WO1999062873A1 - Derives de benzenesulphonamide comme activateurs des deshydrogenases de pyruvate - Google Patents

Derives de benzenesulphonamide comme activateurs des deshydrogenases de pyruvate Download PDF

Info

Publication number
WO1999062873A1
WO1999062873A1 PCT/GB1999/001735 GB9901735W WO9962873A1 WO 1999062873 A1 WO1999062873 A1 WO 1999062873A1 GB 9901735 W GB9901735 W GB 9901735W WO 9962873 A1 WO9962873 A1 WO 9962873A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
phenyl
methyl
hydroxy
compound
Prior art date
Application number
PCT/GB1999/001735
Other languages
English (en)
Inventor
Roger John Butlin
Jeremy Nicholas Burrows
Original Assignee
Astrazeneca Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrazeneca Ab filed Critical Astrazeneca Ab
Priority to AU41564/99A priority Critical patent/AU4156499A/en
Publication of WO1999062873A1 publication Critical patent/WO1999062873A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/26Sulfur atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
    • A61K31/635Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide having a heterocyclic ring, e.g. sulfadiazine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/22Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms
    • C07C311/29Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/30Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/37Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • C07C311/38Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring having sulfur atoms of sulfonamide groups and amino groups bound to carbon atoms of six-membered rings of the same carbon skeleton
    • C07C311/44Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring having sulfur atoms of sulfonamide groups and amino groups bound to carbon atoms of six-membered rings of the same carbon skeleton having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/30Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/45Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups at least one of the singly-bound nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom, e.g. N-acylaminosulfonamides
    • C07C311/46Y being a hydrogen or a carbon atom

