WO1999063125A1 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
WO1999063125A1
WO1999063125A1 PCT/JP1999/002944 JP9902944W WO9963125A1 WO 1999063125 A1 WO1999063125 A1 WO 1999063125A1 JP 9902944 W JP9902944 W JP 9902944W WO 9963125 A1 WO9963125 A1 WO 9963125A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
rolling
less
steel material
hrc
Prior art date
Application number
PCT/JP1999/002944
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Yamamura
Susumu Tanaka
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to JP2000552315A priority Critical patent/JP3391345B2/en
Publication of WO1999063125A1 publication Critical patent/WO1999063125A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • F16C35/12Rigid support of bearing units; Housings, e.g. caps, covers for spindles with ball or roller bearings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/36Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers

Definitions

  • the present invention relates to a rolling bearing, and more particularly to a rolling bearing having a very small size and requiring high rotational accuracy, such as a spindle for a magnetic disk drive (HDD).
  • a rolling bearing having a very small size and requiring high rotational accuracy, such as a spindle for a magnetic disk drive (HDD).
  • the inner ring, outer ring and rolling elements of rolling bearings are subjected to repeated shear stress under high surface pressure in use.
  • high carbon chromium bearing steel such as SUJ2 was used as the steel material, and quenching and tempering were performed after molding.
  • the surface hardness of the inner ring, outer ring, and rolling elements is HRC 58-64.
  • the inner ring and the outer ring formed of SUJ 2 are subjected to quenching, followed by sub-zero treatment, or the tempering temperature is increased.
  • the amount of residual austenite can be reduced by sub-zero treatment after quenching, it is difficult to reduce the content to 0% by volume.
  • Examples of steel materials that can increase the surface hardness even when tempering at a high temperature such that the residual austenite amount becomes 0% by volume include high-speed steel M50 used for aircraft and the like.
  • This high-speed steel M50 is a precipitation-hardened alloy steel containing a large amount of Cr, Mo, and V, and has over 10 giant carbides in the compact after tempering. There is a problem with acoustic characteristics. In addition, since large carbides are present from the raw material stage, workability is poor and there is a problem in productivity.
  • the present invention has been made in view of such problems of the prior art, and it is an object of the present invention to provide a low-cost rolling bearing suitable for HDD spindles, which is excellent in both rolling fatigue life and rotational accuracy. As an issue.
  • Another object of the present invention is to improve the impact resistance of a rolling bearing using a ceramic rolling element. Disclosure of the invention
  • At least one of the inner ring, the outer ring, and the rolling element contains, as an alloy component, 0.80 to 1.20% by weight of C, and 0.60% of 31 as an alloy component.
  • Iron and steel containing Mn in the range of 0.25% by weight or less, Mn in the range of 0.25% by weight or less, and 1 "in the range of 1 • 00 to 1.5% by weight,] 40 in the range of 0.60 to 1.5% by weight. After being formed from a material (steel material), it is quenched and tempered to reduce the amount of retained austenite to 0% by volume and the surface hardness to HRC (rock hardness for scale C) 62 or more. To provide a rolling bearing.
  • the composition range of C, Si, Mn, Cr, and Mo is determined for the composition of the steel material forming at least one of the inner ring, the outer ring, and the rolling element. limit. The critical significance of each numerical limitation is described below.
  • Si is an element necessary as a deoxidizing agent in steelmaking, and has the effect of increasing temper softening resistance and improving mechanical strength and rolling fatigue life after heat treatment. If the Si content exceeds 0.6% by weight, an effect of preventing the decomposition of the residual austenite is produced, and the machinability is reduced. If the content of Si is less than 0.1% by weight, the deoxidizing effect may not be sufficient. Therefore, the content of 31 is preferably 0.10% by weight or more.
  • Mn is an element necessary as a deoxidizing agent in steelmaking, and has the effect of improving hardenability and improving mechanical strength and rolling fatigue life after heat treatment. If the content of Mn exceeds 0.25% by weight, residual austenite is easily generated, and the machinability decreases. If the content of Mn is less than 0.15% by weight, the deoxidizing effect may not be sufficient. Therefore, the content of Mn is preferably 0.15% by weight or more. [Cr: 1.00 to: L. 50% by weight]
  • Cr has the effect of improving hardenability and improving mechanical strength and rolling fatigue life after heat treatment. It also has the effect of forming carbides in combination with C and spheroidizing the cementite. When the Cr content is less than 1.0% by weight, these effects are not substantially exerted. When the Cr content exceeds 1.50% by weight, these effects are saturated.
  • Mo is an element that improves the hardenability and increases the tempering softening resistance, and has the effect of improving the mechanical strength after rolling and the rolling fatigue life.
  • the Mo content In order to raise the tempering temperature and reduce the amount of residual austenite to 0% by volume and achieve a surface hardness of HRC 62 or more, the Mo content should be 0.60% by weight or more. It is preferable that the content be 0.80% by weight or more. If the Mo content exceeds 1.5% by weight, not only the above effects are saturated, but also the machinability decreases. In addition, Mo is expensive, so if it is contained in a large amount, the cost increases.
  • the surface hardness can be increased to HRC 62 or more even when tempering is performed at a high temperature so that the residual austenite amount becomes 0% by volume.
  • this steel material there is no large carbide such as high-speed steel M50, and there is no need to perform surface hardening treatment such as carburization, so that the processing cost can be reduced.
  • At least one of the inner ring and the outer ring has, as alloy components, C of 0.80 to 1.20% by weight, 31 of 0.60% by weight or less, and Mn of 0. 25% by weight or less, Cr is 1.0-1.5% by weight, 1 ⁇ 0 is 0.60-: L. 50% by weight of steel material (steel material) After the quenching and tempering, the amount of residual austenite is reduced to 0% by volume and the surface hardness is HRC 62 or higher. 3 to 0.6% by weight, Si 0.3 to 1.5% by weight, Mn 0.3 to 1.7% by weight, Cr 0.5 to 2.5% by weight, Mo 0.
  • It is formed of a steel material having a content of 6 to 3.0% by weight and a content of 0 of 9 ppm or less, and is subjected to carbonitriding treatment, then quenching and tempering, and remaining austenite. And the surface hardness is HRC 62 or more. To provide a gully bearing.
  • this rolling bearing since the inner ring and / or the outer ring are formed of steel material, as described above, there is no residual hardening treatment, and no residual hardening is performed. A stenite amount of 0% by volume and a surface hardness of HRC 62 or more are achieved. In addition, the rolling element also has a residual austenite amount of 0% by volume and a surface hardness of HRC 62 or more. Therefore, this rolling bearing is excellent in both rolling fatigue life and rotational accuracy. .
  • the rolling elements are made of a steel material (steel material) that has a lower carbon content, a higher Mn content, and a lower oxygen content than steel material 1, and is carbonitrided. Accordingly, even at a high-speed rotation of, for example, about 1000 rpm to 1500 rpm, generation of vibration is suppressed, and the acoustic life at high-speed rotation is prolonged. In order to obtain such effects, the surface carbon concentration of the rolling elements is reduced to 0.8 to 1.2% by weight and the surface nitrogen concentration is reduced to 0.2 to 0.6% by carbonitriding.
  • the Mo content in the steel material should be 0.6% by weight or more, preferably 0.8% by weight or more. There is a need.
  • the rolling elements have a small amount of deformation due to heat treatment, it is easier to set the processing conditions and the like by performing carbonitriding on the rolling elements than performing carbonitriding on the inner and outer rings. In addition, costs can be kept low.
  • At least one of the inner ring and the outer ring has, as alloy components, 0.80 to 1.20% by weight of C and 0.60% by weight or less of 3%. , Mn: 0.25% by weight or less, Cr: 1.0-1.5% by weight, Mo ⁇ ). 60-1.5% by weight )
  • the residual austenite amount is 0% by volume
  • the surface hardness is HRC 62 or more
  • the rolling elements are formed of martensitic stainless steel.
  • the surface is nitrided to a thickness of 3 m or more. Are formed and then finished to a surface roughness of 0.1 / mRa or less.
  • the residual austenite amount is 0% by volume and the surface hardness is HRC 6 without surface hardening treatment. Two or more are achieved. As a result, sufficient rolling fatigue life and sufficient impact resistance as a rolling bearing for HDD spindles can be obtained.
  • the rolling elements are made of martensitic stainless steel, quenched and tempered, then nitrided to form a nitrided layer with a thickness of 3 m or more on the surface, and then finished. As a result, the surface roughness is 1 / mRa or less, so heat resistance and wear resistance are increased.
  • martensitic stainless steel as the base material of the rolling elements prevents the base material from softening during nitriding. It is preferable to use 13Cr-based martensitic stainless steel from the viewpoint of acoustic characteristics and the like. In order for the nitrided layer to be uniformly present on the rolling element surface after finishing, it is necessary to perform nitriding so that the thickness of the nitrided layer is 3 or more.
  • At least one of the inner ring and the outer ring has, as alloy components, C of 0.80 to 1.20% by weight and 31 of 0.60% by weight or less. , Mn: 0.25% by weight or less, Cr: 1.0-1.5% by weight, 1 ⁇ 0: 0.60-1.5% by weight After being formed in 1), quenching and tempering are applied to reduce the amount of residual austenite to 0% by volume and the surface hardness to HRC 62 or more.
  • the rolling elements are made of ceramics (for example, nitrided). Silicon, silicon carbide, alumina, zirconia, alumina nitride, etc.).
  • the inner ring and / or the outer ring are formed of steel material 1. Therefore, as described above, a residual o-stenite amount of 0% by volume and a surface hardness of HRC 62 or more can be achieved without performing a surface hardening treatment. As a result, despite having the ceramic rolling elements, it is possible to obtain impact resistance equal to or higher than that of conventional rolling bearings (for example, the inner and outer rings and rolling elements are all made of SUJ 2). .
  • FIG. 1 is a cross-sectional view showing an HDD spindle motor unit in which a rolling bearing manufactured according to an embodiment of the present invention is incorporated and subjected to an impact resistance test.
  • FIG. 2 is a graph showing the results of a heat treatment experiment performed to determine heat treatment conditions for the inner ring and the outer ring in the embodiment.
  • a ball bearing having an inner diameter of 5 mm, an outer diameter of 13 mm, a width of 4 mm, and a ball diameter of 2 mm was produced as follows.
  • each molded body was quenched at 860 ° C, And then tempered at 240 ° C. for 2 hours.
  • Surface hardness (HRC) and residual austenite amount after the heat treatment the (y R) be shown together in Table 1. All the rolling elements used were conventional SUJ2 balls.
  • the heat treatment conditions for the inner and outer rings were determined by conducting the following heat treatment experiments. That is, after quenching at 860 ° C for the formed body made of each of the steel materials A to P in Table 1, tempering was performed at 180 ° C to 240 ° C. The residual austenite value of each compact was measured. The results are shown in the graph of FIG.
  • the tempering temperature when quenching is performed at 860 ° C is set to 230 ° C or less, all the retained austenite values of the compacts made of the steel materials of symbols A to P becomes 0.
  • the tempering temperature was set to 240 ° C. to ensure that the residual austenite value of all these compacts was 0.
  • the surface hardness is HRC 62 or more.
  • this ball bearing was assembled into the HDD spindle motor unit shown in Fig. 1 with preload applied, and a test was conducted to examine the impact resistance of the ball bearing.
  • the HDD spindle motor unit shown in FIG. 1 includes a hub 1 rotating on which a magnetic disk is mounted, a shaft 2 having an upper end fixed to the hub 1, and two ball bearings 3 arranged in the axial direction.
  • a housing 4 that rotatably supports the shaft 2 via these ball bearings 3 is provided.
  • each of the ball bearings manufactured as described above was used, and the same two were combined and assembled between the housing 4 and the shaft 2.
  • the ball bearings with the symbols A to P satisfying all of the above conditions have excellent impact resistance because the amount of residual austenite after heat treatment of the inner and outer rings is 0% by volume or less and the surface hardness is HRC 62 or more.
  • the amount of residual austenite after heat treatment of the inner ring and the outer ring is 0% by volume.
  • the surface hardness was reduced to HRC 60.7. As a result, the impact resistance was poor.
  • the surface hardness of the inner and outer rings after heat treatment was HRC 62.7 because the content of Si in the steel material forming the inner and outer rings was higher than the range of the present invention.
  • the residual austenite was not completely decomposed by the high temperature tempering at 240 ° C. As a result, the impact resistance was poor.
  • the Cr content of the steel material forming the inner ring and the outer ring is lower than the range of the present invention. Therefore, the residual austenite amount after heat treatment of the inner ring and the outer ring is 0% by volume. However, the surface hardness was reduced to HRC 60.5. As a result, the impact resistance was poor.
  • U ball bearings contain Mo in the steel material forming the inner and outer rings Since the ratio was lower than the range of the present invention, the residual ore-stenite amount after heat treatment of the inner ring and the outer ring was 0% by volume, but the surface hardness was as small as HRC 60.2. As a result, the impact resistance was poor.
  • the ball bearing of symbol V uses a composition equivalent to SUJ2 steel as the steel material forming the inner and outer rings.
  • the content of Mo is lower than the range of the present invention, and the content of Cr is higher than the range of the present invention. Therefore, the amount of residual austenite after heat treatment of the inner ring and the outer ring is 0% by volume.
  • the surface hardness was reduced to HRC 57.0. As a result, the ball bearing of symbol V had poor impact resistance.
  • the composition of the steel material forming the inner ring and the outer ring is within the above range, the residual austenite of the inner ring and the outer ring by high-temperature tempering.
  • the surface hardness of the inner ring and the outer ring can be increased to HRC 62 or more without performing surface hardening treatment such as carburizing while reducing the volume of the sample to 0% by volume. As a result, a rolling bearing excellent in both rotational accuracy and rolling fatigue life can be obtained at low cost.
  • the rolling bearing of the present invention is not limited to this. That is, in order to obtain a rolling bearing excellent in both rolling fatigue life and rotational accuracy, at least one of the inner ring, the outer ring, and the rolling element is formed of a steel material having a composition in the above range. It is sufficient that the residual austenite amount is 0% by volume and the surface hardness is HRC 62 or more by quenching and tempering.
  • a ball bearing having an inner diameter of 5 mm, an outer diameter of 13 mm, a width of 4 mm, and a ball diameter of 2 mm was produced as follows.
  • molded products of a predetermined shape were formed using the steel materials A to P and V shown in After the formation, each compact was quenched at 860 ° C., and then tempered at 240 ° C. for 2 hours. Hardness after heat treatment (HR C) and residual Osutenai preparative amounts ( ⁇ R) is also shown in Table 1.
  • HR C Hardness after heat treatment
  • ⁇ R residual Osutenai preparative amounts
  • balls with a diameter of 2 mm were formed using the steel materials X and Y shown in Table 2 below and the steel material A shown in Table 1 below.
  • the ball formed of material X was carbonitrided at 870 ° C to 900 ° C for 1 to 5 hours, and then quenched at 840 ° C to 860 ° C. Subsequently, tempering was performed at 270 ° C. to 350 ° C. for 1.5 to 3.0 hours. The balls formed of material Y and material A were quenched at 860 ° C and subsequently tempered at 240 ° C for 1.5 to 3.0 hours.
  • Material Y corresponds to JIS grade SUJ 2 steel.
  • Hardness after heat treatment of the ball which is formed of a material X and material Y (HRC) Contact and residual austenite amount ( ⁇ R) shown in Table 2.
  • the surface hardness (HRC) and the amount of residual austenite (rR) of the ball formed of material A after the heat treatment were the same as those shown in Table 1.
  • the surface carbon concentration of the ball formed of the material X after the heat treatment was 0.9% by weight, and the surface nitrogen concentration was 0.3% by weight.
  • Lubricant mineral oil grease Rotation time: 300 hours
  • the vibration is measured by an Anderometer immediately before the start of rotation and immediately after the end of rotation.
  • the bearing is attached to the anderometer, the inner ring is rotated under specified conditions, the thrust load is applied to the outer ring, and the stylus of the converter is brought into contact with the outer ring in a stationary state.
  • the value obtained by subtracting the Anderon value immediately before the start of the test from the Anderon value immediately after the end of the test is calculated as the Anderon rise value. If the value is 2.5 or less, the acoustic life is long ( ⁇ ), The sound lifetime was judged to be slightly short ( ⁇ ) if it was 2.6 or more and 5.0 or less, and the sound life was judged to be short (X) if it was 5.1 or more. The results are shown in Table 3 below.
  • composition of the steel material forming the ball (rolling element) is
  • the No. 17 and No. 18 ball bearings use balls with the symbol Y (surface hardness HRC 57) obtained using a steel material that does not contain Mo and without carbonitriding. The sound life at high speed rotation is short. there were.
  • the No. 19 ball bearing uses the steel ball containing the symbol A (Mo is 1.0% by weight, so the surface hardness is HRC 62.5). Since the obtained ball was used, the acoustic life at high speed rotation was somewhat short. It should be noted that the ball bearing No. 19 has a sufficiently long acoustic life when the rotation speed is equal to or less than 700 rpm.
  • a ball bearing having an inner diameter of 5 mm, an outer diameter of 13 mm, a width of 4 mm, and a ball diameter of 2 mm was produced as follows.
  • each molded body was quenched at 860 ° C, and then, It was produced by tempering for 2 hours.
  • Hardness after heat treatment (HRC) Contact and residual austenite amount ( ⁇ R) is also shown in Table 1.
  • coarse steel spheres with diameters larger than 2 mm were formed using the steel materials a and b whose alloy component contents are the values shown in Table 4
  • the quenching was carried out at a temperature of 110 ° C. to 110 ° C., followed by a tempering at a temperature of 43 ° C. to 550 ° C. for 2 to 4 hours.
  • the coarse spheres were polished until they reached a predetermined size, and were subjected to a gas nitriding treatment at 410 to 460 ° C. for 24 to 48 hours.
  • a nitride layer having a thickness of 15 ⁇ m was formed on the surface, and a ball with a diameter of 2 mm and a surface roughness of 0.1 / mRa or less was obtained.
  • the ball bearings of Nos. 3-1 to 3-16 have excellent impact resistance because the inner and outer rings are the same as the ball bearings A to P in the first embodiment.
  • the ball bearings of Nos. 3-17 to 3-21 had poor impact resistance because the inner and outer rings were the same as the ball bearings of symbols R to V of the first embodiment.
  • the rolling elements are formed of martensite stainless steel, quenched and tempered, and then subjected to nitriding. Even if a nitrided layer with a thickness of 3 m or more is formed on the surface and the surface roughness is 0.1 mRa or less, the same as in the first embodiment using the SUJ 2 rolling element is used. In addition, excellent impact resistance is obtained.
  • a ball bearing having an inner diameter of 5 mm, an outer diameter of 13 mm, a width of 4 mm, and a ball diameter of 2 mm was produced as follows.
  • each molded body was quenched at 860 ° C, It was produced by performing tempering at 240 ° C. for 2 hours.
  • Hardness after heat treatment (HRC) and residual austenite amount ( ⁇ R) is also shown in Table 1.
  • HRC Hardness after heat treatment
  • ⁇ R residual austenite amount
  • the rolling elements were formed of ceramics (silicon nitride: Si 3 N 4 ) or SUJ 2.
  • the inner and outer rings are made of SUJ 2 (No. 4-2), and the impact resistance is lower than that of the conventional example (No. 43).
  • the inner and outer rings have the same configuration (No. 4-1) as the ball bearing with the symbol A in the first embodiment, the impact resistance will be equal to or higher than that of the conventional example (No. 4-3). Can be. Industrial applicability
  • the present invention by forming at least one of the inner ring, the outer ring, and the rolling elements from the specific steel material (steel material), both the rolling fatigue life and the rotational accuracy are excellent.
  • Rolled bearings can be provided at low cost.
  • At least one of the inner ring and the outer ring is formed of the specific steel material (steel material), and the rolling element is formed of another specific steel material (steel material) and subjected to carbonitriding.

Abstract

A rolling bearing suitably used as a ball bearing (3) to be inserted between a shaft (2) and a housing (4) of, for example, a HDD spindle motor unit, wherein a steel material for forming inner and outer rings has a composition in weight percentage within the following ranges, i.e. 0.80-1.20 wt.% of C, not more than 0.60 wt.% of Si, not more than 0.25 wt.% of Mn, 1.00-1.50 wt.% of Cr and 0.60-1.50 wt.% of Mo, the inner and outer rings formed of this steel material being subjected to quenching and tempering to set an amount of residual austenite to zero volume percent and a surface hardness to not lower than HRC62, rolling elements in use being formed of martensite stainless steel subjected to quenching and tempering, nitriding to form a nitriding layer of not less than 3 √m in thickness on surfaces thereof, and a finishing process to set a surface roughness to not more than 0.1 √m Ra.

Description

明 細 書 転がり軸受 技術分野  Description Rolling bearing technical field
本発明は、 転がり軸受に関し、 特に、 磁気ディスクドライブ装置 (H D D ) のスピンドル用等のように、 大きさが非常に小さく、 回転精度が 要求されるような転がり軸受として好適なものに関する。 背景技術  The present invention relates to a rolling bearing, and more particularly to a rolling bearing having a very small size and requiring high rotational accuracy, such as a spindle for a magnetic disk drive (HDD). Background art
転がり軸受の内輪、 外輪、 および転動体は、 使用状態において高い面 圧下で繰り返し剪断応力を受ける。 このような厳しい使用状態に耐えて 必要とされる転がり疲労寿命を得るために、 従来は、 鉄鋼材料として S U J 2等の高炭素クロム軸受鋼を用い、 成形後に焼入れ,焼き戻し処理 を行うことにより、 内輪、 外輪、 および転動体の表面硬さを H R C 5 8 〜 6 4としている。  The inner ring, outer ring and rolling elements of rolling bearings are subjected to repeated shear stress under high surface pressure in use. Conventionally, in order to obtain the required rolling fatigue life to withstand such severe operating conditions, high carbon chromium bearing steel such as SUJ2 was used as the steel material, and quenching and tempering were performed after molding. The surface hardness of the inner ring, outer ring, and rolling elements is HRC 58-64.
一方、 コンピュータの記憶装置として使用する H D Dに対しては、 小 型化、 高速化、 および低コスト化の要求が近年益々高まっている。 この うち、 H D Dを小型化するために、 磁気ディスクの小型化および高密度 化が進められている。 また、 磁気ディスクを高速で回転させるために、 スピンドル用転がり軸受の回転精度の向上が求められている。  On the other hand, demands for smaller, faster, and lower cost HDDs used as computer storage devices have been increasing in recent years. Of these, magnetic disks are being reduced in size and density to reduce the size of HDDs. In addition, in order to rotate the magnetic disk at high speed, it is required to improve the rotational accuracy of the rolling bearing for the spindle.
ここで、 転がり軸受の回転精度を向上させるためには、 特に内輪およ び外輪の軌道面において、 精度特性に最も有害な残留オーステナイトを 極力少なくする必要がある。 そのため、 従来は、 S U J 2で成形した内 輪および外輪に焼入れを施した後にサブゼロ処理を施したり、 焼き戻し 温度を高く したりしている。 しかしながら、 焼入れ後のサブゼロ処理によって残留オーステナィ 卜 量を減少させることはできるが、 その含有率を 0体積%にすることは難 しい。 また、 高温焼き戻しにより残留オーステナイ ト量を 0体積%にす ることは可能である力 <、 高温焼き戻しを行うと表面硬さが H R C 5 7程 度と低くなるため、 十分な転がり疲れ寿命が得られなくなる恐れがある。 Here, in order to improve the rotational accuracy of the rolling bearing, it is necessary to minimize residual austenite, which is the most harmful to the accuracy characteristics, particularly on the raceway surfaces of the inner ring and the outer ring. Therefore, conventionally, the inner ring and the outer ring formed of SUJ 2 are subjected to quenching, followed by sub-zero treatment, or the tempering temperature is increased. However, although the amount of residual austenite can be reduced by sub-zero treatment after quenching, it is difficult to reduce the content to 0% by volume. Also, it is possible to reduce the amount of residual austenite to 0% by volume by high-temperature tempering. <High-temperature tempering reduces the surface hardness to about HRC57, so sufficient rolling fatigue life May not be obtained.
したがって、 鉄鋼材料として S U J 2を用いて内輪および外輪を作製 した場合には、 転がり疲れ寿命と回転精度の両方に優れた転がり軸受が 得られないという問題がある。  Therefore, when the inner ring and the outer ring are manufactured using SUJ2 as a steel material, there is a problem that a rolling bearing excellent in both rolling fatigue life and rotational accuracy cannot be obtained.
残留オーステナイ ト量が 0体積%となるように高温で焼き戻しを行つ ても、 表面硬度を高くできる鉄鋼材料としては、 航空機用等として使用 されている高速度鋼 M 5 0等がある。 この高速度鋼 M 5 0は、 C r、 M o、 および Vを多量に含んだ析出硬化型の合金鋼であって、 焼き戻し後 の成形体に 1 0 を超える巨大な炭化物が存在するため音響特性の点 で問題がある。 また、 巨大な炭化物が素材の段階から存在するため加工 性が悪く、 生産性の点でも問題がある。  Examples of steel materials that can increase the surface hardness even when tempering at a high temperature such that the residual austenite amount becomes 0% by volume include high-speed steel M50 used for aircraft and the like. This high-speed steel M50 is a precipitation-hardened alloy steel containing a large amount of Cr, Mo, and V, and has over 10 giant carbides in the compact after tempering. There is a problem with acoustic characteristics. In addition, since large carbides are present from the raw material stage, workability is poor and there is a problem in productivity.
また、 浸炭などの表面硬化処理を行うことにより、 残留オーステナイ ト量を 0体積%としても表面硬さを高くすることができる鉄鋼材料につ いての開発も進められている。 しかしながら、 H D Dスピンドル用転が り軸受の内輪および外輪のように、 厚さが 1 m m程度である小さな成形 体に対して表面硬化処理を行う場合には、 処理条件や取り代の設定が困 難である。 また、 加工費が嵩むためコストが高くなる。  Also, the development of steel materials that can increase the surface hardness even if the residual austenite amount is reduced to 0% by volume by performing surface hardening treatment such as carburizing is being promoted. However, when performing surface hardening treatment on small compacts with a thickness of about 1 mm, such as the inner and outer rings of rolling bearings for HDD spindles, it is difficult to set processing conditions and allowances. It is. In addition, the cost is high because the processing cost is high.
本発明は、 このような従来技術の問題点に着目してなされたものであ り、 H D Dスピンドル用として好適な、 転がり疲れ寿命と回転精度の両 方に優れた転がり軸受を安価に提供することを課題とする。  SUMMARY OF THE INVENTION The present invention has been made in view of such problems of the prior art, and it is an object of the present invention to provide a low-cost rolling bearing suitable for HDD spindles, which is excellent in both rolling fatigue life and rotational accuracy. As an issue.
一方、 近年、 精密機器に使用する転がり軸受においては、 軸受内部か ら発生するガスを抑えるために、 潤滑剤の使用量を極力減らす傾向にあ り、 潤滑不良による摩耗の問題が生じている。 その対策として、 内外輪 と転動体の凝集力を低くする、 或いは接触面積を小さくするため、 セラ ミ ックス製の転動体を使用することが検討されている。 しかしながら、 セラミ ックス製の転動体を使用すると、 内外輪と転動体との接触応力が 高くなるため、 軸受の耐衝撃性が低下する恐れがある。 On the other hand, in recent years, in rolling bearings used for precision equipment, the amount of lubricant used has tended to be reduced as much as possible in order to suppress gas generated inside the bearings. Wear problems due to poor lubrication. As a countermeasure, the use of ceramic rolling elements is being studied to reduce the cohesive force between the inner and outer rings and the rolling elements or to reduce the contact area. However, when a ceramic rolling element is used, the contact stress between the inner and outer rings and the rolling element increases, and the impact resistance of the bearing may be reduced.
本発明のもう一つの課題は、 セラミックス製の転動体を使用した転が り軸受の耐衝撃性を高くすることである。 発明の開示  Another object of the present invention is to improve the impact resistance of a rolling bearing using a ceramic rolling element. Disclosure of the invention
上記課題を達成するために、 本発明は、 内輪、 外輪、 および転動体の 少なくともいずれかは、 合金成分として、 Cを 0. 8 0~1. 2 0重量 %、 3 1を0. 6 0重量%以下、 Mnを 0. 2 5重量%以下、 じ 1"を 1 • 0 0〜1. 5 0重量%、 ]40を0. 6 0〜1. 5 0重量%の範囲内で 含む鉄鋼材料 (鋼材①) で形成された後に、 焼入れ ·焼き戻しが施され て、 残留オーステナイト量が 0体積%に、 表面硬さが HRC (スケール Cの場合のロックゥヱル硬さ) 6 2以上になっていることを特徴とする 転がり軸受を提供する。  In order to achieve the above object, according to the present invention, at least one of the inner ring, the outer ring, and the rolling element contains, as an alloy component, 0.80 to 1.20% by weight of C, and 0.60% of 31 as an alloy component. Iron and steel containing Mn in the range of 0.25% by weight or less, Mn in the range of 0.25% by weight or less, and 1 "in the range of 1 • 00 to 1.5% by weight,] 40 in the range of 0.60 to 1.5% by weight. After being formed from a material (steel material), it is quenched and tempered to reduce the amount of retained austenite to 0% by volume and the surface hardness to HRC (rock hardness for scale C) 62 or more. To provide a rolling bearing.
この転がり軸受においては、 内輪、 外輪、 および転動体の少なくとも いずれか一つを形成する鉄鋼材料の組成について、 前述のように、 C、 S i、 Mn、 C r、 および M oの含有範囲を限定する。 各数値限定の臨 界的意義について以下に述べる。  In this rolling bearing, as described above, the composition range of C, Si, Mn, Cr, and Mo is determined for the composition of the steel material forming at least one of the inner ring, the outer ring, and the rolling element. limit. The critical significance of each numerical limitation is described below.
〔C : 0. 8 0〜: L . 2 0重量%〕  [C: 0.80-: L. 20% by weight]
。は、 焼入れ ·焼き戻し処理により素地をマルテンサイ 卜化して鋼に 硬さを付与する元素であり、 Cの含有量が 0. 8 0未満であると HRC 6 2以上が確保できない場合がある。 Cの含有量が 1. 2 0重量%を超 えると、 Cによる硬さの向上効果が飽和するばかりでなく、 残留オース テナイ 卜量が生成し易くなる。 . Is an element that imparts hardness to steel by turning the base material into a martensite by quenching and tempering treatment. If the C content is less than 0.80, HRC 62 or more may not be secured. If the C content exceeds 1.2% by weight, the effect of improving the hardness due to C is not only saturated, but also the residual aus The amount of tenite is easily generated.
[S i : 0. 6 0重量%以下〕  [S i: 0.60% by weight or less]
S iは製鋼時の脱酸剤として必要な元素であり、 焼戻し軟化抵抗を高 めて、 熱処理後の機械的強度や転がり疲労寿命を向上させる効果もある。 S iの含有率が 0. 6 0重量%を超えると、 残留オーステナイ 卜の分解 を妨げる作用が生じるとともに、 被切削性が低下する。 S iの含有率が 0. 1 0重量%未満であると、 脱酸効果が十分でなくなる恐れがあるた め、 3 1の含有率は 0. 1 0重量%以上であることが好ましい。  Si is an element necessary as a deoxidizing agent in steelmaking, and has the effect of increasing temper softening resistance and improving mechanical strength and rolling fatigue life after heat treatment. If the Si content exceeds 0.6% by weight, an effect of preventing the decomposition of the residual austenite is produced, and the machinability is reduced. If the content of Si is less than 0.1% by weight, the deoxidizing effect may not be sufficient. Therefore, the content of 31 is preferably 0.10% by weight or more.
(Mn : 0. 2 5重量%以下〕  (Mn: 0.25% by weight or less)
Mnは、 S i と同様に、 製鋼時の脱酸剤として必要な元素であり、 焼 入れ性を向上させて、 熱処理後の機械的強度や転がり疲労寿命を向上さ せる効果もある。 Mnの含有率が 0. 2 5重量%を超えると、 残留ォー ステナイ 卜が生成し易くなるとともに、 被切削性が低下する。 Mnの含 有率が 0. 1 5重量%未満であると脱酸効果が十分でなくなる恐れがあ るため、 Mnの含有率は 0. 1 5重量%以上であることが好ましい。 〔C r : 1. 0 0〜: L. 5 0重量%〕  Like Si, Mn is an element necessary as a deoxidizing agent in steelmaking, and has the effect of improving hardenability and improving mechanical strength and rolling fatigue life after heat treatment. If the content of Mn exceeds 0.25% by weight, residual austenite is easily generated, and the machinability decreases. If the content of Mn is less than 0.15% by weight, the deoxidizing effect may not be sufficient. Therefore, the content of Mn is preferably 0.15% by weight or more. [Cr: 1.00 to: L. 50% by weight]
C rは焼入れ性を向上させて、 熱処理後の機械的強度や転がり疲労寿 命を向上させる効果がある。 また、 Cと結びついて炭化物を形成し、 セ メンタイ 卜を球状化する作用がある。 C rの含有量が 1. 0 0重量%未 満であるとこれらの作用が実質的に発揮されない。 C rの含有率が 1. 5 0重量%を超えると、 これらの効果は飽和する。  Cr has the effect of improving hardenability and improving mechanical strength and rolling fatigue life after heat treatment. It also has the effect of forming carbides in combination with C and spheroidizing the cementite. When the Cr content is less than 1.0% by weight, these effects are not substantially exerted. When the Cr content exceeds 1.50% by weight, these effects are saturated.
〔Mo : 0. 6 0〜: L. 5 0重量%〕  [Mo: 0.60 ~: L. 50% by weight]
Moは焼入れ性を向上させ、 焼戻し軟化抵抗を高める元素であり、 熱 処理後の機械的強度や転がり疲労寿命を向上させる効果がある。 焼き戻 し温度を高く して残留オーステナイ 卜量を 0体積%としながら表面硬度 を HRC 6 2以上とするためには、 Moの含有率を 0. 6 0重量%以上 とする必要があり、 0. 8 0重量%以上とすることが好ましい。 Moの 含有率が 1. 5 0重量%を超えると、 前記効果が飽和するばかりでなく 被切削性が低下する。 また、 Moは高価であるため、 多量に含有させる とコスト高となる。 Mo is an element that improves the hardenability and increases the tempering softening resistance, and has the effect of improving the mechanical strength after rolling and the rolling fatigue life. In order to raise the tempering temperature and reduce the amount of residual austenite to 0% by volume and achieve a surface hardness of HRC 62 or more, the Mo content should be 0.60% by weight or more. It is preferable that the content be 0.80% by weight or more. If the Mo content exceeds 1.5% by weight, not only the above effects are saturated, but also the machinability decreases. In addition, Mo is expensive, so if it is contained in a large amount, the cost increases.
以上のような鉄鋼材料の特定により、 残留オーステナイ 卜量が 0体積 %となるように高温で焼き戻しを行っても、 表面硬度を HRC 6 2以上 と高くすることができる。 また、 この鉄鋼材料を用いると、 高速度鋼 M 5 0のような巨大な炭化物の存在がなく、 浸炭などの表面硬化処理を行 う必要もないため、 加工費を低く抑えることができる。  By specifying the steel material as described above, the surface hardness can be increased to HRC 62 or more even when tempering is performed at a high temperature so that the residual austenite amount becomes 0% by volume. In addition, when this steel material is used, there is no large carbide such as high-speed steel M50, and there is no need to perform surface hardening treatment such as carburization, so that the processing cost can be reduced.
また、 表面硬さが HRC 6 2未満であると、 十分な転がり疲労寿命が 得られないとともに、 H D Dスピンドル用の転がり軸受として十分な耐 衝撃性が得られない。  If the surface hardness is less than HRC 62, sufficient rolling fatigue life cannot be obtained, and sufficient impact resistance cannot be obtained as a rolling bearing for HDD spindles.
本発明はまた、 内輪および外輪の少なくともいずれかは、 合金成分と して、 Cを 0. 8 0〜1. 2 0重量%、 3 1を0. 6 0重量%以下、 M nを 0. 2 5重量%以下、 C rを 1. 0 0〜1. 5 0重量%、 1^ 0を0 . 6 0〜: L. 5 0重量%の範囲内で含む鉄鋼材料 (鋼材①) で形成され た後に、 焼入れ ·焼き戻しが施されて、 残留オーステナイ ト量が 0体積 %に、 表面硬さが HRC 6 2以上になっており、 転動体は、 合金成分と して、 Cを 0. 3〜0. 6重量%、 S iを 0. 3〜1. 5重量%、 Mn を 0. 3〜 1. 7重量%、 C rを 0. 5〜2. 5重量%、 Moを 0. 6 〜3. 0重量%の範囲内で含み、 且つ 0の含有率が 9 p pm以下である 鉄鋼材料で形成され、 浸炭窒化処理が施された後に焼入れ ·焼き戻しが 施されて、 残留オーステナィ ト量が 0体積%に、 表面硬さが HRC 6 2 以上になっていることを特徴とする転がり軸受を提供する。  According to the present invention, at least one of the inner ring and the outer ring has, as alloy components, C of 0.80 to 1.20% by weight, 31 of 0.60% by weight or less, and Mn of 0. 25% by weight or less, Cr is 1.0-1.5% by weight, 1 ^ 0 is 0.60-: L. 50% by weight of steel material (steel material) After the quenching and tempering, the amount of residual austenite is reduced to 0% by volume and the surface hardness is HRC 62 or higher. 3 to 0.6% by weight, Si 0.3 to 1.5% by weight, Mn 0.3 to 1.7% by weight, Cr 0.5 to 2.5% by weight, Mo 0. It is formed of a steel material having a content of 6 to 3.0% by weight and a content of 0 of 9 ppm or less, and is subjected to carbonitriding treatment, then quenching and tempering, and remaining austenite. And the surface hardness is HRC 62 or more. To provide a gully bearing.
この転がり軸受によれば、 内輪および/または外輪が鋼材①で形成さ れているため、 上述のように、 表面硬化処理を行うことなく、 残留ォー ステナイ 卜量 0体積%および表面硬度 HRC 6 2以上が達成される。 ま た、 転動体も、 残留オーステナイ 卜量が 0体積%、 表面硬さが HRC 6 2以上となっているため、 この転がり軸受は、 転がり疲れ寿命と回転精 度の両方に優れたものとなる。 According to this rolling bearing, since the inner ring and / or the outer ring are formed of steel material, as described above, there is no residual hardening treatment, and no residual hardening is performed. A stenite amount of 0% by volume and a surface hardness of HRC 62 or more are achieved. In addition, the rolling element also has a residual austenite amount of 0% by volume and a surface hardness of HRC 62 or more. Therefore, this rolling bearing is excellent in both rolling fatigue life and rotational accuracy. .
これに加えて、 転動体を、 鋼材①よりも炭素の含有率が少なく、 Mn の含有率が多く、 酸素の含有率が低い鉄鋼材料 (鋼材②) で形成され、 且つ浸炭窒化処理が施されたものとすることによって、 例えば 1 0 0 0 0 r p m~ 1 5 0 0 0 r p m程度の高速回転であっても振動の発生が抑 えられるため、 高速回転での音響寿命が長くなる。 なお、 このような効 果を得るためには、 浸炭窒化処理により、 転動体の表面炭素濃度は 0. 8〜1. 2重量%、 表面窒素濃度は 0. 2〜0. 6重量%となっている ことが好ましい。 また、 残留オーステナイ ト量を 0体積%にして表面硬 さを HRC 6 2以上とするためには、 鋼材中の Mo含有率を 0. 6重量 %以上、 好ましくは 0. 8重量%以上とする必要がある。  In addition, the rolling elements are made of a steel material (steel material) that has a lower carbon content, a higher Mn content, and a lower oxygen content than steel material ①, and is carbonitrided. Accordingly, even at a high-speed rotation of, for example, about 1000 rpm to 1500 rpm, generation of vibration is suppressed, and the acoustic life at high-speed rotation is prolonged. In order to obtain such effects, the surface carbon concentration of the rolling elements is reduced to 0.8 to 1.2% by weight and the surface nitrogen concentration is reduced to 0.2 to 0.6% by carbonitriding. It is preferable that Further, in order to reduce the amount of residual austenite to 0% by volume and achieve a surface hardness of HRC 62 or more, the Mo content in the steel material should be 0.6% by weight or more, preferably 0.8% by weight or more. There is a need.
また、 転動体は熱処理に伴う変形量が少ないため、 内輪や外輪に対し て浸炭窒化処理を行うよりも、 転動体に対して浸炭窒化処理を行った方 力^ 処理条件の設定等が容易であるとともにコストも低く抑えることが できる。  In addition, since the rolling elements have a small amount of deformation due to heat treatment, it is easier to set the processing conditions and the like by performing carbonitriding on the rolling elements than performing carbonitriding on the inner and outer rings. In addition, costs can be kept low.
本発明の転がり軸受の実施態様としては、 内輪および外輪の少なくと もいずれかは、 合金成分として、 Cを 0. 8 0〜1. 2 0重量%、 3 丄 を 0. 6 0重量%以下、 Mnを 0. 2 5重量%以下、 C rを 1. 0 0〜 1. 5 0重量%、 Moを{). 6 0〜1. 5 0重量%の範囲内で含む鉄鋼 材料 (鋼材①) で形成された後に、 焼入れ ·焼き戻しが施されて、 残留 オーステナィト量が 0体積%に、 表面硬さが HRC 6 2以上になってお り、 転動体は、 マルテンサイ ト系ステンレス鋼で形成され、 焼入れ ·焼 き戻しが施され後に窒化処理が施されて表面に厚さ 3 m以上の窒化層 が形成され、 その後に仕上げ加工されて表面粗さが 0. 1 / mR a以下 になっているものが挙げられる。 As an embodiment of the rolling bearing of the present invention, at least one of the inner ring and the outer ring has, as alloy components, 0.80 to 1.20% by weight of C and 0.60% by weight or less of 3%. , Mn: 0.25% by weight or less, Cr: 1.0-1.5% by weight, Mo {). 60-1.5% by weight ) After being formed by quenching and tempering, the residual austenite amount is 0% by volume, the surface hardness is HRC 62 or more, and the rolling elements are formed of martensitic stainless steel. After the quenching and tempering, the surface is nitrided to a thickness of 3 m or more. Are formed and then finished to a surface roughness of 0.1 / mRa or less.
この転がり軸受によれば、 内輪および/または外輪が鋼材①で形成さ れているため、 上述のように、 表面硬化処理を行うことなく、 残留ォー ステナイ 卜量 0体積%および表面硬度 HRC 6 2以上が達成される。 そ の結果、 十分な転がり疲労寿命と、 HDDスピンドル用の転がり軸受と して十分な耐衝撃性が得られる。 また、 転動体が、 マルテンサイ ト系ス テンレス鋼で形成され、 焼入れ ·焼き戻しが施され後に窒化処理が施さ れて表面に厚さ 3 m以上の窒化層が形成され、 その後に仕上げ加工さ れて表面粗さが 1 /mR a以下になっているため、 耐熱性および耐 摩耗性が高くなる。  According to this rolling bearing, since the inner ring and / or the outer ring are formed of steel material, as described above, the residual austenite amount is 0% by volume and the surface hardness is HRC 6 without surface hardening treatment. Two or more are achieved. As a result, sufficient rolling fatigue life and sufficient impact resistance as a rolling bearing for HDD spindles can be obtained. The rolling elements are made of martensitic stainless steel, quenched and tempered, then nitrided to form a nitrided layer with a thickness of 3 m or more on the surface, and then finished. As a result, the surface roughness is 1 / mRa or less, so heat resistance and wear resistance are increased.
なお、 転動体の母材としてマルテンサイ ト系ステンレス鋼を使用する ことにより、 窒化処理時の母材の軟化が防止される。 また、 音響特性等 の点から、 1 3 C r系のマルテンサイ ト系ステンレス鋼を使用すること が好ましい。 仕上げ加工後に窒化層が転動体表面に均一に存在するよう にするためには、 窒化層の厚さが 3; 以上となるように窒化処理を行 う必要がある。  The use of martensitic stainless steel as the base material of the rolling elements prevents the base material from softening during nitriding. It is preferable to use 13Cr-based martensitic stainless steel from the viewpoint of acoustic characteristics and the like. In order for the nitrided layer to be uniformly present on the rolling element surface after finishing, it is necessary to perform nitriding so that the thickness of the nitrided layer is 3 or more.
本発明の転がり軸受の実施態様としては、 内輪および外輪の少なくと もいずれかは、 合金成分として、 Cを 0. 8 0〜1. 2 0重量%、 3 1 を 0. 6 0重量%以下、 Mnを 0. 2 5重量%以下、 C rを 1. 0 0〜 1. 5 0重量%、 1^ 0を0. 6 0 - 1. 5 0重量%の範囲内で含む鉄鋼 材料 (鋼材①) で形成された後に、 焼入れ ·焼き戻しが施されて、 残留 オーステナイ 卜量が 0体積%に、 表面硬さが HRC 6 2以上になってお り、 転動体はセラミ ックス (例えば、 窒化珪素、 炭化珪素、 アルミナ、 ジルコニァ、 窒化アルミナ等) で形成されているものが挙げられる。 この転がり軸受によれば、 内輪および/または外輪が鋼材①で形成さ れているため、 上述のように、 表面硬化処理を行うことなく、 残留ォ一 ステナイ ト量 0体積%および表面硬度 HRC 6 2以上が達成される。 そ の結果、 セラミ ックス製の転動体を備えているにも関わらず、 従来の転 がり軸受 (例えば内外輪および転動体が全て S U J 2製であるもの) と 同等以上の耐衝撃性が得られる。 図面の簡単な説明 As an embodiment of the rolling bearing of the present invention, at least one of the inner ring and the outer ring has, as alloy components, C of 0.80 to 1.20% by weight and 31 of 0.60% by weight or less. , Mn: 0.25% by weight or less, Cr: 1.0-1.5% by weight, 1 ^ 0: 0.60-1.5% by weight After being formed in ①), quenching and tempering are applied to reduce the amount of residual austenite to 0% by volume and the surface hardness to HRC 62 or more. The rolling elements are made of ceramics (for example, nitrided). Silicon, silicon carbide, alumina, zirconia, alumina nitride, etc.). According to this rolling bearing, the inner ring and / or the outer ring are formed of steel material ①. Therefore, as described above, a residual o-stenite amount of 0% by volume and a surface hardness of HRC 62 or more can be achieved without performing a surface hardening treatment. As a result, despite having the ceramic rolling elements, it is possible to obtain impact resistance equal to or higher than that of conventional rolling bearings (for example, the inner and outer rings and rolling elements are all made of SUJ 2). . BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態で作製した転がり軸受を組み込んで耐衝撃 試験を行った、 HDDスピンドルモータュニッ トを示す断面図である。 図 2は、 実施形態において、 内輪および外輪の熱処理条件を決定するた めに行った、 熱処理実験の結果を示すグラフである。 発明を実施するための最良の形態  FIG. 1 is a cross-sectional view showing an HDD spindle motor unit in which a rolling bearing manufactured according to an embodiment of the present invention is incorporated and subjected to an impact resistance test. FIG. 2 is a graph showing the results of a heat treatment experiment performed to determine heat treatment conditions for the inner ring and the outer ring in the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を具体的な実験例により説明する。  Hereinafter, embodiments of the present invention will be described with reference to specific experimental examples.
[第 1実施形態]  [First Embodiment]
先ず、 内径 5 mm外径 1 3 mm幅 4 mmであって、 玉の直径が 2 mm である玉軸受を、 以下のようにして作製した。 内輪および外輪について は、 下記の表 1に示す記号 A〜Vの各組成の鉄鋼材料を用いて所定形状 の成形体を形成した後、 各成形体に 8 6 0 °Cで焼入れを行い、 続いて 2 4 0 °Cで 2時間の焼き戻しを施すことにより作製した。 熱処理後の表面 硬さ (HRC) および残留オーステナイ ト量 (yR ) を表 1に併せて示 す。 転動体としては、 全て、 従来から用いられている S UJ 2製ボール を用いた。 First, a ball bearing having an inner diameter of 5 mm, an outer diameter of 13 mm, a width of 4 mm, and a ball diameter of 2 mm was produced as follows. For the inner ring and outer ring, after forming molded bodies of a predetermined shape using steel materials of each composition of symbols A to V shown in Table 1 below, each molded body was quenched at 860 ° C, And then tempered at 240 ° C. for 2 hours. Surface hardness (HRC) and residual austenite amount after the heat treatment the (y R) be shown together in Table 1. All the rolling elements used were conventional SUJ2 balls.
内輪および外輪の熱処理条件は、 次のような熱処理実験を行って決定 した。 すなわち、 表 1の記号 A~Pの各鋼材からなる成形体に対して 8 6 0°Cで焼入れを行った後に、 焼き戻しを 1 8 0°C〜 2 4 0 °Cの各温度 で行い、 各成形体の残留オーステナィ ト値を測定した。 その結果を図 2 のグラフに示す。 The heat treatment conditions for the inner and outer rings were determined by conducting the following heat treatment experiments. That is, after quenching at 860 ° C for the formed body made of each of the steel materials A to P in Table 1, tempering was performed at 180 ° C to 240 ° C. The residual austenite value of each compact was measured. The results are shown in the graph of FIG.
このグラフから分かるように、 焼入れを 8 6 0 °Cで行った場合の焼き 戻し温度を 2 3 0 °C以下とすれば、 記号 A〜Pの各鋼材からなる成形体 の全ての残留オーステナイト値が 0となる。 ここでは、 これら全ての成 形体の残留オーステナイ ト値が確実に 0となるように、 焼き戻し温度を 2 4 0 °Cに設定した。 また、 この熱処理条件によれば、 表面硬さは H R C 6 2以上となる。 なお、 この熱処理条件は一例を示しているだけであ り、 本発明で行われる熱処理条件はこれに限定されない。  As can be seen from this graph, if the tempering temperature when quenching is performed at 860 ° C is set to 230 ° C or less, all the retained austenite values of the compacts made of the steel materials of symbols A to P Becomes 0. Here, the tempering temperature was set to 240 ° C. to ensure that the residual austenite value of all these compacts was 0. Further, according to the heat treatment conditions, the surface hardness is HRC 62 or more. These heat treatment conditions are merely examples, and the heat treatment conditions performed in the present invention are not limited to these.
次に、 この玉軸受を、 図 1に示す H D Dスピンドルモータユニッ トに 予圧を加えた状態で組み込んで、 玉軸受の耐衝撃性を調べる試験を行つ た。  Next, this ball bearing was assembled into the HDD spindle motor unit shown in Fig. 1 with preload applied, and a test was conducted to examine the impact resistance of the ball bearing.
図 1の H D Dスピンドルモータュニッ 卜は、 磁気ディスクを搭載して 回転するするハブ 1と、 このハブ 1に上端が固定された軸 2と、 軸方向 に配置された二つの玉軸受 3と、 これらの玉軸受 3を介して軸 2を回転 可能に支持するハウジング 4とを備えている。 この二つの玉軸受 3とし て、 前述のようにして作製された各玉軸受を用い、 同じものを二つ組み 合わせてハウジング 4と軸 2との間に組み込んだ。  The HDD spindle motor unit shown in FIG. 1 includes a hub 1 rotating on which a magnetic disk is mounted, a shaft 2 having an upper end fixed to the hub 1, and two ball bearings 3 arranged in the axial direction. A housing 4 that rotatably supports the shaft 2 via these ball bearings 3 is provided. As the two ball bearings 3, each of the ball bearings manufactured as described above was used, and the same two were combined and assembled between the housing 4 and the shaft 2.
このモータュニッ 卜を所定の落下距離で落下させることにより、 玉軸 受 3に 3 0 k g f の衝撃荷重を加えて、 落下前後における音響特性の劣 化度合を測定した。 具体的には、 落下前後にこのモータュニッ 卜のアキ シアル振動 (加速度 G値) を測定し、 落下後の G値が落下前の G値より 5以上高くなつた場合には音響特性に劣化が認められた (耐衝撃性が悪 い: ) と判断し、 それ以外の場合には音響特性に劣化が認めらなかつ た (耐衝撃性が良い:〇) と判断した。 落下に伴う音響特性の劣化は、 落下により玉軸受の軌道面が変形するために生じるものであり、 耐衝撃 性が良いということは、 軌道面の変形抵抗が十分に高く、 回転精度の低 下が生じ難いことを示す。 これらの結果も表 1に併せて示す。 By dropping the motor unit at a predetermined drop distance, an impact load of 30 kgf was applied to the ball bearing 3, and the degree of deterioration in acoustic characteristics before and after the drop was measured. Specifically, the axial vibration (acceleration G value) of this motor unit was measured before and after the fall, and if the G value after the fall was 5 or more higher than the G value before the fall, the acoustic characteristics were degraded. (Poor impact resistance:); otherwise, no deterioration in acoustic characteristics was observed (good impact resistance: 〇). The deterioration of the acoustic characteristics due to the drop is caused by the deformation of the raceway surface of the ball bearing due to the drop. Good performance indicates that the deformation resistance of the raceway surface is sufficiently high, and that the rotation accuracy is unlikely to decrease. These results are also shown in Table 1.
この結果から分かるように、 内輪および外輪を形成する鉄鋼材料の組 成が、  As can be seen from the results, the composition of the steel material forming the inner ring and the outer ring
C : 0. 8 0〜 1. 2 0重量%  C: 0.80 to 1.20% by weight
S i : 0. 6 0重量%以下  S i: 0.60% by weight or less
Mn : 0. 2 5重量%以下  Mn: 0.25% by weight or less
C r : 1. 0 0〜 1. 5 0重量%  Cr: 1.00 to 1.50% by weight
Mo : 0. 6 0〜 1. 5 0重量%  Mo: 0.60 to 1.5% by weight
を全て満たす記号 A~Pの玉軸受は、 内輪および外輪の熱処理後の残留 オーステナイ ト量が 0体積%以下で、 表面硬さは HRC 6 2以上である ため、 耐衝撃性に優れていた。 The ball bearings with the symbols A to P satisfying all of the above conditions have excellent impact resistance because the amount of residual austenite after heat treatment of the inner and outer rings is 0% by volume or less and the surface hardness is HRC 62 or more.
これに対して記号 Rの玉軸受は、 内輪および外輪を形成する鉄鋼材料 の Cの含有率が本発明の範囲より低いため、 内輪および外輪の熱処理後 の残留オーステナィ ト量は 0体積%であるが、 表面硬さは HRC 6 0. 7と小さくなった。 その結果、 耐衝撃性が悪かった。  On the other hand, in the ball bearing with the symbol R, since the C content of the steel material forming the inner ring and the outer ring is lower than the range of the present invention, the amount of residual austenite after heat treatment of the inner ring and the outer ring is 0% by volume. However, the surface hardness was reduced to HRC 60.7. As a result, the impact resistance was poor.
記号 Sの玉軸受は、 内輪および外輪を形成する鉄鋼材料の S iの含有 率が本発明の範囲より高いため、 内輪および外輪の熱処理後の表面硬さ は HRC 6 2. 7であったが、 2 4 0 °Cの高温焼き戻しによっても残留 オーステナイ卜が完全には分解されなかった。 その結果、 耐衝撃性が悪 かった。  In the ball bearing of symbol S, the surface hardness of the inner and outer rings after heat treatment was HRC 62.7 because the content of Si in the steel material forming the inner and outer rings was higher than the range of the present invention. The residual austenite was not completely decomposed by the high temperature tempering at 240 ° C. As a result, the impact resistance was poor.
記号 Tの玉軸受は、 内輪および外輪を形成する鉄鋼材料の C rの含有 率が本発明の範囲より低いため、 内輪および外輪の熱処理後の残留ォー ステナイ ト量は 0体積%であるが、 表面硬さは HRC 6 0. 5と小さく なった。 その結果、 耐衝撃性が悪かった。  In the ball bearing of symbol T, the Cr content of the steel material forming the inner ring and the outer ring is lower than the range of the present invention. Therefore, the residual austenite amount after heat treatment of the inner ring and the outer ring is 0% by volume. However, the surface hardness was reduced to HRC 60.5. As a result, the impact resistance was poor.
記号 Uの玉軸受は、 内輪および外輪を形成する鉄鋼材料の Moの含有 率が本発明の範囲より低いため、 内輪および外輪の熱処理後の残留ォ一 ステナイ ト量は 0体積%であるが、 表面硬さは HRC 6 0. 2と小さく なった。 その結果、 耐衝撃性が悪かった。 Symbol U ball bearings contain Mo in the steel material forming the inner and outer rings Since the ratio was lower than the range of the present invention, the residual ore-stenite amount after heat treatment of the inner ring and the outer ring was 0% by volume, but the surface hardness was as small as HRC 60.2. As a result, the impact resistance was poor.
記号 Vの玉軸受は、 内輪および外輪を形成する鉄鋼材料として S U J 2鋼に相当する組成を使用している。 この鋼は、 Moの含有率が本発明 の範囲より低く、 C rの含有率が本発明の範囲より高いため、 内輪およ び外輪の熱処理後の残留オーステナイ ト量は 0体積%であるが、 表面硬 さは HRC 5 7. 0と小さくなつた。 その結果、 記号 Vの玉軸受は耐衝 撃性が悪かった。  The ball bearing of symbol V uses a composition equivalent to SUJ2 steel as the steel material forming the inner and outer rings. In this steel, the content of Mo is lower than the range of the present invention, and the content of Cr is higher than the range of the present invention. Therefore, the amount of residual austenite after heat treatment of the inner ring and the outer ring is 0% by volume. However, the surface hardness was reduced to HRC 57.0. As a result, the ball bearing of symbol V had poor impact resistance.
このように、 本発明の実施例に相当する記号 A~Pの玉軸受では、 内 輪および外輪を形成する鉄鋼材料の組成が前記範囲内であるため、 高温 焼き戻しで内輪および外輪の残留オーステナィ 卜量を 0体積%にしなが ら、 浸炭等の表面硬化処理を行わなくても内輪および外輪の表面硬さを HRC 6 2以上にすることができる。 その結果、 回転精度と転がり疲れ 寿命の両方に優れた転がり軸受が安価に得られる。  As described above, in the ball bearings of the symbols A to P corresponding to the embodiment of the present invention, since the composition of the steel material forming the inner ring and the outer ring is within the above range, the residual austenite of the inner ring and the outer ring by high-temperature tempering. The surface hardness of the inner ring and the outer ring can be increased to HRC 62 or more without performing surface hardening treatment such as carburizing while reducing the volume of the sample to 0% by volume. As a result, a rolling bearing excellent in both rotational accuracy and rolling fatigue life can be obtained at low cost.
なお、 この第 1実施形態では、 内輪および外輪についてのみ、 残留ォ —ステナイ 卜量 0体積%且つ表面硬さ HRC 6 2以上としているが、 本 発明の転がり軸受はこれに限定されない。 すなわち、 転がり疲れ寿命と 回転精度の両方に優れた転がり軸受を得るためには、 内輪、 外輪、 およ び転動体の少なくともいずれか一つが、 前記範囲の組成の鉄鋼材料で形 成されていて、 焼入れ ·焼き戻しにより残留オーステナィ 卜量 0体積% 且つ表面硬さ HRC 6 2以上となっていればよい。  In the first embodiment, only the inner ring and the outer ring have a residual o-stainate amount of 0% by volume and a surface hardness of HRC 62 or more, but the rolling bearing of the present invention is not limited to this. That is, in order to obtain a rolling bearing excellent in both rolling fatigue life and rotational accuracy, at least one of the inner ring, the outer ring, and the rolling element is formed of a steel material having a composition in the above range. It is sufficient that the residual austenite amount is 0% by volume and the surface hardness is HRC 62 or more by quenching and tempering.
[第 2実施形態]  [Second embodiment]
先ず、 内径 5 mm外径 1 3 mm幅 4 mmであって、 玉の直径が 2 mm である玉軸受を、 以下のようにして作製した。 内輪および外輪について は、 表 1に示す A〜Pおよび Vの鉄鋼材料を用いて所定形状の成形体を 形成した後、 各成形体に 8 6 0 °Cで焼入れを行い、 続いて 2 4 0 °Cで 2 時間の焼き戻しを施すことにより作製した。 熱処理後の表面硬さ (HR C) および残留オーステナィ ト量 (ァ R ) も表 1に示す通りである。 転動体については、 下記の表 2に示す Xおよび Yの鉄鋼材料と、 表 1 に示す Aの鉄鋼材料を用いて、 直径が 2 mmの玉を形成した。 その後、 材料 Xで形成した玉には、 8 7 0 °C〜9 0 0 °Cで 1 ~5時間浸炭窒化を 行った後、 8 4 0 °C〜 8 6 0 °Cで焼入れを行い、 続いて 2 7 0 °C〜 3 5 0 °Cで 1. 5〜3. 0時間焼き戻しを施した。 材料 Yおよび材料 Aで形 成した玉には、 8 6 0 °Cで焼入れを行い、 続いて 2 4 0 °Cで 1. 5~3 . 0時間焼き戻しを施した。 なお、 材料 Yは J I S鋼種 SUJ 2鋼に相 当する。 First, a ball bearing having an inner diameter of 5 mm, an outer diameter of 13 mm, a width of 4 mm, and a ball diameter of 2 mm was produced as follows. For the inner ring and outer ring, molded products of a predetermined shape were formed using the steel materials A to P and V shown in After the formation, each compact was quenched at 860 ° C., and then tempered at 240 ° C. for 2 hours. Hardness after heat treatment (HR C) and residual Osutenai preparative amounts (§ R) is also shown in Table 1. For the rolling elements, balls with a diameter of 2 mm were formed using the steel materials X and Y shown in Table 2 below and the steel material A shown in Table 1 below. Thereafter, the ball formed of material X was carbonitrided at 870 ° C to 900 ° C for 1 to 5 hours, and then quenched at 840 ° C to 860 ° C. Subsequently, tempering was performed at 270 ° C. to 350 ° C. for 1.5 to 3.0 hours. The balls formed of material Y and material A were quenched at 860 ° C and subsequently tempered at 240 ° C for 1.5 to 3.0 hours. Material Y corresponds to JIS grade SUJ 2 steel.
材料 Xおよび材料 Yで形成した玉の熱処理後の表面硬さ (HRC) お よび残留オーステナイ ト量 (ァ R ) を表 2に示す。 また、 材料 Aで形成 した玉の熱処理後の表面硬さ (HRC) および残留オーステナイ ト量 ( r R ) は、 表 1に示す値と同じであった。 また、 材料 Xで形成した玉の 熱処理後の表面炭素濃度は 0. 9重量%であり、 表面窒素濃度は 0. 3 重量%であった。 Hardness after heat treatment of the ball which is formed of a material X and material Y (HRC) Contact and residual austenite amount (§ R) shown in Table 2. The surface hardness (HRC) and the amount of residual austenite (rR) of the ball formed of material A after the heat treatment were the same as those shown in Table 1. The surface carbon concentration of the ball formed of the material X after the heat treatment was 0.9% by weight, and the surface nitrogen concentration was 0.3% by weight.
これらの内輪、 外輪、 および転動体を下記の表 3に示す組合せで組み 立てて、 No. 1〜 No. 1 9の玉軸受を得た。 各軸受とも、 内輪と外輪は 同じ材料で同じ熱処理をして作製されたものを使用した。 これらの玉軸 受を下記の条件で回転させて、 高速回転時の音響寿命試験を行った。 <回転条件 >  These inner and outer rings and rolling elements were assembled in the combinations shown in Table 3 below to obtain No. 1 to No. 19 ball bearings. For each bearing, the inner ring and the outer ring were made of the same material and subjected to the same heat treatment. These ball bearings were rotated under the following conditions, and an acoustic life test was performed during high-speed rotation. <Rotation condition>
回転数: 1 0 0 0 0 r p m  Number of rotations: 1 0 0 0 0 r p m
アキシャル荷重: 2 k g f  Axial load: 2 kgf
雰囲気温度: 7 0 °C  Ambient temperature: 70 ° C
潤滑材:鉱油系グリース 回転時間: 3 0 0 0時間 Lubricant: mineral oil grease Rotation time: 300 hours
各玉軸受について、 回転開始直前と回転終了直後にアンデロメータに よる振動測定を行う。 すなわち、 軸受をアンデロメータに取り付けて所 定条件で内輪を回転させ、 外輪にスラス卜荷重を加えて静止させた状態 でコンバータの触針を外輪に接触させて、 外輪に生じる半径方向の振動 速度の実効値に比例する値 (アンデロン値) を測定する。  For each ball bearing, the vibration is measured by an Anderometer immediately before the start of rotation and immediately after the end of rotation. In other words, the bearing is attached to the anderometer, the inner ring is rotated under specified conditions, the thrust load is applied to the outer ring, and the stylus of the converter is brought into contact with the outer ring in a stationary state. Measure the value (Anderon value) proportional to the effective value.
音響寿命の判定については、 試験終了直後のアンデロン値から試験開 始直前のアンデロン値を引いた値をアンデロン上昇値として算出し、 そ の値が 2. 5以下であれば音響寿命が長い (〇) と判断し、 2. 6以上 5. 0以下であれば音響寿命がやや短い (△) と判断し、 5. 1以上で あれば音響寿命が短い (X) と判断した。 その結果を下記の表 3に併せ て示す。  For the determination of the acoustic life, the value obtained by subtracting the Anderon value immediately before the start of the test from the Anderon value immediately after the end of the test is calculated as the Anderon rise value. If the value is 2.5 or less, the acoustic life is long (〇 ), The sound lifetime was judged to be slightly short (△) if it was 2.6 or more and 5.0 or less, and the sound life was judged to be short (X) if it was 5.1 or more. The results are shown in Table 3 below.
この結果から分かるように、 玉 (転動体) を形成する鉄鋼材料の組成 が、  As can be seen from the results, the composition of the steel material forming the ball (rolling element) is
C : 0. 3〜 0. 6重量%  C: 0.3 to 0.6% by weight
S i : 0. 3- 1. 5重量%  S i: 0.3-1.5% by weight
Mn : 0. 3〜 1. 7重量%  Mn: 0.3 to 1.7% by weight
C r : 0. 5〜2. 5重量%  Cr: 0.5 to 2.5% by weight
Mo : 0. 6 0〜3. 0重量%  Mo: 0.6 to 3.0% by weight
0の含有率: 9 p pm以下  Content of 0: 9 ppm or less
を全て満たし、 浸炭窒化により表面に窒素が存在する記号 Xの玉を使用 した No. 1〜 No. 1 6の玉軸受は、 高速回転時の音響寿命が長いもので めった o No. 1 to No. 16 ball bearings using balls with the symbol X in which nitrogen is present on the surface due to carbonitriding have a long acoustic life at high speeds.
これに対して No. 1 7および No. 1 8の玉軸受は、 Moを含有してい ない鉄鋼材料を用い浸炭窒化をしないで得られた記号 Yの玉 (表面硬さ HRC 5 7) を使用しているため、 高速回転時の音響寿命が短いもので あった。 また、 No. 1 9の玉軸受は、 記号 Aの玉 (Moを 1. 0重量% 含有する鉄鋼材料を用いたため表面硬さは HRC 6 2. 5となっている 力、 浸炭窒化をしないで得られた玉) を使用しているため、 高速回転時 の音響寿命がやや短いものであった。 なお、 No. 1 9の玉軸受は、 回転 速度が 7 0 0 0 r pm以下である場合には十分に長い音響寿命が得られ る。 In contrast, the No. 17 and No. 18 ball bearings use balls with the symbol Y (surface hardness HRC 57) obtained using a steel material that does not contain Mo and without carbonitriding. The sound life at high speed rotation is short. there were. In addition, the No. 19 ball bearing uses the steel ball containing the symbol A (Mo is 1.0% by weight, so the surface hardness is HRC 62.5). Since the obtained ball was used, the acoustic life at high speed rotation was somewhat short. It should be noted that the ball bearing No. 19 has a sufficiently long acoustic life when the rotation speed is equal to or less than 700 rpm.
[第 3実施形態]  [Third embodiment]
先ず、 内径 5 mm外径 1 3 mm幅 4 mmであって、 玉の直径が 2 mm である玉軸受を、 以下のようにして作製した。 内輪および外輪について は、 表 1に示す A〜Vの鉄鋼材料を用いて所定形状の成形体を形成した 後、 各成形体に 8 6 0 °Cで焼入れを行い、 続いて、 2 4 0 で 2時間の 焼き戻しを施すことにより作製した。 熱処理後の表面硬さ (HRC) お よび残留オーステナイ ト量 (ァ R ) も表 1に示す通りである。 First, a ball bearing having an inner diameter of 5 mm, an outer diameter of 13 mm, a width of 4 mm, and a ball diameter of 2 mm was produced as follows. For the inner ring and outer ring, after forming molded bodies of a predetermined shape using the steel materials A to V shown in Table 1, each molded body was quenched at 860 ° C, and then, It was produced by tempering for 2 hours. Hardness after heat treatment (HRC) Contact and residual austenite amount (§ R) is also shown in Table 1.
転動体については、 合金成分の含有率が表 4に示す値である aおよび bの鉄鋼材料を用いて、 直径が 2 mmより大きい粗球を形成した後、 こ れに対して 1 0 0 0 °C〜 1 1 0 0 °Cで焼入れを行い、 続いて 4 3 0 °C〜 5 5 0 °Cで 2〜 4時間焼き戻しを施した。 次に、 所定の寸法となるまで この粗球を研磨した後、 4 1 0〜4 6 0 °Cで 2 4〜4 8時間のガス窒化 処理を施した。 次に、 仕上げ加工を行うことにより、 表面に厚さ 1 5 μ mの窒化層が形成されて、 表面粗さが 0. 1 / mR a以下である直径 2 mmの玉を得た。  For the rolling elements, coarse steel spheres with diameters larger than 2 mm were formed using the steel materials a and b whose alloy component contents are the values shown in Table 4 The quenching was carried out at a temperature of 110 ° C. to 110 ° C., followed by a tempering at a temperature of 43 ° C. to 550 ° C. for 2 to 4 hours. Next, the coarse spheres were polished until they reached a predetermined size, and were subjected to a gas nitriding treatment at 410 to 460 ° C. for 24 to 48 hours. Next, by performing finishing, a nitride layer having a thickness of 15 μm was formed on the surface, and a ball with a diameter of 2 mm and a surface roughness of 0.1 / mRa or less was obtained.
これらの内輪、 外輪、 および転動体を下記の表 5に示す組合せで組み 立てて、 No. 3— 1 ~ No. 3 2 1の玉軸受を得た。 各軸受とも、 内輪 と外輪は同じ材料で同じ熱処理をして作製されたものを使用した。 これ らの玉軸受を、 図 1に示す HDDスピンドルモータュニッ 卜に予圧を加 えた状態で組み込んで、 第 1実施形態と同じ方法で、 玉軸受の耐衝撃性 を調べる試験を行った。 その結果を表 5に示す。 These inner rings, outer rings, and rolling elements were assembled in combinations shown in Table 5 below to obtain ball bearings No. 3-1 to No. 321. For each bearing, the inner ring and the outer ring were made of the same material and subjected to the same heat treatment. These ball bearings are assembled with a preload applied to the HDD spindle motor unit shown in Fig. 1, and the impact resistance of the ball bearings is determined in the same manner as in the first embodiment. A test was conducted to examine Table 5 shows the results.
この表から分かるように、 No. 3— 1〜3 - 1 6の玉軸受は、 内輪お よび外輪が第 1実施形態の記号 A〜 Pの玉軸受と同じであるため耐衝撃 性に優れていた。 これに対して、 No. 3— 1 7〜3— 2 1の玉軸受は、 内輪および外輪が第 1実施形態の記号 R〜Vの玉軸受と同じであるため 耐衝撃性が悪かった。  As can be seen from this table, the ball bearings of Nos. 3-1 to 3-16 have excellent impact resistance because the inner and outer rings are the same as the ball bearings A to P in the first embodiment. Was. On the other hand, the ball bearings of Nos. 3-17 to 3-21 had poor impact resistance because the inner and outer rings were the same as the ball bearings of symbols R to V of the first embodiment.
すなわち、 内輪および外輪を第 1実施形態の記号 A〜Pと同じ構成に すれば、 転動体として、 マルテンサイ ト系ステンレス鋼で形成され、 焼 入れ ·焼き戻しが施され後に窒化処理が施されて表面に厚さ 3 m以上 の窒化層が形成され、 表面粗さが 0 . 1 m R a以下になっているもの を用いても、 S U J 2製の転動体を用いた第 1実施形態と同様に、 優れ た耐衝撃性が得られる。  That is, if the inner ring and the outer ring have the same configuration as the symbols A to P in the first embodiment, the rolling elements are formed of martensite stainless steel, quenched and tempered, and then subjected to nitriding. Even if a nitrided layer with a thickness of 3 m or more is formed on the surface and the surface roughness is 0.1 mRa or less, the same as in the first embodiment using the SUJ 2 rolling element is used. In addition, excellent impact resistance is obtained.
[第 4実施形態]  [Fourth embodiment]
先ず、 内径 5 mm外径 1 3 mm幅 4 mmであって、 玉の直径が 2 m m である玉軸受を、 以下のようにして作製した。 内輪および外輪について は、 表 1に示す Aおよび V ( S U J 2 ) の鉄鋼材料を用いて所定形状の 成形体を形成した後、 各成形体に 8 6 0 °Cで焼入れを行い、 続いて、 2 4 0 °Cで 2時間の焼き戻しを施すことにより作製した。 熱処理後の表面 硬さ (H R C ) および残留オーステナイ ト量 (ァ R ) も表 1に示す通り である。 転動体については、 表 6に示すように、 セラミ ックス (窒化珪 素: S i 3 N 4 ) または S U J 2で形成した。 First, a ball bearing having an inner diameter of 5 mm, an outer diameter of 13 mm, a width of 4 mm, and a ball diameter of 2 mm was produced as follows. For the inner ring and outer ring, after forming molded bodies of a predetermined shape using the steel materials of A and V (SUJ2) shown in Table 1, each molded body was quenched at 860 ° C, It was produced by performing tempering at 240 ° C. for 2 hours. Hardness after heat treatment (HRC) and residual austenite amount (§ R) is also shown in Table 1. As shown in Table 6, the rolling elements were formed of ceramics (silicon nitride: Si 3 N 4 ) or SUJ 2.
次に、 各玉軸受の耐衝撃性を調べる試験を行った。 すなわち、 各玉軸 受に対して衝撃荷重を段階的に増加させながら負荷した後に、 各玉軸受 の音響レベルを測定することを繰り返し、 音響レベルが急激に上昇した 時の荷重を耐衝撃荷重とした。 その結果から、 従来例である No. 4 - 3 (内外輪、 転動体ともに S U J 2製) の耐衝撃荷重を 1とした相対値を 算出した。 その結果を表 6に示す。 Next, a test for examining the impact resistance of each ball bearing was performed. That is, after the impact load is applied stepwise to each ball bearing, the measurement of the acoustic level of each ball bearing is repeated, and the load when the acoustic level rises sharply is referred to as the impact resistance load. did. Based on the results, the relative value with the impact load of No. 4-3 (both inner and outer rings and rolling elements made of SUJ 2), which is the conventional example, was set to 1. Calculated. Table 6 shows the results.
この表から分かるように、 転動体がセラミックス製である場合には、 内外輪が S U J 2製である (No. 4 - 2 ) と、 耐衝撃性は従来例 (No. 4 3 ) より低下するが、 内外輪を第 1実施形態の記号 Aの玉軸受と同 じ構成 (No. 4 - 1 ) にすれば、 耐衝撃性を従来例 (No. 4 - 3 ) と同 等以上にすることができる。 産業上の利用可能性  As can be seen from this table, when the rolling elements are made of ceramics, the inner and outer rings are made of SUJ 2 (No. 4-2), and the impact resistance is lower than that of the conventional example (No. 43). However, if the inner and outer rings have the same configuration (No. 4-1) as the ball bearing with the symbol A in the first embodiment, the impact resistance will be equal to or higher than that of the conventional example (No. 4-3). Can be. Industrial applicability
以上説明したように、 本発明によれば、 内輪、 外輪、 および転動体の 少なくともいずれかを、 前記特定の鉄鋼材料 (鋼材①) で形成すること により、 転がり疲れ寿命と回転精度の両方に優れた転がり軸受を安価に 提供することができる。  As described above, according to the present invention, by forming at least one of the inner ring, the outer ring, and the rolling elements from the specific steel material (steel material), both the rolling fatigue life and the rotational accuracy are excellent. Rolled bearings can be provided at low cost.
また、 内輪および外輪の少なくともいずれかを前記特定の鉄鋼材料 ( 鋼材①) で形成し、 転動体として、 別の特定の鉄鋼材料 (鋼材②) で形 成されて浸炭窒化処理されたものを使用することにより、 転がり疲れ寿 命と回転精度の両方に優れた転がり軸受を安価に提供することができる とともに、 高速回転時の音響寿命を長くすることができる。  In addition, at least one of the inner ring and the outer ring is formed of the specific steel material (steel material), and the rolling element is formed of another specific steel material (steel material) and subjected to carbonitriding. By doing so, it is possible to provide a low-cost rolling bearing that is excellent in both rolling fatigue life and rotational accuracy, and prolong the acoustic life at high speed rotation.
また、 内輪および外輪の少なくともいずれかを前記特定の鉄鋼材料 ( 鋼材①) で形成することにより、 セラミ ックス製転動体またはマルテン サイト系ステンレス鋼製で窒化処理された転動体を使用した場合でも、 転がり疲れ寿命と回転精度の両方に優れた転がり軸受を安価に提供する ことができる。 1 合金成分の含有率 (wt%) 硬さ 耐衝撃性Further, by forming at least one of the inner ring and the outer ring with the specific steel material (steel material), even if a ceramic rolling element or a rolling element made of martensitic stainless steel and nitrided is used, A rolling bearing excellent in both rolling fatigue life and rotational accuracy can be provided at low cost. 1 Alloy component content (wt%) Hardness Impact resistance
C S i M n C r M o C S i M n C r M o
A 1. 01 0. 11 0. 20 1. 31 1. 00 62. 5 0 〇 A 1.01 0.11 0.20 1.31 1.00 62.5 0 〇
B 0. 95 0. 30 0. 19 1. 25 1. 01 63. 2 0 〇B 0.95 0.30 0.19 1.25 1.01 63.2 0 〇
C 0. 80 0. 35 0. 21 1. 30 0. 97 62. 2 0 〇C 0.80 0.35 0.21 1.30 0.97 62.2 0 〇
D 1. 20 0. 11 0. 18 1. 20 0. 98 63. 5 0 〇D 1.20 0.11 0.18 1.20 0.98 63.5 0 〇
E 1. 05 0. 15 0. 21 1. 32 1. 01 62. 3 0 〇E 1.05 0.15 0.21 1.32 1.01 62.3 0 〇
F 1. 02 0. 11 0. 25 1. 31 0. 95 62. 3 0 〇F 1.02 0.11 0.25 1.31 0.95 62.3 0 〇
G 1. 05 0. 12 0. 22 1. 00 1. 02 62. 1 0 〇G 1.05 0.12 0.22 1.00 1.02 62.1 0 〇
H 1. 01 0. 11 0. 21 1. 40 0. 95 62. 5 0 〇H 1.01 0.11 0.21 1.40 0.95 62.5 0 〇
I 1. 02 0. 12 0. 19 1. 50 1. 01 62. 4 0 〇I 1.02 0.12 0.19 1.50 1.01 62.4 0 〇
J 1. 15 0. 10 0. 22 1. 32 0. 60 62. 1 0 〇J 1.15 0.10 0.22 1.32 0.60 62.1 0 〇
K 1. 10 0. 11 0. 21 1. 31 0. 80 62. 4 0 〇 し 1. 05 0. 12 0. 23 1. 29 1. 50 62. 8 0 〇K 1.10 0.11 0.21 1.31 0.80 62.40 〇 〇 1.05 0.12 0.23 1.29 1.50 62.80 〇
M 1. 02 0. 11 0. 25 1. 30 1. 05 62. 7 0 〇M 1.02 0.11 0.25 1.30 1.05 62.7 0 〇
N 0. 95 0. 12 0. 21 1. 35 0. 95 62. 2 0 〇N 0.95 0.12 0.21 1.35 0.95 62.2 0 〇
0 0. 98 0. 50 0. 20 1. 33 0. 98 63. 5 0 〇0 0.98 0.50 0.20 1.33 0.98 63.5 0 〇
P 1. 01 0. 60 0. 21 1. 31 1. 02 63. 3 0 〇P 1.01 0.60 0.21 1.31 1.02 63.3 0 〇
R 0. 71 0. 12 0. 22 1. 31 1. 01 60. 7 0 XR 0.71 0.12 0.22 1.31 1.01 60.7 0 X
S 1. 02 0. 82 0. 21 1. 30 1. 05 62. 7 3. 2 XS 1.02 0.82 0.21 1.30 1.05 62.73.2 X
T 1. 03 0. 21 0. 23 0. 82 1. 01 60. 5 0 XT 1.03 0.21 0.23 0.82 1.01 60.5 0 X
U 1. 01 0. 18 0. 22 1. 28 0. 51 60. 2 0 XU 1.01 0.18 0.22 1.28 0.51 60.2 0 X
V 1. 02 0. 22 0. 24 1. 51 57. 0 0 X 表 2 V 1.02 0.22 0.24 1.51 57.0 0 X Table 2
Figure imgf000020_0001
Figure imgf000020_0001
※〇は ppm, それ以外の元素は wt% 表 3  * 〇 is ppm, other elements are wt%. Table 3
No. 軌道輪 転動体 音響寿命 No. Raceway Rolling element Acoustic life
1 A X 〇1 A X 〇
2 B X 〇2 B X 〇
3 C X 〇3 C X 〇
4 D X 〇4 D X 〇
5 E X 〇5 E X 〇
6 F X 〇6 F X 〇
G G X 〇G G X 〇
8 H X 〇8 H X 〇
9 I X 〇9 I X 〇
10 J X 〇10 J X 〇
11 K X 〇11 K X 〇
12 L X 〇12 L X 〇
13 M X 〇13 M X 〇
14 N X 〇14 N X 〇
15 0 X 〇15 0 X 〇
16 P X 〇16 P X 〇
17 A Y X17 A Y X
18 V Y X18 V Y X
19 A A △ 表 4 19 AA △ Table 4
C r S i C N  C r S i C N
a 13. 2 0. 45 0. 3 0. 14 b 12. 8 0. 67 0. 2 (単位は wt%) 表 5  a 13.2 0.45 0.3 0.14 b 12.8 0.67 0.2 (unit: wt%) Table 5
No. 軌道輪 S!J体 耐衝撃性  No. Ring S! J Impact resistance
3-1 A a 〇 3-1 A a 〇
3-2 B b 〇3-2 B b 〇
3-3 C a 〇3-3 C a 〇
3-4 D b 〇3-4 D b 〇
3-5 E a 〇3-5 E a 〇
3-6 F b 〇3-6 F b 〇
3-7 G a 〇3-7 G a 〇
3-8 H b 〇3-8 H b 〇
3-9 I a 〇3-9 I a 〇
3-10 J b 〇3-10 J b 〇
3-11 K a 〇3-11 K a 〇
3-12 し b 〇3-12 then b 〇
3-13 M a 〇3-13 M a 〇
3-14 N b 〇3-14 N b 〇
3-15 0 a 〇3-15 0 a 〇
3-16 P b 〇3-16 P b 〇
3-17 R a X3-17 R a X
3-18 S b X3-18 S b X
3-19 T a X 3-19 T a X
3-20 u b X  3-20 u b X
3-21 V a X 表 6 3-21 V a X Table 6
No. 軌道輪 転動体 耐衝撃性 No. Bearing ring Rolling element Impact resistance
4-1 A S i 3 N4 1. 14-1 AS i 3 N 4 1.1
4-2 V S i 3 N4 0. 74-2 VS i 3 N 4 0.7
4-3 V S U J 2 1 4-3 V S U J 2 1

Claims

請 求 の 範 囲 The scope of the claims
1. 内輪、 外輪、 および転動体の少なくともいずれか一つは、 合金成分 として、 Cを 0. 8 0〜 1. 2 0重量%、 3 1を0. 6 0重量%以下、 ]^ 11を0. 2 5重量%以下、 C rを 1. 0 0〜 1. 5 0重量%、 M oを 0. 6 0〜 1. 5 0重量%の範囲内で含む鉄鋼材料で形成された後に、 焼入れ ·焼き戻しが施されて、 残留オーステナイ ト量が 0体積%に、 表 面硬さが HRC 6 2以上になっていることを特徵とする転がり軸受。1. For at least one of the inner ring, outer ring and rolling element, as an alloy component, C is 0.80 to 1.2% by weight, 31 is 0.60% by weight or less, and] ^ 11 is After being formed of a steel material containing 0.25% by weight or less, Cr in the range of 1.0% to 1.5% by weight, and Mo in the range of 0.6% to 1.5% by weight, A rolling bearing characterized by having been quenched and tempered to have a residual austenite amount of 0% by volume and a surface hardness of HRC 62 or more.
2. 内輪および外輪の少なくともいずれかは、 合金成分として、 Cを 0 . 8 0 - 1. 2 0重量%、 3 1を0. 6 0重量%以下、 Mnを 0. 2 5 重量%以下、 C rを 1. 0 0〜 1. 5 0重量%、 1^ 0を0. 6 0〜 1.2. For at least one of the inner ring and the outer ring, as an alloying component, C is 0.8-1.2% by weight, 31 is 0.60% by weight or less, Mn is 0.25% by weight or less, Cr 1.0 to 1.5% by weight, 1 ^ 0 0.6 to 1.
5 0重量%の範囲内で含む鉄鋼材料で形成された後に、 焼入れ ·焼き戻 しが施されて、 残留オーステナィ ト量が 0体積%に、 表面硬さが HRCAfter being formed from a steel material containing up to 50% by weight, it is quenched and tempered to reduce residual austenite to 0% by volume and surface hardness to HRC.
6 2以上になっており、 転動体は、 合金成分として、 Cを 0. 3〜0. 6重量%、 S iを 0. 3〜: L. 5重量%、 Mnを 0. 3〜1. 7重量%、 じ 1~を0. 5〜2. 5重量%、 Moを 0. 6〜3. 0重量%の範囲内で 含み、 且つ 0の含有率が 9 p pm以下である鉄鋼材料で形成され、 浸炭 窒化処理が施された後に焼入れ ·焼き戻しが施されて、 残留オーステナ ィ 卜量が 0体積%に、 表面硬さが HRC 6 2以上になっていることを特 徴とする転がり軸受。 The rolling elements are as follows: C: 0.3 to 0.6% by weight, Si: 0.3 to: L. 5% by weight, Mn: 0.3 to 1. A steel material containing 7% by weight, 1 to 0.5 to 2.5% by weight, Mo in the range of 0.6 to 3.0% by weight, and having a 0 content of 9 ppm or less. Rolling characterized by being formed, subjected to carbonitriding, then quenching and tempering to reduce residual austenite to 0% by volume and surface hardness to HRC 62 or more. bearing.
3. 内輪および外輪の少なくともいずれかは、 合金成分として、 Cを 0 . 8 0〜 1. 2 0重量%、 3 1を0. 6 0重量%以下、 Mnを 0. 2 5 重量%以下、 C rを 1. 0 0〜 1. 5 0重量%、 1^ 0を0. 6 0〜1. 3. For at least one of the inner ring and the outer ring, as alloy components, C is 0.80 to 1.2% by weight, 31 is 0.60% by weight or less, Mn is 0.25% by weight or less, Cr 1.0-1.5% by weight, 1 ^ 0.6-0.1.
5 0重量%の範囲内で含む鉄鋼材料で形成された後に、 焼入れ ·焼き戻 しが施されて、 残留オーステナイト量が 0体積%に、 表面硬さが HRCAfter being formed from a steel material containing up to 50% by weight, it is quenched and tempered to reduce the amount of retained austenite to 0% by volume and the surface hardness to HRC.
6 2以上になっており、 転動体は、 マルテンサイ ト系ステンレス鋼で形 成され、 焼入れ ·焼き戻しが施され後に窒化処理が施されて表面に厚さ6 2 or more, the rolling elements are made of martensite stainless steel After being quenched and tempered, it is subjected to a nitriding treatment to
3 m以上の窒化層が形成され、 その後に仕上げ加工されて表面粗さが 0. 1 ^mR a以下になっていることを特徴とする転がり軸受。 A rolling bearing characterized in that a nitrided layer of 3 m or more is formed and then finished to have a surface roughness of 0.1 ^ mRa or less.
4. 内輪および外輪の少なくともいずれかは、 合金成分として、 Cを 0 . 8 0〜1. 2 0重量%、 3 1を0. 6 0重量%以下、 Mnを 0. 2 5 重量%以下、 C rを 1. 0 0〜 1. 5 0重量%、 1^ 0を0. 6 0~1.4. For at least one of the inner ring and the outer ring, as alloy components, C is 0.80 to 1.2% by weight, 31 is 0.60% by weight or less, Mn is 0.25% by weight or less, Cr is 1.0 to 1.5% by weight, 1 ^ is 0.6 to 1.0.
5 0重量%の範囲内で含む鉄鋼材料で形成された後に、 焼入れ ·焼き戻 しが施されて、 残留オーステナイ 卜量が 0体積%に、 表面硬さが HRCAfter being formed from a steel material containing up to 50% by weight, it is quenched and tempered to reduce residual austenite to 0% by volume and surface hardness to HRC.
6 2以上になっており、 転動体はセラミ ックスで形成されていることを 特徴とする転がり軸受。 Rolling bearing characterized in that the rolling element is formed of ceramics.
PCT/JP1999/002944 1998-06-04 1999-06-02 Rolling bearing WO1999063125A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000552315A JP3391345B2 (en) 1998-06-04 1999-06-02 Rolling bearing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/156288 1998-06-04
JP15628898 1998-06-04
JP26836798 1998-09-22
JP10/268367 1998-09-22

Publications (1)

Publication Number Publication Date
WO1999063125A1 true WO1999063125A1 (en) 1999-12-09

Family

ID=26484096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002944 WO1999063125A1 (en) 1998-06-04 1999-06-02 Rolling bearing

Country Status (2)

Country Link
JP (1) JP3391345B2 (en)
WO (1) WO1999063125A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167791A2 (en) * 2000-06-22 2002-01-02 Nsk Ltd Rolling shaft
JP2003525753A (en) * 1999-06-11 2003-09-02 エヌエスケイ−アールエイチピー ヨーロピアン テクノロジー カンパニー リミテッド Method for improving rolling element bearing
WO2004020855A1 (en) * 2002-08-30 2004-03-11 Nsk Ltd. Rolling element bearing and motor
DE102006059050A1 (en) * 2006-12-14 2008-06-19 Schaeffler Kg Process for the heat treatment of rolling bearing components made of through hardened, bainitic bearing steel
JP2010001949A (en) * 2008-06-19 2010-01-07 Ntn Corp Roller bearing for ball screw support
JP2010001996A (en) * 2008-06-20 2010-01-07 Ntn Corp Rolling bearing for wind power generator
JP2010001992A (en) * 2008-06-20 2010-01-07 Ntn Corp Roller bearing for machine tool
DE102012202902A1 (en) * 2012-02-27 2013-08-29 Aktiebolaget Skf Manufacturing electric motor assembly for electric vehicle comprising bearing arrangement, comprises hardening bearing ring and rolling body and tempering such that bearing rings and rolling bodies have specific amount of residual austenite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240249A (en) * 1989-03-14 1990-09-25 Kobe Steel Ltd Production of carburized parts reduced in heat treatment strain
JPH07252598A (en) * 1994-03-15 1995-10-03 Hitachi Metals Ltd Bearing steel and bearing member
JPH08296002A (en) * 1995-04-27 1996-11-12 Hitachi Metals Ltd Bearing steel, bearing member excellent in heat resistance and toughness and production thereof
JPH09287053A (en) * 1995-10-19 1997-11-04 Nippon Seiko Kk Rolling bearing and other rolling devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240249A (en) * 1989-03-14 1990-09-25 Kobe Steel Ltd Production of carburized parts reduced in heat treatment strain
JPH07252598A (en) * 1994-03-15 1995-10-03 Hitachi Metals Ltd Bearing steel and bearing member
JPH08296002A (en) * 1995-04-27 1996-11-12 Hitachi Metals Ltd Bearing steel, bearing member excellent in heat resistance and toughness and production thereof
JPH09287053A (en) * 1995-10-19 1997-11-04 Nippon Seiko Kk Rolling bearing and other rolling devices

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525753A (en) * 1999-06-11 2003-09-02 エヌエスケイ−アールエイチピー ヨーロピアン テクノロジー カンパニー リミテッド Method for improving rolling element bearing
JP4803694B2 (en) * 1999-06-11 2011-10-26 エヌエスケイ ヨーロッパ リミテッド Method for improving rolling element bearing
EP1167791A2 (en) * 2000-06-22 2002-01-02 Nsk Ltd Rolling shaft
EP1167791A3 (en) * 2000-06-22 2004-12-01 Nsk Ltd Rolling shaft
WO2004020855A1 (en) * 2002-08-30 2004-03-11 Nsk Ltd. Rolling element bearing and motor
US7186029B2 (en) 2002-08-30 2007-03-06 Nsk Ltd. Rolling element bearing and motor
DE102006059050A1 (en) * 2006-12-14 2008-06-19 Schaeffler Kg Process for the heat treatment of rolling bearing components made of through hardened, bainitic bearing steel
JP2010001949A (en) * 2008-06-19 2010-01-07 Ntn Corp Roller bearing for ball screw support
JP2010001996A (en) * 2008-06-20 2010-01-07 Ntn Corp Rolling bearing for wind power generator
JP2010001992A (en) * 2008-06-20 2010-01-07 Ntn Corp Roller bearing for machine tool
DE102012202902A1 (en) * 2012-02-27 2013-08-29 Aktiebolaget Skf Manufacturing electric motor assembly for electric vehicle comprising bearing arrangement, comprises hardening bearing ring and rolling body and tempering such that bearing rings and rolling bodies have specific amount of residual austenite

Also Published As

Publication number Publication date
JP3391345B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
JPH06159368A (en) Roller bearing
JP2001074053A (en) Rolling bearing
JP2008267402A (en) Roller bearing
US6422756B1 (en) Rolling bearing apparatus
US20020066502A1 (en) Bearing for main spindle of machine tool
JP2000337389A (en) Rolling bearing
JPH11101247A (en) Rolling bearing part
JP4998054B2 (en) Rolling bearing
JP3509803B2 (en) Rolling bearing
WO1999063125A1 (en) Rolling bearing
JP2001280348A (en) Rolling bearing
WO1999024728A1 (en) Rolling bearing and method of producing the same
JP2008285725A (en) Rolling member, rolling bearing, and method for manufacturing rolling member
JPH11303874A (en) Rolling member
JP2008151236A (en) Rolling bearing
JP2008274353A (en) Rolling bearing
JP2001289251A (en) Rolling bearing and method of manufacturing the same
WO2000037813A1 (en) Ball bearing
JP3548918B2 (en) Rolling bearing
JP2008308743A (en) Rolling member for machine tool, and rolling bearing for machine tool
JP2008232212A (en) Rolling device
JP2009057589A (en) Needle roller bearing and needle roller
JP4013519B2 (en) Rolling bearing
JP2000248954A (en) Rotor support device for turbocharger
JP5263862B2 (en) Machine Tools

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 09485464

Country of ref document: US