WO1999062669A1 - Verfahren zur bildung eines blechverbundes sowie vorrichtung und satz von blechabschnitten dazu - Google Patents

Verfahren zur bildung eines blechverbundes sowie vorrichtung und satz von blechabschnitten dazu Download PDF

Info

Publication number
WO1999062669A1
WO1999062669A1 PCT/CH1999/000221 CH9900221W WO9962669A1 WO 1999062669 A1 WO1999062669 A1 WO 1999062669A1 CH 9900221 W CH9900221 W CH 9900221W WO 9962669 A1 WO9962669 A1 WO 9962669A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet metal
welding
area
metal sections
laser
Prior art date
Application number
PCT/CH1999/000221
Other languages
English (en)
French (fr)
Inventor
Eugen Freuler
Original Assignee
Elpatronic Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpatronic Ag filed Critical Elpatronic Ag
Priority to AU38081/99A priority Critical patent/AU3808199A/en
Publication of WO1999062669A1 publication Critical patent/WO1999062669A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/10Making tubes with riveted seams or with non-welded and non-soldered seams
    • B21C37/101Making of the seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • B23K2101/185Tailored blanks

Definitions

  • the invention relates to a method according to the preamble of claim 1 or claim 12. Furthermore, the invention relates to a device for producing such a composite according to the preamble of claim 13 and a set of sheet metal sections according to the preamble of claim 15 or 16.
  • a sheet metal composite can be in the form of tailored blanks or tailored tubes, for example.
  • Tailored blanks are metal sheets welded together from at least two sheet metal sections. Such metal sheets are subsequently formed into shaped bodies, for example into body parts for the automotive industry.
  • the metal sheets are generally formed from sheet metal sections of different thickness and / or with different sheet properties, which results in corresponding shaped bodies with properties adapted to the respective intended use.
  • the German-language technical terms used for the tailored blanks are, for example, the terms tailored blanks or sheet metal parts adapted to the load; the term tailored blanks is used below.
  • the corresponding holding means are complex and consist, for example, of a magnetic holder which acts on the underside of the sheet metal sections and of a hydraulically actuated holder which acts on the sheet metal sections from the top.
  • W093 / 16839 proposes a large-area interlocking of sheets to form a fixation and further teaches to follow the gap course thus formed by means of a laser.
  • the sheets are more easily fixed.
  • a high-precision cut is still required for a small gap dimension suitable for laser welding, which is complex in the case of the complicatedly shaped gap.
  • there is a long welding time since the length of the weld seam increases considerably due to the teeth.
  • a large-sized toothing of metal sheets is also known, the purpose of which is only to connect tape reels by means of spot welding and not to form a tailored blank.
  • sheet metal strips are connected to one another at the ends by large-area teeth and welding by means of a roller electrode.
  • the invention is therefore based on the object of providing a method of the type mentioned at the outset, in which these disadvantages do not occur, and which in particular avoids the need for high-precision cuts in the formation of nonlinear tailored blanks or in the formation of tailored tubes and avoids the use of complicated holding means .
  • the width of the interlocking area is smaller than the width of the laser welding zone, ie there is a toothing that could be referred to as micro toothing and that can be passed over as a whole with the laser beam, the high demands placed on the cutting precision for laser welding are met - avoided and the welding speed is not reduced.
  • the invention is further based on the object of providing a device in which the disadvantages mentioned do not occur in the production of a sheet metal composite. This is achieved in a device of the type mentioned at the outset with the characterizing features of claim 13.
  • the invention is further based on the object of creating a set of sheet metal sections for forming a tailored tube in which the disadvantages mentioned do not occur.
  • a tailored blank with a form fit is to be formed, in which the cutting operation is not complicated by a large number of gears and in which a high welding speed is also possible despite the form fit.
  • Figure 1 shows an example of a tailored blank
  • Figure 2 shows a part of the butt joint of two sheet metal sections according to the invention
  • FIG. 3 shows another embodiment of the joint
  • Figure 4 shows another embodiment of the joint
  • FIG. 5 shows an embodiment of the form fit according to the prior art
  • Figure 6 is an illustration of cutting the
  • FIG. 7 shows the welding of the correspondingly cut sheet metal sections
  • Figure 8 is an illustration of a tailored tube.
  • Figure 1 shows a fictional example of a tailored blank 1, which is composed of flat sheets 2, 3, 4 and 5.
  • the sheets can be of different thicknesses e.g. 0.7 to 3 mm and can also be sheets of different sheet quality.
  • the size of the tailored blank can e.g. 3 m x 2 m, but this is only to be understood as an example.
  • the tailored blank of FIG. 1 shown for explanation now has butt joints of the adjoining sheets 6, 7, 8 and 9, which do not run in a straight line over the entire workpiece. In this case one speaks of a non-linear or patchwork tailored-blank. The welding of such weld seams 6-9 is easily possible with a controlled welding beam, in particular a laser beam.
  • the maximum gap width at the butt joint 6-9 may only be approx. 1/10 mm. According to the state of the art, this requires the making of high-precision fitting cuts of the sheets 2-5, which requires correspondingly expensive punching tools or cutting tools. Furthermore, it is relatively complicated to hold the individual sheets securely during welding in such a patchwork tailored blank. After welding, the tailored blank is shaped into the desired molded part in a known manner.
  • FIG. 2 shows a first embodiment, wherein the butt joint 9 between the sheets 2 and 3 of Figure 1 is shown in more detail.
  • the other butt joints 6, 7 and 8 of the tailored blank 1 can be carried out in the same way.
  • the butt joint 9 between the sheets 2 and 3 is designed here in such a way that the sheets 2 and 3 form-fit with one another.
  • the butt joint 9 is cut in such a way that the formations and recesses of the two sheets alternately interlock, so that the sheets, when they are connected to one another in this way, are positively connected to one another in the Y plane.
  • this positive locking allows the holding device for holding the sheets during welding to be simplified considerably.
  • the form-locking of the sheets can be effected along the entire butt joint 9 by their corresponding design or only along sections of the butt joint.
  • its butt joint 7 with the sheet 2 can only be provided with corresponding formations and indentations at individual points or along the entire butt joint between the sheets 5 and 2.
  • FIG. 1 in the case of the sheet 5 of FIG. 1, its butt joint 7 with the sheet 2 can only be provided with corresponding formations and indentations at individual points or along the entire butt joint between the sheets 5 and 2.
  • the width of the interlocking area is 21 about 0.3 mm. This is smaller than the width of the welding area, which in this example is formed by two laser beams 17 and 18, which partially overlap one another and which together form a welding area with a width A of approximately 0.6 mm. It can be two separate laser beams or a laser beam, of which a double focus is generated optically, or a single lenticular welding beam could be generated that covers the whole
  • Butt joint covers During welding, the form-fitting structures shown are melted on the butt joint 9 and the sheets 2, 3 are welded together.
  • the interlocking structures When welding with only one laser beam of less than 0.6 mm width A, the interlocking structures must be made correspondingly finer, so that in this case too Structure as a whole can be run over to form the weld seam.
  • FIG. 3 and FIG. 4 show further embodiments of the butt joint 9 or the form-locking connection between the sheets 2 and 3
  • FIG. 5 shows an embodiment of the form fit according to the state of the art, this time between sheets 11 and 12 of a tailored blank 10, here the form fit area 22 being created by large shapes and recesses in the sheets which interlock positively.
  • This form-fitting area 22 can e.g. have a width of several centimeters or several ten centimeters and is thus significantly larger than the size of the welding region 14 which is formed by the laser beam.
  • the laser beam does not run over the interlocking structures, as shown in FIG. 2, but the laser beam 14 follows the butt joint 13 and forms the weld seam 15.
  • the welding time is considerably longer and the gap must have the required small tolerances along its entire length or require great cutting precision.
  • the holding means for holding the respective sheets can be simplified considerably. As a rule, it is sufficient to hold the metal sheets which are already positively attached to one another only from below, from their contact surface, for example electromagnetically or by means of vacuum. This facilitates the clamping and accordingly the guiding of the welding beam in such patchwork tailored blanks clearly.
  • the laser beam 17, 18 is passed over the entire form-fitting area 21, as shown in FIGS. 2-4, the requirement for the cutting precision of the metal sheets in the form-fitting area compared to a butt joint according to the prior art is now lower.
  • FIG. 6 shows an example for cutting the sheets 2, 3 with the introduction of complementary form-locking structures, such as those e.g. are shown in Figures 2-4.
  • the sheets 2, 3, which in the example shown are of different thicknesses, but could also be of the same thickness, are placed on top of one another in an overlapping manner, and the corresponding interlocking structure is cut into both sheets simultaneously using a laser cutting beam 16. After removing the cut waste, the sheets can then be joined together.
  • FIG. 7 shows the welding of the metal sheets 2, 3 which have been joined into one another by means of the double laser beam 17, 18, FIG. shows a section along the line B-B of Figure 2. When cutting, an undercut can take place on the sheet metal edges, as is indicated in FIG.
  • undercut 6 by the inclination of the cutting beam 16 by + or - 2 °, which number is only to be understood as an example.
  • Corresponding undercuts along the butt joint are indicated in FIG. 2 by lines 24 and 24 '.
  • the undercut can, on the one hand, facilitate the interlocking of the sheets 2, 3 with their positive locking structures and prevent bulges from forming along the positive locking structure. Furthermore, the undercut can further reduce the requirement for cutting precision.
  • An undercut can also be carried out with the large form-fitting structures of FIG. 5.
  • cutting and welding can either be carried out on the same table, with the cutting laser 16 being replaced by the welding lasers 17, 18 and subsequently the welding also being carried out on the same table on which cutting was carried out. But it is also possible to transport the cut and nested sheets 2, 3 from the cutting device with the laser 16 to a welding device with the lasers 17 and 18. For this purpose, corresponding tables that accommodate the tailored blank can be provided, which are transported between the cutting device and the welding device. Since cutting can generally be done much faster than welding, one cutting device can also operate several welding devices. Instead of the cutting shown in FIG.
  • cutting can also be carried out in which the sheets are arranged separately, not one above the other, and two cutting beams are moved in synchronized fashion so that complementary structures are cut out of both sheets at the same time become. It is of course also possible to cut the sheets one after the other.
  • Figure 8 further shows in schematic form a so-called tailored tube, i.e. a tailor-made welded tube 30, which is also formed later.
  • the tube can consist of only one piece 31, or as shown, of two tubes connected by a weld 33. Both with this weld 33, as well as with the longitudinal welds 34 and 35 of the individual tubes 31 and 32, the positive connection described above, as has been shown on the flat sheets of Figures 1-7, can also be used.
  • the "micro-toothing" with a width of the form-fitting area that is less than the laser welding zone.
  • the fine toothing shown in FIGS. 2-4 which can also be referred to as a micro-meander, offers the further advantage that squeezing this butt joint before welding, for example by a squeezing roller or squeezing ball running in front of the welding beam, can bring particularly good results because the material distribution for the squeezing is favorable. Such a squeezing, which is known per se, can further reduce the requirements for cutting precision.
  • the coarse toothing shown in FIGS. 2-4 which can also be referred to as a micro-meander, offers the further advantage that squeezing this butt joint before welding, for example by a squeezing roller or squeezing ball running in front of the welding beam, can bring particularly good results because the material distribution for the squeezing is favorable. Such a squeezing, which is known per se, can further reduce the requirements for cutting precision.
  • the coarse toothing shown in FIGS. 2-4 which can also be referred to as a micro-meander

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

Vor der Verschweissung zweier Blechabschnitte (2, 3) eines tailored blanks werden in diese Blechabschnitte im Bereich der Stossfuge Strukturen eingebracht, welche einen Formschluss der beiden Blechabschnitte ergeben. In diesem Formschlussbereich (21) wird dann geschweisst. Dies erlaubt eine Vereinfachung der Halteeinrichtung für die Bleche sowie eine geringere Schnittpräzision an der Stossfuge.

Description

Verfahren zur Bildung eines Blechverbundes sowie Vorrichtung und Satz von Blechabschnitten dazu
Technisches Gebiet
Die Erfindung betrifft ein Verfahren gemäss Oberbegriff des Anspruchs 1 bzw. des Anspruchs 12. Ferner betrifft die Erfindung eine Vorrichtung zur Herstellung eines solchen Verbundes gemäss Oberbegriff des Anspruchs 13 sowie einen Satz von Blechabschnitten gemäss Oberbegriff des Anspruchs 15 oder 16.
Stand der Technik
Ein Blechverbund kann z.B. in der Form von sogenannten tailored blanks oder tailored tubes vorliegen. Als tailored blanks werden aus mindestens zwei Blechabschnitten zusammengeschweisste Blechtafeln bezeichnet. Solche Blechtafeln werden nachfolgend zu Formkörpern umgeformt, z.B. zu Karrosserieteilen für die Au- tomobilindustrie. Die Blechtafeln sind in der Regel aus Blechabschnitten unterschiedlicher Dicke und/oder mit unterschiedlichen Blecheigenschaften gebildet, was entsprechende Formkörper mit auf den jeweiligen Verwendungszweck angepassten Eigenschaften ergibt. Als deutschsprachige Fachbegriffe werden für die tailored blanks z.B. die Begriffe massgeschneiderte Platinen oder belastungsange- passte Blechteile verwendet; nachfolgend wird indes der Begriff tailored blanks benützt. Die aserschweissung von stumpf aneinanderliegenden Blechabschnitten erfordert be- kannterweise ein maximales Spaltmass der Stossfuge, das einen bestimmten Wert, in der Regel 1/10 mm, nicht überschreitet, und erfordert demgemäss einen hochpräzisen Schnitt der aneinanderliegenden Kanten der Blechabschnitte oder besondere Massnahmen zur Beeinflussung der Stoss- fuge, z.B. durch Quetschung des dickeren Bleches, was das Erfordernis der Schnittpräzision so weit senkt, dass kostengünstigere Schnitte möglich sind. Diese Massnahmen sind bekannt und werden hier nicht weiter erläutert. Zur Schweissung müssen die Blechabschnitte ferner durch Haltemittel in ihrer Lage zueinander sicher fixiert werden. Einerseits, um ein Aufspalten der Stossfuge im noch unge- schweissten Bereich zu verhindern, wenn im verschweissten Bereich im Schmelzbad eine Schrumpfung auftritt und andererseits auch, um ein Ausweichen der Blechabschnitte zu verhindern, wenn mechanisch auf die Stossfuge eingewirkt wird, z.B. durch Quetschrollen. Die entsprechenden Hal- temittel sind aufwendig und bestehen z.B. aus einer magnetischen Halterung, die auf die Unterseite der Blechabschnitte wirkt und aus einer hydraulisch betätigten Halterung, die von der Oberseite auf die Blechabschnitte wirkt. Das beschriebene Vorgehen zur Herstellung von tai- lored blanks hat sich bewährt - insbesondere mit Massnahmen zur Beeinflussung der Stossfuge -, wenn es um die Erzeugung einzelner geradliniger Schweissverbindungen bzw. mehrerer paralleler Schweissverbindungen geht.
Bei tailored blanks, die mittels einer nicht geradlinigen Schweissnaht gebildet werden sollen oder die mehrere nicht parallel zueinander liegende gerade Schweissnähte aufweisen, sei es direkt aufeinanderfolgend oder im Abstand voneinander (sogenannte nichtlineare tailored blanks oder patchwork tailored blanks) , stellt sich das Problem, dass bis heute ein hochpräziser Passschnitt der einzelnen Blechabschnitte zur Bildung der laser- schweissfähigen Stossfuge notwendig ist, da die erwähnten Massnahmen zur Schliessung der Stossfuge durch Quetschung derselben nicht angewandt werden können. Ein hochpräzises Schneiden der Blechabschnitte ist indes apparativ sehr aufwendig und entsprechend kostspielig. Ferner ist bei nichtlinearen Stossfugen bzw. Schweissnähten das sichere Fixieren der Blechabschnitte in der Regel komplizierter, da die Haltemittel entsprechend angepasst werden müssen. Ähnliche Probleme stellen sich bei der Bildung von massgeschneiderten Blechrohren, sogenannten tai- lored tubes, welche nachfolgend ebenfalls umgeformt werden, z.B. durch Innenhochdruckumformung.
W093/16839 schlägt eine grossflächige Verzahnung von Blechen zur Bildung einer Fixation vor und lehrt weiter dem so gebildeten Spaltverlauf mittels Laser nachzufahren. Es ergibt sich eine einfachere Fixation der Bleche. Indes wird weiterhin ein hochpräziser Schnitt für ein geringes, zum Laserschweissen geeignetes Spaltmass benötigt, was bei dem kompliziert geformten Spalt aufwen- dig ist. Ferner ergibt sich eine lange Schweissdauer, da die Länge der Schweissnaht durch die Verzahnung erheblich zunimmt. Aus DE-C-1 119 057 ist ebenfalls eine grossräu- mige Verzahnung von Blechen bekannt, wobei nur eine Verbindung von Bandspulen mittels Punktschweissung bezweckt wird und nicht die Bildung eines tailored-blanks. Ebenso werden gemäss US-A-1 773 068 Blechstreifen endseitig durch grossräumige Verzahnung und Verschweissung mittels einer Rollenelektrode miteinander verbunden.
Darstellung der Erfindung
Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, bei dem diese Nachteile nicht auftreten, und welches insbesondere die Notwendigkeit hochpräziser Schnitte bei der Bildung nichtlinearer tailored blanks oder bei der Bildung tailored tubes vermeidet und die Verwendung komplizierter Haltemittel vermeidet.
Diese Aufgabe wird mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Dadurch, dass die Brei- te des Formschlussbereichs kleiner ist als die Breite der Laser-Schweisszone ist, also eine Verzahnung vorliegt, die als MikroVerzahnung bezeichnet werden könnte und mit dem Laserstrahl als Ganzes überfahrbar ist, wird die hohe Anforderung an die Schnittpräzision für das Laserschweis- sen vermieden und die Schweissgeschwindigkeit wird nicht herabgesetzt. Der Erfindung liegt weiter die Aufgabe zugrunde, eine Vorrichtung zu schaffen, bei welcher bei der Herstellung eines Blechverbundes die genannten Nachteile nicht auftreten. Dies wird bei einer Vorrichtung der ein- gangs genannten Art mit den kennzeichnenden Merkmalen des Anspruchs 13 erreicht.
Der Erfindung liegt weiter die Aufgabe zugrunde, einen Satz von Blechabschnitten zur Bildung einer tailored tube zu schaffen, bei welchem die genannten Nachteile nicht auftreten.
Dies wird mit einem Satz von Blechabschnitten mit den kennzeichnenden Merkmalen des Anspruchs 14 erreicht.
Gemäss einem anderen Aspekt der Erfindung soll ein tailored-blank mit Formschluss gebildet werden, bei dem die Schneidoperation nicht durch eine Vielzahl von Verzahnungen erschwert wird und bei welchem trotz Formschluss ebenfalls eine hohe Schweissgeschwindigkeit möglich ist. Diese Aufgabe wird durch ein Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 12 gelöst bzw. durch Satz von Blechabschnitten nach Anspruch 16.
Kurze Beschreibung der Zeichnungen Im folgenden werden Ausführungsbeispiele der
Erfindung anhand der Zeichnungen näher erläutert. Dabei zeigt
Figur 1 ein Beispiel eines tailored blanks; Figur 2 einen Teil der Stossfuge zweier Blechabschnitte gemäss der Erfindung;
Figur 3 eine andere Ausgestaltung der Fuge; Figur 4 eine weitere Ausgestaltung der Fuge; Figur 5 eine Ausgestaltung des Formschlusses nach Stand der Technik; Figur 6 eine Darstellung des Schneidens der
Blechabschnitte; Figur 7 eine Darstellung der Schweissung der entsprechend geschnittenen Blechabschnitte; und
Figur 8 eine Darstellung einer tailored tube.
Bester Weg zur Ausführung der Erfindung
Figur 1 zeigt als fiktives Beispiel ein tailored blank 1, welches aus ebenen Blechen 2, 3, 4 und 5 zusammengesetzt ist. Die Bleche können von verschiedener Dicke von z.B. 0,7 bis 3 mm sein und können auch Bleche verschiedener Blechqualität sein. Die Grosse des tailored blanks kann z.B. 3 m x 2 m betragen, was aber lediglich als Beispiel zu verstehen ist. Das zur Erläuterung gezeigte tailored blank von Figur 1 weist nun Stossfugen der aneinandergrenzenden Bleche 6, 7, 8 und 9 auf, welche nicht gradlinig über das ganze Werkstück verlaufen. Man spricht in diesem Fall von einem nichtlinearen oder patchwork tailored-blank. Das Schweissen solcher Schweissnähte 6-9 ist mit einem gesteuerten Schweiss- strahl, insbesondere einem Laserstrahl, ohne weiteres möglich. Um die fehlerfreie Laserschweissung sicherzustellen, darf indes die maximale Spaltbreite an der jeweiligen Stossfuge 6-9 nur ca. 1/10 mm betragen. Dies erfordert nach Stand der Technik die Vornahme hochpräziser Passschnitte der Bleche 2-5, was entsprechend teure Stanzwerkzeuge oder Schneidewerkzeuge bedingt. Ferner ist es relativ kompliziert, bei einem solchen patchwork tailored blank die einzelnen Bleche während des Schweissens sicher zu halten. Nach der Schweissung wird das tailored blank auf bekannte Weise zu dem gewünschten Formteil ver- formt.
Gemäss der Erfindung wird nun ein Formschluss zwischen den einzelnen Blechen geschaffen, um einerseits eine einfachere Halterung der Bleche zu ermöglichen und andererseits die notwendige Schnittpräzision zu senken. Figur 2 zeigt ein erstes Ausführungsbeispiel, wobei darin die Stossfuge 9 zwischen den Blechen 2 und 3 von Figur 1 näher dargestellt ist. Dies ist natürlich nur als Bei- spiel zu verstehen; auch die anderen Stossfugen 6, 7 und 8 des tailored blanks 1 können auf dieselbe Weise ausgeführt werden. Ersichtlich ist, dass die Stossfuge 9 zwischen den Blechen 2 und 3 hier so ausgeführt ist, dass sich ein Formschluss der Bleche 2 und 3 untereinander ergibt. Dazu ist die Stossfuge 9 so geschnitten, dass sich abwechselnd Ausformungen und Ausnehmungen der beiden Bleche ineinander verhaken, so dass die Bleche, wenn sie derart miteinander verbunden sind, in der Y-Ebene mitein- ander formschlüssig in Verbindung stehen. Dieser Formschluss erlaubt einerseits eine wesentliche Vereinfachung der Halteeinrichtung zum Halten der Bleche während der Schweissung. Der Formschluss der Bleche kann dabei entlang der ganzen Stossfuge 9 durch deren entsprechende Ausgestaltung bewirkt werden oder nur entlang von Abschnitten der Stossfuge. So kann z.B. beim Blech 5 von Figur 1 dessen Stossfuge 7 mit dem Blech 2 nur an einzelnen Stellen mit entsprechenden Ausformungen und Einbuchtungen versehen sein oder entlang der ganzen Stossfuge zwischen den Blechen 5 und 2. Im Beispiel von Figur 2 beträgt die Breite des Formschlussbereichs 21 ungefähr 0,3 mm. Dies ist kleiner als die Breite des Schweissbereichs, welcher in diesem Beispiel durch zwei Laserstrahlen 17 und 18 gebildet wird, welche einander teilweise überlap- pen und welche zusammen einen Schweissbereich mit einer Breite A von ungefähr 0,6 mm bilden. Es kann sich dabei um zwei separate Laserstrahlen oder um einen Laserstrahl handeln, von dem auf optischem Weg ein doppelter Fokus erzeugt wird, oder es könnte auch ein einzelner linsen- förmiger Schweissstrahl erzeugt werden, der die ganze
Stossfuge abdeckt. Beim Schweissen werden also die dargestellten Formschlussstrukturen an der Stossfuge 9 aufgeschmolzen und die Bleche 2, 3 miteinander verschweisst . Beim Schweissen mit nur einem Laserstrahl von weniger als 0,6 mm Breite A sind die Formschlussstrukturen entsprechend feiner auszubilden, damit auch in diesem Fall die Struktur als Ganzes überfahren werden kann, um die Schweissnaht zu bilden.
Figur 3 und Figur 4 zeigen weitere Ausfüh- rungsformen der Stossfuge 9 bzw. der Formschlussverbin- düng zwischen den Blechen 2 und 3. Auch dabei ist die
Formschlussverbindung auf einen Bereich beschränkt, welcher kleiner ist als der Schweissbereich, welcher in den Figuren 3 und 4 ebenfalls mit einem doppelfokussierten Laserstrahl 17 und 18 angedeutet ist. In jedem Fall ist ersichtlich, dass dabei die Schnittpräzision nicht die nach Stand der Technik erforderliche Genauigkeit aufweisen muss, da der gesamte Bereich vom Laser überfahren wird.
Figur 5 zeigt dahingegen eine Ausgestaltung des Formschlusses nach Stand der Technik, diesmal zwischen Blechen 11 und 12 eines tailored blanks 10, wobei hier der Formschlussbereich 22 durch grosse Ausformungen und Ausnehmungen der Bleche, welche formschlüssig ineinandergreifen, geschaffen ist. Dieser Formschlussbereich 22 kann z.B. eine Breite von mehreren Zentimetern oder mehreren zehn Zentimetern aufweisen und ist damit deutlich grösser als die Grosse des Schweissbereichs 14, welcher durch den Laserstrahl gebildet wird. In diesem Fall ergibt sich nicht ein Überfahren der Formschlussstruktu- ren durch den Laserstrahl, wie dies in Figur 2 dargestellt ist, sondern der Laserstrahl 14 folgt der Stossfuge 13 und bildet dabei die Schweissnaht 15. Die Schweiss- zeit ist dabei wesentlich grösser und der Spalt muss entlang seiner gesamten Länge die geforderten geringen Tole- ranzen aufweisen bzw. bedarf grosser Schnittpräzision.
Die Haltemittel zur Halterung der jeweiligen Bleche können wesentlich vereinfacht werden. Es genügt in der Regel die formschlüssig bereits aneinander haftenden Bleche nur noch von unten, von ihrer Auflagefläche her, z.B. elektromagnetisch oder mittels Vakuum zu halten. Dies erleichtert die Einspannung und entsprechend auch die Führung des Schweissstrahles bei solchen patchwork tailored blanks deutlich. Beim Überfahren des gesamten Formschlussbereichs 21 mit dem Laserstrahl 17, 18, wie in den Figuren 2-4 gezeigt, wird nun auch die Anforderung an die Schneidpräzision der Bleche im Formschlussbereich ge- genüber einer Stossfuge nach Stand der Technik geringer.
Figur 6 zeigt ein Beispiel zum Schneiden der Bleche 2, 3 unter Einbringung von komplementären Formschlussstrukturen, wie sie z.B. in den Figuren 2-4 gezeigt sind. Dabei werden die Bleche 2, 3, welche im ge- zeigten Beispiel unterschiedlich dick sind, aber auch gleich dick sein könnten, überlappend aufeinandergelegt und es wird mit einem Laserschneidstrahl 16 die entsprechende Formschlussstruktur gleichzeitig in beide Bleche eingeschnitten. Nach Entfernung des Schnittabfalls können die Bleche dann ineinandergefügt werden. Figur 7 zeigt das Schweissen der ineinandergefügten Bleche 2 , 3 mittels des doppelten Laserstrahls 17, 18, wobei Figur 7 z.B. einen Schnitt entlang der Linie B-B von Figur 2 darstellt. Beim Schneiden kann an den Blechkanten ein Hinterschneiden erfolgen, wie dies in Figur 6 durch die Neigung des Schneidstrahles 16 um + oder - 2°, welche Zahl nur als Beispiel zu verstehen ist, angedeutet ist. In Figur 2 sind entsprechende Hinterschnitte entlang der Stossfuge durch die Linien 24 bzw. 24' angedeutet. Das Hinterschneiden kann einerseits das Ineinanderfügen der Bleche 2, 3 mit ihren Formschlussstrukturen erleichtern, und verhindern, dass sich entlang der Formschlussstruktur Aufwölbungen bilden. Ferner kann das Hinterschneiden weiter die Anforderung an die Schnittpräzision senken. Auch bei den grossen Formschlussstrukturen von Figur 5 kann ein Hinterschneiden vorgenommen werden.
Im industriellen Umfeld kann das Schneiden und das Schweissen entweder auf dem selben Tisch erfolgen, wobei dazu der Schneidlaser 16 durch die Schweissla- ser 17, 18 ausgetauscht wird und nachfolgend auf dem selben Tisch, auf welchem geschnitten worden ist, auch die Schweissung ausgeführt wird. Es ist aber auch möglich, die geschnittenen und ineinandergefügten Bleche 2, 3 von der Schneideinrichtung mit dem Laser 16 zu einer Schwei- sseinrichtung mit den Lasern 17 und 18 zu transportieren. Dazu können entsprechende, das tailored blank aufnehmende Tische vorgesehen sein, welche zwischen der Schneideinrichtung und der Schweisseinrichtung transportiert werden. Da das Schneiden in der Regel deutlich schneller erfolgen kann als das Schweissen, kann eine Schneideinrichtung auch mehrere Schweisseinrichtungen bedienen. Anstelle des in Figur 6 gezeigten Schneidens mit übereinanderliegenden Blechen, kann auch ein Schneiden erfolgen, bei dem die Bleche separat, nicht überein- anderliegend, angeordnet sind, und zwei Schneidstrahlen gekoppelt synchron so bewegt werden, dass aus beiden Ble- chen gleichzeitig komplementäre Strukturen ausgeschnitten werden. Auch ein nacheinander erfolgendes Schneiden der Bleche ist natürlich möglich.
Figur 8 zeigt weiter in schematischer Form eine sogenannte tailored tube, d.h. ein massgeschneider- tes verschweisstes Rohr 30, welches ebenfalls später umgeformt wird. Das Rohr kann dabei nur aus einem Stück 31 bestehen, oder wie gezeigt, aus zwei mit einer Schweissnaht 33 verbundenen Rohren. Sowohl bei dieser Schweissnaht 33, wie auch bei den Längsschweissnähten 34 und 35 der einzelnen Rohre 31 und 32, kann die vorstehend beschriebene Formschlussverbindung, wie sie an den ebenen Blechen der Figuren 1-7 dargestellt worden ist, ebenfalls angewandt werden. Auch dabei ergeben sich die geschilderten Vorteile. Bevorzugt ist hierbei die "Mikroverzahnung" mit einer Breite des Formschlussbereichs, die geringer ist als die Laser-Schweisszone .
Die in den Figuren 2-4 dargestellte Feinverzahnung, welche auch als Mikromäander bezeichnet werden kann, bietet weiter den Vorteil, dass eine Quetschung dieser Stossfuge vor dem Verschweissen, z.B. durch eine vor dem Schweissstrahl laufende Quetschrolle oder Quetschkugel besonders gute Ergebnisse bringen kann, da die Materialverteilung für das Quetschen günstig ist. Durch ein solches - an sich bekanntes - Quetschen können die Anforderungen an die Schnittpräzision noch weiter gesenkt werden. Die in Figur 5 gezeigte Grobverzahnung nach
Stand der Technik, welche dort auch als Makromäander bezeichnet werden könnte, kann auch auf neue und erfinderische Weise derart gelöst werden, dass die konstruktiv vorgegebenen Verläufe der Stossfugen zur Erzielung der belastungsangepassten Eigenschaften in ihrem Verlauf so angepasst werden, dass sich bereits dadurch ein Formschluss ergibt. Dies würde z.B. in Figur 1 für die Bleche 5 und 2 derart gelöst, dass das Blech 5 nicht rechteckig geformt, sondern derart leicht trapezförmig geformt wird - und entsprechend auch der Ausschnitt im Blech 2 - dass sich durch diese Formgebung ein Formschluss ergibt; in Figur 1 ist dies mit unterbrochenen Linien für die eine Seite des Bleches 5 angedeutet.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines tailored blank-Blechverbundes (1;30) bei welchem vor der Schweissung der Blechabschnitte (2,3,4,5) im Schweissbereich durch ineinandergreifende Ausformungen und Einbuchtungen der Blechabschnitte ein Formschluss gebildet wird, und das Schweissen mittels Lasers erfolgt, dadurch gekenn- zeichnet, dass die Breite des Formschlussbereiches (21) kleiner ist als die Breite (A) der Laser-Schweisszone (17,18) .
2. Verfahren zur Herstellung eines tailored tube-Blechverbundes, dadurch gekennzeichnet, dass vor der Schweissung im Schweissbereich durch ineinandergreifende Ausformungen und Einbuchtungen der zu verschweissenden Blechränder ein Formschluss derselben gebildet wird, und dass die Schweissung mittels Laser erfolgt.
3. Verfahren nach Anspruch 2 , dadurch gekenn- zeichnet, dass die Breite des Formschlussbereichs kleiner als die Breite der Schweisszone ist.
4. Verfahren nach Anspruch 2 , dadurch gekennzeichnet, dass die Breite des Formschlussbereichs grösser als die Breite der Schweisszone ist.
5. Verfahren nach einem der Ansprüche 1 bis
4, dadurch gekennzeichnet, dass der Schweissstrahl durch zwei oder mehr Laserstrahlen gebildet wird, welche einander teilweise überlappen.
6. Verfahren nach Anspruch 5 , dadurch gekenn- zeichnet, dass der Schweissstrahl durch zwei oder mehr separate Laserquellen erzeugt wird, oder dass der Schweissstrahl aus einer Laserquelle mit optischen Mitteln mit doppeltem Fokus erzeugt wird.
7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Schweissstrahl mit linsenförmigem Querschnitt erzeugt wird.
8. Verfahren nach einem der Ansprüche 1 bis
7, dadurch gekennzeichnet, dass Formschluss nur entlang eines Teils der Stossfuge (6-9) der Bleche vorliegt, oder dass Formschluss entlang der ganzen Stossfuge (6-9) vor- liegt.
9. Verfahren nach einem der Ansprüche 1 bis
8, dadurch gekennzeichnet, dass das Schneiden der Blechabschnitte im Formschlussbereich bei übereinander- liegenden Blechabschnitten (2, 3) mit einem beide Blechabschnitte durchdringendem Schneidmittel (16) erfolgt.
10. Verfahren nach einem der Ansprüche 1 bis
9, dadurch gekennzeichnet, dass das Schneiden der Bleche im Formschlussbereich bei nebeneinanderliegenden Blechen mit zwei synchron gesteuerten Schneidmitteln erfolgt.
11. Verfahren nach einem der Ansprüche 1 bis
10, dadurch gekennzeichnet, dass mindestens in einem Teil (24) des Formschlussbereichs ein Hinterschneiden erfolgt.
12. Verfahren zur Herstellung eines tailored blank-Blechverbundes (1;30) bei welchem vor der Schweissung der Blechabschnitte (2,3,4,5) im Schweissbereich durch ineinandergreifende Ausformungen und Einbuchtungen der Blechabschnitte ein Formschluss gebildet wird, und das Schweissen mittels Lasers erfolgt, dadurch gekenn- zeichnet, dass die konstruktiv vorgegebenen Verläufe der Stossfugen zur Erzielung der belastungsangepassten Eigenschaften in ihrem Verlauf so angepasst werden, dass sich bereits dadurch ein Formschluss ergibt.
13. Vorrichtung zur Bildung eines tailored blank-Blechverbundes (1) oder eines tailored tube-Blech- verbundes (30) , umfassend mindestens eine Schneideinrichtung und eine Laserschweisseinrichtung, wobei die Schneideinrichtung zur Ausformung komplementärer Formschluss- teile bei mindestens zwei Blechrändern ausgestaltet ist, welche zusammen einen Formschlussbereich bilden, dadurch gekennzeichnet, dass die Schneideinrichtung derart ausgestaltet ist, dass die Breite des Formschlussbereichs kleiner ist als die Breite der von der Schweisseinrich- tung erzeugten Laserschweisszone.
14. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Schneideinrichtung hinterstochene Schnitte erzeugt.
15. Satz von Blechabschnitten (2-5, 11, 12, 31, 32) zur Bildung einer tailored tube, dadurch gekennzeichnet, dass die Blechabschnitte mit gegenseitig ineinanderpassenden Formschlussbereichen versehen sind.
16. Satz von Blechabschnitten (2, 5) zur Bildung eines tailored-blanks, dadurch gekennzeichnet, dass die Blechabschnitte entlang mindestens eines Teils ihrer konstruktiv vorgegebenen Stossfugen so angepasst sind, dass sich bereits durch den Verlauf der Stossfugen ein Formschluss ergibt.
PCT/CH1999/000221 1998-06-02 1999-05-25 Verfahren zur bildung eines blechverbundes sowie vorrichtung und satz von blechabschnitten dazu WO1999062669A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU38081/99A AU3808199A (en) 1998-06-02 1999-05-25 Method for forming a sheet metal assembly and corresponding device and sheet metal set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH119998 1998-06-02
CH1199/98 1998-06-02

Publications (1)

Publication Number Publication Date
WO1999062669A1 true WO1999062669A1 (de) 1999-12-09

Family

ID=4204831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1999/000221 WO1999062669A1 (de) 1998-06-02 1999-05-25 Verfahren zur bildung eines blechverbundes sowie vorrichtung und satz von blechabschnitten dazu

Country Status (2)

Country Link
AU (1) AU3808199A (de)
WO (1) WO1999062669A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070447A1 (de) * 2000-03-23 2001-09-27 Elpatronic Ag Tailored tubular blanks und verfahren zu deren herstellung
EP1186358A2 (de) * 2000-09-08 2002-03-13 Thyssen Krupp Stahl AG Verfahren und Platine zur Herstellung eines kaltumgeformten Bauteils aus Stahlblech und Verwendung einer Platine
US7717640B2 (en) * 2005-10-17 2010-05-18 Yamazaki Mazak Corporation Joint structure of pipe
DE102010016945B3 (de) * 2010-05-14 2011-11-10 Kirchhoff Automotive Deutschland Gmbh Verfahren zur Herstellung eines Formteiles
DE102010064235A1 (de) 2010-12-28 2012-06-28 BSH Bosch und Siemens Hausgeräte GmbH Garraumelement für einen Backofen und Verfahren zum Herstellen desselben
DE102011101043A1 (de) * 2011-05-10 2012-11-15 Protektorwerk Florenz Maisch Gmbh & Co. Kg Verfahren zum Verschweissen von Gegenständen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1450935A (en) * 1918-12-12 1923-04-10 Air Reduction Permanent joint in fabricated form and method of maxing the same
US1773068A (en) * 1927-08-08 1930-08-12 Gen Electric Electric welding
DE1119057B (de) * 1956-07-03 1961-12-07 Ford Werke Ag Verbindung zweier oder mehrerer aufeinanderfolgender Metallstreifen zu einem fortlaufenden aufzuspulenden Metallband
DE2741717A1 (de) * 1977-09-16 1979-03-29 Eberspaecher J Aus einem blechstreifen gerolltes rohrstueck
DE4110418C1 (en) * 1991-03-29 1992-05-14 Nothelfer Gmbh, 7980 Ravensburg, De Vehicle load bearing sheet - comprises two different-thickness sheet members, superposed in stamping press and sheared by punch
DE4104256A1 (de) * 1991-02-13 1992-08-20 Thyssen Laser Technik Gmbh Verfahren zum herstellen von durch tiefziehen umgeformten formkoerpern, insbesondere von karosserieteilen fuer kraftfahrzeuge
EP0543338A1 (de) * 1991-11-18 1993-05-26 Hans Oetiker AG Maschinen- und Apparatefabrik Verfahren zum Verbinden von zwei Teilen entlang aneinander-stossender Kanten und damit hergestellte Verbindung
WO1993016839A1 (en) * 1992-02-25 1993-09-02 Instituttet For Produktudvikling A method of accurately joining together two sheet sections

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1450935A (en) * 1918-12-12 1923-04-10 Air Reduction Permanent joint in fabricated form and method of maxing the same
US1773068A (en) * 1927-08-08 1930-08-12 Gen Electric Electric welding
DE1119057B (de) * 1956-07-03 1961-12-07 Ford Werke Ag Verbindung zweier oder mehrerer aufeinanderfolgender Metallstreifen zu einem fortlaufenden aufzuspulenden Metallband
DE2741717A1 (de) * 1977-09-16 1979-03-29 Eberspaecher J Aus einem blechstreifen gerolltes rohrstueck
DE4104256A1 (de) * 1991-02-13 1992-08-20 Thyssen Laser Technik Gmbh Verfahren zum herstellen von durch tiefziehen umgeformten formkoerpern, insbesondere von karosserieteilen fuer kraftfahrzeuge
DE4110418C1 (en) * 1991-03-29 1992-05-14 Nothelfer Gmbh, 7980 Ravensburg, De Vehicle load bearing sheet - comprises two different-thickness sheet members, superposed in stamping press and sheared by punch
EP0543338A1 (de) * 1991-11-18 1993-05-26 Hans Oetiker AG Maschinen- und Apparatefabrik Verfahren zum Verbinden von zwei Teilen entlang aneinander-stossender Kanten und damit hergestellte Verbindung
WO1993016839A1 (en) * 1992-02-25 1993-09-02 Instituttet For Produktudvikling A method of accurately joining together two sheet sections

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070447A1 (de) * 2000-03-23 2001-09-27 Elpatronic Ag Tailored tubular blanks und verfahren zu deren herstellung
EP1186358A2 (de) * 2000-09-08 2002-03-13 Thyssen Krupp Stahl AG Verfahren und Platine zur Herstellung eines kaltumgeformten Bauteils aus Stahlblech und Verwendung einer Platine
EP1186358A3 (de) * 2000-09-08 2003-12-10 ThyssenKrupp Stahl AG Verfahren und Platine zur Herstellung eines kaltumgeformten Bauteils aus Stahlblech und Verwendung einer Platine
US6883218B2 (en) 2000-09-08 2005-04-26 Thyssen Krupp Stahl Ag Method for the production of a cold formed piece part made out of a steel plate
CZ297850B6 (cs) * 2000-09-08 2007-04-18 Thyssen Krupp Stahl Ag Zpusob výroby soucástí z ocelového plechu tvárením za studena a desticka z ocelového plechu na výrobu soucásti tvárením za studena
US7717640B2 (en) * 2005-10-17 2010-05-18 Yamazaki Mazak Corporation Joint structure of pipe
DE102010016945B3 (de) * 2010-05-14 2011-11-10 Kirchhoff Automotive Deutschland Gmbh Verfahren zur Herstellung eines Formteiles
DE102010016945B9 (de) * 2010-05-14 2012-03-15 Kirchhoff Automotive Deutschland Gmbh Verfahren zur Herstellung eines Formteiles
ES2400424R1 (es) * 2010-05-14 2013-06-06 Kirchhoff Automotive D Gmbh Procedimiento para fabricar una pieza perfilada
DE102010016945C5 (de) * 2010-05-14 2013-10-17 Kirchhoff Automotive Deutschland Gmbh Verfahren zur Herstellung eines Formteiles
DE102010064235A1 (de) 2010-12-28 2012-06-28 BSH Bosch und Siemens Hausgeräte GmbH Garraumelement für einen Backofen und Verfahren zum Herstellen desselben
DE102010064235B4 (de) * 2010-12-28 2016-01-14 BSH Hausgeräte GmbH Garraumelement für einen Backofen und Verfahren zum Herstellen desselben
DE102011101043A1 (de) * 2011-05-10 2012-11-15 Protektorwerk Florenz Maisch Gmbh & Co. Kg Verfahren zum Verschweissen von Gegenständen
WO2012152790A1 (de) * 2011-05-10 2012-11-15 Protektorwerk Florenz Maisch Gmbh & Co. Kg Verfahren zum verschweissen von gegenständen mit einer besonderen kantengeometrie

Also Published As

Publication number Publication date
AU3808199A (en) 1999-12-20

Similar Documents

Publication Publication Date Title
DE3812448C1 (de)
EP0858857B1 (de) Verfahren und Vorrichtung zum Laserschweissen
EP4090492B1 (de) Verfahren zum stumpfschweissen von wenigstens zwei blechen
DE3802000A1 (de) Aus metallblech gefertigter behaelter
WO2020038504A2 (de) VERFAHREN ZUM VERSCHWEIßEN VON BLECHSTREIFEN UND VORRICHTUNG ZUR HERSTELLUNG EINER GROßEN FLÄCHE UNTER EINSATZ EINES DERARTIGEN VERFAHRENS
EP1268118A1 (de) Tailored tubular blanks und verfahren zu deren herstellung
WO1999062669A1 (de) Verfahren zur bildung eines blechverbundes sowie vorrichtung und satz von blechabschnitten dazu
DE2949095B1 (de) Einrichtung zum Verbinden zweier Materialbaender
DE69311462T2 (de) Verfahren zum Laserschweissen von mindestens zwei Metallblechen unterschiedlicher Dicke
DE10218986B4 (de) Verfahren zur Herstellung eines Kraftstoffbehälters, sowie ein danach hergestellter Kraftstoffbehälter
DE102010019259B4 (de) Vorrichtung und Verfahren zum Führen von miteinander entlang ihrer Längskanten zu fügender Metallbänder
EP0147370B1 (de) Verfahren zum Zusammenführen der Kanten eines zu einem Zylinder gerollten Blechabschnittes sowie eine Führungsvorrichtung
DE19852342C1 (de) Verfahren zur Herstellung von Dosenrümpfen aus Blech für die Fertigung von Dosen
DE3824698A1 (de) Verfahren und einrichtung zum stossverbinden von metallbahnen oder -baendern
DE9108009U1 (de) Messer mit am Kropf stumpf angeschweißtem Erl
EP1857587B1 (de) Verfahren zur Herstellung eines Hohlkörpers einer Maschine zur Herstellung und/oder Veredelung einer Materialbahn und Hohlkörper
EP1210998B1 (de) Verfahren und Vorrichtung zum Herstellen eines Metallprofils
DE69106306T2 (de) Verfahren zum Verbinden von gewalzten Blechen.
DE19855073B4 (de) Vorrichtung und Verfahren zur Herstellung einer Verbindung zweier Bauteile durch Nahtschweißen mittels eines Laserstrahls
EP0490091A2 (de) Verfahren zur Herstellung einer zusammengesetzten Blechtafel und Schweisswagen zur Durchführung des Verfahrens
DE19915338C1 (de) Verfahren und Anlage zum Bearbeiten und Verbinden der Kanten von Blechen o. dgl.
DE4439357C2 (de) Verfahren und Vorrichtung zum Einseitenschweißen von Stumpfnähten
DE19529542C2 (de) Verfahren und Vorrichtung zum Verschweißen stumpf aneinanderstoßender Bleche, insbesondere in Form von Streifen
DE19834775A1 (de) Verfahren zum Zusammenschweißen von zwei Werkstück-Randbereichen
DE10009126A1 (de) Anordnung eines tragenden Bauteils einer Fahrzeugkarosserie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA