WO1999062082A1 - Textile inductif et utilisation d'un tel textile dans des dispositifs inductifs - Google Patents

Textile inductif et utilisation d'un tel textile dans des dispositifs inductifs Download PDF

Info

Publication number
WO1999062082A1
WO1999062082A1 PCT/FR1999/001263 FR9901263W WO9962082A1 WO 1999062082 A1 WO1999062082 A1 WO 1999062082A1 FR 9901263 W FR9901263 W FR 9901263W WO 9962082 A1 WO9962082 A1 WO 9962082A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductive
threads
filaments
textile
energy
Prior art date
Application number
PCT/FR1999/001263
Other languages
English (en)
Inventor
François DUVERGER
Olivier Acher
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to DE69901342T priority Critical patent/DE69901342T2/de
Priority to EP99922238A priority patent/EP1080475B1/fr
Publication of WO1999062082A1 publication Critical patent/WO1999062082A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V15/00Tags attached to, or associated with, an object, in order to enable detection of the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/143Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15391Elongated structures, e.g. wires

Definitions

  • the present invention relates to a textile having inductive properties, and the use of such a textile, for example, in inductive devices such as energy or signal transmission devices, or devices with inductive sensors capable of detect a change in magnetic field.
  • textile a material, in the form of a fabric, composed of a large number of fibers and having a certain cohesion.
  • the textile may be a woven textile, such as a fabric, in which fibers are gathered into threads and in which the threads are woven, or a nonwoven textile in which fibers are made coherent by entanglement, by gluing, or by any other way.
  • the invention finds applications, for example, in the production of energy supply devices for portable electrical equipment, such as radiotelephones, or in passage detection devices. It also finds applications in the manufacture of electrical or electronic components.
  • Inductive components are generally presented as components comprising a ferrite core or in the form of ferromagnetic strips.
  • the reduction in the dimensions of these components is accompanied by a reduction in the electrical power that they are capable of supporting or providing.
  • current techniques for manufacturing inductive components are ill-suited to mass production of circuits at low cost.
  • the present invention aims to provide a new inductive material, usable in miniaturized electronic devices.
  • An aim is also to propose such a material which can be produced industrially at low cost.
  • Another object of the invention is to propose, by virtue of this material, a means making it possible to avoid installing bulky and expensive energy sources in portable electronic devices.
  • Another aim is to propose an inductive material usable as an energy or information vector, as well as a certain number of applications or uses of such a material.
  • the invention more specifically relates to a textile comprising a plurality of filaments of inductive material, characterized in that the filaments, ferromagnetic, are equipped with an electrically insulating surface layer and have a higher saturation magnetization. or equal to 0.5T, and in that the filaments have a length greater than 10 mm and have substantially the same orientation, a maximum difference between the orientations of the filaments being less than or equal to 10 °.
  • Such a textile can be manufactured industrially, like the manufacture of clothing textile and the costs of producing the textile can be reduced accordingly.
  • the textile according to the invention can be used as an energy or information vector but can also be used as an inductive component in electronic devices. Specific applications of the textile are described in the following text.
  • the manufacture of the textile of the invention uses filaments of inductive material. These are, for example, filaments made of a ferromagnetic material such as CoFeSiB or CoFeNiMoSiB filaments.
  • filaments of inductive material are, for example, filaments made of a ferromagnetic material such as CoFeSiB or CoFeNiMoSiB filaments.
  • an amorphous and soft ferromagnetic material that is to say in particular a material having a saturation field of less than 5 Oersted.
  • the ferromagnetic filaments are preferably sheathed by means of an electrically insulating surface layer.
  • An advantageous choice is to use amorphous ferromagnetic filaments sheathed in glass.
  • the ferromagnetic material of the filaments can be a material having a negative magnetostriction preferably between 5.10 "5 and 0.
  • Metal filaments inductive or not, are in fact known per se.
  • the isolated ferromagnetic filaments are produced for example, according to a technique known as the Ullitovsky Taylor technique.
  • Ullitovsky Taylor technique a technique known as the Ullitovsky Taylor technique.
  • the inductive fabric of the invention can be a woven fabric or not. It may include, in addition to the filaments of inductive material, filaments, called structuring filaments, made of a non-inductive material.
  • the structuring filaments are associated with inductive filaments to give the textile its cohesion.
  • the structuring filaments can be filaments of natural or synthetic fibers commonly used in the textile industry and in particular for the manufacture of non-woven textiles.
  • the textile fibers can be embedded in a resin, in the form of a composite material.
  • filaments of inductive material are preferably used having a length greater than 10 mm and having substantially the same orientation, a maximum difference between the orientations of the filaments being less than or equal to 10 °.
  • the maximum deviation of the orientations of the filaments is less than or equal to 10 ° when at least 99% of the filaments have an orientation which does not deviate more than 10% from the average orientation of the fibers.
  • the number of these filaments is generally greater than 1000.
  • the fact that a large number of filaments have substantially the same orientation makes it possible to efficiently channel a magnetic flux in a preferred direction.
  • the textile can also be a woven textile. It then comprises a plurality of wires called inductive wires, the wires possibly being formed of filaments of inductive material as described above and possibly of filaments of non-inductive material associated with the filaments of inductive material.
  • the wires can thus comprise filaments of inductive material such as ferromagnetic filaments sheathed in glass.
  • the proportion of ferromagnetic filaments is preferably greater than or equal to 50%.
  • the non-inductive filaments are formed, for example, from synthetic or natural fibers.
  • the formation of the inductive wires from the filaments can take place by twisting, by wrapping or by any other method of forming wires.
  • the twist of the inductive wires around their axis is preferable to limit the twist of the inductive wires around their axis to values less than or equal to two turns per meter.
  • the inductive wires can also be ferromagnetic wires formed directly by the Ullito sky Taylor technique.
  • They are preferably electrically isolated by a sheath of varnish or glass.
  • the varnish or glass sheath is preferably made with a thickness of less than 5 ⁇ m to keep the wires flexible.
  • the inductive wires can be associated, in particular by weaving, with so-called non-inductive wires, that is to say wires which do not have magnetic properties.
  • the non-inductive threads are, for example, threads of nylon, cotton, wool, threads of glass, silica, aramid fiber, or any other type of thread usually used for the production of woven textiles.
  • the non-inductive wires can also be wires having particular properties such as electrically conductive wires. These wires, for example copper or a copper-based alloy, are preferably insulated by a sheath, such as an insulating varnish.
  • the woven fabric may, in conventional manner, warp threads and weft threads oriented in a substantially perpendicular direction.
  • the warp threads, respectively of the weft threads may preferably be formed in the majority by inductive threads and the weft threads, respectively the warp threads, may be formed by non-inductive and non-conductive threads.
  • the warp threads can be threads based on ferromagnetic filaments and the weft threads can be threads of glass fibers.
  • the non-inductive threads essentially have the function of structuring the fabric. However, it is generally not useful for the mass of the non-inductive wires to exceed one third of the total mass of the fabric obtained.
  • Inductive textiles as described above find applications for the production of inductive components such as electrical transformers or smoothing inductors. In these components, the inductive textile replaces the inductive core, usually based on ferrite.
  • the inductive fabric of the invention used for the formation of inductive components can advantageously be cut and shaped for constitute, for example, a shell, a housing or a housing part of an electronic device.
  • the shaping of the inductive fabric of the invention can be easily obtained using known techniques for shaping textile or composite materials.
  • the inductive filaments can be planted on a support in a manner comparable to a carpet or a pile.
  • the support is for example a layer of resin with a thickness of 0.1 to 1 mm in which are strands of son or inductive filaments forming a carpet.
  • the inductive threads or filaments can be combined with non-inductive and non-conductive threads or filaments to give the carpet or the pile a special feel.
  • This fabric can be used in combination with magnetic flux measuring coils to form a magnetic flux variation detector.
  • such a detector can be used to detect the passage of objects equipped with a magnet in an area or a room. The area or room is then fitted with a carpet with inductive filaments including coils for measuring the flow, connected to a magnetic flow detector.
  • the invention also relates to a system for transmitting energy and / or signal from an energy and / or signal source to an energy and / or signal receiver comprising a magnetic flux vector means, disposed between the energy and / or signal source and the energy and / or signal receiver.
  • the magnetic flux vector means comprises an inductive textile as described above.
  • the invention finally relates to a composite material comprising at least one layer of inductive textile as described.
  • FIG. 1 shows, schematically and greatly enlarged, a portion of woven inductive textile according to the invention, used as a magnetic flux vector.
  • - Figure 2 shows schematically a portion of non-woven inductive fabric, according to the invention, used as a magnetic flux vector.
  • FIG. 3 illustrates schematically a use of the textile of the invention for the supply of a portable electronic device.
  • FIG. 4 illustrates schematically a use of the textile of the invention in a passage detector.
  • FIG. 5 and 6 schematically illustrate a use of the textile of the invention in the production of transformers.
  • the reference 10 in FIG. 1 designates a portion of inductive woven fabric in accordance with the invention.
  • the textile 10 comprises warp threads 12 produced in particular from glass-coated ferromagnetic filaments and weft threads 14 woven around the warp threads.
  • the warp threads 12 are so-called inductive threads and the weft threads 14 are non-inductive threads such as cotton threads, for example. It is observed that the inductive warp wires have an orientation in a direction Y marked with an arrow in FIG. 1.
  • the textile of FIG. 1 can be used as a vector of an alternating magnetic flux and transmit electrical energy or possibly electrical signals in the form of a microwave magnetic field at a frequency for example between 1 MHz and 1 GHz.
  • a first coil 20, called the inductor coil is connected to a source 22 of alternating current and is situated at a first end of the fabric in the direction Y.
  • the coil is arranged, for example, opposite the ends of the inductive wires. According to a variant, it can also surround all or part of the textile.
  • the current source 22 can be a high frequency current source when it is desired to transmit electrical energy through the textile. To transmit significant energy, it is preferable to use inductive wires, the filaments of which have a saturation magnetization greater than 0.5 T.
  • the current source 22 can also be modulated to transmit an electrical signal.
  • the modulation frequency is typically in a frequency range between 10 kHz and 1 GHz.
  • a second coil 24, called the receiving coil, is connected to a receiving device 26 and is located at an opposite end of the fabric, in the direction Y.
  • the coil 24 can supply the receiver 26 with a supply current induced by the magnetic flux conveyed by the textile to this coil.
  • the coil 24 can also provide the receiver 26 with a signal which is decoded in the receiver.
  • the coils 20 and 24 are in the form of a winding around a winding axis and are preferably positioned in such a way that the winding axis forms with the direction Y of the inductive warp wires 12, a angle between 0 and 80 °. In other words, we avoid that direction Y inductive wires and the winding axis of the coils are perpendicular.
  • FIG. 2 shows the use of a nonwoven fabric in a configuration similar to that of FIG. 1.
  • the textile 10 of FIG. 2 comprises a tangle of ferromagnetic filaments 13, sheathed in glass, which all have substantially the same orientation in a direction Y.
  • Structural filaments not referenced, electrical insulators whose orientation is indifferent, can be associated with ferromagnetic filaments 13 to improve the cohesion of the textile.
  • the non-inductive structural filaments can be based on usual, natural or synthetic fibers.
  • inductor and receiver coils are arranged so that their winding axis is substantially parallel to the direction Y of the ferromagnetic filaments.
  • FIG. 3 shows a particular use of the textile of the invention for the supply of portable electronic equipment.
  • the reference 1 in Figure 3 denotes a garment made from a textile according to the invention.
  • the inductive threads of the textile are arranged so as to present a particular direction.
  • the garment is a vest (or shirt) and the inductive threads 12 of the textile extend substantially along the body of the person wearing the garment.
  • the person wears a source of electrical energy 22 on his belt, for example battery operated, equipped with an induction coil, to emit a magnetic flux 28.
  • a source of electrical energy 22 on his belt for example battery operated, equipped with an induction coil, to emit a magnetic flux 28.
  • This magnetic flux 28 is channeled by the inductive threads or filaments of the textile to the upper part of the garment, that is to say to the collar or to the shoulders of the vest.
  • the path of the magnetic flux is shown diagrammatically in FIG. 1 by means of arrows.
  • the reference 30a designates an electronic device such as a radiotelephone equipped with a receiver 26a with a reception coil.
  • the receiving coil is crossed by the magnetic flux 28, channeled by the inductive fabric as far as the region of use of the radiotelephone.
  • the reference 30b designates another electronic device such as, for example, a pin equipped with a set of light-emitting diodes, worn by the user as a jewel.
  • the spindle equipped with a receiver 26b with a receiving coil can be fixed in any place of the garment traversed by the inductive wires and thus be supplied with energy to cause a play of light.
  • electronic devices such as calculators or diaries or sound reproducing devices can be fitted with magnetic flux receivers and powered by inductive wires or filaments extending, by example, right down to a sleeve of the garment fitted with the inductive fabric.
  • the batteries or supply cells of portable equipment are replaced by the magnetic energy receiver which can be made in a space-saving and particularly light manner.
  • FIG. 4 shows yet another application of the invention for detecting the passage of objects equipped with magnets.
  • the reference 40 designates a room whose floor is covered by a carpet 110 which according to the invention comprises a plurality of strands 112 formed by wires or filaments made of an inductive material.
  • the strands stand on a support layer in which, or below which are arranged coils 114 sensitive to magnetic flux. These coils are coupled to the filaments and are electrically connected to one (or more) magnetic flux detector (s) 116.
  • the detector measures a current generated in the coils in response to a change in magnetic flux.
  • the reference 118 designates a magnet capable of moving in the area or the room fitted with carpet.
  • the magnet 118 is for example secured to a carriage moving in the room.
  • the passage of the magnet in the vicinity of the carpet strands causes a variation in the magnetic flux seen by the coils associated with the strands.
  • the coils located on the passage of the magnet therefore deliver signals which are received by the detector 116. This can be designed to establish from the signals received, the passage of an object equipped with a magnet and, optionally its speed and / or the direction of passage.
  • FIG. 5 shows a use of an inductive textile according to the invention for the production of a transformer.
  • a strip of inductive textile comprising inductive wires is folded back on itself in one or more folds to form the frame 50 of a transformer.
  • This reinforcement, of circular, square or rectangular section can comprise, for example, from 1 to 100 thicknesses of textile.
  • FIG. 5 the orientation of the inductive filaments or wires is shown diagrammatically with the reference 52. It extends in the direction of the magnetic circuit formed by the armature 50.
  • a first and a second winding 54, 56 around the armature 50 respectively form the primary circuit and the secondary circuit of the transformer.
  • the number of turns of the primary and secondary windings are adjusted according to the destination or the operating frequency desired for the transformer.
  • 1GHz can be reached.
  • a single winding around the frame 50 can also be used as a smoothing inductor.
  • a transformer with distributed supply can also be produced.
  • the transformer of Figure 6 has a frame 50a, 50b of textile according to the invention forming two magnetic circuits of different section.
  • a primary winding 54 is formed on a part of the armature common to the two magnetic circuits.
  • Windings 56a, 56b respectively formed on the two different magnetic circuits allow to receive respectively part of the magnetic flux produced by the primary winding.
  • Such a transformer can be used for the distribution of energy to different electrical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Woven Fabrics (AREA)
  • Magnetic Treatment Devices (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

L'invention concerne un textile (10), tissé ou non, comportant une pluralité de filaments de matériau inductif, tels que, par exemple, des filaments ferromagnétique gainés de verre. Les filaments peuvent constituer des fils inductifs (12), tissés avec des fils non inductifs de structure (14). Le textile de l'invention trouve des applications dans la réalisation de composants inductifs ou comme vecteur d'énergie ou d'information.

Description

TEXTILE INDUCTIF ET UTILISATION D'UN TEL TEXTILE DANS DES DISPOSITIFS INDUCTIFS
Domaine technique La présente invention concerne un textile présentant des propriétés inductives, et l'utilisation d'un tel textile, par exemple, dans des dispositifs inductifs tels que des dispositifs de transmission d'énergie ou de signaux, ou des dispositifs à capteurs inductifs susceptibles de détecter une variation de champ magnétique.
Au sens de la présente invention, on entend par textile un matériau, sous la forme d'une étoffe, composé d'un grand nombre de fibres et présentant une certaine cohésion. Le textile peut être un textile tissé, tel qu'un tissu, dans lequel des fibres sont réunies en fils et dans lequel les fils sont tissés, ou un textile non tissé dans lequel des fibres sont rendues cohérentes par enchevêtrement, par collage, ou par tout autre moyen.
L'invention trouve des applications, par exemple, dans la réalisation de dispositifs d'alimentation en énergie d'équipements électriques portables, tels que des radiotéléphones, ou dans des dispositifs de détection de passage. Elle trouve également des applications dans la fabrication de composants électriques ou électroniques.
Etat de la technique antérieure Dans le domaine de la fabrication de dispositifs électroniques et en particulier de dispositifs portables, la miniaturisation des composants et des circuits apparaît comme un objectif primordial. La miniaturisation des composants et des circuits permet, d'une part, d'offrir aux utilisateurs des dispositifs avec des fonctions plus élaborées et, d'autre part, de réduire le coût de ces dispositifs. Des progrès importants ont été effectués en micro-électronique pour atteindre une intégration toujours plus grande des circuits et une réduction de leur coût de fabrication. Ces progrès sont cependant plus modestes pour la miniaturisation des étages de puissance des circuits et en particulier des étages d'alimentation en énergie.
De façon plus précise, il s'avère que la réalisation d'un certain nombre de composants inductifs, utilisés par exemple comme transformateurs ou comme selfs de lissage dans des alimentations à découpage, est peu compatible avec les exigences de miniaturisation et d'intégration des circuits.
Les composants inductifs se présentent généralement comme des composants comportant un noyau de ferrite ou sous forme de feuillards ferromagnétiques. Or, la réduction des dimensions de ces composants s'accompagne d'une diminution de la puissance électrique qu'ils sont susceptibles de supporter ou de fournir. Par ailleurs, les techniques actuelles de fabrication des composants inductifs sont peu adaptées à une production de circuits en grande série et à faible coût.
Exposé de 1 ' invention
La présente invention a pour but de proposer un nouveau matériau inductif, utilisable dans des dispositifs électroniques miniaturisés. Un but est également de proposer un tel matériau réalisable industriellement à faible coût.
Un but de l'invention est encore de proposer, grâce à ce matériau, un moyen permettant d'éviter d'installer dans des dispositifs électroniques portables des sources d'énergie volumineuses et coûteuses.
Un autre but est de proposer un matériau inductif utilisable comme vecteur d'énergie ou d'information, ainsi qu'un certain nombre d'applications ou d'utilisations d'un tel matériau.
Pour atteindre ces buts, l'invention a plus précisément pour objet un textile comportant une pluralité de filaments de matériau inductif, caractérisé en ce que les filaments, ferromagnétiques, sont équipés d'une couche superficielle isolante électrique et présentent .une aimantation de saturation supérieure ou égale à 0,5T, et en ce que les filaments présentent une longueur supérieure à 10 mm et présentent sensiblement une même orientation, un écart maximum entre les orientations des filaments étant inférieur ou égal à 10°.
Un tel textile peut être fabriqué de façon industrielle, à l'instar de la fabrication du textile d'habillement et les coûts de production du textile peuvent être réduits en conséquence.
Le textile conforme à l'invention, encore appelé textile inductif, peut être utilisé comme vecteur d'énergie ou d'informations mais peut aussi être utilisé comme composant inductif dans des dispositifs électroniques. Des applications particulières du textile sont décrites dans la suite du texte. Comme indiqué ci-dessus, la fabrication du textile de l'invention fait appel à des filaments de matériau inductif. Il s'agit, par exemple, de filaments en un matériau ferromagnétique tels que des filaments de CoFeSiB ou CoFeNiMoSiB. Avantageusement, on peut choisir un matériau ferromagnétique amorphe et doux, c'est-à-dire en particulier un matériau présentant un champ de saturation inférieur à 5 Oersted.
Les filaments ferromagnétiques sont de préférence gainés au moyen d'une couche superficielle électriquement isolante. Un choix avantageux consiste à utiliser des filaments ferromagnétiques amorphes gainés de verre.
Selon un aspect particulier de l'invention, le matériau ferromagnétique des filaments peut être un matériau présentant une magnétostriction négative comprise de préférence entre 5.10"5 et 0.
Les techniques de fabrication de ces filaments, de même que leurs caractéristiques propres, ne sont pas décrites ici. Les filaments métalliques, inductifs ou non, sont en effet connus en soi.
Les filaments ferromagnétiques isolés sont réalisés par exemple, selon une technique dite technique d'Ullitovsky Taylor. A titre d'illustration, on peut se reporter à l'un des documents dont les références sont indiquées à la fin de la présente description.
Le textile inductif de l'invention peut être un textile tissé ou non. Il peut comporter, outre les filaments de matériau inductifs, des filaments, appelés filaments de structuration, en un matériau non inductif. Les filaments de structuration sont associés aux filaments inductifs pour conférer au textile sa cohésion. Les filaments de structuration peuvent être des filaments de fibres naturelles ou synthétiques utilisées usuellement dans l'industrie du textile et notamment pour la fabrication de textiles non tissés. De plus, les fibres du textile peuvent être noyées dans une résine, sous la forme d'un matériau composite.
Comme indiqué précédemment, on utilise des filaments de matériau inductif présentant de préférence une longueur supérieure à 10 mm et présentant sensiblement une même orientation, un écart maximum entre les orientations des filaments étant inférieur ou égal à 10°.
On considère que l'écart maximum des orientations des filaments est inférieur ou égal à 10° lorsqu'au moins 99% des filaments présentent une orientation qui ne s'écarte pas plus de 10% de l'orientation moyenne des fibres.
Le nombre de ces filaments est généralement supérieur à 1000. Le fait que des filaments, en grand nombre, présentent sensiblement une même orientation permet de canaliser efficacement un flux magnétique dans une direction privilégiée.
Le textile peut aussi être un textile tissé. Il comporte alors une pluralité de fils appelés fils inductifs, les fils pouvant être formés de filaments de matériau inductif tels que décrits précédemment et éventuellement de filaments de matériau non inductif associés aux filaments de matériau inductif.
Les fils peuvent comporter ainsi des filaments de matériau inductif tels que des filaments ferromagnétiques gainés de verre. La proportion des filaments ferromagnétiques est de préférence supérieure ou égale à 50%. Les filaments non inductifs sont formés par exemple, de fibres synthétiques ou naturelles.
La formation des fils inductifs à partir des filaments peut avoir lieu par torsadage, par guipage ou par tout autre procédé de formation de fils.
Afin de ne pas altérer les propriétés magnétiques des fils inductifs, il est préférable de limiter la torsion des fils inductifs autour de leur axe à des valeurs inférieures ou égales à deux tours par mètre.
Les fils inductifs peuvent également être des fils ferromagnétiques formés directement par la technique d'Ullito sky Taylor.
Ils sont préférentiellement isolés électriquement par une gaine de vernis ou de verre.
Pour pouvoir utiliser le textile inductif à des fréquences supérieures au Mégahertz, et en minimisant les pertes, on privilégie l'utilisation de fils ferromagnétiques avec un diamètre inférieur à 12 μm, voire inférieur à 8 μm. La gaine de vernis ou de verre est réalisée de préférence avec une épaisseur inférieure à 5 μm pour conserver aux fils leur souplesse.
Selon une réalisation particulière d'un textile conforme à l'invention, les fils inductifs peuvent être associés, notamment par tissage, à des fils dits non inductifs, c'est-à-dire qui ne présentent pas de propriétés magnétiques.
Les fils non inductifs sont, par exemple, des fils de Nylon, de coton, de laine, des fils de verre, de silice, de fibre aramide, ou tout autre type de fil utilisé habituellement pour la réalisation de textiles tissés. Les fils non inductifs peuvent également être des fils présentant des propriétés particulières tels que des fils conducteurs électriques. Ces fils, par exemple en cuivre ou en un alliage à base de cuivre, sont préférentiellement isolés par une gaine, telle qu'un verni isolant.
Le textile tissé, peut comporter, de façon classique, des fils de chaîne et des fils de trame orientés de façon sensiblement perpendiculaire. Dans ce cas, les fils de chaîne, respectivement de trame, peuvent être formés de préférence de façon majoritaire par des fils inductifs et les fils de trame, respectivement les fils de chaîne, peuvent être formés par des fils non inductifs et non conducteurs. A titre d'exemple, les fils de chaîne peuvent être des fils à base de filaments ferromagnétiques et les fils de trame peuvent être des fils de fibres de verre.
Dans les textiles tissés, tels que décrits ci- dessus, les fils non inductifs ont essentiellement pour fonction de structurer le tissu. Toutefois, il n'est généralement pas utile que la masse des fils non inductifs excède le tiers de la masse totale du tissu obtenu. Les textiles inductifs tels que décrits ci- dessus trouvent des applications pour la réalisation de composants inductifs tels que des transformateurs électriques ou des selfs de lissage. Dans ces composants, le textile inductif remplace le noyau inductif, usuellement à base de ferrite.
Le tissu inductif de l'invention, utilisé pour la formation de composants inductifs peut avantageusement être découpé et mis en forme pour constituer, par exemple, une coque, un boîtier ou une partie de boîtier d'un dispositif électronique.
La mise en forme du tissu inductif de l'invention peut être obtenue aisément grâce à des techniques connues de mise en forme de matériaux textiles ou composites.
Ceci constitue un avantage important par rapport aux dispositifs utilisant des rubans ferromagnétiques amorphes ou des feuillards d'alliage de haute perméabilité qui ne peuvent pas être conformés dans toutes les directions et dont la mise en forme fait appel à des techniques spécifiques plus complexes.
Lorsqu'on utilise un textile conforme à l'invention avec des fils présentant une forte perméabilité magnétique il est possible de créer dans chaque fil un flux magnétique local indépendant de celui des fils voisins. Il est possible ainsi de détecter, sans contact, la position d'objets de formes complexes recouverts du textile inductif de l'invention.
Selon une autre réalisation particulière du textile de l'invention, les filaments inductifs, réunis en fils ou non, peuvent être plantés sur un support de façon comparable à une moquette ou un velours. Le support est par exemple une couche de résine d'une épaisseur de 0,1 à 1 mm dans laquelle sont figés des brins de fils ou de filaments inductifs formant une moquette .
Dans ce cas également, les fils ou filaments inductifs peuvent être associés à des fils ou des filaments non inductifs et non conducteurs pour conférer à la moquette ou au velours un toucher particulier. Ce textile peut être utilisé en association avec des bobines de mesure de flux magnétique pour former un détecteur de variation de flux magnétique.
A titre d'exemple un tel détecteur peut être utilisé pour détecter le passage d'objets équipés d'un aimant dans une zone ou un local. La zone ou le local sont alors équipés d'une moquette à filaments inductifs incluant des bobines de mesure du flux, reliées à un détecteur de flux magnétique. L'invention concerne également un système de transmission d'énergie et/ou de signal d'une source d'énergie et/ou de signal vers un récepteur d'énergie et/ou de signal comprenant un moyen vecteur de flux magnétique, disposé entre la source d'énergie et/ou de signal et le récepteur d'énergie et/ou de signal. Le moyen vecteur de flux magnétique comporte un textile inductif tel que décrit ci-dessus.
L'invention concerne enfin un matériau composite comportant au moins une couche de textile inductif tel que décrit.
D'autres caractéristiques et avantages de la présente invention ressortiront mieux de la description qui va suivre, en référence aux figures des dessins annexés. Cette description est donnée à titre purement illustratif et non limitatif.
Brève description des figures
- La figure 1 montre, de façon schématique et très agrandie, une portion de textile inductif tissé conforme à l'invention, utilisée comme vecteur de flux magnétique. - La figure 2 montre de façon schématique une portion de textile inductif non tissé, conforme à l'invention, utilisée comme vecteur de flux magnétique.
- La figure 3 illustre de façon schématique une utilisation du textile de l'invention pour l'alimentation d'un dispositif électronique portable.
- La figure 4 illustre de façon schématique une utilisation du textile de l'invention dans un détecteur de passage. - Les figures 5 et 6 illustrent de façon schématique une utilisation du textile de l'invention dans la réalisation de transformateurs.
Description détaillée de modes de mise en oeuyre particuliers de l'invention
La référence 10 de la figure 1 désigne une portion de textile inductif tissé conforme à l'invention. Pour des raisons de clarté, la portion de textile 10 est fortement agrandie. Le textile 10 comporte des fils de chaîne 12 réalisés notamment à partir de filaments ferromagnétiques gainés de verre et de fils de trame 14 tissés autour des fils de chaîne. Les fils de chaîne 12 sont des fils dits inductifs et les fils de trame 14 sont des fils non inductifs tels que des fils de coton, par exemple. On observe que les fils inductifs de chaîne présentent une orientation selon une direction Y repérée avec une flèche sur la figure 1.
Comme indiqué précédemment, le textile de la figure 1 peut être utilisé comme vecteur d'un flux magnétique alternatif et transmettre de l'énergie électrique ou éventuellement des signaux électriques sous la forme d'un champ magnétique hyperfréquence à une fréquence comprise par exemple entre 1 MHz et 1GHz. Une première bobine 20 dite bobine inductrice est reliée à une source 22 de courant alternatif et est située à une première extrémité du textile selon la direction Y. La bobine est disposée par exemple en face des extrémités des fils inductifs. Selon une variante, elle peut aussi entourer tout ou partie du textile.
La source de courant 22 peut être une source de courant à haute fréquence lorsqu'on souhaite transmettre de l'énergie électrique à travers le textile. Pour transmettre une énergie importante, on utilise de préférence des fils inductifs dont les filaments présentent une aimantation de saturation supérieure à 0,5 T.
La source de courant 22 peut également être modulée pour transmettre un signal électrique. La fréquence de modulation se situe typiquement dans une gamme de fréquence comprise entre 10 kHz et 1 GHz. Une deuxième bobine 24, dite bobine réceptrice, est reliée à un dispositif récepteur 26 et est situé à une extrémité opposée du textile, selon la direction Y.
La bobine 24 peut fournir au récepteur 26 un courant d'alimentation induit par le flux magnétique acheminé par le textile jusqu'à cette bobine. La bobine 24 peut également fournir au récepteur 26 un signal qui est décodé dans le récepteur.
Les bobines 20 et 24 se présentent sous la forme d'un enroulement autour d'un axe d'enroulement et sont positionnées de préférence de telle façon que l'axe d'enroulement forme avec la direction Y des fils inductifs de chaîne 12, un angle compris entre 0 et 80°. En d'autres termes, on évite que la direction Y des fils inductifs et l'axe d'enroulement des bobines soient perpendiculaires.
La figure 2 montre l'utilisation d'un textile non tissé dans une configuration semblable à celle de la figure 1.
Pour des raisons de simplification, des éléments de la figure 2 et des figures suivantes, qui sont identiques ou similaires à ceux de la figure 1, portent les mêmes références, de sorte que l'on puisse se reporter à la description qui précède.
Le textile 10 de la figure 2 comporte un enchevêtrement de filaments ferromagnétiques 13, gainés de verre, qui présentent tous sensiblement une même orientation selon une direction Y. Des filaments de structure, non référencés, isolants électriques dont l'orientation est indifférente, peuvent être associés aux filaments ferromagnétiques 13 pour améliorer la cohésion du textile. Les filaments de structure, non inductifs, peuvent être à base de fibres usuelles, naturelles ou synthétiques .
On observe également que les bobines inductrice et réceptrice sont agencées de façon que leur axe d'enroulement soit sensiblement parallèle à la direction Y des filaments ferromagnétiques.
La figure 3 montre une utilisation particulière du textile de l'invention pour l'alimentation d'un équipement électronique portable.
La référence 1 de la figure 3 désigne un vêtement réalisé à partir d'un textile conforme à l'invention. Dans ce vêtement, les fils inductifs du textile sont agencés de façon à présenter une direction particulière. Dans l'exemple de la figure 3, le vêtement est un gilet (ou une chemise) et les fils inductifs 12 du textile s'étendent sensiblement le long du corps de la personne qui porte le vêtement.
La personne porte à sa ceinture une source d'énergie électrique 22, par exemple à piles ou à batteries, équipée d'une bobine d'induction, pour émettre un flux magnétique 28.
Ce flux magnétique 28 est canalisé par les fils ou les filaments inductifs du textile jusqu'à la partie supérieure du vêtement, c'est-à-dire jusqu'au col ou jusqu'aux épaules du gilet. Le parcours du flux magnétique est schématisé sur la figure 1 au moyen de flèches.
La référence 30a désigne un appareil électronique tel qu'un radiotéléphone équipé d'un récepteur 26a avec une bobine de réception. La bobine de réception est traversée par le flux magnétique 28, canalisé par le textile inductif jusque dans la région d'utilisation du radiotéléphone. La référence 30b désigne un autre appareil électronique tel que, par exemple, une broche équipée d'un jeu de diodes électroluminescentes, portée par l'utilisateur ou l'utilisatrice comme un bijou. La broche équipée d'un récepteur 26b avec une bobine de réception, peut être fixée en un endroit quelconque du vêtement parcouru par les fils inductifs et être alimentée ainsi en énergie pour provoquer un jeu de lumière.
De la même façon, des appareils électroniques tels que des calculatrices ou des agendas ou des appareils de reproduction sonore peuvent être équipés de récepteurs de flux magnétique et alimentés par des fils ou des filaments inductifs s 'étendant, par exemple, jusque dans un manche du vêtement équipé du tissu inductif.
Grâce au dispositif de la figure 3, il est possible d'affranchir les dispositifs électroniques portables des contraintes de poids et de volumes liées à des sources d'énergie autonomes.
Les batteries ou piles d'alimentation des équipements portables sont remplacées par le récepteur d'énergie magnétique qui peut être réalisé de façon peu encombrante et particulièrement légère.
La figure 4 montre encore une autre application de l'invention pour la détection de passage d'objets équipés d'aimants.
La référence 40 désigne un local dont le sol est recouvert par une moquette 110 qui conformément à l'invention comporte une pluralité de brins 112 formés par des fils ou des filaments en un matériau inductif.
Les brins se dressent sur une couche de support dans laquelle, ou en-dessous de laquelle sont agencées des bobines 114 sensibles au flux magnétique. Ces bobines sont couplées aux filaments et sont électriquement reliées à un (ou plusieurs) détecteur (s) de flux magnétique 116. Le détecteur mesure un courant généré dans les bobines en réponse à une variation du flux magnétique.
La référence 118 désigne un aimant susceptible de se déplacer dans la zone ou le local équipé de la moquette. L'aimant 118 est par exemple solidaire d'un chariot se déplaçant dans le local. Le passage de l'aimant au voisinage des brins de moquette provoque une variation du flux magnétique vu par les bobines associées aux brins. Les bobines situées sur le passage de l'aimant délivrent donc des signaux qui sont reçus par le détecteur 116. Celui-ci peut être conçu pour établir à partir des signaux reçus, le passage d'un objet équipé d'un aimant et, éventuellement sa vitesse et/ou le sens de passage. La figure 5 montre une utilisation d'un textile inductif conforme à l'invention pour la réalisation d'un transformateur.
Une bande de textile inductif comprenant des fils inductifs est repliée sur elle-même en un ou plusieurs plis pour former l'armature 50 d'un transformateur. Cette armature, de section circulaire, carrée ou rectangulaire peut comporter par exemple de 1 à 100 épaisseurs de textile. Sur la figure 5, l'orientation des filaments ou fils inductifs est représentée schématiquement avec la référence 52. Elle s'étend dans la direction du circuit magnétique formé par l'armature 50.
Un premier et un deuxième enroulements 54, 56 autour de l'armature 50 forment respectivement le circuit primaire et le circuit secondaire du transformateur .
Le nombre de plis de textile formant l'armature
50 (1 à 100), le nombre de tours des enroulements primaire et secondaire, compris par exemple entre 10 et 10000, sont ajustés en fonction de la destination ou la fréquence de fonctionnement souhaitée pour le transformateur.
Des fréquences de fonctionnement de 10kHz à
1GHz peuvent être atteintes. A titre de variante, un seul enroulement autour de l'armature 50 peut aussi être utilisé comme self de lissage. Selon une autre variante, illustrée par la figure 6, un transformateur à alimentation distribuée peut également être réalisé.
Le transformateur de la figure 6 comporte une armature 50a, 50b de textile conforme à l'invention formant deux circuits magnétiques de section différente. Un enroulement primaire 54 est formé sur une partie de l'armature commune aux deux circuits magnétiques. Des enroulements 56a, 56b respectivement formés sur les deux circuits magnétiques différents permettent de recevoir respectivement une partie du flux magnétique produit par l'enroulement primaire.
Un tel transformateur peut être utilisé pour la distribution d'énergie à différents dispositifs électriques.
DOCUMENT CITES
(1) "A method of drawing metallic filaments and a discussion of their properties and uses"
Phys. Rev. Vol. 23 (1924), p. 655 de G. F. TAYLOR (2) "Préparation and Properties of Amorphous ires"
IEEE Transactions on magnetics, vol. 31, N° 2, march 1995, p. 1219 de I. Ogasa ara et al. (3) "Investigation of high frequency permeability of thin amorphous wires"
IEEE Transactions on magnetics, vol. 30, n°6,
November 1994, p. 4542 de Olivier Acher et al. (4)
"Dictionally alternating domain wall propagation in bistable amorphous wire" Appl. Phys. Lett. 62(1), 4 January 1993, p. 108, de G. Gomez-Polo et M. Vazquez (5)
"The remagnetization process in thin and ultra-thin
Fe-rich Amorphous wires" Journal of Magnetism and Magnetic Materials 151
(1995), p. 132, de A. P. Zhukov et al. (6)
"Magnetic Bistability of Amorphous Wires and Sensor Application"
IEEE Transactions on magnetics, vol 30, N°2, march
1994, p. 907, de M. Vazquez et al. (7) "Influence of the Thermal Treatments and Mechanical
Stress on the Magnetic Bistable Behaviour in a Co-
Si-B Amorphous Wire"
IEEE Transactions on Magnetics, vol. 29, n° 6,
Nove ber 1993, p. 3475, de P. Aragoneses et al. (8)
"Axial and transverse magnetization processes of glass-coated amorphous microwires"
Journal of Magnetism and Magnetic Materials 157/158 (1996), p. 143, de A. Zhukov et al. (9) "Circumferential permeability in non magnetostrictive amorphous wires"
J. Mater. Res. vol. 11, n°10, October 1996, Materials Research Society, p. 2486, de M.L. Sanchez et al., (10)
"Magnetic properties of glass-coated amorphous and nanocrystalline microwires"
Journal of Magnetism and Magnetic Materials, 160 (1996), p. 223, de M. Vazquez et al.,
(11)
"The Magnetization Reversai Process in Amorphous Wires"
IEEE Transactions on magnetics, vol. 31, n°2, March
1995, p. 1229, de M. Vazques et al., (12) "Effetc of Glass Removal on the Magnetic Behavior of FeSiB Glass-Covered Wires"
IEEE Transactions on Magnetics, vol. 33, n°l,
January 1997, de H. Chiriac et al., (13)
"Amorphous glass-covered magnetic wires for sensing application"
Sensors and Actuators A 59 (1997) p. 243-251, de H. Chiriac et al., (14)
"Magnetic behavior of glass-covered amorphous Journal of Magnetism and Magnetic Materials,
157/158 (1996) p. 227-228, de H. Chiriac et al., (15) "Internai stress distribution in glass-covered amorphous magnetic wires"
Physical review, vol. 52, n°14, October 1995-11, p.
52, de H. Chiriac et al., (16)
"Magnetic properties of glass insulated amorphous microwires" in "Nanocrystalline and non-crystalline materials
(1995) et. Vazquez and Herando (World Scientific, Singapore) , p. 567 de S.A. Baranov et al., (17)
"Ferromagnetic résonance in amorphous magnetic wires" Phys. Met. Metall., vol. 67, n°l, (1989), p. 70, de S.A. Baranov et al., (18)
"Domain collapse in amorphous magnetostrictive wires" IEEE Transactions on magnetics, vol. 28, n°5,
September 1992, p. 2922, de L.V. Panina et al.,

Claims

REVENDICATIONS
1. Textile (10) comportant une pluralité de filaments (12, 13) de matériau inductif, caractérisé en ce que les filaments, ferromagnétiques, sont équipés d'une couche superficielle isolante électrique et présentent une aimantation de saturation supérieure ou égale à 0,5T, et en ce que les filaments (13) présentent une longueur supérieure à 10 mm et présentent sensiblement une même orientation, un écart maximum entre les orientations des filaments étant inférieur ou égal à 10°.
2. Textile non tissé selon la revendication 1, comprenant en outre des filaments de structuration de matériau non inductif, associés aux filaments inductifs.
3. Textile selon la revendication 1, dans lequel les filaments sont en un matériau ferromagnétique doux et amorphe.
4. Textile selon la revendication 3, dans lequel les filaments présentent un champ de saturation inférieur à 5 Oersted.
5. Textile selon la revendication 1, dans lequel les filaments inductifs sont plantés sur un support à la façon d'un velours ou d'une moquette.
6. Textile tissé selon la revendication 1, comprenant une pluralité de fils (12) appelés fils inductifs, ces fils comprenant des filaments de matériau inductif.
7. Textile tissé selon la revendication 6, dans lequel les fils inductifs (12) présentent une torsion axiale inférieure à 2 tours/mètre.
8. Textile selon la revendication 6, dans lequel les fils comprennent au moins 50% de filaments ferromagnétiques, et des filaments de matériau non inductif.
9. Textile selon la revendication 1, dans lequel le matériau ferromagnétique est un matériau à magnétostriction négative ou nulle.
10. Textile selon la revendication 1, dans lequel les filaments de matériau inductif sont des filaments ferromagnétiques amorphes gainés de verre.
11. Textile tissé selon la revendication 6, comprenant en outre une pluralité de fils appelés fils non inductifs (14) et dans lequel les fils inductifs (12) et les fils non inductifs (14) sont associés par tissage.
12. Textile tissé selon la revendication 11, comportant des fils de chaîne et des fils de trame dans lequel les fils de trame sont majoritairement formés par des fils inductifs (12) et les fils de chaîne sont formés par des fils non conducteurs (14) .
13. Textile tissé selon la revendication 11, comportant des fils de trame et des fils de chaîne dans lequel les fils de chaîne sont majoritairement formés par des fils inductifs (12) et les fils de trame sont formés par des fils non conducteurs (14) .
14. Textile tissé selon la revendication 11, dans lequel les fils non inductifs (14) sont des fils isolants électriques choisis parmi des fils de nylon, de coton, de laine, les fils de verre, de silice, de fibre aramide.
15. Textile tissé selon la revendication 11, dans lequel les fils non inductifs (14) sont des fils conducteurs électriques recouverts d'une gaine isolante électrique, tels que des fils de cuivre ou d'alliage à base de cuivre, vernis.
16. Textile tissé selon la revendication 11, dans lequel une masse des fils non inductifs (14) est inférieure ou égale à un tiers de la masse totale du textile tissé.
17. Textile selon la revendication 1, dans lequel un nombre de filaments mis en oeuvre est supérieur à 1000.
18. Système de transmission d'énergie et/ou de signal par champ magnétique hyperfréquence, d'une source (20, 21, 22) d'énergie et/ou de signal vers un récepteur (24, 26, 26a, 26b, 44, 46) d'énergie et/ou de signal, comprenant un moyen vecteur de flux magnétique, disposé entre la source d'énergie et/ou de signal et le récepteur d'énergie et/ou de signal, dans lequel le moyen vecteur de flux magnétique comporte un textile inductif conforme à la revendication 1.
19. Système de transmission d'énergie et/ou de signal selon la revendication 18, dans lequel le moyen vecteur de flux magnétique est un vêtement.
20. Système selon la revendication 19, dans lequel la source d'énergie et/ou de signal comporte une source de courant alternatif (22) de haute fréquence ménagée dans une ceinture.
21. Système selon la revendication 19, dans lequel le récepteur (26a, 26b) d'énergie et/ou de signal est ménagé dans un équipement électronique portable (30a, 30b) choisi parmi les équipements suivants : récepteur radio, radiotéléphone, agenda électronique, gadget à diodes électroluminescentes.
22. Système selon la revendication 18, dans lequel le champ magnétique hyperfréquence présente une fréquence comprise entre 1MHz et 1GHz.
23. Matériau composite comportant au moins une couche de textile selon la revendication 1.
24. Utilisation d'un textile inductif conforme à la revendication 1 pour la fabrication de transformateurs électriques.
25. Utilisation d'un textile inductif conforme à la revendication 1 pour la fabrication de selfs de lissage.
26. Dispositif de détection de variation de champ magnétique dans une zone comportant un textile conforme à la revendication 5, le dispositif comportant des bobines sensibles au flux magnétique couplées aux filaments du textile et au moins un détecteur de flux magnétique connecté aux bobines.
PCT/FR1999/001263 1998-05-28 1999-05-28 Textile inductif et utilisation d'un tel textile dans des dispositifs inductifs WO1999062082A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69901342T DE69901342T2 (de) 1998-05-28 1999-05-28 Induktives textil und seine verwendung in induktive geräte
EP99922238A EP1080475B1 (fr) 1998-05-28 1999-05-28 Textile inductif et utilisation d'un tel textile dans des dispositifs inductifs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9806743A FR2779266B1 (fr) 1998-05-28 1998-05-28 Textile inductif et utilisation d'un tel textile dans des dispositifs inductifs
FR98/06743 1998-05-28

Publications (1)

Publication Number Publication Date
WO1999062082A1 true WO1999062082A1 (fr) 1999-12-02

Family

ID=9526819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001263 WO1999062082A1 (fr) 1998-05-28 1999-05-28 Textile inductif et utilisation d'un tel textile dans des dispositifs inductifs

Country Status (5)

Country Link
EP (1) EP1080475B1 (fr)
DE (1) DE69901342T2 (fr)
ES (1) ES2175975T3 (fr)
FR (1) FR2779266B1 (fr)
WO (1) WO1999062082A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525488A (ja) * 2000-02-29 2003-08-26 コミツサリア タ レネルジー アトミーク 磁気マーキング付き工業製品の認証システム及び工業製品をマーキングする方法
US10316438B2 (en) * 2014-03-05 2019-06-11 Southern Mills, Inc. Fabric containing an intimate blend of antistatic fibers arranged in a pattern

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119283A1 (de) 2001-04-20 2002-10-24 Philips Corp Intellectual Pty System zur drahtlosen Übertragung elektrischer Leistung, ein Kleidungsstück, ein System von Kleidungsstücken und Verfahren zum Übertragen von Signalen und/oder elektrischer Leistung
FR2848167A1 (fr) * 2002-12-02 2004-06-11 Plastic Omnium Cie Procede pour proteger des pietons en cas de collision avec des vehicules automobiles et piece de vetement de protection
DE102006024485B4 (de) * 2006-05-26 2015-12-24 Rwth Aachen Fadengebilde mit Positionierungsmitteln
DE102010048469A1 (de) * 2010-10-14 2012-04-19 Rockwell Collins Deutschland Gmbh Energiemanagement-System, Verfahren zum Verteilen von Energie in einem Energiemanagement-System, Endgerät für ein Energiemanagement-System und Zentralgerät für ein Energiemanagement-System
US10014709B2 (en) 2015-03-20 2018-07-03 Motorola Solutions, Inc. Charging apparatus, system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124104A (ja) * 1982-12-28 1984-07-18 Seiko Epson Corp 複合軟磁性材料
JPH06108309A (ja) * 1992-09-28 1994-04-19 Kuraray Co Ltd 複合磁性繊維
JPH07197311A (ja) * 1993-12-28 1995-08-01 Japan Exlan Co Ltd 磁性繊維およびその製造方法
WO1995023884A1 (fr) * 1994-03-03 1995-09-08 Tore Carl Fredrik Klason Materiaux de blindage antiparasites, leurs fibres constitutives et procede de fabrication
JPH07320931A (ja) * 1994-05-20 1995-12-08 Tokin Corp プリンタヘッドコア用線材及びその製造方法
WO1997024734A1 (fr) * 1995-12-27 1997-07-10 Institutul De Fizica Tehnica Fils recouverts de verre, amorphes et nanocristallins et procede de fabrication
JPH10102316A (ja) * 1996-09-27 1998-04-21 Tokin Corp 布状複合磁性材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124104A (ja) * 1982-12-28 1984-07-18 Seiko Epson Corp 複合軟磁性材料
JPH06108309A (ja) * 1992-09-28 1994-04-19 Kuraray Co Ltd 複合磁性繊維
JPH07197311A (ja) * 1993-12-28 1995-08-01 Japan Exlan Co Ltd 磁性繊維およびその製造方法
WO1995023884A1 (fr) * 1994-03-03 1995-09-08 Tore Carl Fredrik Klason Materiaux de blindage antiparasites, leurs fibres constitutives et procede de fabrication
JPH07320931A (ja) * 1994-05-20 1995-12-08 Tokin Corp プリンタヘッドコア用線材及びその製造方法
WO1997024734A1 (fr) * 1995-12-27 1997-07-10 Institutul De Fizica Tehnica Fils recouverts de verre, amorphes et nanocristallins et procede de fabrication
JPH10102316A (ja) * 1996-09-27 1998-04-21 Tokin Corp 布状複合磁性材料

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 247 (E - 278) 13 November 1984 (1984-11-13) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 392 (C - 1228) 22 July 1994 (1994-07-22) *
PATENT ABSTRACTS OF JAPAN vol. 095, no. 011 26 December 1995 (1995-12-26) *
PATENT ABSTRACTS OF JAPAN vol. 096, no. 004 30 April 1996 (1996-04-30) *
PATENT ABSTRACTS OF JAPAN vol. 098, no. 009 31 July 1998 (1998-07-31) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525488A (ja) * 2000-02-29 2003-08-26 コミツサリア タ レネルジー アトミーク 磁気マーキング付き工業製品の認証システム及び工業製品をマーキングする方法
JP4658435B2 (ja) * 2000-02-29 2011-03-23 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 磁気マーキング付き工業製品の認証システム及び工業製品をマーキングする方法
US10316438B2 (en) * 2014-03-05 2019-06-11 Southern Mills, Inc. Fabric containing an intimate blend of antistatic fibers arranged in a pattern

Also Published As

Publication number Publication date
ES2175975T3 (es) 2002-11-16
DE69901342T2 (de) 2002-11-07
FR2779266B1 (fr) 2000-06-23
EP1080475B1 (fr) 2002-04-24
DE69901342D1 (de) 2002-05-29
EP1080475A1 (fr) 2001-03-07
FR2779266A1 (fr) 1999-12-03

Similar Documents

Publication Publication Date Title
CN102792401B (zh) 无线电力传输用磁元件和电力供给装置
EP1080475B1 (fr) Textile inductif et utilisation d'un tel textile dans des dispositifs inductifs
JP6609305B2 (ja) Tmr近接場磁気通信システム
FR2892871A1 (fr) Oscillateur radio frequence a courant elelctrique polarise en spin
CN103534772A (zh) 供电单元、供电系统和电子装置
WO2008036077B1 (fr) Antenne multiaxiale et procédé d'utilisation dans les outils d'extraction
WO2006125916A2 (fr) Entite electronique a antenne magnetique
FR2877486A1 (fr) Tore nanocristallin pour capteur de courant, compteurs d'energie a simple et a double etage et sondes de courant les incorporant
KR20230004351A (ko) 무선 이어폰 충전 크래들용 무선전력 수신모듈 및 무선 이어폰용 충전 크래들
KR20230118060A (ko) 무선 이어폰 충전 크래들용 무선전력 수신모듈 및 무선이어폰용 충전 크래들
EP3735702B1 (fr) Transformateur de courant ouvrant a noyau magnetique souple
EP0363381B1 (fr) Antenne electromagnetique et antenne d'excitation pour un appareil de resonance magnetique nucleaire munie d'une telle antenne electromagnetique
WO2019149726A1 (fr) Dispositif de transmission de puissance sans contact par couplage inductif a resonance pour recharger un vehicule automobile
Butta et al. Magnetic microwires with field-induced helical anisotropy for coil-less fluxgate
EP2278664A1 (fr) Corps main gauche, dispositif de guidage d'ondes et antenne utilisant ce corps, procédé de fabrication de ce corps
WO2009151178A1 (fr) Coupleur inductif pour communication de ligne électrique
EP2237292B1 (fr) Inductance symetrique, en particulier pour detecteurs de proximite
EP0206879B1 (fr) Détecteur de champ magnétique à large bande passante en fréquence
JP2012026788A (ja) 地下資源探査用磁気センサ
FR2986157A1 (fr) Dispositif d'enveloppe multicouche d'attenuation des ondes electromagnetiques.
FR3076391A1 (fr) Dispositif de filtrage inductif a noyau magnetique torique
Orlando et al. Low frequency AC losses in multifilamentary superconductors up to 15 tesla
FR2848672A1 (fr) Magnetometre comprenant un circuit de stabilisation
KR100631674B1 (ko) 꼬임 방지용 전선
Aggarwal et al. On Exploration in to Challenges Faced by Mobile Communication and DTH Industry in India and Studying the Hierarchical Interrelationships amongst them

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999922238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09646331

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999922238

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999922238

Country of ref document: EP