Definitions

  • the present invention relates to compounds which elevate pyruvate dehydrogenase (PDH) activity, processes for their preparation, pharmaceutical compositions containing them as active ingredient, methods for the treatment of disease states associated with reduced PDH activity, to their use as medicaments and to their use in the manufacture of medicaments for use in the elevation of PDH activity in warm-blooded animals such as humans.
  • PDH pyruvate dehydrogenase
  • adenosine triphosphate provides the energy for synthesis of complex molecules and, in muscle, for contraction. ATP is generated from the breakdown of energy-rich substrates such as glucose or long chain free fatty acids. In oxidative tissues such as muscle the majority of the ATP is generated from acetyl CoA which enters the citric acid cycle, thus the supply of acetyl CoA is a critical determinant of ATP production in oxidative tissues. Acetyl CoA is produced either by ⁇ -oxidation of fatty acids or as a result of glucose metabolism by the glycolytic pathway.
  • the key regulatory enzyme in controlling the rate of acetyl CoA formation from glucose is PDH which catalyses the oxidation of pyruvate to acetyl CoA and carbon dioxide with concomitant reduction of nicotinamide adenine dinucleotide (NAD) to NADH.
  • PDH nicotinamide adenine dinucleotide
  • NIDDM non-insulin dependent
  • IDDM insulin-dependent diabetes mellitus
  • oxidation of lipids is increased with a concomitant reduction in utilisation of glucose, which contributes to the hyperglycaemia.
  • Reduced glucose utilisation in both IDDM and NIDDM is associated with a reduction in PDH activity.
  • PDH activity may be that an increase in pyruvate concentration results in increased availability of lactate as a substrate for hepatic gluconeogenesis. It is reasonable to expect that increasing the activity of PDH could increase the rate of glucose oxidation and hence overall glucose utilisation, in addition to reducing hepatic glucose output.
  • Another factor contributing to diabetes mellitus is impaired insulin secretion, which has been shown to be associated with reduced PDH activity in pancreatic ⁇ -cells (in a rodent genetic model of diabetes mellitus Zhou et al. (1996) Diabetes 45: 580-586).
  • Oxidation of glucose is capable of yielding more molecules of ATP per mole of oxygen than is oxidation of fatty acids.
  • energy demand may exceed energy supply, such as myocardial ischaemia, intermittent claudication, cerebral ischaemia and reperfusion, (Zaidan et al., 1998; J. Neurochem. 70: 233-241)
  • shifting the balance of substrate utilisation in favour of glucose metabolism by elevating PDH activity may be expected to improve the ability to maintain ATP levels and hence function.
  • An agent which is capable of elevating PDH activity may also be expected to be of benefit in treating conditions where an excess of circulating lactic acid is manifest such as in certain cases of sepsis.
  • PDH is an intramitochondrial multienzyme complex consisting of multiple copies of several subunits including three enzyme activities El, E2 and E3, required for the completion of the conversion of pyruvate to acetyl CoA (Patel and Roche 1990; FASEB J., 4: 3224-3233).
  • El catalyses the non-reversible removal of CO 2 from pyruvate;
  • E2 forms acetyl CoA and E3 reduces NAD to NADH.
  • Two additional enzyme activities are associated with the complex: a specific kinase which is capable of phosphorylating El at three serine residues and a loosely-associated specific phosphatase which reverses the phosphorylation.
  • Phosphorylation of a single one of the three serine residues renders the El inactive.
  • the proportion of the PDH in its active (dephosphorylated) state is determined by a balance between the activity of the kinase and phosphatase.
  • the activity of the kinase may be regulated in vivo by the relative concentrations of metabolic substrates such as NAD/NADH, CoA/acetylCoA and adenine diphosphate (ADP)/ATP as well as by the availability of pyruvate itself.
  • European Patent Publication No. 625516 refers to compounds which are capable of relaxing bladder smooth muscle and which may be used in the treatment of urge incontinence. We have found, surprisingly, that compounds also containing a sulphonamide moiety disclosed in the present invention are very good at elevating PDH activity, a property nowhere disclosed in EP 625516.
  • the present invention is based on the surprising discovery that certain compounds elevate PDH activity, a property of value in the treatment of disease states associated with disorders of glucose utilisation such as diabetes mellitus, obesity, (Curto et al., 1997; Int. J. Obes. 21 : 1137-1142), and lactic acidaemia. Additionally the compounds may be expected to have utility in diseases where supply of energy-rich substrates to tissues is limiting such as peripheral vascular disease, (including intermittent claudication), cardiac failure and certain cardiac myopathies, muscle weakness, hyperlipidaemias and atherosclerosis (Stacpoole et al., 1978; N. Engl. J. Med. 298: 526-530). A compound that activates PDH may also be useful in treating Alzheimer disease (AD) (J Neural Transm (1998) 105: 855-870).
  • AD Alzheimer disease
  • R 1 and R 2 are each selected independently from hydrogen, C, .3 alkyl, pyridyl and phenyl which is unsubstituted or substituted by one or two substituents selected independently from C 1 _ 4 alkyl, C M alkoxy, C 2 _ 4 alkenyloxy, hydroxy, halo and cyano, or R ! and R 2 together with the nitrogen atom to which they are attached form morpholino, thiomorpholino, piperidinyl, pyrrolidinyl or imidazolyl;
  • A-B is selected from NHCO, OCH 2 , SCH 2 , NHCH 2 , tr ⁇ /w-vinylene and ethynylene;
  • R 3 and R 4 are independently C,. 3 alkyl substituted by from 0 to 2k+l atoms selected from fluoro and chloro wherein k is the number of carbon atoms in the said C,_ 3 alkyl, provided that R 3 and R 4 are not both methyl; or
  • R 3 and R 4 together with the carbon atom to which they are attached, form a 3-5 membered cycloalkyl ring optionally substituted by from 0 to 2m-2 fluorine atoms wherein m is the number of carbon atoms in said ring; and R 5 is hydrogen, C M alkyl, C haloalkyl, C alkoxy, C,. 4 haloalkoxy, cyano, nitro,
  • alkyl includes both straight and branched chain alkyl groups but references to individual alkyl groups such as “propyl” are specific for the straight chain version only.
  • C,_ 4 alkyl includes propyl, isopropyl and t-butyl.
  • references to individual alkyl groups such as 'propyl' are specific for the straight chained version only and references to individual branched chain alkyl groups such as 'isopropyl' are specific for the branched chain version only.
  • C M haloalkoxy includes 1-chloroethoxy and 2-fluoroethoxy and "C 1.4 haloalkyl” includes 1 -bromopropyl, 2-iodopropylyl and trifluoromethyl.
  • halo refers to fluoro, chloro, bromo and iodo.
  • C alkoxy include methoxy, ethoxy and propoxy.
  • C 2 _ 4 alkenyloxy are vinyloxy and allyloxy.
  • R 1 , R 2 , R 3 , R 4 , R 5 , X and A-B are as follows.
  • R 1 and R 2 are each independently selected from hydrogen, C, profession 3 alkyl, pyridyl and phenyl which is optionally substituted by one or two substituents selected from halo, C,_ 4 alkoxy, C,_ 4 alkyl, hydroxy and cyano, or R 1 and R 2 together with the nitrogen group to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl.
  • R 1 and R 2 are each independently selected from hydrogen, C,_ alkyl, pyridyl and phenyl which is optionally substituted by one or two substituents selected from methoxy, hydroxy, C, .4 alkyl and cyano, or R 1 and R 2 together with the nitrogen group to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl.
  • R 1 and R 2 are each independently selected from hydrogen, C, .3 alkyl and phenyl which is optionally substituted by one or two substituents selected from methoxy, methyl and halo, or R 1 and R 2 together with the nitrogen group to which they are attached form morpholino. thiomorpholino, piperidinyl or pyrrolidinyl. Particularly R 1 and R 2 are each independently selected from hydrogen, C,_ 3 alkyl and unsubstituted phenyl, or R 1 and R 2 together with the nitrogen atom to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl.
  • R 1 and R 2 are each independently selected from hydrogen, methyl, ethyl, propyl, phenyl,4-methoxyphenyl and 2-chloro-5-methylphenyl, or R' and R 2 together with the nitrogen atom to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl.
  • R 1 and R 2 are as follows.
  • R 1 and R 2 are both hydrogen, methyl, ethyl or propyl or one of R 1 and R 2 is hydrogen or methyl and the other is phenyl, or R 1 and R 2 together with the nitrogen to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl.
  • R 1 and R 2 are both hydrogen, methyl, ethyl or propyl or one of R ! and R 2 is hydrogen, methyl, ethyl or phenyl and the other is phenyl, which is optionally substituted by one or two substituents selected from methoxy, methyl and halo, or R 1 and R 2 together with the nitrogen to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl.
  • R 3 and R 4 are independently C,. 3 alkyl substituted by 0 to 2k+l atoms selected from fluoro and chloro, wherein k is the number of carbon atoms in the said C,_ 3 alkyl, or R 3 and R 4 , together with the carbon atom to which they are attached, form a cyclopropane ring optionally substituted by from 1 to 4 fluorine atoms.
  • R 3 and R 4 are independently C,_ 2 alkyl substituted by 0 to 2k+l atoms selected from fluoro and chloro, wherein k is the number of carbon atoms in the said C, .2 alkyl, or R 3 and R 4 , together with the carbon atom to which they are attached, form a cyclopropane ring optionally substituted by from 1 to 4 fluorine atoms.
  • R 3 and R 4 are independently methyl, fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl and perfluoroethyl, or R 3 and R 4 , together with the carbon atom to which they are attached, form a cyclopropane ring optionally substituted by from 1 to 4 fluorine atoms. More particularly R 3 and R 4 are independently methyl, fluoromethyl, difluoromethyl and trifluoromethyl, or R 3 and R 4 , together with the carbon atom to which they are attached, form a cyclopropane ring optionally substituted by from 1 to 4 fluorine atoms. Preferred combinations of R 3 and R 4 are as follows.
  • R 3 and R 4 are methyl and the other is trifluoromethyl.
  • R-configuration generally represents a preferred stereochemistry for compounds of formula (I).
  • R 5 is selected from nitro, C M alkyl, C,. 4 haloalkyl, C M alkoxy and hydrogen. More preferably R 5 is selected from methyl, ethyl, trifluoromethyl, methoxy, ethoxy, nitro and hydrogen.
  • R 5 is selected from methyl, methoxy and hydrogen. More particularly R 5 is hydrogen.
  • R 5 is hydrogen or methyl. In a further aspect of the invention preferably R 5 is methyl.
  • R 5 is as hereinbefore defined except hydrogen, that is it is preferable that R 5 is not hydrogen.
  • A-B is selected from -NHC(O)-, trans-vinylene and ethynylene. More preferably A-B is -NHC(O)-. According to another aspect of the present invention there is provided the use of a compound of formula (I) wherein:
  • R 1 and R 2 are each independently selected from hydrogen, C M alkyl, pyridyl and phenyl which is optionally substituted by one or two substituents selected from halo, C,. 4 alkoxy, C M alkyl, hydroxy and cyano, or R 1 and R 2 together with the nitrogen group to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl;
  • R 3 and R 4 are independently C,. 3 alkyl substituted by 0 to 2k+l atoms selected from fluoro and chloro, wherein k is the number of carbon atoms in the said C,. 3 alkyl, or R 3 and R 4 , together with the carbon atom to which they are attached, form a cyclopropane ring optionally substituted by from 1 to 4 fluorine atoms;
  • R 5 is nitro, C M alkyl, C, .4 alkoxy or hydrogen;
  • A-B is -NHC(O)-, trans-vinylene or ethynylene; or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof in the manufacture of a medicament for use in the elevation of PDH activity in warm-blooded animals such as humans.
  • R 1 and R 2 are each independently selected from hydrogen, C, .3 alkyl, pyridyl and unsubstituted phenyl, or R 1 and R 2 together with the nitrogen atom to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl.
  • R 3 and R 4 are independently methyl, fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl and perfluoroethyl, or R 3 and R 4 , together with the carbon atom to which they are attached, form a cyclopropane ring optionally substituted by from 1 to 4 fluorine atoms;
  • R 5 is from methyl, methoxy or hydrogen;
  • A-B is -NHC(O)-; or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof in the manufacture of a medicament for use in the elevation of PDH activity in warm-blooded animals such as humans.
  • R 1 and R 2 are both hydrogen, methyl, ethyl or propyl or one of R 1 and R 2 is hydrogen or methyl and the other is phenyl, or R 1 and R 2 together with the nitrogen to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl; one of R 3 and R 4 is methyl and the other is trifluoromethyl; R 5 is hydrogen; A-B is -NHC(O)-; or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof in the manufacture of a medicament for use in the elevation of PDH activity in warm-blooded animals such as humans.
  • a compound which comprises a compound as set out in the Examples (and in particular Examples 1-11) or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof in the manufacture of a medicament for use in the elevation of PDH activity in warm-blooded animals such as humans.
  • R-configuration generally represents a preferred stereochemistry for compounds of formula (I).
  • R 1 and R 2 are each independently selected from hydrogen, C,. 3 alkyl, pyridyl and phenyl which is optionally substituted by one or two substituents selected from halo, C,. 4 alkoxy, C,_ 4 alkyl, hydroxy and cyano, or R 1 and R 2 together with the nitrogen group to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl;
  • R 3 and R 4 are independently C 1 . 3 alkyl substituted by 0 to 2k+l atoms selected from fluoro and chloro, wherein k is the number of carbon atoms in the said C,_ 3 alkyl, or R 3 and R 4 , together with the carbon atom to which they are attached, form a cyclopropane ring optionally substituted by from 1 to 4 fluorine atoms;
  • R 5 is nitro, C, .4 alkyl, C,. 4 alkoxy or hydrogen;
  • A-B is - ⁇ HC(O)-, trans-vinylene or ethynylene; or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof, provided said compound is not: 3,3,3-trifluoro-2-hydroxy-2-methyl-N-[4-(l-piperidinyl-sulphonyl)phenyl]propanamide; 3,3,3-trifluoro-2-hydroxy-2-methyl-N-[4-(l-pyrrolidinyl-sulphonyl)phenyl]propanamide;
  • R 1 and R 2 are each independently selected from hydrogen, C ⁇ alkyl pyridyl and unsubstituted phenyl, or R 1 and R 2 together with the nitrogen atom to which they are attached form morpholino, thiomorpholino, piperidinyl or pyrrolidinyl.
  • R 3 and R 4 are independently methyl, fluoromethyl, difluoromethyl, trifluoromethyl,
  • R 3 and R 4 together with the carbon atom to which they are attached, form a cyclopropane ring optionally substituted by from 1 to 4 fluorine atoms;
  • R 5 is methyl, methoxy or hydrogen;
  • A-B is -NHC(O)-; or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof, provided said compound is not 3,3,3-trifluoro-2-hydroxy-2-methyl-N-[4-(l-piperidinyl-sulphonyl)phenyl]propanamide; 3,3,3-trifluoro-2-hydroxy-2-methyl-N-[4-(l-pyrrolidinyl-sulphonyl)phenyl]propanamide; 3,3,3-trifluoro-2-hydroxy-2-methyl-N-[4-(mo ⁇ holino-sulphonyl)phenyl]propanamide; 3,3,3-trifluor
  • R 1 and R 2 are both hydrogen, methyl, ethyl or propyl or one of R 1 and R 2 is hydrogen or methyl and the other is phenyl, or R 1 and R 2 together with the nitrogen to which they are attached form mo ⁇ holino, thiomo ⁇ holino, piperidinyl or pyrrolidinyl; one of R 3 and R 4 is methyl and the other is trifluoromethyl; R 5 is hydrogen; A-B is - ⁇ HC(O)-; or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof, provided said compound is not:
  • R la and R 2a are each selected independently from hydrogen, C,. 3 alkyl, pyridyl and phenyl which is unsubstituted or substituted by one or two substituents selected independently from C,_ 4 alkyl, C alkoxy, C 2.4 alkenyloxy, hydroxy, halo and cyano, or R la and R 2a together with the nitrogen atom to which they are attached form mo ⁇ holino, thiomo ⁇ holino, piperidinyl, pyrrolidinyl or imidazolyl; and
  • R 5a is C M alkyl, C,. 4 haloalkyl, C alkoxy, C haloalkoxy, cyano, nitro, C 2 . 4 alkenyloxy or trifluoromethy lthio ; or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof.
  • R la and R 2a are each selected independently from hydrogen, C,. 3 alkyl and phenyl which is unsubstituted or substituted by one substituent selected independently from C,. 4 alkyl, C,_ 4 alkoxy and halo, or R la and R 2a together with the nitrogen atom to which they are attached form mo ⁇ holino.
  • R la and R 2a are each selected independently from hydrogen, methyl, ethyl, phenyl, 2-chloro-5-methylphenyl and 4-methoxyphenyl, or R la and R 2a together with the nitrogen atom to which they are attached form mo ⁇ holino.
  • R 5a is methyl or methoxy.
  • R 5a is methyl
  • R-configuration generally represents a preferred stereochemistry for compounds of formula (I).
  • preferred compounds of the invention are any one of Examples 12-16 and pharmaceutically acceptable salts or in vivo hydrolysable esters thereof
  • Preferred aspects of the invention are those that relate to the compound of formula (I) or (I') and pharmaceutically acceptable salts thereof.
  • a compound of the formula (I) or a salt thereof may exhibit the phenomenon of tautomerism and that the formulae drawings within this specification can represent only one of the possible tautomeric forms.
  • the invention encompasses any tautomeric form which elevates PDH activity and is not to be limited merely to any one tautomeric form utilized within the formulae drawings.
  • the formulae drawings within this specification can represent only one of the possible tautomeric forms and it is to be understood that the specification encompasses all possible tautomeric forms of the compounds drawn not just those forms which it has been possible to show graphically herein.
  • the present invention encompasses any racemic, optically-active, enantiomerically pure, mixture of diastereoisomers, polymo ⁇ hic or stereoisomeric form, or mixtures thereof, which form possesses properties useful in the elevation of PDH activity, it being well known in the art how to prepare optically-active forms (for example, by resolution of the racemic form by recrystallisation techniques, by synthesis from optically-active starting materials, by chiral synthesis, by enzymatic resolution, (for example WO 9738124), by biotransformation, or by chromatographic separation using a chiral stationary phase) and how to determine efficacy for the elevation of
  • a compound of the formula (I), or salt thereof, and other compounds of the invention may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Such processes include, for example, those illustrated in European
  • Another aspect of the present invention provides a process for preparing a compound of formula (I) or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof, which process (in which variable groups are as defined for formula (I) unless otherwise stated) comprises of:
  • K is a leaving atom or group and in which A-B is OCH 2 , SCH 2 or NHCH 2 or -NHC(O)- with an amine of formula R'R 2 NH; and thereafter if necessary: i) converting a compound of the formula (I) into another compound of the formula (I); ii) removing any protecting groups; or iii) forming a pharmaceutically acceptable salt or in vivo cleavable ester.
  • K is a leaving atom or group, suitable values for K are, for example, a halogen atom such as fluoro or chloro.
  • suitable protecting groups include a benzyl group, a silyl group or an acetyl protecting group.
  • suitable reagents for deprotecting an alcohol of formula (II) are:
  • the reaction can be conducted in a suitable solvent such as ethanol, methanol, acetonitrile, or dimethylsulphoxide and may conveniently be performed at a temperature in the range of -40 to 100°C.
  • a suitable solvent such as ethanol, methanol, acetonitrile, or dimethylsulphoxide and may conveniently be performed at a temperature in the range of -40 to 100°C.
  • the reaction can be conducted in the presence of a suitable coupling reagent.
  • Standard peptide coupling reagents known in the art can be employed as suitable coupling reagents, for example thionyl chloride (or oxalyl chloride), carbonyldiimidazole and dicyclohexyl-carbodiimide, optionally in the presence of a catalyst such as dimethylaminopyridine or 4-pyrrolidinopyridine, optionally in the presence of a base for example triethylamine, pyridine, or 2,6-di- ⁇ // , /-pyridines such as 2,6-lutidine or 2,6-di-tert-butylpyridine.
  • Suitable solvents include dimethylacetamide, dichloromethane, benzene, tetrahydrofuran, and dimethylformamide.
  • the coupling reaction may conveniently be performed at a temperature in the range of -40 to 40°C.
  • Suitable activated acid derivatives include for example acid chlorides, acid anhydrides, or phenyl esters, wherein G is a hydroxyl group which may be suitably protected as a stable ester or ether. This coupling may be achieved optionally in the presence of a base for example triethylamine, pyridine, or 2,6-di-fl// y/-pyridines such as 2,6-lutidine or 2,6-di-tert-butylpyridine.
  • Suitable solvents include dimethylacetamide, dichloromethane, benzene, tetrahydrofuran, and dimethylformamide.
  • the coupling reaction may conveniently be performed at a temperature in the range of -40 to 40°C.
  • Suitable bases include lithium diisopropylamide (LDA), «-butyllithium or tert-butyllithium.
  • LDA lithium diisopropylamide
  • the reaction may be performed at a temperature in the range of -100 to -40°C preferably at a temperature in the range of -70 to -40°C and in a solvent such as tetrahydrofuran, diethyl ether, or 1,2-dimethoxy ethane.
  • Suitable reducing agents are for example lithium aluminium hydride or sodium bis(methoxyethoxy)aluminium hydride.
  • the reaction can be conducted in a suitable solvent such as tetrahydrofuran or diethyl ether, and at a temperature in the range of 0 to 50°C.
  • This reaction is conveniently performed in the presence of an acid catalyst (for example />-toluenesulphonic acid), neat or with a solvent such as toluene or dichloromethane at a temperature in the range of 0 to 200 °C preferably a temperature in the range of 20 to 100 °C.
  • an acid catalyst for example />-toluenesulphonic acid
  • a solvent such as toluene or dichloromethane
  • the opening may be carried out in a suitable organic solvent for example, ethers or toluene. Ethers such as tetrahydrofuran are preferred. Suitable bases include potassium tert-butoxide or sodium hydride.
  • the opening may be carried out at a temperature in the range of -50 to 100°C, preferably at a temperature in the range of 0 to 50 °C for example room temperature.
  • Suitable reducing agents are lithium aluminium hydride or borane.
  • the reaction can conveniently be carried out at a temperature in the range of 0°C to reflux, in solvents such as for example diethyl ether, tetrahydrofuran, or 1,2-dimethoxyethane.
  • This reaction is conveniently performed in the presence of a base for example sodium hydride or triethylamine.
  • a base for example sodium hydride or triethylamine.
  • the reaction can be conducted at reflux in a solvent such as dichloromethane, tetrahydrofuran, or diethyl ether.
  • reaction is conveniently performed in the presence of a base, for example a tertiary amine such as triethylamine and in the presence of a catalyst for example dimethylaminopyridine.
  • a base for example a tertiary amine such as triethylamine
  • a catalyst for example dimethylaminopyridine.
  • Suitable solvents for the reaction include nitriles such as acetonitrile and amides such as dimethylformamide.
  • the reaction is conveniently performed at a temperature in the range of from
  • the necessary starting materials for the procedures such as that described above may be made by procedures which are selected from standard organic chemical techniques, techniques which are analogous to the synthesis of known, structurally similar compounds, or techniques which are analogous to the above described procedure or the procedures described in the examples.
  • aromatic substituents in the compounds of the present invention may be introduced by standard aromatic substitution reactions or generated by conventional functional group modifications either prior to or immediately following the processes mentioned above, and as such are included in the process aspect of the invention.
  • Such reactions and modifications include, for example, introduction of a substituent by means of an aromatic substitution reaction, reduction of substituents, alkylation of substituents and oxidation of substituents.
  • the reagents and reaction conditions for such procedures are well known in the chemical art.
  • aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acylhalide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halogeno group.
  • an acyl group using, for example, an acylhalide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions
  • Lewis acid such as aluminium trichloride
  • modifications include the reduction of a nitro group to an amino group by, for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkylsulphinyl or alkylsulphonyl using, for example, hydrogen peroxide in acetic acid with heating or 3-chloroperbenzoic acid.
  • Y is a leaving group for example mesylate; in the presence of a base such as an alkali metal hydride (e.g. sodium hydride), in a solvent such as tetrahydrofuran, N,N-dimethylformamide, dimethyl sulphoxide, or l,3-Dimethyl-3,4,5,6-tetrahydro-2(lH)-pyrimidinone, and at a temperature of 20°C to reflux.
  • a base such as an alkali metal hydride (e.g. sodium hydride)
  • a solvent such as tetrahydrofuran, N,N-dimethylformamide, dimethyl sulphoxide, or l,3-Dimethyl-3,4,5,6-tetrahydro-2(lH)-pyrimidinone
  • a compound of formula (II), wherein A-B is - ⁇ C(O)- may be made by coupling a compound of formula (III) with a compound of formula (IV) (where G is hydroxy protected with a protecting group) in a manner analogous to that described for procedure (b) of preparations of a compound of formula (I) above.
  • E is a carboxy protecting group (e.g. Me); under standard conditions such as mild alkaline conditions, for example, aqueous lithium hydroxide.
  • 2-trimethylsilylethoxymethyl chloride in the presence of a suitable base such as triethylamine optionally in the presence of a catalyst such as dimethylaminopyridine).
  • a suitable base such as triethylamine
  • a catalyst such as dimethylaminopyridine
  • XV in the presence of a catalyst such as a combination of copper (I) iodide and bis(triphenylphosphine)palladium dichloride or palladium (II) acetate.
  • a catalyst such as a combination of copper (I) iodide and bis(triphenylphosphine)palladium dichloride or palladium (II) acetate.
  • the reaction can be conducted in an inert solvent such as tetrahydrofuran, benzene, or toluene, or in a basic solvent such as diethylamine or triethylamine, and at a temperature in the range of -20 to 110°C.
  • a compound of formula (XV) may be made by reacting a compound of formula (XVI)
  • M is an alkylmetal group such as a trialkyltin (for example tributyl- or trimethyl-tin) or a bisalkyloxyborane (for example catecholborane); with a compound of formula (X), wherein J may be a leaving group for example iodide, bromide or triflate in the presence of a catalyst such as bis(triphenylphosphine)palladium dichloride or tetrakis(triphenylphosphine)palladium (0).
  • a catalyst such as bis(triphenylphosphine)palladium dichloride or tetrakis(triphenylphosphine)palladium (0).
  • the reaction may conveniently be conducted in a suitable inert solvent such as a tetrahydrofuran or dimethylformamide at a temperature of 0 -
  • a compound of formula (XVII) may be made by a reaction of a compound of formula
  • reaction may conveniently be conducted in a suitable inert solvent such as tetrahydrofuran, toluene or xylene at a temperature of from 0 - 150°C.
  • suitable inert solvent such as tetrahydrofuran, toluene or xylene at a temperature of from 0 - 150°C.
  • Compounds of formula (XVI) may be made by reacting a compound of formula (VI) with an alkali metal acetylide (for example lithium acetylide) or alkaline earth metal acetylide (for example magnesium acetylide).
  • the reaction may be conducted in a solvent such as tetrahydrofuran, diethyl ether, or 1 ,2-dimethoxyethane and at a temperature of -100 to 25 °C.
  • a compound of formula (III) may be prepared: i) from a compound of formula (XVIII) (XVIII) wherein Pg is a protective group such as for example acetyl; a) by treatment with chlorosulphonic acid under standard conditions, and then b) formation of the sulphonamide under standard conditions as described above in process (j) for preparation of a compound of formula (I) and then c) cleavage of the protecting group under mild alkaline conditions (for example when Pg is acetyl with a base such as aqueous sodium hydroxide); or ii) by reducing a compound of formula (XIX):
  • a compound of formula (XIX) may be made by reacting a compound of formula (XX):
  • a compound of formula (XX) may be prepared: a) by oxidising a compound of formula (XXI):
  • the resolved acid may be prepared by any of the known methods for preparation of optically-active forms (for example, by recrystallisation of the chiral salt ⁇ for example WO 9738124 ⁇ , by enzymatic resolution, by biotransformation, or by chromatographic separation using a chiral stationary phase).
  • an (R)-(+) resolved acid may be prepared by the method of Scheme 2 in World Patent Application Publication No. WO 9738124 for preparation of the (S)-(-) acid, i.e. using the classical resolution method described in European Patent Application Publication No.
  • EP 0524781 also for preparation of the (S)-(-) acid, except that (lS,2R)-norephedrine may be used in place of (S)-(-)-l-phenylethylamine. 4) Preparation of compounds of formula (V).
  • a compound of formula (V) may be prepared by reacting a compound of formula (XIV), wherein L is bromo, iodo or triflate with trimethylsilylacetylene in the presence of a catalyst such as a combination of bis(triphenylphosphine)palladium dichloride and copper(I) iodide in diethylamine or triethylamine, followed by treatment with a base (for example potassium carbonate) in a C,_ 6 alcohol (such as methanol) as the solvent to remove the trimethylsilyl group. 5) Preparation of compounds of formula (VII).
  • a catalyst such as a combination of bis(triphenylphosphine)palladium dichloride and copper(I) iodide in diethylamine or triethylamine
  • a compound of formula (VII) may be prepared from a compound of formula (XXIII):
  • a compound of formula (XXIII) may be prepared by deprotonation of a compound of formula (XXIV),
  • R 19 and R 20 are each independently C,. 6 alkyl or together with the atoms to which they are attached form a 5-7 membered ring.
  • An amide of formula (XXV) may be prepared from an acid of formula (IV), or a reactive derivative thereof, by reaction with an amine of formula R !9 (R 20 O)NH under standard conditions such as those described in process (b) for preparation of a compound of formula (I) above. 6) Preparation of compounds of formula (VIII).
  • a compound of formula (VIII) may be prepared from a diol of formula (VII) using a suitable dehydrating agent, for example bis[ ⁇ , ⁇ -bis(trifluoromethyl)benzenemethanolato]diphenyl sulphur.
  • a suitable dehydrating agent for example bis[ ⁇ , ⁇ -bis(trifluoromethyl)benzenemethanolato]diphenyl sulphur.
  • a compound of formula (IX) may be made by treating a compound of formula (VI) with a trimethylsulphonium salt (such as trimethylsulphonium iodide) and a base (such as an alkali metal hydroxide) in a solvent such as dichloromethane.
  • a trimethylsulphonium salt such as trimethylsulphonium iodide
  • a base such as an alkali metal hydroxide
  • a compound of formula (X) wherein J is -OH may be prepared by diazotizing a compound of formula (III) under standard conditions such as those described above in 2(ii) above followed by heating the resulting compound in dilute sulphuric acid.
  • a compound of formula (X), wherein J is -SH may be prepared by reacting a compound of formula (XIV) where L is a leaving group (for example chloro) with an excess of methanethiol in the presence of sodium hydride.
  • a compound of formula (XI) wherein K is chloro, in which A-B is OCH 2 , SCH 2 , NHCH 2 or -NHC(O)- may be prepared by 1) either a) coupling a compound of formula (XXVI)
  • a compound of formula (XII), wherein Y is mesylate may be prepared by reacting a compound of formula (XXVII):
  • a suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or t-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl.
  • the deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate).
  • a suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.
  • a suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmethyl group, for example benzyl.
  • the deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • a suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • the protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art.
  • compositions of formula (I) are sufficiently basic or acidic to form stable acid or basic salts
  • administration of the compound as a salt may be appropriate, and pharmaceutically acceptable salts may be made by conventional methods such as those described following.
  • suitable pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiologically acceptable anion, for example, tosylate, methanesulphonate, acetate, tartrate, citrate, succinate, benzoate, ascorbate, ⁇ -ketoglutarate, and ⁇ -glycerophosphate.
  • Suitable inorganic salts may also be formed such as sulphate, nitrate, and hydrochloride.
  • salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound of formula (I) (or its ester) with a suitable acid affording a physiologically acceptable anion. It is also possible with most compounds of the invention to make a corresponding alkali metal (e.g. sodium, potassium, or lithium) or alkaline earth metal (e.g. calcium) salt by treating a compound of formula (I) (and in some cases the ester) with a suitable base. For example by treatment with one equivalent of an alkali metal or alkaline earth metal hydroxide or alkoxide (e.g. the ethoxide or methoxide) in aqueous medium followed by conventional purification techniques.
  • a corresponding alkali metal e.g. sodium, potassium, or lithium
  • alkaline earth metal e.g. calcium
  • In vivo cleavable esters of compounds of the invention may be made by coupling with a pharmaceutically acceptable carboxylic acid or an activated derivative thereof.
  • the coupling may be carried out by treating a compound of formula (I) with an appropriate acid chloride (for example, acetyl chloride, propionyl chloride, or benzoyl chloride) or acid anhydride (for example, acetic anhydride, propionic anhydride, or benzoic anhydride) in the presence of a suitable base such as triethylamine.
  • an appropriate acid chloride for example, acetyl chloride, propionyl chloride, or benzoyl chloride
  • acid anhydride for example, acetic anhydride, propionic anhydride, or benzoic anhydride
  • cDNA encoding PDH kinase may be obtained by Polymerase Chain Reaction (PCR) and subsequent cloning. This may be expressed in a suitable expression system to obtain polypeptide with PDH kinase activity.
  • PCR Polymerase Chain Reaction
  • rPDHKII rat PDHkinasell obtained by expression of recombinant protein in Escherichia coli (E. Coli)
  • E. Coli Escherichia coli
  • rPDHKII Genebank accession number U10357
  • a 1.3kb fragment encoding the protein was isolated by PCR from rat liver cDNA and cloned into a vector (for example pQE32 - Quiagen Ltd.).
  • the recombinant construct was transformed into E. coli (for example M15pRep4 - Quiagen Ltd.).
  • Recombinant clones were identified, plasmid DNA was isolated and subjected to DNA sequence analysis. One clone which had the expected nucleic acid sequence was selected for the expression work.
  • coli were grown to an optical density of 0.6 (600 nM) and protein expression was induced by the addition of 10 ⁇ M isopropylthio- ⁇ -galactosidase.
  • Cells were grown for 18 hours at 18°C and harvested by centrifugation. The resuspended cell paste was lysed by homogenisation and insoluble material removed by centrifugation at 24000xg for 1 hour.
  • the 6-His tagged protein was removed from the supernatant using a nickel chelating nitrilotriacetic acid resin (Ni-NTA: Quiagen Ltd.) matrix (Quiagen) which was washed with 20 mM tris(hydroxymethyl)aminomethane-hydrogen chloride, 20 mM imidazole, 0.5 M sodium chloride pH 8.0, prior to elution of bound protein using a buffer containing 20 mM tris(hydroxymethyl)aminomethane-hydrogen chloride, 200 mM imidazole, 0.15 M sodium chloride pH 8.0. Eluted fractions containing 6-His protein were pooled and stored in aliquots at -80°C in 10% glycerol.
  • DMSO dimethylsulphoxide
  • Control wells contained 20 ⁇ l 10% DMSO instead of compound.
  • Buffer containing 50mM potassium phosphate buffer pH 7.0, lOmM ethylene glycol-bis( ⁇ -aminoethyl ether)-N,N,N,N-tetracetic acid (EGTA), ImM benzamidine, ImM phenylmethylsulphonyl fluoride (PMSF), 0.3mM tosyl-L-lysine chloromethyl ketone (TLCK), 2mM dithiothreitol (DTT), recombinant rPDHKII and compounds were incubated in the presence of PDH kinase at room temperature for 45 minutes.
  • PDH kinase activity was then initiated by the addition of 5 ⁇ M ATP, 2 mM magnesium chloride and 0.04 U/ml PDH (porcine heart PDH Sigma P7032) in a total volume of 50 ⁇ l and plates incubated at ambient temperature for a further 45 minutes.
  • the residual activity of the PDH was then determined by the addition of substrates (2.5mM coenzyme A, 2.5mM thiamine pyrophosphate (cocarboxylase), 2.5mM sodium pyruvate, 6mM NAD in a total volume of 80 ⁇ l and the plates incubated for 90 minutes at ambient temperature.
  • substrates 2.5mM coenzyme A, 2.5mM thiamine pyrophosphate (cocarboxylase), 2.5mM sodium pyruvate, 6mM NAD
  • NADH reduced NAD
  • the ED 50 for a test compound was determined in the usual way using results from 12 concentrations of the compound, (b In vitro elevation of PDH activity in isolated primary cells This assay determines the ability of compounds to stimulate pyruvate oxidation in primary rat hepatocytes.
  • Hepatocytes were isolated by the two-step collagenase digestion procedure described by Seglen (Methods Cell Biol. (1976) 13, 29-33) and plated out in 6-well culture plates (Falcon Primaria) at 600000 viable cells per well in Dulbecco's Modified Eagles Medium (DMEM, Gibco BRL) containing 10% foetal calf serum (FCS), 10% penicillin/streptomycin (Gibco BRL) and 10% non-essential amino acids (NEAA, Gibco BRL).
  • DMEM Dulbecco's Modified Eagles Medium
  • FCS foetal calf serum
  • NEAA non-essential amino acids
  • MEM Minimum Essential Medium
  • PBS phosphate buffered saline
  • 1ml HEPES-buffered Krebs solution 25mM HEPES, 0.15M sodium chloride, 25 mM sodium hydrogen carbonate, 5mM potassium chloride, 2mM calcium chloride, ImM magnesium sulphate, 1 mM potassium dihydrogen phosphate
  • Control wells contained 0.1 % DMSO only and a maximum response was determined using a 10 ⁇ M treatment of a known active compound. After a preincubation period of 40 minutes at 37°C in 5% C0 2 , cells were pulsed with sodium pyruvate to a final concentration of 0.5mM (containing 1-' 4 C sodium pyruvate (Amersham product CFA85) 0.18Ci/mmole) for 12 minutes. The medium was then removed and transferred to a tube which was immediately sealed with a bung containing a suspended centre well. Absorbent within the centre well was saturated with 50% phenylethylamine, and CO 2 in the medium released by the addition of 0.2 ⁇ l 60% (w/v) perchloric acid (PCA).
  • PCA 60% (w/v) perchloric acid
  • DCA a compound known to activate PDH by inhibition of PDH kinase
  • 150 mg/kg intraperitoneally, increased the proportion of PDH in its active form (Vary et al. (1988) Circ. Shock 24, 3-18) and after repeated administration resulted in a significant decrease in plasma glucose (Evans and Stacpoole (1982) Biochem. Pharmacol.31, 1295-1300).
  • Groups of rats (weight range 140-180g) are treated with a single dose or multiple doses of the compound of interest by oral gavage in an appropriate vehicle.
  • a control group of rats is treated with vehicle only.
  • mice are terminally anaesthetised, tissues are removed and frozen in liquid nitrogen.
  • muscle samples are disrupted under liquid nitrogen prior to homogenisation by one thirty-second burst in a Polytron homogenizer in 4 volumes of a buffer containing 40 mM potassium phosphate pH 7.0, 5 mM EDTA, 2mM DTT, 1% Triton X-100, lOmM sodium pyruvate, lO ⁇ M phenylmethylsulphonyl chloride (PMSF) and2 ⁇ g/ml each of leupeptin, pepstain A and aprotinin. Extracts are centrifuged before assay.
  • PMSF phenylmethylsulphonyl chloride
  • a portion of the extract is treated with PDH phosphatase prepared from pig hearts by the method of Siess and Wieland (Eur. J. Biochem (1972) 26, 96): 20 ⁇ l extract, 40 ⁇ l phosphatase (1 :20 dilution), in a final volume of 125 ⁇ l containing 25 mM magnesium chloride, 1 mM calcium chloride.
  • the activity of the untreated sample is compared with the activity of the dephosphorylated extract thus prepared.
  • PDH activity is assayed by the method of Stansbie et al., (Biochem. J. (1976) 154, 225).
  • 50 ⁇ l Extract is incubated with 0.75 mM NAD, 0.2 mM CoA, 1.5 mM thiamine pyrophosphate (TPP) and 1.5mM sodium pyruvate in the presence of 20 ⁇ g/ml p-(p-amino-phenylazo) benzene sulphonic acid (AABS) and 50 mU/ml arylamine transferase (AAT) in a buffer containing 100 mM tris(hydroxymethyl)aminomethane, 0.5 mM EDTA, 50mM sodium fluoride, 5mM 2-mercaptoethanol and ImM magnesium chloride pH 7.8.
  • AAT is prepared from pigeon livers by the method of Tabor et al. (J. Biol. Chem. (1953) 204, 127). The rate of acetyl CoA formation is determined by the rate of reduction of AABS which is indicated by a decrease in optical density at 460 nm.
  • Liver samples are prepared by an essentially similar method, except that sodium pyruvate is excluded from the extraction buffer and added to the phosphatase incubation to a final concentration of 5mM.
  • a pharmaceutical composition which comprises a compound of the formula (I) as defined hereinbefore or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof, in association with a pharmaceutically acceptable excipient or carrier.
  • a pharmaceutical composition which comprises a compound of the formula (I) or (F) as defined hereinbefore or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof, in association with a pharmaceutically acceptable excipient or carrier.
  • the composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) for example as a sterile solution, suspension or emulsion, for topical administration for example as an ointment or cream or for rectal administration for example as a suppository.
  • parenteral injection including intravenous, subcutaneous, intramuscular, intravascular or infusion
  • a sterile solution, suspension or emulsion for topical administration for example as an ointment or cream or for rectal administration for example as a suppository.
  • the above compositions may be prepared in a conventional manner using conventional excipients.
  • the compositions of the present invention are advantageously presented in unit dosage form.
  • the compound will normally be administered to a warm-blooded animal at a unit dose within the range 5-5000 mg per square metre body area of the animal, i.e. approximately 0.1-100 mg/kg.
  • a further feature of the present invention is a compound of formula (I) and pharmaceutically acceptable salts or in vivo hydrolysable esters thereof for use as a medicament.
  • a method for producing an elevation of PDH activity in a warm-blooded animal which comprises administering to said animal an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof as defined hereinbefore.
  • aspects of the invention which relate to the use of compounds of formula (I) also relate to compounds of formula (I').
  • the size of the dose required for the therapeutic or prophylactic treatment of a particular disease state will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated.
  • 1-50 mg/kg is employed.
  • the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.
  • the elevation of PDH activity described herein may be applied as a sole therapy or may involve, in addition to the subject of the present invention, one or more other substances and/or treatments. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment.
  • diabetes mellitus chemotherapy may include the following main categories of treatment: i) insulin; ii) insulin secretagogue agents designed to stimulate insulin secretion (for example glibenclamide, tolbutamide, other sulphonylureas); iii) oral hypoglycaemic agents such as metformin, thiazolidinediones; iv) agents designed to reduce the abso ⁇ tion of glucose from the intestine (for example acarbose); v) agents designed to treat complications of prolonged hyperglycaemia; vi) other agents used to treat lactic acidaemia; vii) inhibitors of fatty acid oxidation; viii) lipid lowering agents; ix) agents used to treat coronary heart disease and peripheral vascular disease such as aspirin, pentoxifylline, cilostazol; and/or x) thiamine.
  • insulin secretagogue agents designed to stimulate insulin secretion for example glibenclamide, tolbutamide, other s
  • the compounds defined in the present invention are of interest for their ability to elevate the activity of PDH.
  • Such compounds of the invention may therefore be useful in a range of disease states including diabetes mellitus, peripheral vascular disease, (including intermittent claudication), cardiac failure and certain cardiac myopathies, myocardial ischaemia, cerebral ischaemia and reperfusion, muscle weakness, hyperlipidaemias, Alzheimers disease and/or atherosclerosis.
  • the compounds of formula (I) and their pharmaceutically acceptable salts are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of elevators of PDH activity in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
  • melting points are uncorrected and (dec) indicates decomposition; the melting points given are those obtained for the materials prepared as described; polymo ⁇ hism may result in isolation of materials with different melting points in some preparations;
  • NMR data is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard, determined at
  • temperatures are given in degrees Celsius (°C); operations were carried out at room or ambient 15 temperature, that is, at a temperature in the range of 18-25°C;
  • chromatography means flash chromatography on silica gel; thin layer chromatography (TLC) 0 was carried out on silica gel plates;
  • melting points are uncorrected and (dec) indicates decomposition; the melting points given are those obtained for the materials prepared as described; polymo ⁇ hism may result in isolation of 25 materials with different melting points in some preparations;
  • yields are given for illustration only and are not necessarily those which can be obtained by diligent process development; preparations were repeated if more material was required;
  • NMR data is in the form of delta values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard, determined at 30 300 MHz using perdeuterio dimethyl sulphoxide (DMSO- ⁇ 6 ) as solvent; coupling constants (J) are given in Hz; Ar designates an aromatic proton when such an assignment is made; (viii) chemical symbols have their usual meanings; SI units and symbols are used; (ix) reduced pressures are given as absolute pressures in Pascals (Pa); elevated pressures are given as gauge pressures in bars; (x) solvent ratios are given in volume : volume (v/v) terms; (xi) mass spectra (MS) were run with an electron energy of 70 electron volts in the chemical ionisation (CI) mode using a direct exposure probe; where indicated ionisation was effected by electron impact (El) or fast atom bombardment (FAB); values for m/z are given; generally, only
  • the crude reaction product was purified by chromatography (6:1 DCM : EtOAc). 2 The crude reaction product was recrystallized from methyl-t-butyl ether/hexane.
  • Example 6 N- 4-(N,N-Dimethylaminosulphonyl)phenyll-3,3,3-trifluoro-2-hvdroxy-2-methylpropanamide.
  • thionyl chloride 0.33 ml
  • the mixture was stirred at -10°C for 90 mins, then treated successively with 4-pyrrolidinopyridine (13 mg), di-isopropylethylamine (0.76 ml), and 4-(N,N-dimethylaminosulphonyl)aniline (Method 2) (0.88 g).
  • Example 12 The procedure described in Example 12 was repeated using the appropriate 4- aminobenzenesulphonamide to replace the 2-methyl-4-(N-ethylanilinosulphonyl)aniline to obtain the compounds described below.
  • Method refers to the Method (see section on Starting Materials below) used to make said appropriate sulphonamide.
  • the starting materials for the Examples above are either commercially available or are readily prepared by standard methods from known materials. For example the following reactions are illustrations but not limitations of the preparation of some of the starting materials used in the above reactions.
  • N-acyl-2-methyl-4-chlorosulphonylaniline (Method 8) (500 mg, 2 mmol), N-ethylaniline (240 mg, 2 mmol) and pyridine (0.18 ml, 2.2 mmol) in DCM (10 ml) was stirred at ambient temperature for 15h. The solution was washed with IM aqueous hydrochloric acid and brine, dried and evaporated to dryness. The residue was dissolved in ethanol (10 ml) and 2M aqueous sodium hydroxide (5 ml) was added. The mixture heated at 70°C for 22h and then cooled to ambient temperature and evaporated to dryness.
  • Method 8 A solution of N-acyl-2-methyl-4-chlorosulphonylaniline (Method 8) (500 mg, 2 mmol), N-ethylaniline (240 mg, 2 mmol) and pyridine (0.18 ml, 2.2 mmol) in DCM (10
  • N-Acyl-2-methyl-4-chlorosulphonylaniline N-Acyl-2-methyl-4-sulphoaniline triethylamine salt (1 :1) (Method 9) (35 g, 0.11 mol) was added portion- wise, over 30mins, to POCl 3 (50 ml) at 0°C. The reaction mixture was stirred at room temperature for 15h and then poured slowly onto a stirred solution of ice-water. After stirring for 15mins the mixture was filtered to yield the title compound as a solid (25 g, 0.10 mol). MS: 246.
  • Oxalyl chloride (1.07 ml, 12 mmol) was added dropwise to a stirred suspension of (R)- (+)-2-hydroxy-2-methyl-3,3,3-trifluoropropanoic acid (Method 11) (1.95 g, 12 mmol) in DCM (42 ml) and DMF (0.8 ml). The mixture was stirred at ambient temperature for 2-15h to yield a solution of the title compound which was used in subsequent reactions without further purification.
  • Example 17 The following illustrate representative pharmaceutical dosage forms containing the compound of formula (I), or a pharmaceutically acceptable salt thereof (hereafter compound X), for therapeutic or prophylactic use in humans:
  • Maize starch paste (5%> w/v paste) 2.25
  • Injection III (lmg/ml.buffered to pH6) Compound X 0.1% w/v Sodium phosphate BP 2.26% w/v Citric acid 0.38% w/v
  • the above formulations may be obtained by conventional procedures well known in the pharmaceutical art.
  • the tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Cette invention concerne l'utilisation d'un composé représenté par formule générale (I) pour la fabrication d'un médicament servant à relever l'activité déshydrogénases de pyruvate chez des animaux à sang chaud tels que les humains. L'invention concerne également des sels et des esters de composés représentés par la formule générale (I). Dans cette formule générale, R1 et R2 appartiennent chacun au groupe des hydrogène, C¿1-3? alkyle, pyridyle et phényle éventuellement substitué, ou forment un cycle en association avec l'atome azote auquel ils sont attachés. A-B appartiennent au groupe des NHCO, OCH2, SCH2, NHCH2, trans-vinylène et éthynylène. R?3 et R4¿ sont chacun indépendemment C¿1-3? alkyle, fluoro et chloro éventuellement substitué, ou, associés entre eux, forment un cycle éventuellement substitué par le fluoro. Enfin, R?5¿ est hydrogène, C¿1-4? alkyle, C1-4 haloalkyle, C1-3 alcoxy, C1-4 haloalcoxy, cyano, nitro, C2-3 alcényloxy ou trifluorométhylthio.
PCT/GB1999/001735 1998-06-04 1999-06-02 Derives de benzenesulphonamide comme activateurs des deshydrogenases de pyruvate WO1999062873A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU41564/99A AU4156499A (en) 1998-06-04 1999-06-02 Benzenesulphonamide derivatives as pyruvate dehydrogenase activators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9811932.4 1998-06-04
GBGB9811932.4A GB9811932D0 (en) 1998-06-04 1998-06-04 Chemical compunds

Publications (1)

Publication Number Publication Date
WO1999062873A1 true WO1999062873A1 (fr) 1999-12-09

Family

ID=10833141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1999/001735 WO1999062873A1 (fr) 1998-06-04 1999-06-02 Derives de benzenesulphonamide comme activateurs des deshydrogenases de pyruvate

Country Status (3)

Country Link
AU (1) AU4156499A (fr)
GB (1) GB9811932D0 (fr)
WO (1) WO1999062873A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026506A (ja) * 1999-04-28 2001-01-30 Takeda Chem Ind Ltd スルホンアミド誘導体
WO2001087850A1 (fr) * 2000-05-19 2001-11-22 Astrazeneca Ab Derive de pyridazine entrainant une augmentation de l'activite pdh
US6369273B1 (en) 1998-03-06 2002-04-09 Astrazeneca Ab Chemical compounds and their use to elevate pyruvate dehydrogenase activity
US6498275B1 (en) 1998-05-29 2002-12-24 Astrazeneca Ab Use of compounds for the elevation of pyruvate dehydrogenase activity
US6552225B1 (en) 1999-09-04 2003-04-22 Astrazeneca Ab Chemical compounds
US6667342B1 (en) 1998-03-17 2003-12-23 Astrazeneca Ab Benzenesulfonamide-derivatives and their use as medicaments
US6878712B1 (en) 1999-09-04 2005-04-12 Astrazeneca Ab Amides as inhibitors for pyruvate dehydrogenase
WO2008147962A1 (fr) * 2007-05-23 2008-12-04 Siga Technologies, Inc. Médicaments antiviraux pour le traitement et la prévention d'une infection par la dengue

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0625516A1 (fr) * 1993-05-17 1994-11-23 Zeneca Limited Derivés de benzenesulfonamide pour traiter l'instabilité vésicale
WO1996028151A2 (fr) * 1995-03-14 1996-09-19 Zeneca Limited Utilisation d'un activateur de la pyruvate dehydrogenase pour le traitement de l'ischemie dans les membres

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0625516A1 (fr) * 1993-05-17 1994-11-23 Zeneca Limited Derivés de benzenesulfonamide pour traiter l'instabilité vésicale
WO1996028151A2 (fr) * 1995-03-14 1996-09-19 Zeneca Limited Utilisation d'un activateur de la pyruvate dehydrogenase pour le traitement de l'ischemie dans les membres

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EMPFIELD J R ET AL: "4-Sulfonamidoanilide tertiary carbinols: a novel series of potassium channel openers", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 7, no. 7, 8 April 1997 (1997-04-08), pages 775-778, XP004136128, ISSN: 0960-894X *
OHNMACHT, CYRUS J. ET AL: "N-Aryl-3,3,3-trifluoro-2-hydroxy-2-methylpropanamides: KATP Potassium Channel Openers. Modifications on the Western Region", J. MED. CHEM. (1996), 39(23), 4592-4601, XP002110510 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6369273B1 (en) 1998-03-06 2002-04-09 Astrazeneca Ab Chemical compounds and their use to elevate pyruvate dehydrogenase activity
US6667342B1 (en) 1998-03-17 2003-12-23 Astrazeneca Ab Benzenesulfonamide-derivatives and their use as medicaments
US6498275B1 (en) 1998-05-29 2002-12-24 Astrazeneca Ab Use of compounds for the elevation of pyruvate dehydrogenase activity
US6960688B2 (en) 1998-05-29 2005-11-01 Astrazeneca Ab Use of compounds for the elevation of pyruvate dehydrogenase activity
JP2001026506A (ja) * 1999-04-28 2001-01-30 Takeda Chem Ind Ltd スルホンアミド誘導体
US6552225B1 (en) 1999-09-04 2003-04-22 Astrazeneca Ab Chemical compounds
US6878712B1 (en) 1999-09-04 2005-04-12 Astrazeneca Ab Amides as inhibitors for pyruvate dehydrogenase
WO2001087850A1 (fr) * 2000-05-19 2001-11-22 Astrazeneca Ab Derive de pyridazine entrainant une augmentation de l'activite pdh
WO2008147962A1 (fr) * 2007-05-23 2008-12-04 Siga Technologies, Inc. Médicaments antiviraux pour le traitement et la prévention d'une infection par la dengue
JP2010528051A (ja) * 2007-05-23 2010-08-19 シガ・テクノロジーズ・インコーポレーテッド デング感染症の治療または予防のための抗ウイルス薬
US8518960B2 (en) 2007-05-23 2013-08-27 Siga Technologies, Inc. Antiviral drugs for treatment or prevention of dengue infection
US9353051B2 (en) 2007-05-23 2016-05-31 Siga Technologies, Inc. Antiviral drugs for treatment or prevention of dengue infection

Also Published As

Publication number Publication date
AU4156499A (en) 1999-12-20
GB9811932D0 (en) 1998-07-29

Similar Documents

Publication Publication Date Title
US6667342B1 (en) Benzenesulfonamide-derivatives and their use as medicaments
EP1214287B1 (fr) Amides inhibiteurs pour la pyruvate deshydrogenase
US20040009979A1 (en) Use of compounds for the elevation of pyruvate dehydrogenase activity
WO1999062873A1 (fr) Derives de benzenesulphonamide comme activateurs des deshydrogenases de pyruvate
EP1214296B1 (fr) Derives de n-phenyl 2-hydroxy-2-methyl-3,3,3-trifluoropropanamide substitues destines a augmenter l'activite de pyruvate deshydrogenase
US6552225B1 (en) Chemical compounds
US20070208032A1 (en) Chemical compounds
AU2002321520A1 (en) Substituted n-phenyl 2-hydroxy-2-methyl-3,3,3-trifluropropanamide derivatives which elevate pyruvate dehydrogenase activity
CZ20003370A3 (cs) Benzensulfonamidové deriváty a jejich použití jako léčiv

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase