwaters.
  • the wave reception system This is a constant section duct that is located at sea level, which will enter the sea wave covering the entire inlet section as a plunger, so that the wave will produce an overpressure on the air mass resident inside the duct. This overpressure and the thrust of the sea wave will be the cause of the movement of the resident air mass inside the constant section duct.
  • the acceleration system of the resident air mass This is a duct of variable section inside which a mass of air moves at a certain speed, and that when moving, this resident mass of air, by an increasingly smaller section, causes this resident mass of air to acquire a greater speed. This mass of air will be the one that affects the turbine of the electric power generator system, transforming the linear energy into angular speed of the generator or turbine.
  • the electric power generation system The electric power generation system.
  • Variable section duct outlet section for reversible turbine (2 1 )
  • the system is composed of a constant section duct (1), where the sea level (4) will be present or not depending on the design.
  • the sea wave (5) will attack the conduit (1) through the inlet section (13), so that it will be completely covered by the sea wave (5).
  • the entrance (13) will be located at sea level, so that it will be uncovered when there is no wave, and will be completely obstructed in the time interval that the wave takes to enter and exit.
  • the obstruction will cause an overpressure in the conduit in the period of wave entry, and a depression, when by gravity the wave leaves the conduit.
  • the pressure front (14) that is formed when the sea wave attacks is a variable magnitude, depending on the direction and intensity of the wind, bottom sea, tides, etc.
  • the amount of movement of the sea wave will cause an overpressure inside the duct (1), and the resident air mass (6) will get enough energy to start the movement of its particles.
  • This resident and static air mass (6) becomes a moving resident air mass (7), which passes through the direction change conduit (l 1 ), to be directed to the variable section conduit (2).
  • the resident moving air mass (7) due to the narrowing of the section and the kinetic energy of the air mass, will acquire a greater kinetic energy (8).
  • This resident air mass with greater kinetic energy (8) will exit through the nozzle or outlet section (9) to influence the turbine blades (10) transforming the linear velocity of the air mass particles (8 ) in angular speed of the turbine blades (10), producing an electric current through the turbine shaft (11), which after passing through an alternator (l 1) will be transformed into alternating current suitable for consumption.
  • the acceleration of the particles of a fluid is governed by two laws of Fluid Mechanics, whose reading says that:
  • Fluid Mechanics establishes on the mass of fluid that circulates through a conduit of variable section, an inversely proportional relationship between velocities and sections, so that the smaller the section through which a mass of air circulates, the greater its velocity .
  • the relationship between sections of input, output, output speed depending on the force of the sea, and the mass of resident air that we want to move in the constant section duct (1) can be established.
  • This system must have a certain number of controls and additional systems, given the peculiarity of the non-constant and relatively cyclic energy source (flywheels, rpm cut, rpm control)
  • Figure 1 shows the conception of the mechanism.
  • the assembly is formed by the fluid acceleration duct (1), (1 ') and (2), and the electric power generating system (3).
  • the first receiving duct (1) of constant section (13), which is at sea level (4), will receive the wave (5) and its associated pressure front (14), these will be responsible for increasing the kinetic energy of the resident air mass (6) in said duct.
  • the second duct (1 ') of constant section is a ducting and adapting duct to the next third duct.
  • the third duct (2) is a duct of variable section (convergent nozzle), whose function is to accelerate the mass of air that passes through it. Once the mass of air (8) exits through the outlet section (9), it will hit the blades of the receiving turbine (10) generating a movement on the turbine shaft (11) passing the generated current through the alternator (12) responsible for its adaptation for consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

El 'sistema ola-aeromotriz de generación de energía eléctrica' aprovecha la energía cinética de las olas del mar para incrementar la energía cinética de una masa de aire residente en sus conductos que una vez acelerada se lanza hacia los alabes de la turbina para generar energía eléctrica. Este sistema aprovecha las olas que se producen y chocan en cualquier tipo de rompiente marina. La construcción de conductos en estos rompientes, donde entrarán las olas del mar, es necesaria para aprovechar este tipo de energía. El sistema consta de tres conjuntos que dispuestos de forma continua consiguen que una masa de aire acelere sus partículas para mover los alabes de turbina de un generador produciendo energía eléctrica. Primer sistema receptor (1) de la ola de mar (5), formado por un conductor de sección constante (13), situado a nivel del mar (4). Segundo sistema acelerador (2) de la masa de aire residente (6), formado por un conducto de sección variable, donde las partículas de masa de aire residente adquieren mayor energía cinética (7) por estrechamiento del conducto. Tercer sistema generador de energía eléctrica (3), formado por turbina-generador (10, 11) y alternador (12).

Description

SISTEMA OLA-AEROMOTRIZ DE GENERACIÓN DE ENERGÍA ELÉCTRICA Introducción Uno de los grandes problemas de la humanidad es la necesidad de energía tanto para la supervivencia de la especie, como para los procesos industriales. Aprovechar cualquier energía que nos ofrezca la naturaleza es un objetivo de obligado cumplimiento para la humanidad.
Existen, a grandes rasgos, dos tipos de energía que nos ofrece la naturaleza y que pueden ser aprovechadas por la humanidad, son las energías renovables, y las no renovables. Unas desestabilizan de forma brusca el equilibrio de la naturaleza, y las otras se aprovechan de forma limpia, es decir sin variar excesivamente el equilibrio de la naturaleza, lo que ella nos ofrece.
Si se observa la naturaleza, en lo que se refiere a los fenómenos o meteoros que ella se desarrollan, se puede apreciar la enorme fuerza que en estos se contiene y la gran potencia energética que se libera: en el caso de las tormentas se liberan energías eléctrica y lumínica, además del viento que las acompaña y el agua que contienen; el caso de los huracanes o tifones con esa enorme energía en forma de viento; el sol con su energía calorífica y lumínica; y los océanos con esa enorme masa de agua continuamente en movimiento, y sus diferentes temperaturas. Por el tipo de invención que en este documento se presenta, nos vamos a centrar en la observación de los océanos. La gran fuerza de las tempestades que se desatan en los océanos, ha asombrado a los humanos desde que éste se utiliza como vía de comunicación y transporte. "Fuerza indomable" ha sido uno de los muchos calificativos empleados ante tamaña potencia, y desde su conocimiento hasta hoy, ha sido y es temida su virulencia y la imposibilidad de dominarla.
En la actualidad no se conoce forma de aprovechar en beneficio de la humanidad toda esa fuerza cuando se desata de forma violenta. Sin embargo es indudable que en su seno posee un gran potencial energético aprovechable. Cuando el océano se encuentra en un estado de relativa calma, podemos observar como las olas, que se forman cerca de la costa, atacan tanto las playas como los rompientes de forma mas o menos regular. Las olas impulsadas por el viento y por el "mar de fondo" poseen una energía que potencialmente es aprovechable, y éste es el objeto de la invención que aquí se presenta. Esta invención pretende aprovechar la energía de las olas que rompen sobre cualquier superficie. Su energía cinética y su masa son los elementos necesarios para obtener energía eléctrica con el mecanismo que a continuación se propone.
Antecedentes
Hasta la fecha los intentos de aprovechamiento de la energía de los océanos que se han materializado han sido pocos, y la potencia energética producida no es comparable a la de las fuentes de energía tradicionales. La energía mareomotriz, que aprovecha la diferencia de alturas de nivel de mar, según la marea sea o baja, reteniendo el agua para luego dejarla caer a través de una turbina ; la que se obtiene del aprovechamiento de la diferencia de temperaturas a distintas profundidades; la que se obtiene del aprovechamiento de los pequeños saltos de agua en las pequeñas olas "borreguillos", y algún invento a modo de patín de pedales, fijado al fondo, que aprovecha el movimiento de las aguas, son algunas de las invenciones que intentan aprovechar la energía que tienen los océanos. De todas ellas, la de mayor rendimiento y la de mayor potencial es la "mareomotriz". En el caso que nos ocupa, el rendimiento no se conoce, pues para poder determinarlo es necesario un estudio en profundidad, dado que depende de muchas variables ( fuerza de la ola, sección de entrada del conducto, volumen del conducto inicial que determina la masa residente de aire, relación de estrechamiento en el conducto de sección variable, etc.), de cualquier forma será siempre igual o mayor que el de un aerogenerador.
Objetivo El objetivo del sistema que se propone es la generación de energía eléctrica aprovechando la "cantidad de movimiento" de las olas de los océanos cuando rompen contra la costa.
Descripción El sistema que se propone esta integrado por tres sistemas, dos de ellos conocidos y utilizados habitualmente en el estado actual de la técnica, y un tercer sistema novedoso en cuanto a su conceptualización. Lo novedoso del sistema propuesto es ese tercer sistema, y el acoplamiento de los tres sistemas como un sistema continuo para la obtención de energía eléctrica. Los dos sistemas ya utilizados son: un sistema generador de energía eléctrica; y un sistema de aceleración de partículas por estrechamiento de la sección de un conducto. El sistema novedoso es el conducto de sección constante donde se aprovecha la "cantidad de movimiento" de la ola de mar. El motor que proporciona la energía necesaria es el agua, el agua de los océanos, las olas que se producen en los océanos. Éstas pueden ser plenamente aprovechables para la obtención de energía transformando la energía que las olas tienen por su propio movimiento. Los lugares indicados para su aprovechamiento son las costas abruptas, los acantilados, los espigones, o los rompeolas.
El sistema de recepción de ola. Éste es un conducto de sección constante que esta situado a nivel del mar, en el cual entrará la ola de mar cubriendo la sección de entrada en su totalidad a modo de embolo, de tal forma que la ola producirá una sobrepresión sobre la masa de aire residente en el interior del conducto. Esta sobrepresión y el empuje de la ola de mar serán los causantes del movimiento de la masa de aire residente en el interior del conducto de sección constante. El sistema de aceleración de la masa de aire residente. Éste es un conducto de sección variable en cuyo interior se mueve una masa de aire a una velocidad determinada , y que al desplazarse, esta masa de aire residente, por una sección cada vez más pequeña, hace que esta masa de aire residente adquiera una mayor velocidad. Esta masa de aire será la que incida sobre la turbina del sistema de generador de energía eléctrica, transformando la energía lineal en velocidad angular del generador o turbina. El sistema de generación de energía eléctrica . Éste esta formado por un generador de energía eléctrica similar a los utilizados en las centrales de generación hidroeléctrica (CGH). La particularidad de esta turbina reside en que el fluido incidente es aire en lugar de ser agua, para lo cual habrá de adaptarse este sistema generador tanto a flujos como a tipo de fluido. La corriente de aire que fluye a través de la tobera de salida del conducto de sección variable, incide sobre la turbina del generador de energía eléctrica, haciendo girar a la misma produciendo energía eléctrica. Descripción Preferida Glosario de índices del esquema adjunto: (1) Conducto de sección constante
(1 ') Cambio de dirección del conducto de sección constante
(2) Conducto de sección variable convergente
(21) Conducto de sección variable convergente para turbina reversible (3) Sistema generador de energía eléctrica
(4) Nivel del mar
(5) Ola de mar
(6) Masa de aire residente en conducto de sección constante
(7) Masa de aire residente en movimiento hacia conducto de sección variable
(8) Masa de aire residente acelerada por estrechamiento de sección
(9) Sección de salida de la tobera en conducto de sección variable
(10) Alabes de la turbina receptora
(11) Eje de la turbina del generador eléctrico
(12) Alternador (13) Sección de entrada del conducto de sección constante
(14) Frente de presiones de la ola de mar
(15) Sección de salida del conducto de sección variable para turbina reversible (21)
El sistema esta compuesto por un conducto de sección constante (1), donde el nivel del mar (4) estará presente o no en función del diseño. La ola de mar (5) atacará al conducto (1) a través de la sección de entrada (13), de tal forma que ésta quedará totalmente tapada por la ola de mar (5). La entrada (13) estará situada a nivel del mar, de tal forma que ésta estará al descubierto cuando no haya ola , y será obstruida en su totalidad en el intervalo de tiempo que toma la ola en entrar y salir. La obstrucción provocará dentro del conducto una sobrepresión en el periodo de entrada de la ola, y una depresión, cuando por gravedad la ola sale del conducto. El frente de presiones (14) que se forma cuando ataca la ola de mar es una magnitud variable, función de la dirección e intensidad del viento, mar de fondo, mareas, etc. La cantidad de movimiento de la ola de mar provocará una sobrepresión en el interior del conducto (1), y la masa de aire residente (6) obtendrá la energía suficiente para iniciar el movimiento de sus partículas. Esta masa de aire residente y estática (6), se convierte en una masa de aire residente en movimiento (7), que pasa a través del conducto de cambio de dirección (l 1), para dirigirse al conducto de sección variable (2). En este conducto de sección variable (2) la masa de aire residente en movimiento (7), debido al estrechamiento de sección y la energía cinética de la masa de aire, adquirirá una mayor energía cinética (8). Esta masa de aire residente con mayor energía cinética (8) saldrá a través de la tobera o sección de salida (9) para incidir sobre los alabes de la turbina (10) transformando la velocidad lineal de las partículas de la masa de aire (8) en velocidad angular de los alabes de la turbina (10), produciendo una corriente eléctrica a través del eje de la turbina (11), que tras pasar por un alternador(l 1) será transformada en corriente alterna apta para el consumo. La aceleración de las partículas de un fluido se rigen por dos leyes de la Mecánica de Fluidos, cuya lectura dice que:
- la masa de un fluido dentro de un conducto sin perdidas se mantiene constante, de tal forma que la velocidad de salida es función de la velocidad de entrada, y de la relación entre la secciones.
- Relación entre la velocidad del salida del fluido en función de la presión inicial, que este caso proviene del mar.
Estas fórmulas son aproximativas, por no tener en cuenta factores de rozamiento, perdida de carga, elevación de temperatura, etc. Sin embargo de estas fórmulas se puede obtener una intuición sobre el funcionamiento del sistema.
La Mecánica de fluidos establece sobre la masa de fluido que circula por un conducto de sección variable, una relación inversamente proporcional entre velocidades y secciones, de tal forma que cuanto menor sea la sección por la que circula una masa de aire, mayor será su velocidad. Así pues, podrá establecerse la relación entre secciones de entrada, salida, velocidad de salida en función de la fuerza del mar, y la masa de aire residente que queramos mover en el conducto de sección constante (1).
Este sistema habrá de contar con un cierto numero de controles y sistemas adicionales, dada la peculiaridad de la fuente de energía, no constante y relativamente cíclica (volantes de inercia, corte de rpm, control rpm)
Observar la posibilidad de la existencia de una corriente de aire de retorno, con la instalación de una turbina reversible. Breve descripción de la figura.
La figura 1 muestra la concepción del mecanismo. El conjunto esta formado por el conducto de aceleración del fluido (1), (1') y (2), y el sistema generador de energía eléctrica (3). El conducto a través del cual fluirá la masa de aire en proceso de aceleración (6), (7) y (8), esta formado por tres conductos (1), (1') y (2). El primer conducto receptor (1) de sección constante (13), que esta a nivel del mar (4), recibirá la ola (5) y su frente de presiones asociado (14), éstos serán los responsables del incremento de la energía cinética de la masa de aire residente (6) en el mencionado conducto. El segundo conducto (1') de sección constante es un conducto direccionador y de adaptación al siguiente tercer conducto. El tercer conducto (2) es un conducto de sección variable (tobera convergente), cuya función es la de acelerar la masa de aire que pasa a través de él. Una vez que la masa de aire (8) sale a través de la sección de salida (9), ésta incidirá sobre los alabes de la turbina receptora (10) generando un movimiento sobre el eje de la turbina (11) pasando la corriente generada a través del alternador (12) encargado de su adaptación para el consumo.
Instalación:
Uno de los condicionantes fundamentales del sistema es la diferente altura de n.m. en función de las mareas (pleamar y bajamar). Para poder aprovechar de forma continua esta energía, habrá de establecerse una serie de conductos en diferentes alturas con sistemas de cierre y apertura.
La continuidad del suministro de energía entre ola y ola se solventará, por una parte con la instalación de volantes de inercia, reguladores automáticos o similares, automatismos, etc.; y por otro lado con la construcción de un sistema de conducciones a lo largo del rompiente para aprovechar el desfase de las olas, igualmente habrá de tener sistemas de apertura y cierre, y otra serie de automatismos que aseguren un flujo mas o menos estacionario de aire para conseguir un suministro regular de energía.

Claims

REIVINDICACIONES
El "sistema ola-aeromotriz de generación de energía eléctrica", tiene por objeto aprovechar la gran cantidad de energía que los océanos guardan en su interior, para generar energía eléctrica. El sistema aprovecha la energía del mar, a través de las olas que se producen y chocan en el rompiente. La construcción de conductos, en estos rompientes, por los cuales entrarán las olas del mar, proporcionará el empuje necesario a la masa de aire residente para la consecución de energía eléctrica. Este sistema esta caracterizado por estar formado por tres conjuntos fundamentales que dispuestos de forma continua consiguen el efecto deseado, esto es, una masa de aire con una aceleración tal en sus partículas, que éstas sean capaces de mover los alabes de la turbina de un generador, a fin de producir energía eléctrica. Un primer sistema receptor de la ola de mar, formado por un conducto de sección constante (1), situado a nivel del mar (4). En él existe una masa de aire residente (6) que recibirá una sobrepresión (14) debida al empuje de la masa de agua de la ola de mar (5). Esta sobrepresión (14) pondrá en movimiento la masa de aire residente (6). Un segundo sistema acelerador de la masa de aire residente, formado por un conducto de sección variable convergente en la dirección del movimiento de la masa de aire al ser empujado por la ola de mar (2), donde las partículas de masa de aire residente adquieren mayor velocidad (7) y (8), debido al estrechamiento del conducto. Al salir por la tobera del conducto (9) la masa de aire residente (8) incide sobre los alabes de la turbina del generador produciendo energía eléctrica (10), a través del eje de la turbina. (11).
Cabe la posibilidad de aprovechar la depresión que se produce cuando la ola se retira del conducto de sección constante (1), para conseguir la aceleración de una masa de aire que incidiera sobre los alabes de una turbina reversible (10) y de esta forma generar energía eléctrica de nuevo a través del eje de la turbina (11). En este caso, este segundo sistema podría ser implementado con un conducto de sección variable convergente hacia el generador (21), Un tercer sistema generador de energía eléctrica (3), formado por turbina-generador (11), y alternador (12). La masa de aire residente acelerada (8) saldar a través de la tobera o sección de salida (9) para incidir sobre los alabes de la turbina (10) transformando la velocidad lineal de las partículas de la masa de aire (8) en velocidad angular en los alabes de la turbina (10), produciendo una corriente eléctrica a través del eje de la turbina (11), y que tras pasar por un alternador(12) será transformada en corriente alterna apta para el consumo.
Pudiera ser que el sistema una vez desarrollado, tuviera un rendimiento aceptable únicamente utilizando el primer sistema (1) y el sistema tercer (3), con lo cual no seria necesaria la utilización del segundo sistema (2).
PCT/ES1999/000174 1998-06-10 1999-06-10 Sistema ola-aeromotriz de generacion de energia electrica WO1999064740A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9801215 1998-06-10
ES9801215 1998-06-10

Publications (1)

Publication Number Publication Date
WO1999064740A1 true WO1999064740A1 (es) 1999-12-16

Family

ID=8304088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000174 WO1999064740A1 (es) 1998-06-10 1999-06-10 Sistema ola-aeromotriz de generacion de energia electrica

Country Status (1)

Country Link
WO (1) WO1999064740A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008061A1 (es) * 2003-07-16 2005-01-27 Bartning Diaz Carlos Generador de energía eléctrica que utiliza las olas del mar
US11319920B2 (en) 2019-03-08 2022-05-03 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149776A (en) * 1962-03-05 1964-09-22 William C Parrish Air compressors utilizing the kinetic and potential energy of water waves common to bodies of water
US4013379A (en) * 1974-09-26 1977-03-22 Bolding Richard D Wave-powered pneumatic system for power generation
US4741157A (en) * 1986-04-01 1988-05-03 Koichi Nishikawa Wave-activated power generating apparatus having a backwardly open duct
FR2638209A1 (fr) * 1988-10-21 1990-04-27 Takenaka Corp Procede et appareil de transformation de l'energie des vagues en electricite, et reservoir d'air a pression constante pour leur mise en oeuvre
ES2048068B1 (es) * 1990-10-18 1996-07-01 Secretary Energy Brit Aparato para generar energia por accion de las olas.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149776A (en) * 1962-03-05 1964-09-22 William C Parrish Air compressors utilizing the kinetic and potential energy of water waves common to bodies of water
US4013379A (en) * 1974-09-26 1977-03-22 Bolding Richard D Wave-powered pneumatic system for power generation
US4741157A (en) * 1986-04-01 1988-05-03 Koichi Nishikawa Wave-activated power generating apparatus having a backwardly open duct
FR2638209A1 (fr) * 1988-10-21 1990-04-27 Takenaka Corp Procede et appareil de transformation de l'energie des vagues en electricite, et reservoir d'air a pression constante pour leur mise en oeuvre
ES2048068B1 (es) * 1990-10-18 1996-07-01 Secretary Energy Brit Aparato para generar energia por accion de las olas.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008061A1 (es) * 2003-07-16 2005-01-27 Bartning Diaz Carlos Generador de energía eléctrica que utiliza las olas del mar
US11319920B2 (en) 2019-03-08 2022-05-03 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation
US11835025B2 (en) 2019-03-08 2023-12-05 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation

Similar Documents

Publication Publication Date Title
ES2391673T3 (es) Turbina con un juego de hélices coaxiales
CA2823971C (en) Rotor apparatus
US20160079829A1 (en) Accelerated fluid machine
SA515370325B1 (ar) توربين ماء بقابلية طفو متغيرة
KR101301241B1 (ko) 조류발전 터빈의 모형실험 시스템
JP2009522481A (ja) 再生水圧エネルギーおよび再生可能水圧エネルギーを発生させるための装置およびシステム
WO2010027774A1 (en) Force fluid flow energy harvester
US8134246B1 (en) Fluid driven generator
WO2010109169A2 (en) Bladeless turbine and power generator
WO2013029195A1 (es) Sistema de generacion de energia electrica undimotriz
Zaman et al. Design of a water wheel for a low head micro hydropower system
GB2487403A (en) Conical helical rotor
Elbatran et al. Augmented diffuser for horizontal axis marine current turbine
WO1999064740A1 (es) Sistema ola-aeromotriz de generacion de energia electrica
WO2011059411A2 (en) Compound v-shape blade tidal turbine
US11028830B2 (en) Multimodal renewable energy generation system
Velichkova et al. Integrated system for wave energy harvesting
JP2014070618A (ja) 発電装置
WO2014194438A1 (es) Dispositivo convertidor de energia cinetica de mareas en electrica que posee una hidroturbina de flujo transversal capaz de direccionar los flujos captados de una manera optima redirigiendo y acelerandolos hacia un rodete interno de la h idroturbina y una planta generadora de electr1cidad que ocupa a dicho dispositivo.
US20100001528A1 (en) Underwater generator
US8221051B2 (en) Systems and methods for maximizing energy extraction from moving fluids
WO2019151847A2 (es) Sistema para la generación de potencia eléctrica a partir del viento
Agelin-Chaab 1.11 Fluid Mechanics Aspects of Energy”
CN1247942A (zh) 垂板传动带式水轮机
RU2095619C1 (ru) Ветроэнергетическая установка напорно-вытяжного действия

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase