WO1999063100A1 - Metodo para la obtencion de plantas transgenicas que tienen una capacidad mejorada para la toma de nutrientes y la tolerancia a compuestos toxicos presentes en el suelo - Google Patents

Metodo para la obtencion de plantas transgenicas que tienen una capacidad mejorada para la toma de nutrientes y la tolerancia a compuestos toxicos presentes en el suelo Download PDF

Info

Publication number
WO1999063100A1
WO1999063100A1 PCT/MX1998/000020 MX9800020W WO9963100A1 WO 1999063100 A1 WO1999063100 A1 WO 1999063100A1 MX 9800020 W MX9800020 W MX 9800020W WO 9963100 A1 WO9963100 A1 WO 9963100A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic acids
dna molecule
recombinant dna
enzyme
promoter
Prior art date
Application number
PCT/MX1998/000020
Other languages
English (en)
French (fr)
Inventor
Luis Rafael Herrera Estrella
Original Assignee
Centro De Investigacion Y Estudios Avanzados Del Instituto Politecnico Nacional
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigacion Y Estudios Avanzados Del Instituto Politecnico Nacional filed Critical Centro De Investigacion Y Estudios Avanzados Del Instituto Politecnico Nacional
Priority to AU75533/98A priority Critical patent/AU772220B2/en
Priority to PCT/MX1998/000020 priority patent/WO1999063100A1/es
Priority to EP98923194A priority patent/EP1122316A4/en
Priority to BR9815878-3A priority patent/BR9815878A/pt
Publication of WO1999063100A1 publication Critical patent/WO1999063100A1/es
Priority to US10/898,322 priority patent/US20050137386A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0028Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)

Definitions

  • the invention relates to a method for obtaining transgenic plants that have a high capacity to synthesize and exude organic acids when compared to equivalent non-transformed plants, a DNA molecule to produce said transgenic plants, transgenic plants with increased capacity to synthesis and excression of organic acids and the uses of transgenic plants.
  • the elements that have been described include C, H, O, N, K, P, Mg, Ca, S, Fe, B, Mn, Cu, Zn, Mo, Cl and Ni, some of them, micronutrients, such as For example, molybdenum is required at concentrations less than one part per million, but if they are absent, the plant cannot complete its life cycle. Other nutrients such as nitrogen and phosphorus (macronutrients) are needed at high levels and reach concentrations of up to 3% of the total dry weight of the plant (Crawford, NM (1994). In Arabidopsis. Cold Spring Harbor Press pp 1 1 19-1 145).
  • Plant roots excrete a wide variety of ions and organic substances that affect the availability of nutrients in the soil.
  • chelating compounds organic acids and phytokelatins
  • P, Fe, Mn and Zn Marschner, H. (1995) Mineral nutrition of higher plants. Academic Press, San Diego, CA.
  • exudation and excresion are functionally considered the same process, which we define as the process by which plants, through their roots, send organic and inorganic compounds to the soil.
  • the chemical nature of the substances that are excreted by the root depends on several factors: the species, the genetic variability, the age of the plant and the nutritional status of the same.
  • the components that have been identified in root exudates can be included in two large groups: mucilaginous substances and organic solutes.
  • Organic solutes include sugars, organic acids, amino acids and phenolic compounds.
  • Organic acids are very versatile molecules that take part in different physiological processes in all living organisms including plants.
  • the biosynthesis of these compounds seems to be a general phenomenon that is conserved in living beings, although in animals their participation is known in detail as precursors of important metabolic pathways such as the Krebs cycle or the glyoxylate cycle, their transport mechanism and the enzymes with which they interact, there is very little information in plants about it (Srere, PA (1992). Curr. Top. Cell. Reg. 33: 261-275).
  • Organic acid excretion has been correlated with the capacity of some plant species, such as rapeseed (Brassica napus) and white lupine (Lupinus albus), to solubilize phosphate (and therefore, convert phosphate into biologically assimilable forms), from insoluble compounds such as aluminum or iron phosphates, or phosphoric rock.
  • rapeseed Brassica napus
  • white lupine Liupinus albus
  • citric acid In addition to the correlation observed between the ability of certain plant species to solubilize phosphate and their ability to exude organic acids, especially citric acid, since the 1950s it is known that organic acids, such as citrate, malate, oxalate, tartrate, malonate and lactate they are capable of dissolving aluminum and iron phosphates that are normally insoluble. Of all the aforementioned organic acids, citrate seems to be the most effective for dissolving insoluble phosphate compounds.
  • Another important problem that affects the intake of nutrients from the soil is the presence of toxic compounds, such as certain forms of soluble aluminum or other metals that can interfere with root growth.
  • Aluminum is the most abundant metal on the earth's layer (representing approximately 7% of its mass) and is found in the soil mainly in the form of insoluble aluminum silicates and oxides. However, when solubilized in acidic soils (mainly in the form of Al + 3), Aluminum is highly toxic to many crops. Al toxicity is considered as the main factor that limits plant productivity in acidic soils. Acidification of soils occurs naturally when basic cations are washed away from the soil, but can also be significantly accelerated by certain agricultural practices and by acid rain. Acid soils comprise approximately 40% of the world's arable land and are particularly abundant in tropical and subtropical regions of the world (Foy, CD. Et al. (1978). Annu.Rev.Plant Physiol. 29: 51 1- 66). A common practice to sustain agricultural productivity in acidic soils is the application of calcium hydroxide (lime) or calcium sulfate (gypsum,
  • citrate binds strongly to iron and aluminum, avoiding the precipitation of phosphate at different pH values, this interaction was more efficient compared to the effect promoted by other organic acids.
  • a millimol of citrate is combined with a millimol of Aluminum, reducing phosphate precipitation by up to 100% in a range of 4.0-9.0 pH units.
  • Enzymes that synthesize organic acids and the genes that encode them have been extensively studied in bacteria and animals. Among the most studied are citrate synthase and malate dehydrogenase, which have been characterized in great detail and the genes that encode them for a significant number of bacteria, animals and some plants have been isolated and sequenced. In the case of Citrate Syntase, more than 300 genes have been cloned and characterized, while for Malato Dehydrogenase more than 500 genes have been cloned and sequenced. Citrate synthase catalyzes the synthesis of citrate by condensation of the methyl group of acetyl coenzyme A and the carbonyl group of oxaloacetate. This enzyme known amino acids that form the active site, which are conserved in all the enzymes analyzed including those of Rickettsia and
  • the invention provides a method for obtaining transgenic plants with an increased ability to synthesize and exude organic acids, which comprises the following steps. a) The preparation of a genetic construct comprising one or more enzymes that synthesize organic acids, functionally linked to a promoter sequence of active transcription in plants and a terminator sequence of active transcription in plant cells, b) The transformation of plant cells with the previous genetic construction, and c) The regeneration of transgenic plants from the transformed cells Description of the invention
  • the invention relates to the overproduction of citric acid, however, the present invention is not limited to the overproduction of citric acid, since overproduction of other organic acids, such as malic acid and oxalic acid, is also possible. among others.
  • One of the aspects of this invention describes the construction of a recombinant DNA molecule that encodes the enzyme citrate synthase, functionally linked to a promoter sequence of functional transcription in plants and a terminator sequence of plant transcription.
  • the present invention relates, but is not limited, to the use of the gene encoding Citrate.
  • citric acid occurs primarily in the mitochondria, where it is the first reaction of the Krebs cycle and is carried out by citrate synthase. Since this reaction is part of a complex cycle, where the flow of carbon skeletons does not necessarily accumulate in one of its components and is subject to complex regulatory mechanisms, it is highly desirable to carry out the invention, compartmentalize the citrate enzyme synthase in a subcellular compartment other than mitochondria, to prevent synthesized citric acid molecules from becoming other components of the Krebs cycle. Therefore, an important aspect of this invention is the description of a method for obtaining transgenic plants where Citrate Syntase is located in a subcellular compartment other than mitochondria, such as cytoplasm and chloroplast.
  • the recombinant DNA molecule described in this invention may contain a signal or transit peptide that directs Citrate Syntase to a discrete compartment of the cell.
  • the present invention has advantages over the prior art, since the transgenic plants obtainable by this method have a better ability to take nutrients or tolerate toxic compounds without the need to use chemical soil treatments or the use of nutrients associated with chelating compounds. Industry or farmers can use transgenic seeds to establish agricultural crops, reducing their production costs, in terms of soil treatments or fertilizer addition, or increasing their productivity in acidic soils or in those that have nutrients not available. .
  • the present invention is directed to obtaining transgenic plants with an increased production capacity and exudation of organic acids.
  • recombinant molecules and methods are described that allow obtaining transgenic plants with an increased capacity for synthesis and exudation of organic acids.
  • the preferred organic acid form in this invention is citric acid, as it has been shown as one of the most effective in solubilizing and facilitating the absorption of nutrients from the soil.
  • Citrate Syntase any enzyme capable of synthesizing citric acid.
  • the present invention relates, but is not limited to Citrate Syntase, since it is possible to use other genes encoding enzymes capable of synthesizing other organic acids.
  • Citrate Syntase or any other enzyme that synthesizes organic acids must have kinetic parameters compatible with the biochemical and physiological systems of the plant of interest.
  • the gene or the coding part of a gene that encodes enzymes that synthesize organic acids can be derived from a complementary DNA molecule, from genomic DNA or can be chemically synthesized totally or partially.
  • the desired gene can be obtained from any microorganism, from any plant or from any animal.
  • the gene or part thereof will be derived from native sequences of some organism.
  • enzymes capable of synthesizing organic acids and in particular Citrate Syntase
  • a large number of genes have been previously identified and characterized, including the determination of their nucleotide sequence.
  • the gene contained in the recombinant DNA molecule is expressed in the appropriate levels and tissues, it is desirable, but not necessary for genes of plant origin, that it is contained in an expression cassette that includes a promoter sequence of the functional transcription in plants, the coding part of the enzyme gene that synthesizes organic acids and a functional transcription terminator in plants. Additionally, a sequence encoding a transit peptide that directs the enzyme to a specific cell compartment can be included.
  • the transit peptide and the corresponding processing signals can be derived from any plant protein that is synthesized in the cytoplasm and translocated to the subcellular compartment of interest, be it the plastid or the mitochondria.
  • sequences derived from genes encoding the small subunit of ribulose bisphosphate carboxylase or CAB proteins that can be used to locate plastids are those that bind with chlorophylls a and b to formalize light harvesting antennas (Van den Broek et al Nature (London) 313, 358-363
  • a promoter In the case of genes that are not of plant origin, a promoter must be included in the transcription initiation sequence and an optimal translation start signal for plants or one of the so-called translation enhancers can also be used. which may be used include promoters of the plant to be transformed, promoters of other plants or of any origin that are functional in the white plant and direct a constitutive, inducible or specific tissue expression. For example, promoters derived from the Ti plasmid can be used.
  • a robactertum tumefac ⁇ ais such as the promoters of Octopina Sintetasa, Nopahna Sintetasa or Agropina Synthetase
  • promoters such as the 35S promotoi of the cauliflower mosaic virus or those derived from geminivirus
  • 35S promotoi of the cauliflower mosaic virus or those derived from geminivirus may be included
  • Temporary, inducible or tissue expression specific can be achieved through the use of promoters or regulatory sequences that have the specificity of expression desired
  • gene promoters which encode phosphate transporters which have been shown to express themselves specifically in root epithelial cells (Muchhal US, et al Proc Nati Acad. Sci 93 10519-10523)
  • the transcription terminator sequencer can be derived from the same gene from which the transcription promoter sequence was obtained or from a different gene.
  • the terminator sequence can be derived from genes contained in the T-DNA of the Ti plasmid of Agrobacterium, of the cauliflower mosaic virus or of genes of plant origin. For example, the terminating sequence of the nopaline synthetase gene is frequently used in Plant Genetic Engineering.
  • nucleic acid sequences that are part of the recombinant DNA molecule can be linked by conventional methods described in the literature.
  • the sequences must be cloned and linked in the correct orientation and order to achieve functional expression in plant cells.
  • the plants of interest are transformed with a recombinant DNA molecule that encodes at least one enzyme capable of synthesizing organic acids.
  • a recombinant DNA molecule that encodes at least one enzyme capable of synthesizing organic acids.
  • the different nucleotide sequences that compose it and that comprise the regulatory sequences of the transcription and the coding sequence of interest may have been subjected to different types of processing, such as ligaments, digestion with restriction enzymes , in vitro mutagenesis, oligonucleotide addition or modifications by means of the chain polymerization reaction (PCR). Therefore, the components of the recombinant molecule before being bound could be subject to deletions, insertions or internal modifications. Since the recombinant molecule is derived from components that originate from different organisms and that have been isolated, purified or synthesized, it is not a molecule that exists as such in nature.
  • the inclusion of other DNA sequences may be necessary.
  • a dominant selection gene is also generally included to identify and select the cells that stably incorporated the recombinant molecule into their genome.
  • the recombinant molecule can be introduced into the desired plant cell by any method of genetic transformation of plants, which may include, but is not limited to, the following transformation methods: the transformation system mediated by the Ti plasmid of Agrobacterium tumefaciens , electroporation, microinjection and biobalistics or bombardment with microparticles.
  • the transformation system mediated by the Ti plasmid of Agrobacterium tumefaciens electroporation, microinjection and biobalistics or bombardment with microparticles.
  • Agrobacterium Ti to introduce the recombinant molecule into the genome of the plant cell, it is necessary to include the T-DNA border sequences, so that they are present at both ends of the gene that encodes the enzyme that synthesizes organic acids and in some cases the dominant selection gene.
  • the use of unarmed Agrobacterium strains that is, those that have been removed from the genes responsible for tumor formation, but that maintain the ability to transfer DNA to plant cells, allows the regeneration of transgenic plants that contain the recombinant molecule of interest .
  • the recombinant DNA molecule that contains the gene that codes for the synthesis of organic acids can be introduced into any plant species, including both monocot and dicotyledons.
  • plant species that by nature have a low capacity to solubilize phosphorus and iron from the soil or that are susceptible to the toxicity caused by aluminum.
  • plant species include but are not limited to corn (Zea mays), rice (Oryza sativa), wheat (Triticum sp), sorghum (Sorghum bicolor), soybeans (Glycine max L.), tobacco (Nicotiana tabacum), tomato (Lycopersicum sculetum), papaya (Carica papaya) and potato (Solanum tuberosum).
  • transgenic plants After the transformation of the tissues, the plant cells or the protoplasts derived from the plant of interest, transgenic plants that contain in their genome the recombinant molecule are regenerated. These transgenic plants are capable of stably transferring the recombinant molecule to its progeny, be it derived from seeds, cuttings, tubers or any other reproductive structure.
  • Example 1 The present invention will be illustrated in the examples described below, which in no way are intended to limit the present invention.
  • Example 1
  • genes to be used To obtain plants that overproduce organic acids, genes that code for enzymes that have the ability to synthesize organic acids were selected.
  • genes that code for enzymes that have the ability to synthesize organic acids were selected.
  • the Pseudomonas aeruginosa gene that encodes the Citrate Synthase enzyme was selected (Donald et al (1989), J. Bacteriol. 171: 5542-5550). This enzyme synthesizes citric acid from oxaloacetate and acetyl-Coenzyme A.
  • the cytoplasm was selected as the subcellular compartment where said enzyme would be located.
  • the pB2 expression vector was first constructed.
  • the region of the photoinducible promoter (pea cab 80) of the vector pGV151 1 (Jofre-Garfias et al (1997), Plant Cell Reports 16: 847-852) delimited by the restriction sites Hind III and Bam HI was replaced by the Hind III-Bam HI fragment of the vector pBI 525 (Datla et al. (1993), Plant Science 94: 139-149.), which contains the double 35S promoter of the cauliflower mosaic virus, the virus-enhancing region of the Alfalfa mosaic and the translation start site (as part of the Neo I site).
  • the substitution of the promoter region of the pGV1 51 1 vector with that of pBI 525 was verified by double restriction analysis using the Xba I and Hind III sites.
  • the orientation of the cloned fragment was determined by analysis of the fragment released by a double restriction using the enzymes Xba I and Bam
  • Plasmid p35SCSb was conjugated from E. coli to the Agrobacterium strain LB4404 (Hoekema A. et al. (1983), Nature 303, 179-180) using the triparental conjugation system using the assistant plasmid (heper plasmid) pRK2013 ( Lam ST et al. (1985), Plasmid 13, 200-204).
  • the recombinant molecule was introduced into the Tobacco genome (Nicotiana tabacum L. var. Xanthi) using the method of transformation of leaf discs (Horsh R. B. et al (1985), Science 227, 1229-1232).
  • the regenerated plants, called CSb plants were selected for their growth in selective medium containing 50 micrograms of kanamycin per milliliter of culture medium.
  • genomic DNA was extracted from the leaves of said plants by conventional methods, digested with the restriction enzymes Hind III and Bam HI, subjected to electrophoresis in a 1% agarose gel in TBE buffer , transferred to nylon membranes and hybridized with a specific probe for the Pseudomonas aeruginosa Citrate Syntase gene. It was found that most of the kanamycin resistant plants contained the expression cassette of the P. aeuroginosa Citrate Syntase. To verify that the expression cassette was functionally transcribed in CSb plants, total RNA from said plants was extracted using techniques.
  • Enzymol, 13: 3-22) showed that several of them had high levels of Citrate Syntase activity with respect to the non-transformed control plants.
  • Four lines with levels of Citrato Sintasa activity were selected between two and three times greater than the control (see figure 2).
  • the presence of bacterial CS in the CSb lines was confirmed by Western-type analysis using an antiserum (Donald, J.L, et al. (1989.). Journal of Bacteriology. 5542-5550) that does not recognize the plant enzyme.
  • the densitometric analysis of the detection by Western type analysis of the bacterial CS showed a good correlation between the level of bacterial CS and the increase detected in the Citrate Syntase activity in the different CSb lines, demonstrating that the increased levels of Citrate Syntase in the plants CSb is due to the expression of the recombinant molecule encoding P. aeruginosa Citrate Syntase.
  • the plant material used consisted of two lines of transgenic plants called CSb 5-4 and CSb 5-18, which overexpress the P. aeuroginosa citrate synthase gene and a wild plant (1522) that was used as a control.
  • the plants were established in polyethylene bags containing 2 kilograms of soil with the respective Phosphorus treatment.
  • a random arrangement of the plants in the greenhouse was designed forming random blocks consisting of each treatment of 24 repetitions.
  • samples were carried out in 3 stages of the development of the plants: vegetative growth, flowering and fruiting. From each stage, 8 plants were analyzed to measure the following agronomic variables: plant height, leaf area, fresh frond weight, dry frond weight, dry root weight. The number of flowers (for the flowering stage) and number and total dry weight of capsules or fruits (for the fruiting stage) were also determined.
  • the capsules were collected in full senescence stage of the plant, once the grain filling had concluded. The harvest was carefully done by splitting the capsules from the base of the peduncle and depositing them in paper bags of dextrase. The bags were properly labeled and included for drying the plant material in a Heraeus Bau Herbert 6000 stove at a temperature of 70 degrees Celsius for 72 hours. The dry material was weighed on a Mettler PE 360 analytical balance and the data obtained were subjected to a statistical analysis of variance (anova) and comparison of means with the Tukey method. b) Dry weight of the frond (Includes total stem and leaf biomass).
  • the leaves were harvested from the base of the petiole and were included together in paper bags of dextrase.
  • the stem was split from the crown (the area of the stem closest to the ground). All material from the same plant was included in a single paper bag properly labeled.
  • the samples were dried in a Heraeus Bausch 6000 oven at a temperature of 70 degrees Celsius for 72 hours. The dry material was weighed on a Mettler PE 360 analytical balance and the data obtained were subjected to a statistical analysis of variance (anova) and comparison of means with the Tukey method.
  • c) Total dry weight of the plant (includes frond weight and capsules). This parameter was determined by adding the total weight of the frond and the total weight of the capsules.
  • transgenic line B5 18 accumulated greater biomass than transgenic CSb 5-4 and the control plant (1522).
  • the difference in the dry weight of the capsules between the CSb line 5-18 and the control 1522 was statistically significant, with a 95% confidence interval (see figure 5).
  • the aluminum tolerance segregation pattern was examined in the IT progeny of the selected lines. A segregation of phenotypes was observed tolerant / susceptible with a 3: 1 pattern in the lines that contain simple insertions, and that the tolerance to Aluminum congregates with the kanamycin resistance gene present in the T-DNA of the binary vector used for the production of CSb lines, confirming that The resistance phenotype is due to the presence of the 35S-CSb construct in the genome of the Tobacco transgenic lines analyzed.
  • the T-DNA contained in the recombinant molecule p35S-CSb was introduced to the papaya plant genome by the bombardment transformation system of particles (Cabrera-Ponce et al. (1995), Plant Cell Reports 15: 1-7).
  • Papaya lines were found to have levels of Citrate Syntase activity 2 to 3 times higher than controls transformed with the vector without the coding sequence for CS.
  • 20 regenerated plants of each line were transferred to rooting medium containing different concentrations of aluminum.
  • FIG. 1 Shows the construction of p35SCSb.
  • the nucleotide and amino acid sequence is also indicated at the translation initiation site of the original Pseudomonas aeruginosa (pPKB) CS gene, that of the pB2 expression vector and the resulting sequence in p35SCSb, result of fragment cloning Bel I-Bam HI containing most of the coding sequence of the CS in the expression vector pB2.
  • Figure 2. Determination of citrate synthase activity present in extracts of transgenic CSb plants and 1522 control plants. It can be observed that transgenic plants have an increased citrate synthase activity with respect to the control.
  • FIG. 3 Determination of citrate levels present in root extracts of transgenic CSb plants and control plants. The level of citrate exuded by CSb transgenic plants and control plants is also presented. It can be seen that transgenic plants have an increased capacity to accumulate and exude citric acid with respect to control plants.
  • FIG. 4 Determination of the biomass accumulated by transgenic tobacco plants that overexpress the Pseudomonas aeuroginosa citrate synthase gene (CSb 5-4 and CSb 5-18) and control plants (1522) grown in the presence of 22 parts per million match.
  • the accumulated biomass is presented as dry weight of capsules, frond and capsules + frond.
  • the results presented are the average and standard error of eight repetitions per treatment.
  • Statistical analysis (ANOVA and Tukey test), revealed that there is an increase in yield in transgenic plants compared to control plants in the phosphorus concentrations that were tested.
  • FIG. 5 Determination of the biomass accumulated by transgenic tobacco plants that overexpress the Pseudomonas aeuroginosa citrate synthase gene (CSb 5-4 and CSb 5-18) and control plants (1522) grown in the presence of 44 parts per million match.
  • the accumulated biomass is presented as dry weight of capsules, frond and capsules + frond.
  • the results presented are the average and standard error of eight repetitions per treatment.
  • Statistical analysis (ANOVA and Tukey test), revealed that there is an increase in yield in transgenic plants compared to control plants in the phosphorus concentrations that were tested.
  • Figure 7 Determination of the effect of increasing concentrations of aluminum at pH 4.5 on the root growth of transgenic CSb plants and control plants. The effect is plotted as the percentage of root growth inhibition in the presence of aluminum with respect to the growth of the same plants in the absence of aluminum. It can be seen that the roots of the transgenic CSb plants grow better in the presence of toxic concentrations of aluminum.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Esta invención se refiere a un método para la obtención por técnicas de ingeniería genética de plantas mejoradas en su capacidad de sintetizar, acumular y exudar ácidos orgánicos. Más especifícamente se refiere a la generación de plantas transgénicas que tienen una capacidad mejorada de producir y excretar ácidos orgánicos, lo que les permite una mejor capacidad de absorción de nutrientes naturales del suelo o adicionados como fertilizantes a los suelos. Estas plantas tienen también una capacidad incrementada de tolerar la presencia en el suelo de ciertos compuestos tóxicos como es el aluminio. El método de transformación implica la introdución de genes que incrementa la capacidad de la planta para producir ácidos orgánicos y comprende los siguientes pasos: a) preparación de una molécula recombinante que comprenda la secuencia codificante para una enzima que produce ácidos orgánicos, funcionalmente ligados a una secuencia promotora activa en célullas vegetales y un terminador de la transcripción funcional en células vegetales; b) transformación de células vegetales con dicha construcción, c) la regeneración de plantas transgénicas a partir de las células transformadas.

Description

Método para la obtención de plantas transgénicas que tienen una capacidad mejorada para la toma de nutrientes y la tolerancia a compuestos tóxicos presentes en el suelo.
Antecedentes de la invención.
La invención se refiere a un método para la obtención de plantas transgénicas que tienen una elevada capacidad para sintetizar y exudar ácidos orgánicos cuando se comparan con plantas no transformadas equivalentes, una molécula de ADN para producir dichas plantas transgénicas, las plantas transgénicas con capacidad incrementada de síntesis y excresión de ácidos orgánicos y los usos de las plantas transgénicas.
Existen al menos 17 elementos minerales que son esenciales para el crecimiento y desarrollo de las plantas. Los elementos que se han descrito incluyen al C,H,O,N,K,P,Mg,Ca,S,Fe,B,Mn,Cu,Zn,Mo,Cl y Ni, algunos de ellos, los micronutrientes, como por ejemplo el molibdeno, se requieren a concentraciones menores a una parte por millón, pero si están ausentes la planta no puede completar su ciclo de vida. Otros nutrientes como el nitrógeno y el fósforo (los macronutrientes) se necesitan en niveles elevados y llegan a alcanzar concentraciones de hasta el 3% del peso seco total de la planta (Crawford,N.M (1994). En Arabidopsis. Cold Spring Harbor Press pp. 1 1 19-1 145).
El nitrógeno, fósforo y Fierro, son con mayor frecuencia los nutrientes que limitan el rendimiento de los cultivos. Estos elementos además de nutrientes esenciales, actúan como señales ambientales que pueden modificar dramáticamente la fisiología y desarrollo de las plantas, por ejemplo, alterando la tasa de crecimiento y ramificación de la raíz de acuerdo a la concentración extracelular de estos iones o activando la expresión de genes específicos tales como transportadores y reductasas (Goldstein, A.H (1991).Theor. Appl. Genet. 82: 191-104 ). Cada nutriente tiene propiedades particulares que afectan su disponibilidad y su captación por la planta, asi por ejemplo, aunque el P y el Fe pueden estar en concentraciones adecuadas en el suelo, pueden encontrarse en el suelo en formas insolubles, no disponibles para ser tomados y utilizados por las plantas. La disponibilidad de P y Fe depende del pH del suelo. El fierro se precipita cuando se combina con iones hidróxilo y el fosfato sale de solución uniéndose fuertemente al Ca y Mg en suelos con pH alcalino o al Mn, Fe y Al en suelos ácidos. Para resolver el problema de la falta de nutrientes en el suelo en forma asimilable para la plantas, se ha recurrido a la aplicación intensiva de fertilizantes. en cuya producción se gastan tan sólo en los Estados Unidos alredor de 10 billones de dólares cada año (Glass, A. D.H (1989) Plant nutrition:An introduction to current concepts. Jones an Bartlett, Boston, Massachusetts). En todo el mundo se suministran a los cultivos más de 140 millones de toneladas de nitrógeno, fósforo y potasio. Sin embargo, solo una pequeña parte de éstos se aprovecha y el resto se pierde por diversas razones. Por ejemplo, en suelos ácidos una gran parte del P suministrado a los cultivos como fertilizante reacciona con moléculas de Fe y Al formando compuestos insolubles no aprovechables, en el proceso llamado fijación de fosfato al suelo. En un estudio reciente se ha propuesto que hasta el 80% del fósforo en el suelo permanece indisponible para la planta debido a fenómenos de adsorción, precipitación y conversión a formas orgánicas (Holford I.C.R. (1997). Aust.J.Soil Res. 35:227-239). De los fertilizantes usados en el mundo una buena parte se pierde por lavado del suelo durante la época de lluvias llegando hasta los cuerpos de agua y convirtiéndose en un problema de contaminación muy serio.
Debido a este último problema, el énfasis puesto inicialmente en la nutrición vegetal para maximizar la producción ha cambiado con la intención de minimizar las emisiones de nutrientes al ambiente (Mannetje,L. (1994). En Grassland and Society. Mannetje and Frame. Wageningen Press, Wageningen). Por ejemplo, el Gobierno de Holanda ha promulgado leyes que entraron en vigor a partir de enero de 1998 tendientes a limitar el uso del Nitrógeno y del Fósforo, la aplicación de estos elementos estará sujeta a un monitoreo estricto del estado nutricional de los suelos para mantener la producción de los cultivos con la aplicación mínima de fertilizantes. Para varios países europeos el desarrollo de cultivares con alta eficiencia nutricional es una necesidad urgente para disminuir el efecto negativo que han tenido las prácticas agrícolas sobre los ecosistemas (Loneragan, J. F (1997). Plant and Soil 196: 163-174). Para enfrentar el problema de la incapacidad de la mayoría de las plantas de tomar nutrientes no disponibles del suelo, algunos tratamientos han sido desarrollados, como es la adición de ácidos orgánicos (ver patente: US Pat 5,593,947; Enero, 14 de 1997), la adición de nutrientes quelados (ver patente: EPO Pat 0 284 339; 22 de Marzo de 1988) o la inoculación con microorganismos que solubilizan nutrientes (ver patente: US Pat 5,026,417; Enero 25, de 1991 ), que si bien pueden ser efectivos resultan costosos y se requieren de repetir todos los años.
Por lo tanto, es de suma importancia el desarrollo de plantas transgénicas con una mayor eficiencia de toma de los nutrientes que existen en el suelo o de aquellos que son aplicados en forma de fertilizantes.
De poderse obtener dichas plantas, como es demostrado en esta invención, en el caso directo del Fósforo se vislumbran dos grandes aplicaciones: 1) La explotación efectiva de las reservas de Fósforo en suelos afectados por el pH, en los cuales este nutriente no está disponible para las plantas; 2) Alcanzar los requerimientos de fosfato para los cultivos con una aplicación menor de fertilizantes.
Las raíces de las plantas excretan una gran variedad de iones y sustancias orgánicas que afectan la disponibilidad de nutrientes en el suelo. La síntesis y exudación de compuestos quelantes (ácidos orgánicos y fitoquelatinas) han sido propuestos como un mecanismo que facilita la captación de diferentes elementos, por ejemplo P, Fe, Mn y Zn (Marschner, H. (1995) Mineral nutrition of higher plants. Academic Press, San Diego, CA). En el contexto de la presente invensión la exudación y excresión se consideran funcionalmente el mismo proceso, que definimos como el proceso mediante el cual las plantas, a través de sus raíces, envían compuestos orgánicos e inorgánicos al suelo.
La naturaleza química de las sustancias que se excretan por la raíz depende de varios factores: la especie, la variabilidad genética, la edad de la planta y el estado nutricional de la misma. Los componentes que se han identificado en los exudados de raíz se pueden incluir en dos grandes grupos: sustancias mucilaginosas y solutos orgánicos. Los solutos orgánicos incluye azúcares, ácidos orgánicos, aminoácidos y compuestos fenólicos.
Los ácidos orgánicos son moléculas muy versátiles que toman parte en diferentes procesos fisiológicos en todos los organismos vivos incluyendo las plantas. La biosíntesis de estos compuestos parece ser un fenómeno general que se encuentra conservado en los seres vivos, aunque en los animales se conoce a detalle su participación como precursores de vías metabólicas importantes como el ciclo de Krebs o el ciclo del glioxilato, su mecanismo de transporte y las enzimas con las que interactúan, en las plantas se tiene muy poca información al respecto (Srere, P.A. (1992). Curr. Top. Cell. Reg. 33:261-275). La excresión de ácidos orgánicos ha sido correlacionada con la capacidad de algunas especies vegetales, como la colza (Brassica napus) y el lupino blanco (Lupinus albus), de solubilizar fosfato (y por lo tanto, convertir el fosfato en formas biológicamente asimilables), a partir de compuestos insolubles como los fosfatos de Aluminio o Fierro, o de la roca fosfórica. En ambos casos un incremento en la exudación de ácidos orgánicos es observada como respuesta a un estrés causado por la falta de fosfato (Hoffland et al. (1989) Plant and Soil
1 13: 161-165). Basados en estos estudios se ha propuestos que la exudación natural de ácidos orgánicos por Brasica napus, es una estrategia efectiva para incrementar la toma de fosfato a partir de roca fosfórica. En el caso de Lupinus albus, en condiciones de baja disponibilidad de fosfato, se induce la formación de raíces especializadas, que han sido denominadas raíces proteoídes, que exudan una gran cantidad de ácido cítrico, lo que le permite a esta especie vegetal la solubilización de fosfato a partir de compuestos insolubles como el fosfato de Fierro o Aluminio.
Además de la correlación observada entre la capacidad de ciertas especies vegetales de solubilizar fosfato y su capacidad de exudar ácidos orgánicos, especialmente ácido cítrico, desde los años 50 se conoce que los ácidos orgánicos, como citrato, malato, oxalato, tartrato, malonato y lactato son capaces de disolver los fosfatos de Aluminio y Fierro que normalmente son insolubles. De todos los ácidos orgánicos antes mencionados, el citrato parece ser el más efectivo para disolver compuestos insolubles de fosfato.
Otro problema importante que afecta la toma de nutrientes del suelo es la presencia de compuestos tóxicos, como ciertas formas de Aluminio soluble u otros metales que pueden interferir con el crecimiento de la raíz.
El Aluminio (Al), es el metal más abundante sobre la capa terrestre (representando aproximadamente el 7% de su masa) y se encuentra en el suelo principalmente en forma de silicatos y óxidos de Aluminio insolubles. Sin embargo, cuando es solubilizado en suelos ácidos (principalmente en forma de Al+3), el Aluminio es altamente tóxico para muchos cultivos. La toxicidad por Al se considera como el principal factor que limita la productividad vegetal en los suelos ácidos. La acidificación de los suelos ocurre en forma natural cuando los cationes básicos son arrastrados del suelo, pero también puede ser acelerada considerablemente por ciertas prácticas agrícolas y por la lluvia acida. Los suelos ácidos comprenden aproximadamente el 40% de la superficie arable del mundo y son particularmente abundantes en las regiones tropicales y subtropicales del mundo (Foy,CD. et al. (1978). Annu.Rev.Plant Physiol. 29: 51 1-66). Una práctica común para sostener la productividad agrícola en los suelos ácidos, es la aplicación de hidróxido de calcio (lime) ó sulfato de calcio (gypsum,
CaSO4.2H2O) para incrementar el pH del suelo (ver por ejemplo la patente US
Pat. 5,628,81 1 ; 13 de Mayo de 1997). Aunque este tipo de tratamientos del suelo han tenido éxito, no representa una solución viable para muchos agricultores debido a que no cuentan con los recursos económicos para aplicarlo, además de que su aplicación propicia efectos indeseables tales como la contaminación de ríos.
En las plantas, el Al produce síntomas tóxicos generales que son similares a deficiencias nutrimentales (Bennet, RJ et al. (1986). J. Plant Soil. 3: 1 1-17.). El decremento en la nutrición mineral parece deberse principalmente a la inhibición del crecimiento de la raíz de la planta ocasionado por la acción del Aluminio sobre la punta de la raíz (Ryan, PR et al. (1993). J.Exp.Bot. 44: 437-446). La presencia de Al en concentraciones del orden micromolar en soluciones nutritivas sencillas puede inhibir el crecimiento de las raíces en pocos minutos . Diferentes estudios han mostrado que existe una considerable variabilidad genética Ínter e intraespecies respecto de la tolerancia vegetal a la toxicidad por Al (Baligar, VC et al. (1993). Plant and Soil. 150: 271-277.). Aunque se han propuesto diferente hipótesis para explicar las diferencias genotípicas que dan origen a plantas tolerantes al Al, la evidencia sugiere fuertemente que en diferentes especies vegetales la tolerancia se origina vía la exclusión del Aluminio de la punta de la raíz (Delhaize. E et al. (1993). Plant Physiology. 103: 685-693.). Se ha observado, por ejemplo, que los cultivares de Trigo susceptibles acumulan de 3 a 8 veces más Aluminio que los cultivares tolerantes en el ápice de la raíz (Tice, KR. Et al. (1992). Plant Physiol. 100: 309-318). La tolerancia a Al en Trigo (Triticum sp ), Maíz (Zea mayz) y Haba (Vicia faba L.) se ha correlacionado con un incremento en su capacidad de excretar ácidos orgánicos, tales como el ácido málico y el ácido cítrico (Miyasaka SC et al. (1991). Plant Physiology. 91 : 737-743; Delhaize E et al. (1993). Plant Physiology. 103: 695-702). Se ha propuesto que los ácidos orgánicos excretados confieren tolerancia al formar complejos con el Al+3 fuera de la membrana plasmática, previniendo así su ingreso (Miyasaka SC et al. (1991). Plant Physiology. 91 : 737-74312).
De acuerdo con el papel propuesto para los ácidos orgánicos como agentes quelantes que previenen la toxicidad por Aluminio, se ha demostrado que la adición de ácidos orgánicos, tales como el cítrico y el málico a la solución nutritiva donde son crecidas las plantas, disminuyen significativamente el efecto tóxico del Aluminio. Estos experimentos también han mostrado que el ácido cítrico es más efectivo que el succinato o el malato para revertir la toxicidad por Al (Hue, NV et al. (1986). Soil.Sci.Soc. ActJ. 50 : 28-34; Barlett, RJ. and Riego, DC. (1972).
Plant Soil. 37: 419-423.). La afinidad del citrato por cationes importantes biológicamente se conoce desde hace varios años. En estudios pioneros dirigidos por D.H. Sieling de la
Universidad de Massachusetts, se comparó el efecto de varias sustancias que forman parte de la materia orgánica del suelo para evitar la precipitación del
Fosfato ocasionada por Fierro y Aluminio. Entre los resultados obtenidos en estos trabajos, se encontró que el citrato se une fuertemente al Fierro y Aluminio evitando la precipitación del Fosfato a distintos valores de pH, esta interacción fue más eficiente comparada al efecto promovido por otros ácidos orgánicos. En la reacción mencionada, un milimol de citrato se combina con un milimol de Aluminio disminuyendo hasta en un 100% la precipitación del Fosfato en un rango de 4.0-9.0 unidades de pH.
Se ha sugerido que la efectividad del citrato para interactuar con cationes, está determinada principalmente por las cargas negativas presentes en su estructura, las cuales promueven la formación de complejos organometálicos altamente estables. Evidencia reciente sugiere que los ácidos orgánicos, especialmente el citrato, desempeñan un papel fundamental en la tolerancia de las plantas a toxicidad por Aluminio (Miyasaka et al. (1991 ). Plant Physiology 96:737-743. De la fuente et al. (1997) Science 276: 1566-1568) y metales pesados (Yang et al. (1997) Plant and Soil 196:271-176), así como en la captación de nutrientes tales como el Fósforo,el Fierro y el Níquel (Jones, D. L. and P.R. Darrah (1994) Plant asn Soil 166:247-257).
Las enzimas que sintetizan ácidos orgánicos y los genes que las codifican han sido ampliamente estudiados en bacterias y animales. Entre las más estudiadas están la citrato sintasa y la malato deshidrogenasa, que han sido caracterizadas en mucho detalle y los genes que las codidifican de un número importante de bacterias, animales y algunas plantas han sido aislados y secuenciados. Para el caso de la Citrato Sintasa más de 300 genes han sido clonados y caracterizados, mientras que para la Malato Deshidrogenasa más de 500 genes han sido clonados y secuenciados. La citrato sintasa, cataliza la síntesis de citrato mediante la condensación del grupo metilo del acetil coenzima A y el grupo carbonilo del oxalacetato. De esta enzima se conocen los aminoácidos que forman el sitio activo, los cuales están conservados en todas las enzimas analizadas incluyendo las de Rickettsia y
Arabidopsis (Alter et al (1990) Biochemistry 29 7557-7563) Las citrato sintasas de las bacterias gram negativas Escherichia cok , Acinetobacter anttratum y Pseudomonas aeruginosa, son enzimas alostéπcas cuya actividad se inhibe fuertemente por NADH y comparten una homología de alrededor del 75% en su secuencia de aminoácidos (Alter et al (1990) Biochemistry 29 7557-7563)
En las plantas se han identificado dos isoformas de la Citrato Sintasa, una que se localiza en la mitocondπa y otra presente en el ghoxisoma El análisis de los ADN complementarios que codifican para las enzimas mitocondπales de Arabidopsis thahana y Papa (Solanum tuberosum), mostraron homología con las enzimas de cerdo y levaduras, en tanto que la citrato sintasa del glioxisoma de Pepino parece estar más relacionada a sus contrapartes bacterianas Ambas isoformas son distintas inmunológicamente y al parecer no están sujetas a regulación alostéπca (Kato et al (1995) Plant Mol Bio 27 377-390)
La factibihdad de producir plantas transgénicas que expresan genes foráneos ha sido demostrada amphamante Se ha logiado la expresión de genes tanto de origen vegetal, como bacteriano, viral y animal
Existen diferentes métodos de transformación genética para la obtención de células transgénicas a partir de las cuales se pueden regenerar plantas transgénicas fértiles Entre estos métodos se pueden destacar la electroporación de protoplastos o tejidos intactos, el co-cultivo de células o tejidos intactos con cepas de Agrobacterium tumefaciens y el bombardeo con microparticulas o biolística
Nosotros hemos demostrado que es posible transformar genéticamente ciertas plantas para darles una mayor capacidad de sintetizar, acumular y exudar ácidos orgánicos La invención entonces provee de un método para obtener plantas transgénicas con una capacidad aumentada de sintetizar y exudar ácidos orgánicos, que comprende los siguientes pasos a) La preparación de una construcción genética que comprenda una o mas enzimas que sinteticen ácidos orgánicos, funcionalmente ligadas a una secuencia promotora de la transcripción activa en plantas y una secuencia terminadora de la transcripción activa en células vegetales, b) La transformación de células vegetales con la construcción genética anterior, y c) La regeneración de plantas transgénicas a partir de las células transformadas Descripción de la invención
Reconociendo la importancia que tiene la disponibilidad de nutrientes en el suelo para la producción agrícola, y que muchos de los nutrientes presentes en el suelo o agregados durante las prácticas agronómicas como fertilizantes se convierten en formas insolubles no disponibles para la nutrición, crecimiento y productividad de las plantas, ha sido desde hace mucho tiempo altamente deseable la obtención de plantas con una mejor capacidad de aprovechar los nutrientes no disponibles del suelo. Era entonces deseable la aplicación de las técnicas de ADN recombinante e Ingeniería Genética para la producción de plantas con una capacidad mejorada para la solubilización y absorción de nutrientes del suelo a partir de compuestos insolubles o poco disponibles para las plantas.
Dado que existe evidencia que demuestra o al menos sugiere fuertemente que los ácidos orgánicos facilitan la disolución y absorción de nutrientes, especialmente fósforo y fierro, a partir de compuestos insolubles o poco disponibles para la nutrición de las plantas, es altamente deseable la obtención de plantas transgénicas con una capacidad aumentada para producir y excretar ácidos orgánicos, y que por lo tanto tengan una mayor capacidad para la utilización de nutrientes del suelo. Aunado a esto, se ha postulado que la exudación de ácidos orgánicos es un mecanismo utilizado por algunas plantas para combatir los efectos tóxicos de algunos elementos presentes en el suelo, como es el caso del aluminio en suelos ácidos. Por lo tanto, las plantas transgénicas que tienen una elevada capacidad para la síntesis de ácidos orgánicos, no solo tienen una mejor capacidad de utilizar nutrientes biológicamente no disponibles en el suelo, sino que también son capaces de tolerar concentraciones tóxicas de algunos elementos como el aluminio.
En la presente invención se describe un método para la obtención de plantas transgénicas con una capacidad incrementada de producción, acumulación y exudación de ácidos orgánicos. En particular la invención se refiere a la sobreproducción de ácido cítrico, sin embargo, la presente invención no se limita a la sobreproducción de ácido cítrico, ya que es posible también la sobreproducción de otros ácidos orgánicos, como son el ácido málico y el ácido oxálico entre otros.
Uno de los aspectos de esta invención, describe la construcción de una molécula de ADN recombinante que codifica la enzima citrato sintasa, funcionalmente ligada a una secuencia promotora de la transcripción funcional en plantas y una secuencia terminadora de la transcripción de plantas. La presente invención se refiere, pero no se limita, al uso del gen que codifica la Citrato
Sintasa, ya que es posible también el uso de otros genes que codifican enzimas que sintetizan otros ácidos orgánicos como aquellas capaces de sintetizar el ácido málico y el ácido oxálico.
En células vegetales, la síntesis de ácido cítrico ocurre primordialmente en la mitocondria, donde es la primera reacción del ciclo de Krebs y es llevada a cabo por la citrato sintasa. Ya que esta reacción es parte de un ciclo complejo, donde el flujo de esqueletos carbonados no necesariamente se acumula en uno solo de sus componentes y está sujeto a complejos mecanismos de regulación, es altamente deseable para llevar a cabo la invención, compartamentalizar la enzima citrato sintasa en un compartimento subcelular distinto a la mitocodria, para evitar que las moléculas de ácido cítrico sintetizado se conviertan en otros de los componentes del ciclo de Krebs. Por lo tanto, un aspecto importante de esta invención es la descripción de un método para obtención de plantas transgénicas donde la Citrato Sintasa está localizada en un compartimento subcelular distinto a la mitocondria, como son el citoplasma y el cloroplasto. Por ende, la molécula de ADN recombinante descrita en esta invención puede contener un péptido señal o de transito que dirija la Citrato Sintasa a un compartimento discreto de la célula. La presente invención tiene ventajas sobre la técnica anterior, ya que las plantas transgénicas obtenibles por este método tiene una mejor capacidad de tomar nutrientes o tolerar compuestos tóxicos sin la necesidad de emplear tratamientos químicos del suelo o el uso de nutrientes asociados a compuestos quelantes. La industria o los agricultores pueden usar las semillas transgénicas para establecer cultivos agrícolas, reduciendo sus costos de producción, en términos de tratamientos del suelo o adición de fertilizantes, o aumentando la productividad de los mismos en suelos ácidos o en aquellos que tienen nutrientes no disponibles.
Parte de esta invención , donde se describe el método para la obtención de plantas transgénicas que sobreproducen citrato y la capacidad aumentada de estas plantas para tolerar concentraciones tóxicas de aluminio, ha sido previamente publicada (De la Fuente et al., Science 276: 1566-1568).
Descripción detallada de la invención. La presente invención está dirigida a la obtención de plantas transgénicas con una capacidad incrementada de producción y exudación de ácidos orgánicos. De acuerdo con uno de los aspectos descritos en esta invención, se describen moléculas recombinantes y métodos que permiten la obtención de plantas transgénicas con una capacidad incrementada de síntesis y exudación de ácidos orgánicos. La forma de ácido orgánico preferido en esta invención es el ácido cítrico, ya que se ha demostrado como uno de los más efectivos para solubilizar y facilitar la absorción de nutrientes del suelo.
En esta invención nos referimos a la Citrato Sintasa como cualquier enzima capaz de sintetizar ácido cítrico. La presente invención se refiere, pero no se limita a la Citrato Sintasa, ya que es posible el uso de otros genes que codifican enzimas capaces de sintetizar otro ácidos orgánicos. La Citrato Sintasa o cualquier otra enzima que sintetiza ácidos orgánicos, debe tener parámetros cinéticos compatibles con los sistemas bioquímicos y fisiológicos de la planta de interés.
El gen o la parte codificante de un gen que codifica enzimas que sintetizan ácidos orgánicos puede ser derivada de una molécula de ADN complementario, de ADN genómico o puede ser sintetizado químicamente total o parcialmente. El gen deseado puede ser obtenido de cualquier microorganismo, de cualquier planta o de cualquier animal.
En general, el gen o parte del mismo será derivado de secuencias nativas de algún organismo. En el caso de las enzimas capaces de sintetizar ácidos orgánicos, y en particular la Citrato Sintasa, un gran número de genes han sido previamente identificados y caracterizados, incluyendo la determinación de su secuencia nucleotídica.
Para lograr que el gen contenido en la molécula de ADN recombinante se exprese en los niveles y en los tejidos adecuados, es deseable, pero no necesario para genes de origen vegetal, que esté contenido en un casette de expresión que incluya una secuencia promotora de la transcripción funcional en plantas, la parte codificante del gen de la enzima que sintetiza ácidos orgánicos y un terminador de la transcripción funcional en plantas. Adicionalmente se puede incluir una secuencia que codifique para un péptido de tránsito que dirija la enzima a un compartimiento específico de la célula. El péptido de tránsito y las señales de procesamiento correspondientes puede ser derivado de cualquier proteína vegetal que se sintetiza en el citoplasma y es translocada al compartimiento subcelular de interés, ya sea este el plástido o la mitocondria. Por ejemplo, para localizar en los plástidos pueden ser usadas secuencias derivadas de genes que codifican para la subunidad pequeña de la ribulosa bisfosfato carboxilasa o las proteínas CAB que son aquellas que se unen a las clorofilas a y b para formal las antenas cosechadoras de luz (Van den Broek et al Nature (London) 313, 358-363
(1985))
Para la loca zación en el citoplasma de enzimas codificadas por genes bacterianos, no es necesario adicionar ningún péptido de tránsito, ya que al carecer de este tipo de señales permanecerán en el citoplasma de manera natural
En el caso de enzimas provenientes de eucaπontes, si éstas son localizadas en un compartimento subcelular distinto al citoplasma, es necesario remover su péptido de tránsito natural para localizarlas en el citoplasma En general es deseable el uso de genes que no sean de origen vegetal, por lo tanto es necesario incluir en la molécula de ADN recombinante las secuencias iniciadoras y terminadoras de la transcripción para garantizar la expresión funcional del gen en cuestión
Para el caso de genes que no son de origen vegetal, en la secuencia iniciadora de la transcripción se debe incluir un promotor y se puede emplear también una señal de inicio de la traducción óptima para plantas o uno de los llamados potenciadores de la traducción Los promotores que pueden ser usados incluyen promotores de la planta que se desea transformar, promotores de otras plantas o de cualquier origen que sean funcionales en la planta blanco y dirijan una expresión constitutiva, inducible o tejido específica Por ejemplo, se pueden utilizar promotores derivados del plásmido Ti de A robactertum tumefacíais como son los promotores de la Octopina Sintetasa, la Nopahna Sintetasa o la Agropina Sintetasa Además, se pueden incluir otros promotores como el promotoi 35S del virus del mosaico de la coliflor o aquellos derivados de geminivirus La expresión temporal, inducible o tejido específica puede sei lograda mediante el uso de promotores o secuencias regulatoπas que tienen la especificidad de expresión deseada Aunque hemos encontrado que la invención funciona utilizando promotores constitutivos, podría ser deseable considerar el uso de promotores específicos de raíz o aquellos que se activan por estrés causado por la falta de fosfato o fierro Por ejemplo, los promotores de los genes que codifican los transportadores de Fosfato, que se ha demostrado que se expresan de manera específica en las células del epitelio de la raíz (Muchhal U S , et al Proc Nati Acad. Sci 93 10519-10523)
La secuenciadora terminadora de la transcripción puede ser derivada del mismo gen de donde se obtuvo la secuencia promotora de la transcripción o de un gen distinto. La secuencia terminadora puede ser derivada de genes contenidos en el T-DNA del plásmido Ti de Agrobacterium, del virus del mosaico de la coliflor o de genes de origen vegetal. Por ejemplo, la secuencia terminadora del gen de la nopalina sintetasa es frecuentemente usado en la Ingeniería Genética de plantas.
La diferentes secuencias de ácidos nucleicos que forman parte de la molécula de ADN recombinante pueden ser unidas por métodos convencionales descritos en la literatura. La secuencias deben ser clonadas y unidas en la orientación y orden correcto para lograr la expresión funcional en células vegetales.
De acuerdo con uno de los aspectos de esta invención, las plantas de interés son transformadas con una molécula de ADN recombinante que codifica al menos una enzima capaz de sintetizar ácidos orgánicos. En el desarrollo de la molécula recombinante, las diferentes secuencias nucleotídicas que la componen y que comprenden las secuencias regulatorias de la transcripción y la secuencia codificante de interés, pueden haber sido sujetas a diferentes tipos de procesamiento, como son ligaciones, digestiones con enzimas de restricción, mutagénesis in vitro, adición de oligonucleótidos o modificaciones por medio de la reacción de polimerización en cadena (PCR). Por lo tanto, los componentes de la molécula recombinante antes de ser unidos pudieron estar sujetos a deleciones, inserciones o modificaciones internas. Como la molécula recombinante es derivada de componentes que se originan de diferentes organismos y que han sido aislados, purificados o sintetizados, no es una molécula que existe como tal en la naturaleza.
Dependiendo del método de transformación utilizado para introducir la molécula recombinante a la célula vegetal de interés, puede ser necesario la inclusión de otras secuencias de ADN. Por ejemplo, es necesario incluir un vector de clonación molecular que permita su replicación en E. coli y, para algunos casos, que permita la replicación en A. tumefaciens. También generalmente se incluye un gen de selección dominante que permita identificar y seleccionar la células que incorporaron de manera estable la molécula recombinante en su genoma. La molécula recombinante puede ser introducida en la célula vegetal deseada por cualquier método de transformación genética de plantas, entre las cuales se puede incluir, pero no se limita, los siguientes métodos de transformación: el sistema de transformación mediado por el plásmido Ti de Agrobacterium tumefaciens, la electroporación, la microinyección y la biobalística o bombardeo con micropartículas. Para el uso del sistema de transformación genética mediada por el plásmido
Ti de Agrobacterium para introducir la molécula recombinante en el genoma de la célula vegetal, es necesario incluir las secuencias bordes del T-DNA, de manera tal que estén presentes a ambos extremos del gen que codifica la enzima que sintetiza ácidos orgánicos y en algunos casos el gen de selección dominante. El uso de cepas de Agrobacterium desarmadas, es decir aquellas que se les han removido los genes responsables de la formación de tumores, pero que mantienen la capacidad de transferir ADN a células vegetales, permite la regeneración de plantas transgénicas que contienen la molécula recombinante de interés. La molécula de ADN recombinante que contiene el gen que codifica para la síntesis de ácidos orgánicos puede ser introducido en cualquier especie vegetal, incluyendo tanto monocotiledóneas como dicotiledóneas. De especial interés, es introducir la molécula recombinante en especies vegetales que por naturaleza tienen una baja capacidad de solubilizar Fósforo y Fierro del suelo o que son suceptibles a la toxicidad causada por el Aluminio. Ejemplos representativos de tales especies vegetales incluye pero no está limitada a maíz (Zea mays), arroz (Oryza sativa), trigo (Triticum sp ), sorgo (Sorghum bicolor), soya (Glycine max L.), tabaco (Nicotiana tabacum), tomate (Lycopersicum sculetum), papaya (Carica papaya) y papa (Solanum tuberosum). Después de la transformación de los tejidos, las células vegetales o de los protoplastos derivados de la planta de interés, plantas transgénicas que contienen en su genoma la molécula recombinante son regeneradas. Estas plantas transgénicas son capaces de transferir de manera estable la molécula recombinante a su progenie, sea ésta derivada de semillas, esquejes, tubérculos o cualquier otra estructura reproductiva.
Al crecer estas plantas en el campo, se podrá obtener una mayor productividad en aquellos suelos que tienen cantidades limitantes de nutrientes, en particular, pero no limitado a, Fósforo o Fierro. También se obtendrá una mejor producción en suelos ácidos donde se encuentran concentraciones tóxicas de Aluminio. En los casos que se aplique Fósforo como parte de los fertilizantes, se obtendrá un ahorro en la cantidad de fertilizante necesaria para obtener una productividad óptima.
Datos experimentales (Ejemplos)
La presente invención será ilustrada en los ejemplos que se describen a continuación, los cuales de ninguna manera se pretende que limiten la presente invención. Ejemplo 1
Expresión de la Citrato Sintasa de Pseudomona aeruginosa en el citoplasma de plantas transgénicas de Tabaco.
1. Selección de genes a ser usados Para obtener plantas que sobreproducen ácidos orgánicos, genes que codifican para enzimas que tienen la capacidad de sintetizar ácidos orgánicos fueron seleccionados. Uno de estos genes, el gen de Pseudomonas aeruginosa que codifica la enzima Citrato Sintasa fue seleccionado (Donald et al (1989), J . Bacteriol. 171 : 5542-5550). Esta enzima sintetiza ácido cítrico a partir de oxaloacetato y acetil-Coenzima A.
Para evitar que el ácido cítrico sintetizado por la Citrato Sintasa bacteriana, fuera convertido en otros de los componentes del ciclo de Krebs, se seleccionó al citoplasma como el compartimiento subcelular donde dicha enzima estaría localizada.
2. Construcción de la molécula recombinante 35SCSb para la expresión de Citrato Sintasa de Pseudomonas aeruginosa en plantas
I. Construcción del vector de expresión pB2 Para lograr la expresión de la secuencia codificante de la Citrato Sintasa de
Pseudomonas aeruginosa, primero se procedió a construir el vector de expresión pB2. Para ello, la región del promotor fotoinducible (cab 80 de chícharo) del vector pGV151 1 (Jofre-Garfias et al (1997), Plant Cell Reports 16: 847-852) delimitada por los sitios de restricción Hind III y Bam HI fue substituida por el fragmento Hind III - Bam HI del vector pBI 525 (Datla et al. (1993), Plant Science 94: 139-149.), que contiene al doble promotor 35S del virus del mosaico de la coliflor, la región potenciadora del virus del mosaico de la alfalfa y el sitio de inicio de la traducción (como parte del sitio Neo I). La substitución de la región promotora del vector pGVl 51 1 por la de pBI 525 se verificó mediante análisis de restricción doble empleando los sitios Xba I y Hind III.
//. Construcción de la molécula recombinante p35SCSb
La región que codifica Citrato Sintasa de Pseudomonas aeruginosa a partir del residuo aminoacídico número 9, correspondiente a la secuencia de gltA delimitada por los sitios de restricción Bel I y Bam HI, fue movilizada desde el vector pPKB (Donald et al. (1989), J. Bacteriol. 171 : 5542-5550) al sitio Bam HI de pB2. La orientación del fragmento clonado se determinó por análisis del fragmento liberado por una doble restricción empleando las enzimas Xba I y Bam
HI. Al clonar el fragmento Bel I - Bam HI en la dirección correcta en pB2 la secuencia codificante de la citrato sintasa es modificada en sus 8 primeros residuos aminoacídicos respecto al péptido nativo, pues la secuencia en pPKB codifica Met-
Ala-Asp-Lys-Lys-Ala-Glu-Leu, en tanto que en p35SCSb se codifica para Met-
Ala-Ser-Arg-Pro; el resto de la secuencia polipeptídica que codifican ambas construcciones es la misma. Para verificar el marco de lectura y la ausencia de modificaciones en la secuencia de la molécula recombinante p35SCSb, se determinó la secuencia de 600 pares de bases a partir del sitio Xba I de p35SCSb por el método de Sanger. La figura 1 ilustra los pasos seguidos para la obtención de p35SCSb a partir de sus diferentes componentes.
3. Obtención de plantas transgénicas que contiene en su genoma ¡a molécula recombinante 35SCSb
El plásmido p35SCSb fue conjugado de E. coli a la cepa de Agrobacterium LB4404 (Hoekema A. et al. (1983), Nature 303, 179-180) usando el sistema de conjugación triparental que usa el plásmido asistente (heper plasmid) pRK2013 (Lam S.T. et al. (1985), Plasmid 13, 200-204). La molécula recombinante fue introducida en el genoma de Tabaco (Nicotiana tabacum L. var. xanthi) usando el método de transformación de discos de hoja (Horsh R. B. et al (1985), Science 227, 1229-1232). Las plantas regeneradas, denominadas plantas CSb, fueron seleccionadas por su crecimiento en medio selectivo que contiene 50 microgramos de kanamicina por militro de medio de cultivo.
4. Análisis de las plantas CSb
Para confirmar que las plantas CSb contenían la molécula recombinante, ADN genómico fue extraído de las hojas de dichas plantas por métodos convencionales, digerido con las enzimas de restricción Hind III y Bam HI, sometido a electrofóresis en un gel agarosa al 1 % en buffer TBE, transferido a membranas de nylon e hibridizado con una sonda específica para el gen de la Citrato Sintasa de Pseudomonas aeruginosa. Encontrándose que la mayoría de las plantas resistentes a kanamicina contenían el casette de expresión de la Citrato Sintasa de P. aeuroginosa. Para verificar que el casette de expresión era funcionalmente transcrito en las plantas CSb, ARN total de dichas plantas fue extraído usando técnicas convencionales y sometido a un análisis de hibridación tipo Northern utilizando como sonda detectara un fragmento de AND correspondiente a la secuencia codificante de la Citrato Sintasa de P. aeruginosa. Se encontró que la mayoría de las plantas contenían niveles detectables de ARN mensajero correspondiente a la Citrato Sintasa. Los niveles de ARN mensajero detectados para cada línea fueron variables como es normalmente encontrado en experimentos de transformación de plantas. Esta variación en los niveles de expresión de genes foráneos introducidos a plantas depende principalmente del sitio de inserción en el genoma de la planta blanco y que es conocido como el efecto de posición. Se seleccionó la progenie T2 de plantas homocigotas con una copia de la molécula recombinante para análisis posteriores. No se observaron diferencias fenotípicas obvias entre las plantas que contienen el T-DNA p35SCSb y plantas control al ser crecidas bajo condiciones de invernadero, salvo que algunas plantas transgénicas producian más biomasa y una mayor cantidad de semillas. El análisis bioquímico de líneas transgénicas CSb (Srere, P. (1969).
Enzymol, 13:3-22) mostró que varias de ellas presentaban niveles elevados de actividad Citrato Sintasa respecto de las plantas control no transformadas. Se seleccionaron cuatro líneas con niveles de actividad Citrato Sintasa entre dos y tres veces mayores al control ( ver figura 2). La presencia de la CS bacteriana en las líneas CSb fue confirmada por análisis tipo Western empleando un antisuero (Donald, J.L, et al.. (1989.). Journal of Bacteriology. 5542-5550) que no reconoce a la enzima vegetal. El análisis densitométrico de la detección por análisis tipo Western de la CS bacteriana mostró una buena correlación entre el nivel de CS bacteriana y el incremento detectado en la actividad Citrato Sintasa en las diferentes líneas CSb, demostrando que los niveles incrementados de Citrato Sintasa en las plantas CSb es debido a la expresión de la molécula recombinante que codifica la Citrato Sintasa de P. aeruginosa.
Para determinar si la expresión de la CS en el citoplasma de las células vegetales ocasiona un incremento en el contenido de citrato, se analizaron extractos totales y de raíces de las líneas CSb mediante cromatografía líquida de alta presión y se compararon con los del control no transformado. Para determinar el contenido en los extractos de raíz, 1 gramo de tejido fue molido en nitrógeno líquido y extraído con 10 mililitros de etanol a punto de ebullición. El extracto fue centrifugado a 1000 revoluciones por minuto por 10 minutos y el sobrenadante filtrado en un filtro milipore con un poro de 45 mieras. El contenido de ácidos orgánicos fue determinado de acuerdo a la técnica de Picha HD. (1985.).
J.Agric.Food Chem. 33: 743-745. Se encontró que las líneas que expresan la construcción p35SCSb, presentan niveles de citrato en sus raíces hasta 10 veces mayores que las plantas control no transformadas (ver figura 3). Se ha sugerido que la exudación, más que una acumulación intracelular de citrato, es probablemente la causa directa de la capacidad de ciertas plantas para poder disolver y utilizar compuestos insolubles de ciertos nutrientes o para tolerar la presencia de concentraciones tóxicas de ciertos compuestos como el Aluminio, por lo cual examinamos si un incremento en la síntesis de citrato en las plantas CSb pudiese conducir a un incremento en su excreción. Para cuantificar el nivel de secreción de citrato en las raíces de las plantas CSb y control, 50 plántulas de cada fueron germinadas en medio semisólido y posteriormente transferidas a agua estéril por 12 horas; la cantidad de citrato exudada al agua fue determinada por el método de cromatografía de alta presión de Picha H. D. Se encontró que las plantas de las líneas CSb seleccionadas tenían niveles de citrato exudado hasta 4 veces superior al de las plantas control (ver figura 3). La identidad química del compuesto que es exudado de manera incrementada en las líneas CSb se confirmó como citrato mediante técnicas convencionales de espectroscopia de masas.
Ejemplo 2
Propiedades adquiridas por las plantas transgénicas que contienen en su genoma la molécula recombinante que codifica para la Citrato Sintasa de Pseudomonas aeruginosa.
1. Mayor eficiencia en la toma de disolución y toma de Fosfato
Con la intención de simular las condiciones nutricionales que prevalecen en un suelo vertisol (cuyo impacto en la nutición por Fosfato ya se ha descrito) decidimos emplear como sustrato un suelo compuesto por arena-limo en proporción 1 : 1 el cual registra un pH de 8.2. El nivel de fósforo es menor a 5ppm. A este suelo se incorporaron dos tratamientos de Fósforo, utilizando como fuente el fosfato de Sodio (NaH2PO4), a una concentración de 22 y 44 partes por millón (ppm). El fosfato de Sodio se incorporó al suelo en una sola aplicación al inicio del experimento. El fosfato de sodio es una fuente de Fósforo fácilmente asimilable por las plantas, pero del cual una parte importante se convierte en formas insolubles no utilizables en las condiciones utilizadas. El resto de los nutrientes necesarios para el crecimiento de las plantas se suministró en solución acuosa que se aplicó diariamente durante el transcurso del experimento que tuvo una duración de 6 meses.
El material vegetal utilizado consistió en dos líneas de plantas transgénicas denominadas CSb 5-4 y CSb 5-18, que sobreexpresan el gen de la citrato sintasa de P. aeuroginosa y una planta silvestre (1522) que fue utilizada como control.
Las plantas se establecieron en bolsas se polietileno conteniendo 2 kilogramos de suelo con el tratamiento de Fósforo respectivo. Se diseñó un acomodo aleatorio de las plantas en el invernadero formando bloques al azar consistiendo cada tratamiento de 24 repeticiones.
Con la intención de monitorear de una manera más estricta el desarrollo de las plantas se efectuaron muéstreos en 3 etapas del desarrollo de la plantas: crecimiento vegetativo, floración y fructificación. De cada etapa se analizaron 8 plantas para medir las siguientes variables agronómicas: altura de la planta, área foliar, peso fresco de la fronda, peso seco de la fronda, peso seco de la raíz. También se determinaron el número de flores (para la etapa de floración) y número y peso seco total de cápsulas o frutos (Para la etapa de fructificación).
El análisis de los datos obtenidos para cada uno de los tratamientos y cada una de las variables analizadas, reveló que existe una correlación entre ellas, es decir que plantas con mayor altura tenían mayor área folear y mayor peso seco. Debido a esta correlación y que el peso seco representa de manera más directa la cantidad de biomasa acumulada por cada línea en los diferentes tratamientos, en la figura 4 se presentan solo los resultados obtenidos para este último parámetro en la última etapa de evaluación, el cuál representa el total de biomasa acumulada por la planta durante todo su ciclo de vida. El peso seco de las cápsulas, fronda y total se determinó de la siguiente manera: a) Peso seco total de cápsulas (Incluye la biomasa acumulada en el total de frutos).
La colecta de las cápsulas se realizó en plena etapa de senescencia de la planta, una vez que el llenado del grano había concluido. La cosecha se realizó cuidadosamente escindiendo las cápsulas desde la base del pedúnculo y depositándolas en bolsas de papel dextrasa. Las bolsas se etiquetaron adecuadamente y se incluyeron para el secado del material vegetal en una estufa Heraeus Baureihe 6000 a una temperatura de 70 grados centígrados durante 72 horas. El material seco se pesó en una balanza analítica Mettler PE 360 y los datos obtenidos se sometieron a un análisis estadístico de varianza (anova) y de comparación de medias con el método de Tukey. b) Peso seco de la fronda (Incluye la biomasa total de tallo y hojas).
Las hojas se cosecharon desde la base del peciolo y se incluyeron en conjunto en bolsas de papel dextrasa. El tallo se escindió desde la corona (la zona del tallo más próxima al suelo). Todo el material proveniente de la misma planta se incluyó en una sola bolsa de papel debidamente etiquetada. Las muestras se secaron en una estufa Heraeus Baureihe 6000 a temperatura de 70 grados centígrados durante 72 horas. El material seco se pesó en una balanza analítica Mettler PE 360 y los datos obtenidos se sometieron a un análisis estadístico de varianza (anova) y de comparación de medias con el método de Tukey. c) Peso seco total de la planta ( incluye peso de la fronda y capsulas). Este parámetro se determinó sumando el peso total de la fronda y el peso total de las cápsulas. El análisis estadístico reveló que las plantas transgénicas CSb 5-4 y 5-18 que expresan el gen de la citrato sintasa de P. aeruginosa acumulan un mayor peso seco total de las cápsulas que la planta control ( 1522) en el tratamiento de 22 partes por millón (ppm) de fósforo, ver figura 4. La diferencia es significativa con un intervalo de confianza del 95, siendo las plantas transgénicas las que acumularon mayor biomasa.
En el tratamiento de 44 ppm, la línea transgénica B5 18 acumuló mayor biomasa que la transgénica CSb 5-4 y la planta control (1522). La diferencia en el peso seco de las cápsulas entre la línea CSb 5-18 y la control 1522 fue estadísticamente significativa, con un intervalo de confianza del 95% (ver figura 5).
El análisis del peso seco total de las plantas transgénicas CSb y plantas control, mostró que en los tratamientos de 22 y 44 ppm existe diferencia significativa entre las líneas de plantas evaluadas con un intervalo de confianza del 95 %. Se encontró que la línea transgénica CSb 5-18 acumuló mayor biomasa en fronda que la línea transgénica CSb 5-4, y que ambas líneas transgénicas acumularon mayor biomasa en fronda que la planta control no transformada (ver figura 4 y 5).
El análisis del peso seco total de las plantas transgénicas CSb y la planta control, confirmó que las plantas transgénicas acumulan más biomasa que las plantas control no transformadas: 1) en el tratamiento de 22 ppm, las dos líneas transgénicas acumularon valores mayores de biomasa total que la planta control, siendo estas diferencias estadísticamente significativas; 2) En el tratamiento de 44 ppm, la planta transgénica CSb 5-18 acumuló significativamente más biomasa en peso seco total que la planta control, mientras que no se observó diferencias significativas entre el peso seco total de la linea CSb 5-4 y el control (ver figura 4).
Los resultados obtenidos demuestran que las plantas trasgénicas, que tienen una capacidad incrementada de síntesis y exudación de ácidos orgánicos, acumulan más biomasa que sus contrapartes no transgénicas cuando son crecidas en condiciones de fósforo disponible limitante. También es importante señalar que la línea CSb 5-18 que exuda más ácidos orgánicos que la CSb 5-4, produjo en ambas condiciones más biomasa, lo que comprueba que la capacidad de exudación de ácidos orgánicos tiene una correlación directa con el crecimiento y acumulación de biomasa en condiciones limitantes de fósforo disponible. También es importante señalar que la biomasa acumulada por las plantas CSb 5-18 en el tratamiento donde se suplemento con 22 ppm de fósforo, fue igual o superior a la biomasa acumulada por las plantas control crecidas a 44 ppms de fósforo (ver figura 6). Esto demuestra que con una aplicación de la mitad del fertilizante fosfórico, la planta transgénica CSb 5-18 puede acumular tanta o más biomasa que una planta control no transformada crecida en el doble de fertilizante.
2. Tolerancia de las plantas de Tabaco que contienen niveles incrementados de síntesis, acumulación y exudación de citrato a niveles tóxicos de aluminio a pH ácido.
Debido a que la evidencia del papel de la excreción de citrato en la tolerancia al aluminio es indirecta, fué necesario determinar si las líneas CSb con niveles elevados de síntesis y excreción de citrato eran más tolerantes que las plantas control a concentraciones fitotóxicas de aluminio. Dado que el crecimiento de la raíz se ha demostrado que correlaciona con la tolerancia al aluminio, cuantificamos el efecto que concentraciones crecientes de aluminio tienen sobre el crecimiento de la raíz en las líneas CSb de Tabaco.
Para evaluar el efecto del aluminio en el crecimiento de las raíces se utilizó la técnica de transferencia vertical (Taiz L and Murphy, A. (1995.). Plant Physiology. 108: 29-38.). Esta técnica permite establecer el efecto tóxico sobre el desarrollo de la raíz por compuestos adicionados a la solución nutritiva, desde el momento mismo de su aplicación. En nuestros experimentos se germinaron 100 semillas de la progenie T2 de
CSb homocigotas y plantas control sobre placas cubiertas con papel filtro y humectadas por capilaridad con solución nutritiva Blaydes a pH 4.3. A los 7 días de germinación se rotan las placas que contienen las plántulas en 90 grados y la solución nutritiva es reemplazada por solución nutritiva adicionada con aluminio y con pH ajustado a 4.3. Después de 7 días de crecer en presencia de aluminio, tiempo durante el cual se monitoreo diariamente el pH, el cual se encontró no cambiar en más de 0.2 unidades, se cuantificó la longitud de la raíz para cada línea. Se observó que la inhibición del crecimiento de la raíz, al incrementar la concentración del aluminio, es significativamente menor en las líneas CSb respecto a la línea control. El análisis estadístico utilizando la contrastación de un sólo grado de libertad del análisis combinado de varianza (ANOVA) de dos experimentos independientes indicó diferencias significativas entre el control y las líneas CSb en todas las concentraciones evaluadas (P 0.0001), con la excepción de 50μM, para la cual no se obtuvo diferencia significativa (ver figura 5).
Para evaluar si la sobreproducción de citrato también tenía un efecto en el desarrollo de la raíz de semillas germinadas directamente en medio conteniendo aluminio (a pH 4.3), se germinaron semillas del control y líneas CSb en medio con aluminio en concentraciones de 0.1 a l μM. Se observó que en concentraciones mayores a 300 μM, las semillas control germinaron pero no desarrollaron sistema radical . La inspección en detalle de las raíces de las plantas control germinadas en medio conteniendo aluminio mostró que en bajas concentraciones (50-75 μM) de este elemento tóxico tenía solo un efecto ligero en el desarrollo longitudinal de la raíz, pero inhibía severamente el desarrollo de pelos radiculares, y que, en concentraciones mayores a 300 μM se detiene completamente el crecimiento de la raíz y el desarrollo de pelos radiculares. Cuando las líneas CSb se germinaron en medio conteniendo aluminio, se observó que tanto el crecimiento de la raíz y el desarrollo de los pelos radiculares fue alterado en menor grado por niveles tóxicos de aluminio que los controles y que el aspecto de la raíz para cada línea CSb, en presencia de concentraciones tóxicas de aluminio, correlaciona con su actividad CS y nivel de citrato determinados previamente .
Para corroborar que el fenotipo de tolerancia a aluminio es debido a la presencia del trasgen 35S-CSb en el genoma de las líneas transgénicas de tabaco, el patrón de segregación de tolerancia a aluminio fue examinado en la progenie TI de las líneas seleccionadas. Se observó una segregación de fenotipos tolerantes/susceptibles con un patrón 3: 1 en las líneas que contienen inserciones sencillas, y que la tolerancia a Aluminio consegrega con el gen de resistencia a kanamicina presente en el T-DNA del vector binario empleado para la producción de líneas CSb, confirmando que el fenotipo de resistencia se debe a la presencia de la construcción 35S-CSb en el genoma de las líneas transgénicas de Tabaco analizadas.
Ejemplo 3
Aplicabilidad general de la tecnología
1. Aplicación a diferentes especies vegetales Para demostrar que la invención es aplicable a otras especies vegetales diferentes al Tabaco, el T-DNA contenido en la molécula recombinante p35S-CSb fue introducido al genoma de plantas de Papaya mediante el sistema de transformación por bombardeo de partículas (Cabrera-Ponce et al. (1995), Plant Cell Reports 15: 1-7). Tal como se observó previamente para Tabaco, se encontró que las líneas de Papaya presentaron niveles de actividad Citrato Sintasa 2 a 3 veces mayores que los controles transformados con el vector sin la secuencia codificante para CS. Para probar el nivel de tolerancia a aluminio en las líneas CSb de Papaya, se transfirieron 20 plantas regeneradas de cada línea a medio de enraizamiento conteniendo diferentes concentraciones de aluminio. Se encontró que el desarrollo de la raíz fue inhibido completamente en las plantas control expuestas a concentraciones de 50 μM aluminio o mayores, siendo así la Papaya más sensible a la toxicidad por aluminio que el Tabaco. Bajo estas condiciones las plantas control no sólo no formaron raíces, sino que fueron incapaces de formar hojas nuevas o de expander las existentes. En contraste, se encontró que las líneas CSb de Papaya fueron capaces de formar raíces y crecer normalmente en concentraciones de aluminio hasta de 300 μM.
Breve descripción de las figuras
Figura 1. Muestra la construcción de p35SCSb. Se indica también la secuencia nucleotídica y de aminoácidos en el sitio de la iniciación de la traducción del gen original de la CS de Pseudomonas aeruginosa (pPKB), la del vector de expresión pB2 y la secuencia resultante en p35SCSb, resultado de la clonación del fragmento Bel I-Bam HI que contiene la mayor parte de la secuencia codificante de la CS en el vector de expresión pB2. Figura 2. Determinación de la actividad de citrato sintasa presente en extractos de plantas transgénicas CSb y plantas control 1522. Se puede observar que las plantas transgénicas tienen una actividad de citrato sintasa aumentada con respecto del control.
Figura 3. Determinación de los niveles de citrato presentes en extractos de raíz de plantas transgénicas CSb y plantas control. También se presenta el nivel de citrato exudado por las plantas transgénicas CSb y las plantas control. Se puede observar que las plantas transgénicas tienen una capacidad incrementada de acumular y exudar ácido cítrico con respecto a las plantas control.
Figura 4. Determinación de la biomasa acumulada por plantas transgénicas de tabaco que sobreexpresan el gen de la citrato sintasa de Pseudomonas aeuroginosa (CSb 5-4 y CSb 5-18) y plantas control (1522) crecidas en presencia de 22 partes por millón de fósforo. La biomasa acumulada se presenta como peso seco de capsulas, fronda y capsulas + fronda. Los resultados presentados son el promedio y error estándar de ocho repeticiones por tratamiento. El análisis estadístico (ANOVA y prueba de Tukey), reveló que existe un aumento en el rendimiento en las plantas transgénicas comparado con las plantas control en las concentraciones de fósforo que se probaron.
Figura 5. Determinación de la biomasa acumulada por plantas transgénicas de tabaco que sobreexpresan el gen de la citrato sintasa de Pseudomonas aeuroginosa (CSb 5-4 y CSb 5-18) y plantas control (1522) crecidas en presencia de 44 partes por millón de fósforo. La biomasa acumulada se presenta como peso seco de cápsulas, fronda y cápsulas + fronda. Los resultados presentados son el promedio y error estándar de ocho repeticiones por tratamiento. El análisis estadístico (ANOVA y prueba de Tukey), reveló que existe un aumento en el rendimiento en las plantas transgénicas comparado con las plantas control en las concentraciones de fósforo que se probaron.
Figura 6. Comparación de la biomasa total producida por las plantas trangénicas CSb 5-18 y las plantas control, crecidas a 22 y 44 partes por millón de fósforo.
Figura 7. Determinación del efecto de concentraciones crecientes de aluminio a pH 4.5 sobre el crecimiento de la raíz de platas transgénicas CSb y plantas control. El efecto está graficado como el porcentaje de inhibición del crecimiento de la raíz en presencia de aluminio con respecto al crecimiento de las mismas plantas en ausencia de aluminio. Se puede observar que las raices de las plantas transgénicas CSb crecen mejor en presencia de concentraciones tóxicas de aluminio.

Claims

REIVINDICACIONES
1. Método para la obtención de plantas transgénicas que tienen una capacidad aumentada de sintetizar, acumular y exudar ácidos orgánicos, por integración a su genoma de una molécula de ADN recombinante heteróloga, que codifica para enzimas que sintetizan ácidos orgánicos, que comprende los siguientes pasos:
a) La preparación de una molécula de ADN recombinante heteróloga que comprende uno o más genes que codifican para enzimas que sintetizan ácidos orgánicos, funcionalmente ligadas a una secuencia promotora de la transcripción funcional en plantas, y a una secuencia terminadora de la transcripción funcional en plantas. b) La transformación de células vegetales con la molécula de ADN recombinante , y c) La regeneración de plantas transgénicas a partir de células transformadas, o de semillas de plantas obtenidas de dichas células transformadas, por una o varias generaciones, donde la información genética de dichas células transformadas, incluye la molécula de ADN recombinante que codifica para enzimas que sintetizan ácidos orgánicos.
2. El método de la reivindicación 1 donde la molécula de ADN recombinante comprende uno o más genes microbianos que codifican para una enzima que sintetiza ácidos orgánicos.
3. El método de la reivindicación 1 donde la molécula de ADN recombinante comprende un gen de origen vegetal que codifica para una enzima que sintetiza ácidos orgánicos.
4. El método de la reivindicación 1 donde la molécula de ADN recombinante comprende un gen de origen animal que codifica para una enzima que sintetiza ácidos orgánicos.
5. El método de la reivindicación 2 donde la molécula de ADN recombinante comprende uno o más gene bacterianos que codifican para una enzima que sintetiza ácidos orgánicos.
6. El método de la reivindicación 1 donde la molécula recombinante comprende un gen que codifica para la enzima Citrato Sintasa.
7. El método de la reivindicación 1 donde la molécula recombinante comprende un gen que codifica para la enzima Malato Deshidrogenasa.
8. El método de la reivindicación 1 donde la enzima que sintetiza ácidos orgánicos o se localiza en el citoplasma..
9. El método de la reivindicación 1 donde la enzima que sintetiza ácidos orgánicos se localiza en cloroplasto.
10. El método de la reivindicación 1 donde la enzima que sintetiza ácidos orgánicos se localiza en la mitocondria.
11. El método de la reivindicación 5 donde la molécula recombinante comprende un gen de Pseudomonas aeruginosa que codifica la Citrato Sintasa.
12. El método de las reivindicaciones 1-10 donde el terminador de la transcripción es el terminador de la transcripción del gen de la Nopalina Sintetasa.
13. El método de las reivindicaciones 1-10 donde el promotor es un promotor constitutivo.
14. El método de las reivindicaciones 1-10 donde el promotor es un promotor específico de raíces.
15. El método de las reivindicaciones 1-10 donde el promotor es un promotor inducible por estrés causado por baja disponibilidad de Fosfato.
16. El método de las reivindicaciones 1-10 donde el promotor es un promotor inducible por estrés causado por baja disponibilidad de Fierro.
17. El método de las reivindicaciones 1-10 donde el promotor es el promotor 35S del virus del mosaico de la coliflor.
18. El método de las reivindicaciones 9 y 10 donde la molécula recombinante comprende una secuencia de peptido señal para dirigir una enzima heteróloga que sintetiza ácidos orgánicos al cloroplasto o la mitocondria de las células transgénicas.
19. Una molécula de ADN recombinante heteróloga que comprende uno o más genes que codifican para enzimas que sintetizan ácidos orgánicos, funcionalmente ligadas a una secuencia promotora de la transcripción funcional en plantas, y a una secuencia terminadora de la transcripción funcional en plantas.
20. La molécula de ADN recombinante de la reivindicación 19, donde el gen que codifica para la enzima que sintetiza ácidos orgánicos, es uno o más genes microbianos.
21. La molécula de ADN recombinante de la reivindicación 19, donde el gen que codifica para la enzima que sintetiza ácidos orgánicos es un gen de origen vegetal.
22. La molécula de ADN recombinante de la reivindicación 19, donde el gen que codifica para la enzima que sintetiza ácidos orgánicos es un gen de origen animal.
23. La molécula de ADN recombinante de la reivindicación 19, donde el gen que codifica para la enzima que sintetiza ácidos orgánicos es uno o más genes bacterianos.
24. La molécula de ADN recombinante de la reivindicación 19, donde el gen que codifica para la enzima que sintetiza ácidos orgánicos es un gen que codifica para la enzima citrato sintasa.
25. La molécula de ADN recombinante de la reivindicación 19, donde el gen que codifica para la enzima que sintetiza ácidos orgánicos es un gen de
Pseudomonas aeruginosa que codifica para la enzima citrato sintasa.
26. La molécula de ADN recombinante de la reivindicación 19, donde el gen que codifica para la enzima que sintetiza ácidos orgánicos es un gen que codifica para la enzima Malato Deshirogenasa.
27. La molécula de ADN recombinante de la reivindicación 19, donde el gen que codifica para la enzima que sintetiza ácidos orgánicos es un enzima que se localiza en el citoplasma.
28. La molécula de ADN recombinante de la reivindicación 19, donde el gen que codifica para la enzima que sintetiza ácidos orgánicos es un enzima que se localiza en cloroplasto.
29. La molécula de ADN recombinante de la reivindicación 19, donde el promotor es un promotor es un promotor constitutivo.
30. La molécula de ADN recombinante de la reivindicación 19, donde el promotor es un promotor es un promotor específico de raíces.
31. La molécula de ADN recombinante de la reivindicación 19, donde el promotor es un promotor es un promotor inducible por estrés causado por baja disponibilidad de Fosfato.
32. La molécula de ADN recombinante de la reivindicación 19, donde el promotor es un promotor es un promotor inducible por estrés causado por baja disponibilidad de Fierro.
33. La molécula de ADN recombinante de la reivindicación 19, donde el promotor es un promotor es el promotor 35S del virus del mosaico de la coliflor.
34. La molécula de ADN recombinante de la reivindicación 19, que comprende una secuencia que codifica un péptido de tránsito para cloroplasto o mitocondria funcional en plantas.
35. La molécula de ADN recombinate de la reivindicación 19, que comprende una secuencia que codifica para un terminador de la transcripción que es el terminador de la trascripción del gen de la Nopalina Sintetasa.
36. La molécula de ADN recombinante de la reivindicación 19, como se define en la figura 1.
37. El vector que comprende la molécula de ADN recombinante de la reivindicación 19.
38. Plantas transgénicas con capacidad incrementada de sintetizar, acumular y exudar ácidos orgánicos por integración a su genoma de una molécula de ADN recombinante heteróloga como se define en cualquiera de las reivindicaciones 19 a 36.
39. Las plantas transgénicas de la reivindicación 38 que son tolerantes a concentraciones tóxicas de Aluminio.
40. Las plantas transgénicas de la reivindicación 38 que tienen capacidad incrementada para solubilizar o acumular Fosfato.
41. Las plantas transgénicas de la reivindicación 38 que tienen capacidad incrementada para solubilizar o acumular Fierro.
42. Las plantas transgénicas de la reivindicación 38 que requiere menos fertilizante para su crecimiento.
43. Las plantas transgénicas de la reivindicación 38 que se desarrollan mejor o tiene mayor productividad en suelos ácidos.
44. Las plantas transgénicas de la reivindicación 38, donde la planta es una monocotiledónea
45. Plantas transgénicas de la reivindicación 38, donde la planta es una dicotiledónea
46. Plantas transgénicas de la reivindicación 44, donde la planta pertenece a cualquiera de las familias: Poaceae ó Lileaceae.
47. Plantas transgénicas de la reivindicación 45, donde la planta pertenece a cualquiera de las familias: Leguminoseae, Solenaceae, Caricaceae ó Cucurbitaceae.
48. Plantas transgénicas de la reivindicación 44, donde la planta pertenece a cualquiera de la especies: Triticum spp, Oryza sativa, Zea mays, Sorghum bicolor, Avena sativa ó Saccharum officcianarum.
49. Plantas transgénicas de la reivindicación 45, donde la planta pertenece a cualquiera de las especies: Solanum tuberosum, Lycopersicum sculentum ó Glycine max.
50. Plantas transgénicas de la reivindicación 45, donde la planta es del género Nicotiana
51. Plantas transgénicas de la reivindicación 50, donde la planta es de la especie Nicotiana tabacum.
52. Plantas transgénicas de la reivindicación 45, donde la planta es del género Carica.
53. Plantas transgénicas de la reivindicación 52, donde la planta es de la especie Carica papaya.
54. El uso de las plantas transgénicas de la reivindicación 26 en suelos ácidos.
55. El uso de las plantas transgénicas de la reivindicación 26 en suelos que contengan fosfatos en formas no disponibles para la nutrición vegetal.
56. El uso de las plantas transgénicas de la reivindicación 26 para prácticas o sistemas de cultivo que usen menos fertilizante.
57. Las semillas transgénicas obtenibles de una planta transgénica como se define en la reivindicación 26.
58. Una célula transformada o protoplasto transformado con la molécula de ADN recombinante como se define en cualquiera de las reivindicaciones 19 a 36.
PCT/MX1998/000020 1998-05-29 1998-05-29 Metodo para la obtencion de plantas transgenicas que tienen una capacidad mejorada para la toma de nutrientes y la tolerancia a compuestos toxicos presentes en el suelo WO1999063100A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU75533/98A AU772220B2 (en) 1998-05-29 1998-05-29 Process for obtaining transgenic plants which have an improved capacity for the uptake of nutrients and tolerance to toxic compounds which are present in the soil
PCT/MX1998/000020 WO1999063100A1 (es) 1998-05-29 1998-05-29 Metodo para la obtencion de plantas transgenicas que tienen una capacidad mejorada para la toma de nutrientes y la tolerancia a compuestos toxicos presentes en el suelo
EP98923194A EP1122316A4 (en) 1998-05-29 1998-05-29 PROCESS FOR OBTAINING TRANSGENIC PLANTS HAVING IMPROVED NUTRITIONAL TOLERANCE AND TOLERANCE CAPACITY FOR TOXIC COMPOUNDS IN THE SOIL
BR9815878-3A BR9815878A (pt) 1998-05-29 1998-05-29 Método para obtenção de plantas transgênicas que apresentam capacidade aperfeiçoada de absorção de nutrientes e tolerância a compostos tóxicos presentes em solos
US10/898,322 US20050137386A1 (en) 1998-05-29 2004-07-26 Process for obtaining transgenic plants which have improved capacity for the uptake of nutrients and tolerance to toxic compounds which are present in the soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX1998/000020 WO1999063100A1 (es) 1998-05-29 1998-05-29 Metodo para la obtencion de plantas transgenicas que tienen una capacidad mejorada para la toma de nutrientes y la tolerancia a compuestos toxicos presentes en el suelo

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/898,322 Division US20050137386A1 (en) 1998-05-29 2004-07-26 Process for obtaining transgenic plants which have improved capacity for the uptake of nutrients and tolerance to toxic compounds which are present in the soil

Publications (1)

Publication Number Publication Date
WO1999063100A1 true WO1999063100A1 (es) 1999-12-09

Family

ID=19745012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX1998/000020 WO1999063100A1 (es) 1998-05-29 1998-05-29 Metodo para la obtencion de plantas transgenicas que tienen una capacidad mejorada para la toma de nutrientes y la tolerancia a compuestos toxicos presentes en el suelo

Country Status (4)

Country Link
US (1) US20050137386A1 (es)
EP (1) EP1122316A4 (es)
AU (1) AU772220B2 (es)
WO (1) WO1999063100A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ542731A (en) * 2003-04-14 2008-04-30 Agriculture Victoria Serv Pty Manipulation of organic acid biosynthesis and secretion
US20120216315A1 (en) * 2008-06-13 2012-08-23 Basf Plant Science Methods in Increasing Grain Value by Improving Grain Yield and Quality
CN107058115A (zh) * 2008-11-19 2017-08-18 国家政治研究所高级研究中心(高级研究中心) 能够代谢亚磷酸盐作为磷源的转基因植物和真菌

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONALD L. J., MOLGAT G. F., DUCKWORTH H. W.: "CLONING, SEQUENCING, AND EXPRESSION OF THE GENE FOR NADH-SENSITIVE CITRATE SYNTHASE OF PSEUDOMONAS AERUGINOSA.", JOURNAL OF BACTERIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 171., no. 10., 1 October 1989 (1989-10-01), US, pages 5542 - 5550., XP002918866, ISSN: 0021-9193 *
FUENTE DE LA J. M., ET AL.: "ALUMINUM TOLERANCE IN TRANSGENIC PLANTS BY ALTERATION OF CITRATE SYNTHESIS.", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 276., 6 June 1997 (1997-06-06), US, pages 1566 - 1568., XP002918865, ISSN: 0036-8075, DOI: 10.1126/science.276.5318.1566 *
See also references of EP1122316A4 *

Also Published As

Publication number Publication date
US20050137386A1 (en) 2005-06-23
AU772220B2 (en) 2004-04-22
EP1122316A4 (en) 2002-08-28
AU7553398A (en) 1999-12-20
EP1122316A1 (en) 2001-08-08

Similar Documents

Publication Publication Date Title
Ameziane et al. Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development
Sanmartin et al. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone
Gómez-Galera et al. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress
JP2002529079A (ja) 改変されたリブロース1,5−ビスホスフェートカルボキシラーゼ/オキシゲナーゼ
CN104302773A (zh) 增加植物对热胁迫的耐受性及氨基酸含量的方法
EP2976941A1 (en) Plants with improved nitrogen utilization and stress tolerance
CN110678552A (zh) 具有提高的光呼吸效率的植物
EP3337901B1 (en) Atypical cys his rich thioredoxin 4 (acht4) blockers and methods of use thereof
AU2010315390B2 (en) Plants with improved nitrogen utilization and stress tolerance
JP5273624B2 (ja) シネコシスティス(Synechocystis)から単離されたSyFBP/SBPase遺伝子を過発現させることによって植物の耐塩性を向上させる方法及びその方法によって製造された植物
CN112322648A (zh) 一种abc转运蛋白基因mrp1s及其制备方法和应用
EP2334798A2 (en) Glutamate decarboxylase (gad) transgenic plants that exhibit altered plant architecture
CN107325161A (zh) 一种与耐低氮胁迫和高盐胁迫相关的蛋白及其编码基因与应用
WO1999063100A1 (es) Metodo para la obtencion de plantas transgenicas que tienen una capacidad mejorada para la toma de nutrientes y la tolerancia a compuestos toxicos presentes en el suelo
US6518486B1 (en) Enhanced storage organ production in plants
US20220145318A1 (en) Methods of enhancing biomass in a plant through stimulation of rubp regeneration and electron transport
CA2906278A1 (en) A prokaryotic-type isocitrate dehydrogenase and its application for improving nitrogen utilization in transgenic plants
US9725701B2 (en) Prokarytoic-type isocitrate dehydrogenase and its application for improving nitrogen utilization in transgenic plants
WO2010007496A2 (en) Nitrogen use efficient transgenic plants
CA2758247A1 (en) Herbicide resistant camelina sativa
KR101509032B1 (ko) 시아노박테리아 유래 유전자를 이용한 광호흡 억제 및 스트레스 내성이 증진된 형질전환 식물체의 제조방법 및 그에 따른 식물체
US7629502B2 (en) Non-antibiotic selection marker genes
Peng et al. Characterization of transgenic Poncirus trifoliata overexpressing the ferric chelate reductase gene CjFRO2 from Citrus junos
CN118360327A (zh) 一种植物超表达载体及制备方法和应用
AU2022422610A1 (en) Methods for reducing nitrous oxide production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA MX NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/A/2000/011803

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1998923194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 509136

Country of ref document: NZ

Ref document number: 75533/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09701589

Country of ref document: US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 1998923194

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998923194

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 75533/98

Country of ref document: AU