WO1999058469A1 - Cement material containing lithium with improved mechanical properties, useful for retaining cations, and methods for making same - Google Patents

Cement material containing lithium with improved mechanical properties, useful for retaining cations, and methods for making same Download PDF

Info

Publication number
WO1999058469A1
WO1999058469A1 PCT/FR1999/001140 FR9901140W WO9958469A1 WO 1999058469 A1 WO1999058469 A1 WO 1999058469A1 FR 9901140 W FR9901140 W FR 9901140W WO 9958469 A1 WO9958469 A1 WO 9958469A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
cementitious material
calcium
molar ratio
silicate
Prior art date
Application number
PCT/FR1999/001140
Other languages
French (fr)
Inventor
Pascal Faucon
Jean-Claude Petit
Arnaud Muret
Hélène VIALLIS
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9806024A external-priority patent/FR2778653A1/en
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO1999058469A1 publication Critical patent/WO1999058469A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/345Hydraulic cements not provided for in one of the groups C04B7/02 - C04B7/34
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • G21F9/165Cement or cement-like matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/304Cement or cement-like matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • C04B2111/00775Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes the composition being used as waste barriers or the like, e.g. compositions used for waste disposal purposes only, but not containing the waste itself
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00862Uses not provided for elsewhere in C04B2111/00 for nuclear applications, e.g. ray-absorbing concrete
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D19/00Keeping dry foundation sites or other areas in the ground
    • E02D19/06Restraining of underground water
    • E02D19/12Restraining of underground water by damming or interrupting the passage of underground water
    • E02D19/18Restraining of underground water by damming or interrupting the passage of underground water by making use of sealing aprons, e.g. diaphragms made from bituminous or clay material

Definitions

  • the invention relates to a new cementitious material which has, on the one hand, the property of being able to adsorb water-soluble cations, in particular cesium, and on the other hand, improved mechanical properties.
  • This material can be used for the retention of cations, in particular for the storage of nuclear waste.
  • cementitious materials are used in civil engineering for their "bonding" properties, ensuring the mechanical cohesion of the parts making up a civil engineering structure.
  • the cement mainly used is Portland cement, which hydrated, consists mainly of hydrated calcium silicates which confer on hydrated cement its properties of assembly and bonding.
  • Cementitious materials are also used in the context of nuclear waste storage as a coating matrix for nuclear waste. low activity and medium activity. They are also used as an engineered barrier in low-level waste storage sites and in medium and high-level waste storage sites, as well as in possible deep storage sites.
  • the cementitious material used mainly for these storage is also Portland cement, which hydrated, consists mainly of hydrated calcium silicates.
  • FIG. 1 schematically represents a sheet of the structure of a hydrated calcium silicate of this type which consists of a stack of several sheets.
  • the sheet comprises two tetrahedral layers (Te) constituted by chains of tetrahedrons of Si0 2 of variable lengths and not planes as in a smectite, between which is placed an octahedral layer (Oc) constituted by CaO plan.
  • Te tetrahedral layers
  • Oc octahedral layer
  • Figure 2 illustrates the nuclear magnetic resonance spectrum of silicon at the magic angle of these hydrated calcium silicates. It makes it possible to determine the length of the chains which consist of tetrahedra Si [Q 2 ], Si [Q 2 L] and Si [Ql] referenced in FIG. 1.
  • hydrated calcium silicates do not have a “structural” charge deficit linked to cationic substitutions in the CaO plane or in the layers of silicon tetrahedra (Te). This absence of cationic substitutions prevents the specific adsorption of soluble cations by hydrated calcium silicates, which does not allow good cation retention when these cements are used for the storage of radioactive waste.
  • waste coating matrices such as glass and ceramics have also been used to confine radionuclides, but the use of such materials leads to very disadvantageous costs compared to cement.
  • Clay is known for its adsorption properties for soluble cations, but it can hardly replace cement for the creation of an engineered barrier. Furthermore, if the waste is itself cemented, this solution will present a risk of chemical incompatibility between the cemented waste and the clay barrier. In addition, it is very often desirable to use the concrete necessary for the construction of the storage site as a containment barrier.
  • the present invention specifically relates to a new cementitious material which, thanks to its composition, has improved mechanical strength and the advantageous property of adsorbing cations. Therefore, the material can be used for the storage of waste, in particular radioactive waste containing cesium, and for the retention of soluble cations.
  • the cementitious material comprises at least one hydrated calcium silicate substituted by lithium, said silicate having a Ca molar ratio. If from 0.3 to 1.7 and a molar ratio Li: If from 0.01 to 1
  • this new material has a modified surface charge due to the partial substitution of Ca by Li modifying the nature of the forces brought into play between each particle of calcium silicate hydrate.
  • This modification is at the origin of the increase in the mechanical resistance of the cementitious material containing lithium.
  • the Ca: Si molar ratio of said hydrated calcium silicate is from 0.6 to 1.7
  • the Li: Si molar ratio of said hydrated calcium silicate is from 0.01 to 0.75.
  • alkali metals in particular sodium
  • cements have already been envisaged to activate their hydration, as described in "Avances in Cernent Researcn, 1995, 7, n ° 27, pages 93-102 [1] .
  • the amounts added in this case are very small and do not make it possible to obtain substituted hydrated calcium silicates as in the invention.
  • the cementitious material can also comprise other constituents such as those which are usually present in hardened cements.
  • These Deuvert constituents can be chosen, for example, from calcium aluminates, calcium ferro-aluminates, silica, carboalummates, calcite, all the hydrates covering precititate in a cement, and their mixtures.
  • the cementitious material of the invention can be obtained from a cementitious material comprising at least one hydrated calcium silicate, by subjecting it to a complementary treatment of substitution of part of the calcium atoms by lithium atoms .
  • the process for preparing the cementitious material of the invention consists in bringing a cementitious material based on hydrated calcium silicate into contact with an aqueous solution of lithium hydroxide or salt to replace a part of the calcium atoms of the calcium silicate hydrated by lithium atoms, the lithium concentration of the aqueous solution being such that it corresponds to a Li: Si molar ratio of at least 0.01.
  • the aqueous hydroxide or lithium salt solution has a lithium concentration of 0.5 mol / l.
  • any hydrated cementitious material prepared from any cement capable of forming hydrated calcium silicates upon hardening can be used.
  • it can be Portland cement, blast furnace slag, silica smoke, pozzoianic material, fly ash and mixtures thereof.
  • any hydrated cementitious material based on Portland cement is used.
  • the lithium salt which can be used for this treatment is a lithium salt soluble in water, in particular a mineral acid salt such as a halide (fluoride, chloride, bromide and iodide), a nitrate, a sulfate, a carbonate or even a silicate. It can also be an organic salt.
  • a mineral acid salt such as a halide (fluoride, chloride, bromide and iodide), a nitrate, a sulfate, a carbonate or even a silicate. It can also be an organic salt.
  • lithium chloride is used.
  • the starting cementitious material can be obtained from a composition comprising, in addition to the cement, one or more additives such as silica smoke (S ⁇ 0 2 amorphous), fly ash, inert fillers such as sand, limestone aggregates or siliceous, or additives making it possible to adapt the properties of the cementitious material obtained, as well as thinning agents and setting retarding agents.
  • additives such as silica smoke (S ⁇ 0 2 amorphous), fly ash, inert fillers such as sand, limestone aggregates or siliceous, or additives making it possible to adapt the properties of the cementitious material obtained, as well as thinning agents and setting retarding agents.
  • the starting cementitious material can be obtained by adding the composition to an aqueous solution, and hardening of the cementitious material in this solution.
  • the starting cementitious material based on hydrated calcium silicate, by mixing calcium and silicon compounds in water in quantities such that the Ca: Si molar ratio is greater. or equal to 0.3.
  • various calcium compounds can be used, for example calcium oxide CaO, calcium hydroxide, calcium silicates, any calcium-based compound which can hydrate, and mixtures thereof.
  • the silicon compound can be chosen from silica, silica fume, calcium, any silicon compound that can hydrate, and mixtures thereof.
  • the amounts of compounds added to the aqueous solution are such that the Ca: Si molar ratio is at least 0.3, preferably at least
  • the amount of water is variable and can be adjusted to obtain a suspension or a paste. It is preferred to obtain a suspension and, in this case, the weight ratio water: (compounds of Ca and Si) is greater than 1, preferably greater than 20, for example 50.
  • the cementitious material based on hydrated calcium silicate substituted by lithium can also be obtained directly by coprecipitation from a mixture of calcium, silicon and lithium compounds.
  • the process for preparing the cementitious material comprises the following steps:
  • the caxcium and silicon compounds mentioned above in the case of the preparation of a cementitious material without lithium.
  • the lithium compound used can be lithium hydroxide or a lithium salt such as those mentioned above. Lithium chloride is preferred.
  • the amounts of calcium and silicon compounds are such that the Ca: Si molar ratio is at least 0.3, preferably at least 0.66, to ensure the formation of silicate calcium.
  • the amount of lithium compound must be such that the Li: Si ratio is at least 0.01.
  • the amount of water is variable and can be adjusted to obtain a suspension or a paste.
  • the water weight ratio: (compounds of Ca, Si and Li) is preferably greater than 20, for example 50.
  • the water weight ratio: (compounds of Ca , Si and Li) is less than 1.
  • the invention also relates to a process for the storage of waste comprising the use of a barrier made of a cementitious material described above to isolate the waste from the environment.
  • the waste is preferably waste containing water-soluble cations which are liable to migrate into the environment by water infiltration.
  • radioactive waste containing cesium It also relates to a process for retaining water-soluble cations such as cesium, by contacting an aqueous solution. said cations with a cementitious material according to the invention.
  • a process for improving the mechanical resistance of a cementitious material comprising at least one hydrated calcium silicate, which consists in bringing the cementitious material into contact with an aqueous solution of lithium salt or hydroxide to replace part of the calcium atoms of calcium silicate by lithium atoms.
  • the starting cementitious material can be a material obtained from Portland cement, slag, blast furnace, pozzolanic material and / or fly ash.
  • FIG. 1 already described illustrates the structure of a hydrated calcium silicate in accordance with the prior art.
  • FIG. 2 illustrates the nuclear magnetic resonance spectrum of silicon at the magic angle, of the hydrated calcium silicate of FIG. 1.
  • FIG. 3 illustrates the X-ray diffractogram of unsubstituted hydrated calcium silicates in accordance with the prior art.
  • FIG. 4 illustrates the X-ray diffractogram of lithium-substituted hydrated calcium silicates of Examples 1 to 4, in accordance with the invention.
  • Figures 5 and 6 illustrate the nuclear magnetic resonance spectra of silicon at the magic angle of unsubstituted hydrated calcium silicates ( Figure 5) and substituted with lithium ( Figures 6 and 7 illustrate the nuclear magnetic resonance spectra of silicon at the magic angle of unsubstituted hydrated calcium silicates ( Figure 5) and substituted with lithium ( Figures 6)
  • FIG. 7 illustrates the static nuclear magnetic resonance spectra of lithium of hydrated calcium silicates substituted with lithium of examples 1 to 4.
  • FIG. 9 illustrates the structure of hydrated calcium silicates substituted with lithium, in accordance with the invention.
  • FIG. 10 illustrates the nuclear magnetic resonance spectra of silicon, at the magic angle, of hydrated calcium silicates unsubstituted by Li of examples 13 and 14 and substituted by Li of example 15.
  • Example 1 Preparation of a cementitious material based on calcium silicate substituted by lithium.
  • the first embodiment of the process of the invention is used, that is to say the carrying out of a complementary substitution treatment with Li on a cementitious material already prepared.
  • a cementitious material is prepared from calcium oxide CaO and silica Si0 2 by operating as follows.
  • a total of 1.8 g of CaO and Si0 2 is introduced in proportions such that the Ca: Si molar ratio is 0.66, in 90 ml of water, which corresponds to a water weight ratio: (CaO + Si0 2 ) of 50, and the whole is left to stand for three weeks.
  • a cementitious material based on hydrated calcium silicate is thus obtained in the medium.
  • Example 2 The same procedure is followed as in Example 1 to prepare other cementitious materials having different Ca: Si ratios, in using in each case 1.8 g of mixture of CaO and Si0 2 with different molar ratios, and the same amount of LiCl for the substitution treatment.
  • the starting and final Ca: Si molar ratios and the Li: Si molar ratio of cementitious materials obtained are also given in Table 1.
  • Comparative examples 1 to 4 preparation of cementitious materials based on unsubstituted calcium silicate.
  • cement materials unsubstituted by lithium are thus obtained having Ca: Si molar ratios of 0.66; 0.83; 1.2 and 1.7 as in Examples 1 to 4.
  • the cementitious materials obtained in Examples 1 to 4 and in Comparative Examples 1 to 4 are analyzed by X-ray diffraction and by nuclear magnetic resonance from silicon to magic angle.
  • Figure 3 illustrates the diffractogram
  • FIG. 4 illustrates the X-ray diffractograms of the lithium-substituted hydrated calcium silicates obtained in Examples 1 to 4.
  • FIG. 5 illustrates the nuclear magnetic resonance spectra of silicon at the magic angle of hydrated calcium silicates not substituted by lithium obtained in Comparative Examples 1 to 4.
  • FIG. 6 illustrates the spectra of similar products substituted with lithium obtained in examples 1 to 4.
  • the static nuclear magnetic resonance spectra of lithium of lithium-substituted hydrated calcium silicates of Examples 1 to 4 are shown in FIG. 7, the peaks corresponding to mobile lithium having been truncated.
  • FIG. 8 the two lines which appear on the spectra of FIG. 7 have been identified. This figure makes it possible to identify two lines, one broad or site 1 (non-average quadrupolar interaction) which corresponds to low-level lithium ions. or not mobile, and the other fine (site- 2) corresponding to mobile lithium ions.
  • FIG. 9 the structure of lithium-substituted hydrated calcium silicates has been shown, as it emerges from the analyzes carried out previously.
  • Example 5 Preparation of a cementitious material based on calcium silicate substituted by lithium.
  • the second embodiment of the process is used for this preparation, namely the direct precipitation of the material from a mixture of calcium, silicon and lithium compounds.
  • the compounds Ca, Si and Li used are calcium oxide CaO, silica Si0 2 and lithium chloride LiCl.
  • Example 5 The same procedure is followed as in Example 5 to prepare other cementitious materials having different Ca: Si ratios, using in each case 1.8 g of mixture of CaO and Si0 2 with different molar ratios, and the same amount of LiCl.
  • the Ca: Si starting and final molar ratios and the Li: Si molar ratio of cementitious materials obtained are given in Table 2.
  • lithium therefore interacts with hydrated calcium silicates. It is incorporated into the structure and modifies the surface properties. As a result, the retention and interaction properties between two particles of hydrated calcium silicate are improved. This last property is at the origin of the increase in the mechanical resistance noted later (examples 13 to 15).
  • the properties of the cementitious materials obtained in examples 5 to 8 are tested for the fixation of cesium.
  • cesium salt CsCl
  • the concentration of cesium salt is adjusted to 0.5 mmol / l.
  • the concentration of cesium remaining in solution is then determined by determination by capillary electrophoresis after a preliminary calibration, the detection limit being 0.1 mmol / 1.
  • the cement materials of the invention can be used for the storage of waste, either as a storage matrix or as an engineered barrier arranged around coated waste. This makes it possible to isolate the waste from the environment and to ensure that the cesium is fixed in the barrier in the event that the cesium could be dissolved by water which has migrated into the waste.
  • the cementitious materials of the invention can be used for the retention of water-soluble cations such as cesium, by bringing an aqueous solution of these cations into contact with the cementitious material of the invention.
  • the second embodiment of the process is used to prepare a cementitious material from fume of silica carbosil (Si0 2 ) and calcium hydroxide Ca (OH) 2 with or without the addition of lithium chloride.
  • compositions used for the preparation of the material are given in Table 5 which follows.
  • Example 13 The mold of Example 13 is stored in water at 25 ° C for 28 days.
  • the molds of Examples 14 and 15 are placed in an airtight plastic container filled with water at 85 ° C. for 28 days. The resistance to compression of the cementitious materials obtained in each of the examples is then determined.
  • FIG. 10 the nuclear magnetic resonance spectra of the silicon of the cementitious materials obtained in examples 13 to 15 are shown.
  • the residual silica smoke is important when the hydration takes place at 25 °. vs.
  • the hardening temperature goes from 25 ° C to 85 ° C
  • the hydration of the silica smoke is accelerated.
  • the system therefore contains more hydrated calcium silicate.
  • the resulting hydrated calcium silicates have shorter chains than at 25 ° C.
  • the proportion of Ql tetrahedra is indeed lower at 85 ° C than at 25 ° C.
  • a collapse in mechanical strength is then observed (Table 7) which is therefore not linked to the quantity of hydrated silica smoke.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The invention concerns a cement material comprising at least a hydrated calcium silicate substituted by lithium, said substituted silicate having a mol ratio Ca: Si of 0.3 to 1.7 and a mol ratio Li: Si of 0.01 to 1. In said material, part of the lithium atoms are mobile and can easily be exchanged by other cations. Thus, said material can be used to retain cations such as cesium. Moreover, it has improved mechanical resistance.

Description

MATERIAU CIMENTAIRE CONTENANT DU LITHIUM A PROPRIETES CEMENT MATERIAL CONTAINING LITHIUM PROPERTIES
MECANIQUES AMELIOREES, UTILISABLE POUR LA RETENTION DESIMPROVED MECHANICS FOR USE IN THE RETENTION OF
CATIONS, ET PROCEDES POUR SA FABRICATION.CATIONS, AND METHODS FOR THE PRODUCTION THEREOF.
DESCRIPTIONDESCRIPTION
Domaine techniqueTechnical area
L' invention concerne un nouveau matériau cimentaire qui présente, d'une part, la propriété de pouvoir adsorber des cations solubles dans l'eau, en particulier le césium, et d'autre part, des propriétés mécaniques améliorées. Ce matériau peut être utilisé pour la rétention de cations, notamment pour le stockage des déchets nucléaires.The invention relates to a new cementitious material which has, on the one hand, the property of being able to adsorb water-soluble cations, in particular cesium, and on the other hand, improved mechanical properties. This material can be used for the retention of cations, in particular for the storage of nuclear waste.
Il peut être utilisé également dans d'autres domaines où l'on recherche une fixation des cations et/ou de bonnes propriétés mécaniques, en particulier dans le génie civil.It can also be used in other fields where one is looking for cation fixation and / or good mechanical properties, in particular in civil engineering.
Etat de la technique antérieureState of the art
Les matériaux cimentaires sont utilisés dans le génie civil pour leurs propriétés de « collage », permettant d'assurer la cohésion mécanique des pièces composant un ouvrage de génie civil. Le ciment principalement utilise est le ciment Portland, qui hydraté, est constitué principalement de silicates de calcium hydratés qui confèrent au ciment nydraté ses propriétés d'assemblage et de collage.Cementitious materials are used in civil engineering for their "bonding" properties, ensuring the mechanical cohesion of the parts making up a civil engineering structure. The cement mainly used is Portland cement, which hydrated, consists mainly of hydrated calcium silicates which confer on hydrated cement its properties of assembly and bonding.
Les matériaux cimentaires sont utilisés également dans le cadre au stockage des déchets nucléaires comme matrice d'enrobage des déchets de faible activité et de moyenne activité. Ils sont utilisés aussi comme barrière ouvragée dans les sites de stockage des déchets de faible activité et dans les sites d'entreposage des déchets de moyenne et de haute activité, ainsi que dans les éventuels sites de stockage profond.Cementitious materials are also used in the context of nuclear waste storage as a coating matrix for nuclear waste. low activity and medium activity. They are also used as an engineered barrier in low-level waste storage sites and in medium and high-level waste storage sites, as well as in possible deep storage sites.
Le matériau cimentaire utilisé principalement pour ces stockages est également le ciment Portland, qui hydraté, est constitué principalement de silicates de calcium hydratés.The cementitious material used mainly for these storage is also Portland cement, which hydrated, consists mainly of hydrated calcium silicates.
Dans un ciment Portland hydraté, la structure moléculaire des silicates de calcium hydratés présente certaines analogies avec une structure argileuse de type smectite. La figure 1 représente schématiquement un feuillet de la structure d'un silicate de calcium hydraté de ce type qui est constitué d'un empilement de plusieurs feuillets.In hydrated Portland cement, the molecular structure of hydrated calcium silicates has certain analogies with a clay structure of the smectite type. FIG. 1 schematically represents a sheet of the structure of a hydrated calcium silicate of this type which consists of a stack of several sheets.
Sur cette figure, on voit que le feuillet comprend deux couches tétraédriques (Te) constituées par des chaînes de tétraèdres de Si02 de longueurs variables et non des plans comme dans une smectite, entre lesquelles est disposée une couche octaédrique (Oc) constituée par le plan CaO. La figure 2 illustre le spectre de résonance magnétique nucléaire du silicium à l'angle magique de ces silicates de calcium hydratés. Elle permet la détermination de la longueur des chaînes qui sont constituées de tétraèdres Si[Q2], Si [Q2L] et Si[Ql] référencés sur la figure 1.In this figure, we see that the sheet comprises two tetrahedral layers (Te) constituted by chains of tetrahedrons of Si0 2 of variable lengths and not planes as in a smectite, between which is placed an octahedral layer (Oc) constituted by CaO plan. Figure 2 illustrates the nuclear magnetic resonance spectrum of silicon at the magic angle of these hydrated calcium silicates. It makes it possible to determine the length of the chains which consist of tetrahedra Si [Q 2 ], Si [Q 2 L] and Si [Ql] referenced in FIG. 1.
Les propriétés mécaniques conférées par les silicates de calcium hydratés seraient liées aux charges de l'interfeuillet des silicates de calcium hydratés .The mechanical properties conferred by hydrated calcium silicates are linked to interlayer charges of hydrated calcium silicates.
Contrairement à l'argile, les silicates de calcium hydratés ne possèdent pas de déficit de charge « structurel » lié à des substitutions cationiques dans le plan CaO ou dans les couches de tétraèdres de silicium (Te) . Cette absence de substitutions cationiques empêche l'adsorption spécifique des cations solubles par les silicates de calcium hydratés, ce qui ne permet pas d'assurer une bonne rétention des cations lorsqu'on utilise ces ciments pour le stockage de déchets radioactifsUnlike clay, hydrated calcium silicates do not have a “structural” charge deficit linked to cationic substitutions in the CaO plane or in the layers of silicon tetrahedra (Te). This absence of cationic substitutions prevents the specific adsorption of soluble cations by hydrated calcium silicates, which does not allow good cation retention when these cements are used for the storage of radioactive waste.
D'autres matrices d'enrobage de déchets telles que le verre et les céramiques, ont également été utilisées pour confiner des radionucléides, mais l'emploi de tels matériaux conduit à des coûts très désavantageux par rapport au ciment.Other waste coating matrices such as glass and ceramics have also been used to confine radionuclides, but the use of such materials leads to very disadvantageous costs compared to cement.
L' argile est connue pour ses propriétés d'adsorption des cations solubles mais elle peut difficilement remplacer le ciment pour la réalisation d'une barrière ouvragée. Par ailleurs, si le déchet est lui-même cimenté, cette solution présentera un risque d' incompatibilité chimique entre le déchet cimenté et la barrière d'argile. De plus, il est très souvent souhaitable d'utiliser le béton nécessaire à la construction du site de stockage comme barrière de confinement .Clay is known for its adsorption properties for soluble cations, but it can hardly replace cement for the creation of an engineered barrier. Furthermore, if the waste is itself cemented, this solution will present a risk of chemical incompatibility between the cemented waste and the clay barrier. In addition, it is very often desirable to use the concrete necessary for the construction of the storage site as a containment barrier.
Cependant, les bétons et matériaux cimentaires utilises actuellement ne présentent pas la propriété d' adsorber spécifiquement αes cations solubles tels que le césium.However, the concrete and cementitious materials currently used do not have the property of specifically adsorbing soluble cations such as cesium.
Pour augmenter la résistance mécanique des matériaux cimentaires à base de silicates de calcium hydratés, les entreprises de travaux publics obtiennent, actuellement, des gains de résistance mécanique en diminuant la porosité de ces matériaux. Cette diminution est obtenue en réduisant les quantités d'eau du mélange eau-ciment (permettant d'obtenir les silicates de calcium hydratés), ou encore par des ajouts de fumée de silice ou de granulats . On peut également améliorer la dispersion des mélanges initiaux ou encore jouer sur la pression et la température lors du durcissement.To increase the mechanical resistance of cementitious materials based on calcium silicates hydrated, public works companies currently obtain gains in mechanical strength by reducing the porosity of these materials. This reduction is obtained by reducing the quantities of water in the water-cement mixture (making it possible to obtain hydrated calcium silicates), or even by adding silica smoke or aggregates. It is also possible to improve the dispersion of the initial mixtures or to play on the pressure and the temperature during hardening.
La présente invention a précisément pour objet un nouveau matériau cimentaire qui grâce à sa composition présente une résistance mécanique améliorée et la propriété intéressante d' adsorber des cations. De ce fait, le matériau peut être utilisé pour le stockage de déchets, notamment de déchets radioactifs contenant du césium, et pour la rétention de cations solubles.The present invention specifically relates to a new cementitious material which, thanks to its composition, has improved mechanical strength and the advantageous property of adsorbing cations. Therefore, the material can be used for the storage of waste, in particular radioactive waste containing cesium, and for the retention of soluble cations.
Il peut également être utilise αans la construction d'ouvrage en génie civil pour augmenter la résistance mécanique des bétons.It can also be used in the construction of civil engineering works to increase the mechanical resistance of concrete.
Expose de l'inventionExhibition of the invention
Selon l'invention, le matériau cimentaire comprend au moins un silicate de calcium hydraté substitue par du lithium, ledit silicate suostitue ayant un rapport molaire Ca . Si de 0,3 a 1,7 et un rapport nolaire Li : Si de 0,01 a 1According to the invention, the cementitious material comprises at least one hydrated calcium silicate substituted by lithium, said silicate having a Ca molar ratio. If from 0.3 to 1.7 and a molar ratio Li: If from 0.01 to 1
Dans ce -atenau, la substitution des ions Ca2^ au silicate de calcium nydrate par des ions Lι+ permet de créer ur déficit de charge structurel, analogue a celui ooserve dans une argile αe type smectite. Ce déficit est comoense car des ions lithium qui peuvent s'échanger très facilement avec d'autres cations, et en particulier du césium.In this -atenau, the substitution of Ca 2 ^ ions for hydrated calcium silicate by Lι + ions makes it possible to create a structural load deficit, similar to that stored in a smectite-type clay. This deficit is comoense because of lithium ions which can be exchanged very easily with other cations, and in particular cesium.
Ainsi, ce nouveau matériau possède une charge de surface modifiée du fait de la substitution partielle de Ca par Li modifiant la nature des forces mises en jeu entre chaque particule de silicate de calcium hydrate. Cette modification est à l'origine de l'augmentation de la résistance mécanique du matériau cimentaire contenant du lithium. De préférence, dans ce matériau, le rapport molaire Ca : Si dudit silicate de calcium hydraté est de 0,6 à 1,7, et le rapport molaire Li : Si dudit silicate de calcium hydraté est de 0,01 a 0,75.Thus, this new material has a modified surface charge due to the partial substitution of Ca by Li modifying the nature of the forces brought into play between each particle of calcium silicate hydrate. This modification is at the origin of the increase in the mechanical resistance of the cementitious material containing lithium. Preferably, in this material, the Ca: Si molar ratio of said hydrated calcium silicate is from 0.6 to 1.7, and the Li: Si molar ratio of said hydrated calcium silicate is from 0.01 to 0.75.
Un tel taux de substitution du calcium par du lithium permet d'obtenir les propriétés intéressantes d'échange de cations décrites ci-dessus, ainsi qu'une amélioration de la résistance mécanique.Such a calcium substitution rate with lithium makes it possible to obtain the advantageous cation exchange properties described above, as well as an improvement in mechanical strength.
L'utilisation de métaux alcalins, en particulier du sodium, dans des ciments a deja ete envisagée pour activer leur hydratation, comme il est décrit dans « Avances in Cernent Researcn, 1995, 7, n°27, pages 93-102 [1]. Ceoendant, les quantités ajoutées dans ce cas sont très faibles et ne permettent pas d'obtenir des silicates de calcium hydrates substitués comme dans l'invention.The use of alkali metals, in particular sodium, in cements has already been envisaged to activate their hydration, as described in "Avances in Cernent Researcn, 1995, 7, n ° 27, pages 93-102 [1] . However, the amounts added in this case are very small and do not make it possible to obtain substituted hydrated calcium silicates as in the invention.
Selon l' invention, le matériau cimentaire peut comprendre en outre d'autres constituants tels que ceux qui sont habituellement présents dans les ciments durcis. Ces constituants Deuvert être cnoisis par exemple parmi les aluminates de calcium, les ferro- aluminates de calcium, la silice, les carboalummates , la calcite, tous les nydrates couvant precmiter dans un ciment, et leurs mélanges Le matériau cimentaire de l'invention peut être obtenu à partir d'un matériau cimentaire comprenant au moins un silicate de calcium hydraté, en soumettant celui-ci à un traitement complémentaire de substitution d'une partie des atomes de calcium par des atomes de lithium.According to the invention, the cementitious material can also comprise other constituents such as those which are usually present in hardened cements. These Deuvert constituents can be chosen, for example, from calcium aluminates, calcium ferro-aluminates, silica, carboalummates, calcite, all the hydrates covering precititate in a cement, and their mixtures. The cementitious material of the invention can be obtained from a cementitious material comprising at least one hydrated calcium silicate, by subjecting it to a complementary treatment of substitution of part of the calcium atoms by lithium atoms .
Aussi, selon un premier mode de réalisation, le procédé de préparation du matériau cimentaire de l'invention consiste à mettre en contact un matériau cimentaire à base de silicate de calcium hydraté avec une solution aqueuse d' hydroxyde ou de sel de lithium pour substituer une partie des atomes de calcium du silicate de calcium hydraté par des atomes de lithium, la concentration en lithium de la solution aqueuse étant telle qu'elle corresponde à un rapport molaire Li : Si d'au moins 0,01.Also, according to a first embodiment, the process for preparing the cementitious material of the invention consists in bringing a cementitious material based on hydrated calcium silicate into contact with an aqueous solution of lithium hydroxide or salt to replace a part of the calcium atoms of the calcium silicate hydrated by lithium atoms, the lithium concentration of the aqueous solution being such that it corresponds to a Li: Si molar ratio of at least 0.01.
Ce mode de réalisation est facile à mettre en oeuvre puisqu'il suffit d'effectuer un traitement complémentaire sur un matériau cimentaire existant. Généralement, la solution aqueuse d' hydroxyde ou de sel de lithium a une concentration en lithium de 0,5 mol/1.This embodiment is easy to implement since it suffices to carry out an additional treatment on an existing cementitious material. Generally, the aqueous hydroxide or lithium salt solution has a lithium concentration of 0.5 mol / l.
Dans ce mode de réalisation, on peut utiliser tout matériau cimentaire hydraté préparé à partir de n' importe quel ciment capable de former des silicates de calcium hydratés lors de son durcissement. A titre d'exemple, il peut s'agir de ciment Portland, de laitier de haut fourneau, de fumée de silice, de matériau pouzzoianique, de cendres volantes et de leurs mélanges . De préférence, on utilise tout matériau cimentaire hydraté à base de ciment Portland.In this embodiment, any hydrated cementitious material prepared from any cement capable of forming hydrated calcium silicates upon hardening can be used. For example, it can be Portland cement, blast furnace slag, silica smoke, pozzoianic material, fly ash and mixtures thereof. Preferably, any hydrated cementitious material based on Portland cement is used.
Le sel de lithium susceptible d'être utilisé oour ce traitement est un sel de lithium soluble dans l'eau, en particulier un sel d'acide minéral tel qu'un halogénure (fluorure, chlorure, bromure et iodure) , un nitrate, un sulfate, un carbonate ou encore un silicate. Il peut également s'agir d'un sel organique.The lithium salt which can be used for this treatment is a lithium salt soluble in water, in particular a mineral acid salt such as a halide (fluoride, chloride, bromide and iodide), a nitrate, a sulfate, a carbonate or even a silicate. It can also be an organic salt.
De préférence, on utilise le chlorure de lithium.Preferably, lithium chloride is used.
Le matériau cimentaire de départ peut être obtenu à partir d'une composition comprenant en plus du ciment un ou plusieurs additifs tels que la fumée de silice (Sι02 amorphe), des cendres volantes, des charges inertes telles que du sable, des granulats calcaires ou siliceux, ou des additifs permettant d'adapter les propriétés du matériau cimentaire obtenu, ainsi que des agents fluidifiants et des agents retardateurs de prise.The starting cementitious material can be obtained from a composition comprising, in addition to the cement, one or more additives such as silica smoke (Sι0 2 amorphous), fly ash, inert fillers such as sand, limestone aggregates or siliceous, or additives making it possible to adapt the properties of the cementitious material obtained, as well as thinning agents and setting retarding agents.
Dans ce cas, le matériau cimentaire de départ peut être obtenu par addition de la composition à une solution aqueuse, et durcissement du matériau cimentaire dans cette solution.In this case, the starting cementitious material can be obtained by adding the composition to an aqueous solution, and hardening of the cementitious material in this solution.
Dans ce premier mode de réalisation, on peut aussi préparer le matériau cimentaire αe départ à base de silicate de calcium hydraté, en mélangeant dans de l'eau des composés de calcium et de silicium en quantités telles que le rapport molaire Ca : Si soit supérieur ou égal à 0,3.In this first embodiment, it is also possible to prepare the starting cementitious material based on hydrated calcium silicate, by mixing calcium and silicon compounds in water in quantities such that the Ca: Si molar ratio is greater. or equal to 0.3.
Pour cette préparation, on peut utiliser divers composés αe calcium, par exemple l'oxyde de calcium CaO, l' hydroxyde αe calcium, les silicates de calcium, tout compose a base αe calcium pouvant s'hydrater, et leurs mélanges.For this preparation, various calcium compounds can be used, for example calcium oxide CaO, calcium hydroxide, calcium silicates, any calcium-based compound which can hydrate, and mixtures thereof.
Le composé de siliciu™' peut être c oisi parmi la silice, la fumée de silice, les silicates de calcium, tout composé de silicium pouvant s'hydrater, et leurs mélanges.The silicon compound can be chosen from silica, silica fume, calcium, any silicon compound that can hydrate, and mixtures thereof.
Pour cette préparation, il est important que les quantités de composés ajoutées dans la solution aqueuse soient telles que le rapport molaire Ca : Si soit au moins de 0,3, de préférence d'au moinsFor this preparation, it is important that the amounts of compounds added to the aqueous solution are such that the Ca: Si molar ratio is at least 0.3, preferably at least
0,66 pour assurer la formation de silicate de calcium.0.66 to ensure the formation of calcium silicate.
La quantité d'eau est variable et peut être réglée de façon à obtenir une suspension ou une pâte. On préfère obtenir une suspension et, dans ce cas, le rapport pondéral eau : (composés de Ca et Si) est supérieur à 1, de préférence supérieur à 20, par exemple de 50.The amount of water is variable and can be adjusted to obtain a suspension or a paste. It is preferred to obtain a suspension and, in this case, the weight ratio water: (compounds of Ca and Si) is greater than 1, preferably greater than 20, for example 50.
Selon l'invention, le matériau cimentaire à base de silicate de calcium hydraté substitué par du lithium peut aussi être obtenu directement par coprécipitation à partir d'un mélange de composes de calcium, de silicium et de lithium.According to the invention, the cementitious material based on hydrated calcium silicate substituted by lithium can also be obtained directly by coprecipitation from a mixture of calcium, silicon and lithium compounds.
Aussi, selon un second mode de réalisation, le procède de préparation du matériau cimentaire comprend les étapes suivantes :Also, according to a second embodiment, the process for preparing the cementitious material comprises the following steps:
- mélanger dans une solution aqueuse des composes de calcium, de silicium et de lithium en proportions telles que le rapport molaire Ca : Si dans la solution soit supérieur ou égal a 0,3 et que le rapport molaire Li : Si dans la solution soit supérieur ou égal à 0,01, et- mix in an aqueous solution of calcium, silicon and lithium compounds in proportions such that the molar ratio Ca: Si in the solution is greater than or equal to 0.3 and that the molar ratio Li: Si in the solution is greater or equal to 0.01, and
- durcir le matériau cimentaire dans cette solution aqueuse ainsi ootenu. Pour cette préparation, on peut υt_lιser les composes de caxcium et de silicium mentionnés précédemment dans le cas de la préparation d'un matériau cimentaire sans lithium. Le composé de lithium utilisé peut être de l' hydroxyde de lithium ou un sel de lithium tel que ceux mentionnés précédemment. On préfère le chlorure de lithium. Comme précédemment, il est important que les quantités de composés de calcium et de silicium soient telles que le rapport molaire Ca : Si soit d'au moins 0,3, de préférence d'au moins 0,66, pour assurer la formation de silicate de calcium. De même, la quantité de composé de lithium doit être telle que le rapport Li : Si soit d'au moins 0,01.- harden the cementitious material in this aqueous solution thus ootenu. For this preparation, it is possible to use the caxcium and silicon compounds mentioned above in the case of the preparation of a cementitious material without lithium. The lithium compound used can be lithium hydroxide or a lithium salt such as those mentioned above. Lithium chloride is preferred. As before, it is important that the amounts of calcium and silicon compounds are such that the Ca: Si molar ratio is at least 0.3, preferably at least 0.66, to ensure the formation of silicate calcium. Likewise, the amount of lithium compound must be such that the Li: Si ratio is at least 0.01.
La quantité d'eau est variable et peut être réglée de façon à obtenir une suspension ou une pâte. Dans le cas d'une suspension, le rapport pondéral eau : (composés de Ca, Si et Li) est de préférence supérieur à 20, par exemple 50. Dans le cas d'une pâte, le rapport pondéral eau : (composes de Ca, Si et Li) est inférieur à 1. L' invention concerne également un procédé de stockage de decnets comprenant l'utilisation d'une barrière en matériau cimentaire αecrit ci-dessus pour isoler les déchets de l'environnement.The amount of water is variable and can be adjusted to obtain a suspension or a paste. In the case of a suspension, the water weight ratio: (compounds of Ca, Si and Li) is preferably greater than 20, for example 50. In the case of a paste, the water weight ratio: (compounds of Ca , Si and Li) is less than 1. The invention also relates to a process for the storage of waste comprising the use of a barrier made of a cementitious material described above to isolate the waste from the environment.
Les déchets sont, de préférence, des déchets contenant des cations solubles dans l'eau qui seraient susceptibles de migrer αans l'environnement par infiltration d'eau.The waste is preferably waste containing water-soluble cations which are liable to migrate into the environment by water infiltration.
A titre d'exemple de tels déchets, on peut citer les déchets radioactifs contenant du césium. Elle concerne encore un procède de rétention de cations solubles dans l'eau tels que le césium, par mise en contact d'u^e solution aqueuse desdits cations avec un matériau cimentaire conforme à 1' invention.By way of example of such waste, mention may be made of radioactive waste containing cesium. It also relates to a process for retaining water-soluble cations such as cesium, by contacting an aqueous solution. said cations with a cementitious material according to the invention.
Elle concerne enfin un procédé pour améliorer la résistance mécanique d'un matériau cimentaire comprenant au moins un silicate de calcium hydraté, qui consiste à mettre en contact le matériau cimentaire avec une solution aqueuse de sel ou d' hydroxyde de lithium pour remplacer une partie des atomes de calcium du silicate de calcium par des atomes de lithium.Finally, it relates to a process for improving the mechanical resistance of a cementitious material comprising at least one hydrated calcium silicate, which consists in bringing the cementitious material into contact with an aqueous solution of lithium salt or hydroxide to replace part of the calcium atoms of calcium silicate by lithium atoms.
Dans ce procédé, le matériau cimentaire de départ peut être un matériau obtenu à partir de ciment Portland, de laitier, de haut fourneau, de matériau pouzzolanique et/ou de cendres volantes. D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit, donnée bien entendu à titre illustratif et non limitatif, en référence aux dessins annexés .In this process, the starting cementitious material can be a material obtained from Portland cement, slag, blast furnace, pozzolanic material and / or fly ash. Other characteristics and advantages of the invention will appear better on reading the description which follows, given of course by way of illustration and not limitation, with reference to the appended drawings.
Brève description des dessinsBrief description of the drawings
La figure 1 déjà décrite illustre la structure d'un silicate de calcium hydraté conforme à l'art antérieur.FIG. 1 already described illustrates the structure of a hydrated calcium silicate in accordance with the prior art.
La figure 2 illustre le spectre de résonance magnétique nucléaire du silicium à l'angle magique, du silicate de calcium hydraté de la figure 1.FIG. 2 illustrates the nuclear magnetic resonance spectrum of silicon at the magic angle, of the hydrated calcium silicate of FIG. 1.
La figure 3 illustre le diffractogramme aux rayons X de silicates de calcium hydratés non substitués conformes à l'art antérieur. La figure 4 illustre le diffractogramme X de silicates de calcium hydratés substitués au lithium des exemples 1 à 4, conformes à l'invention.FIG. 3 illustrates the X-ray diffractogram of unsubstituted hydrated calcium silicates in accordance with the prior art. FIG. 4 illustrates the X-ray diffractogram of lithium-substituted hydrated calcium silicates of Examples 1 to 4, in accordance with the invention.
Les figures 5 et 6 illustrent les spectres de résonance magnétique nucléaire du silicium à l'angle magique des silicates de calcium hydratés non substitués (figure 5) et substitués au lithium (figureFigures 5 and 6 illustrate the nuclear magnetic resonance spectra of silicon at the magic angle of unsubstituted hydrated calcium silicates (Figure 5) and substituted with lithium (Figure
6) des exemples 1 à 4.6) examples 1 to 4.
La figure 7 illustre les spectres de résonance magnétique nucléaire statique du lithium des silicates de calcium hydratés substitués par du lithium des exemples 1 à 4.FIG. 7 illustrates the static nuclear magnetic resonance spectra of lithium of hydrated calcium silicates substituted with lithium of examples 1 to 4.
La figure 8 illustre les deux raies identifiées dans chacun de ces spectres. La figure 9 illustre la structure des silicates de calcium hydratés substitués par du lithium, conformes à l'invention.Figure 8 illustrates the two lines identified in each of these spectra. FIG. 9 illustrates the structure of hydrated calcium silicates substituted with lithium, in accordance with the invention.
La figure 10 illustre les spectres de résonance magnétique nucléaire du silicium, à l'angle magique, des silicates de calcium hydratés non substitués par Li des exemples 13 et 14 et substitués par Li de l'exemple 15.FIG. 10 illustrates the nuclear magnetic resonance spectra of silicon, at the magic angle, of hydrated calcium silicates unsubstituted by Li of examples 13 and 14 and substituted by Li of example 15.
Exposé détaillé des modes de réalisationDetailed description of the embodiments
Les exemples qui suivent illustrent la préparation et les propriétés mécaniques et de rétention de cations de matériaux cimentaires conformes à l' invention . Exemple 1 : Préparation d' un matériau cimentaire à base de silicate de calcium substitué par du lithium.The examples which follow illustrate the preparation and the mechanical and retention properties of cations of cementitious materials in accordance with the invention. Example 1: Preparation of a cementitious material based on calcium silicate substituted by lithium.
Dans cet exemple, on utilise le premier mode de réalisation du procédé de l'invention, soit la réalisation d'un traitement complémentaire de substitution par Li sur un matériau cimentaire déjà élaboré .In this example, the first embodiment of the process of the invention is used, that is to say the carrying out of a complementary substitution treatment with Li on a cementitious material already prepared.
On prépare tout d'abord un matériau cimentaire à partir d'oxyde de calcium CaO et de silice Si02 en opérant de la façon suivante.First of all, a cementitious material is prepared from calcium oxide CaO and silica Si0 2 by operating as follows.
On introduit 1,8 g au total de CaO et Si02 en proportions telles que le rapport molaire Ca : Si soit de 0,66, dans 90 ml d'eau, ce qui correspond à un rapport pondéral eau : (CaO + Si02) de 50, et on laisse reposer l'ensemble pendant trois semaines. On obtient ainsi dans le milieu un matériau cimentaire à base de silicate de calcium hydraté.A total of 1.8 g of CaO and Si0 2 is introduced in proportions such that the Ca: Si molar ratio is 0.66, in 90 ml of water, which corresponds to a water weight ratio: (CaO + Si0 2 ) of 50, and the whole is left to stand for three weeks. A cementitious material based on hydrated calcium silicate is thus obtained in the medium.
On ajoute ensuite à ce milieu 1,89 g de chlorure de lithium et on laisse reposer de nouveau pendant trois semaines, à 25°C, en atmosphère azotée pour éviter la carbonatation .Then added to this medium 1.89 g of lithium chloride and allowed to stand again for three weeks, at 25 ° C, in a nitrogen atmosphere to avoid carbonation.
On obtient ainsi un matériau cimentaire substitué au lithium. Dans le tableau 1 annexé, on a indiqué le rapport molaire Ca/Si de départ et les rapports molaires Ca : Si et Li : Si dans le produit obtenu.A cementitious material substituted with lithium is thus obtained. In the appended Table 1, the starting Ca / Si molar ratio and the Ca: Si and Li: Si molar ratios are indicated in the product obtained.
Exemples 2 à 4.Examples 2 to 4.
On suit le même mode opératoire que dans l'exemple 1 pour préparer d'autres matériaux cimentaires ayant des rapports Ca : Si différents, en utilisant dans chaque cas 1,8 g de mélange de CaO et de Si02 avec des rapports molaires différents, et la même quantité de LiCl pour le traitement de substitution.The same procedure is followed as in Example 1 to prepare other cementitious materials having different Ca: Si ratios, in using in each case 1.8 g of mixture of CaO and Si0 2 with different molar ratios, and the same amount of LiCl for the substitution treatment.
Les rapport molaires Ca : Si de départ et final et le rapport molaire Li : Si des matériaux cimentaires obtenus sont donnés également dans le tableau 1.The starting and final Ca: Si molar ratios and the Li: Si molar ratio of cementitious materials obtained are also given in Table 1.
Exemples comparatifs 1 à 4 : préparation de matériaux cimentaires à base de silicate de calcium non substitué .Comparative examples 1 to 4: preparation of cementitious materials based on unsubstituted calcium silicate.
Dans ces exemples, on suit le même mode opératoire que dans les exemples 1 à 4, mais on n'effectue pas le traitement de substitution au moyen de chlorure de lithium.In these examples, the same procedure is followed as in Examples 1 to 4, but the substitution treatment is not carried out using lithium chloride.
On obtient ainsi des matériaux cimentaires non substitués par du lithium ayant des rapports molaires Ca : Si de 0,66 ; 0,83 ; 1,2 et 1,7 comme dans les exemples 1 à 4. On analyse les matériaux cimentaires obtenus dans les exemples 1 à 4 et dans les exemples comparatifs 1 à 4 par diffraction des rayons X et par résonance magnétique nucléaire du silicium à l'angle magique . La figure 3 illustre le diffractogrammeCement materials unsubstituted by lithium are thus obtained having Ca: Si molar ratios of 0.66; 0.83; 1.2 and 1.7 as in Examples 1 to 4. The cementitious materials obtained in Examples 1 to 4 and in Comparative Examples 1 to 4 are analyzed by X-ray diffraction and by nuclear magnetic resonance from silicon to magic angle. Figure 3 illustrates the diffractogram
X des silicates de calcium hydratés non substitués obtenus dans les exemples comparatifs 1 à 4.X unsubstituted hydrated calcium silicates obtained in Comparative Examples 1 to 4.
La figure 4 illustre les diffractogramme de rayons X des silicates de calcium hydratés substitués par du lithium obtenus dans les exemples 1 à 4.FIG. 4 illustrates the X-ray diffractograms of the lithium-substituted hydrated calcium silicates obtained in Examples 1 to 4.
La comparaison des figures 3 et 4 montre que l'ajout de lithium n'a pas provoqué la précipitation de nouvelles phases cristallisées. La figure 5 illustre les spectres de résonance magnétique nucléaire du silicium à l'angle magique des silicates de calcium hydratés non substitués par du lithium obtenus dans les exemples comparatifs 1 à 4.The comparison of Figures 3 and 4 shows that the addition of lithium did not cause the precipitation of new crystallized phases. FIG. 5 illustrates the nuclear magnetic resonance spectra of silicon at the magic angle of hydrated calcium silicates not substituted by lithium obtained in Comparative Examples 1 to 4.
La figure 6 illustre les spectres des produits similaires substitués par du lithium obtenus dans les exemples 1 à 4.FIG. 6 illustrates the spectra of similar products substituted with lithium obtained in examples 1 to 4.
Si l'on compare les figures 5 et 6, on remarque que l'on trouve les mêmes sites Ql, Q2L et Q2 et en mêmes proportions dans les silicates substitués par Li et dans les silicates non substitués. Ceci indique que les couches tétraédriques sont identiques dans les produits substitués par du lithium et dans les produits non substitués.If we compare Figures 5 and 6, we note that we find the same sites Ql, Q2L and Q2 and in the same proportions in the silicates substituted by Li and in the unsubstituted silicates. This indicates that the tetrahedral layers are identical in products substituted by lithium and in unsubstituted products.
Si l'on se reporte au tableau 1, on remarque que, lorsque le rapport molaire Ca : Si est de 0,66 au départ, on obtient un rapport molaire Ca : Si final de 0,579. Classiquement, ceci devrait correspondre à la coexistence d'un silicate de calcium hydraté ayant un Ca : Si de 0,66 et de gel de silice. Or, comme le montre la figure 6, aucun gel de silice n'est détecté par RMN du silicium. En fait, une partie du calcium du feuillet octahedrique a été remplacé par du lithium expliquant que le rapport Ca : Si soit inférieur à 0,66. les analyses chimiques confirment la présence de lithium substituant le calcium.If we refer to Table 1, we note that when the Ca: Si molar ratio is 0.66 at the start, we obtain a final Ca: Si molar ratio of 0.579. Conventionally, this should correspond to the coexistence of a hydrated calcium silicate having a Ca: Si of 0.66 and silica gel. However, as shown in FIG. 6, no silica gel is detected by NMR of the silicon. In fact, part of the calcium in the octahedral sheet has been replaced by lithium, explaining that the Ca: Si ratio is less than 0.66. chemical analyzes confirm the presence of lithium replacing calcium.
Les spectres de résonance magnétique nucléaire statique du lithium des silicates de calcium hydratés substitués au lithium des exemples 1 à 4 sont représentés sur la figure 7, les pics correspondant au lithium mobile ayant été tronqués. Sur la figure 8, on a identifié les deux raies qui apparaissent sur les spectres de la figure 7. Cette figure permet d'identifier deux raies, l'une large ou site 1 (interaction quadrupolaire non moyenne) qui correspond à des ions lithium peu ou pas mobiles, et l'autre fine (site- 2) correspondant à des ions lithium mobiles.The static nuclear magnetic resonance spectra of lithium of lithium-substituted hydrated calcium silicates of Examples 1 to 4 are shown in FIG. 7, the peaks corresponding to mobile lithium having been truncated. In FIG. 8, the two lines which appear on the spectra of FIG. 7 have been identified. This figure makes it possible to identify two lines, one broad or site 1 (non-average quadrupolar interaction) which corresponds to low-level lithium ions. or not mobile, and the other fine (site- 2) corresponding to mobile lithium ions.
Sur la figure 9, on a représenté la structure des silicates de calcium hydratés substitués au lithium, telle qu'elle ressort des analyses effectuées précédemment.In FIG. 9, the structure of lithium-substituted hydrated calcium silicates has been shown, as it emerges from the analyzes carried out previously.
Sur cette figure, on retrouve les couches tétraédriques (Te) constituées de chaînes de tétraèdres de Si02 de la figure 1 et la couche octaedrique (Oc) du plan CaO dans laquelle x atomes de calcium sont substitués par des atomes de lithium (xLiO+) . La substitution de Ca2+ par Li+ crée un déficit de charge compensé par des ions lithium en interfeuillet (x/2 Li+) de part et d'autre du feuillet. Cette structure est confirmée par les diffractogrammes X des figures 3 et 4 (pas d' autre phase cristallisée) et par les spectres des figures 5 et 6 qui donnent les mêmes sites tétraédriques et par les spectres de la figure 7 et les résultats du tableau 2 qui montrent que l'on a des atomes de lithium fixes et des atomes de lithium mobiles.In this figure, we find the tetrahedral layers (Te) made up of chains of tetrahedra of Si0 2 of figure 1 and the octahedral layer (Oc) of the CaO plane in which x calcium atoms are substituted by lithium atoms (xLiO + ). The substitution of Ca 2+ by Li + creates a charge deficit compensated by lithium ions in interlayer (x / 2 Li + ) on either side of the sheet. This structure is confirmed by the X-ray diffractograms of FIGS. 3 and 4 (no other crystallized phase) and by the spectra of FIGS. 5 and 6 which give the same tetrahedral sites and by the spectra of FIG. 7 and the results of table 2 which show that we have fixed lithium atoms and mobile lithium atoms.
Le matériau de l'invention est donc très intéressant car ces atomes de lithium mobiles en interfeuillet peuvent s'échanger très facilement avec d'autres cations, par exemple avec le césium comme on ' va le voir ci-après. Exemple 5 : Préparation d' un matériau cimentaire à base de silicate de calcium substitué par du lithium.The material of the invention is very interesting because these mobile lithium atoms in the interlayer can be exchanged easily with other cations, for example cesium as' will see below. Example 5: Preparation of a cementitious material based on calcium silicate substituted by lithium.
Pour cette préparation, on utilise le second mode de réalisation du procédé, soit la précipitation directe du matériau à partir d' un mélange de composés de calcium, de silicium et de lithium.The second embodiment of the process is used for this preparation, namely the direct precipitation of the material from a mixture of calcium, silicon and lithium compounds.
On utilise comme composés de Ca, Si et Li, l'oxyde de calcium CaO, la silice Si02 et le chlorure de lithium LiCl .The compounds Ca, Si and Li used are calcium oxide CaO, silica Si0 2 and lithium chloride LiCl.
On introduit dans 90 ml d'eau une quantité de chlorure de lithium telle que la concentration en lithium de la s'olution soit de 0,5 mol/1 et on ajoute 1,8 g au total de CaO et Si02, les proportions de CaO et Si02 correspondant à un rapport molaire Ca : Si de 0,66. On laisse reposer le milieu réactionnel pendant trois semaines à 25°C en atmosphère azotée pour éviter la carbonatation, et on récupère à partir de ce milieu le matériau cimentaire à base de silicate de calcium hydraté substitué par du lithium.In 90 ml of water is introduced an amount of lithium chloride, such that the lithium concentration of the s' olution is 0.5 mol / 1 and 1.8 g in total of CaO and Si0 2, the proportions of CaO and Si0 2 corresponding to a Ca: Si molar ratio of 0.66. The reaction medium is left to stand for three weeks at 25 ° C. in a nitrogen atmosphere to avoid carbonation, and the cementitious material based on calcium silicate hydrate substituted with lithium is recovered from this medium.
Dans le tableau 2 annexé, on a indiqué le rapport molaire Ca : Si de départ et les rapports molaires Ca : Si et Li : Si dans le produit obtenu.In the annexed Table 2, the starting Ca: Si molar ratio and the Ca: Si and Li: Si molar ratios are indicated in the product obtained.
Exemples 6 à 8.Examples 6 to 8.
On suit le même mode opératoire que dans l'exemple 5 pour préparer d'autres matériaux cimentaires ayant des rapports Ca : Si différents, en utilisant dans chaque cas 1,8 g de mélange de CaO et de Si02 avec des rapports molaires différents, et la même quantité de LiCl. Les rapports molaires Ca : Si de départ et final et le rapport molaire Li : Si des matériaux cimentaires obtenus sont donnés dans le tableau 2.The same procedure is followed as in Example 5 to prepare other cementitious materials having different Ca: Si ratios, using in each case 1.8 g of mixture of CaO and Si0 2 with different molar ratios, and the same amount of LiCl. The Ca: Si starting and final molar ratios and the Li: Si molar ratio of cementitious materials obtained are given in Table 2.
Les résultats du tableau 2 montrent que le second mode de réalisation du procédé est moins favorable à la substitution de Ca par Li .The results of Table 2 show that the second embodiment of the method is less favorable to the substitution of Ca by Li.
Les analyses par diffraction des rayons X des matériaux obtenus dans les exemples 5 à 8 donnent des spectres identiques à ceux de la figure 4, et il en est de même pour l'analyse par spectrometrie par résonance magnétique nucléaire du silicium à l'angle magique, qui donne des spectres identiques à ceux de la figure 5.The X-ray diffraction analyzes of the materials obtained in Examples 5 to 8 give spectra identical to those of FIG. 4, and the same is true for the analysis by spectrometry by nuclear magnetic resonance of silicon at the magic angle. , which gives spectra identical to those of FIG. 5.
Ainsi, il n'y a pas de sel de lithium dans le matériau, le lithium interagit donc avec les silicates de calcium hydratés. Il s'incorpore dans la structure et modifie les propriétés de surface. De ce fait les propriétés de rétention et d' interaction entre deux particules de silicate de calcium hydraté sont améliorées. Cette dernière propriété est à l'origine de l'augmentation de la résistance mécanique constatée ultérieurement (exemples 13 à 15).Thus, there is no lithium salt in the material, lithium therefore interacts with hydrated calcium silicates. It is incorporated into the structure and modifies the surface properties. As a result, the retention and interaction properties between two particles of hydrated calcium silicate are improved. This last property is at the origin of the increase in the mechanical resistance noted later (examples 13 to 15).
Exemples 9 à 12Examples 9 to 12
Dans ces exemples, on teste les propriétés des matériaux cimentaires obtenus dans les exemples 5 à 8 pour la fixation du césium. Dans ce but, on ajoute du sel de césium (CsCl) dans les mélanges des exemples 5 à 8. La concentration en sel de césium est ajustée à 0, 5 mmol/1.In these examples, the properties of the cementitious materials obtained in examples 5 to 8 are tested for the fixation of cesium. For this purpose, cesium salt (CsCl) is added to the mixtures of Examples 5 to 8. The concentration of cesium salt is adjusted to 0.5 mmol / l.
On détermine ensuite la concentration de césium restant en solution par dosage par électrophorèse capillaire après un étalonnage préalable, la limite de détection étant de 0,1 mmol/1.The concentration of cesium remaining in solution is then determined by determination by capillary electrophoresis after a preliminary calibration, the detection limit being 0.1 mmol / 1.
Les résultats obtenus sont donnés dans le tableau 3. On remarque ainsi que les matériaux cimentaires de l'invention qui ont un taux très faible de substitution par le lithium, permettent d'obtenir une rétention du césium supérieure à 80 %.The results obtained are given in table 3. It is thus noted that the cementitious materials of the invention which have a very low rate of substitution by lithium, make it possible to obtain a cesium retention greater than 80%.
Exemples comparatifs 5 à 8.Comparative examples 5 to 8.
Dans ces exemples, on suit le même mode opératoire que dans les exemples 9 à 12, mais on utilise une solution de chlorure de césium à 0,5 mol/1 et les matériaux cimentaires des exemples comparatifs 1 à 4, non substitués par du lithium.In these examples, the same procedure is followed as in Examples 9 to 12, but a solution of cesium chloride at 0.5 mol / 1 and the cementitious materials of Comparative Examples 1 to 4, not substituted by lithium, are used. .
Les résultats obtenus sont donnés dans le tableau 4 en pourcentage de Cs fixé. Dans ce tableau 4, on a donné également le pourcentage de césium fixé pour une solution dont la concentration initiale en césium est de 0,5 mmol/1, en se basant sur le fait que la quantité de césium fixée est proportionnelle à la quantité de césium initiale, comme on a pu le constater . Ainsi, avec une solution à 0,5 mmol/1 de césium, le césium n'est pratiquement pas fixé par les matériaux cimentaires non substitués par du lithium, la rétention du césium étant au plus de 0,02 %. La substitution par le lithium des matériaux cimentaires permet donc d'obtenir un taux de rétention du césium très élevé.The results obtained are given in Table 4 as a percentage of fixed Cs. In this table 4, the percentage of fixed cesium was also given for a solution with an initial cesium concentration of 0.5 mmol / l, based on the fact that the quantity of fixed cesium is proportional to the quantity of initial cesium, as we have seen. Thus, with a 0.5 mmol / l solution of cesium, cesium is practically not fixed by cementitious materials not substituted by lithium, the retention of cesium being at most 0.02%. The substitution by lithium of cementitious materials therefore makes it possible to obtain a very high cesium retention rate.
De ce fait, on peut utiliser les matériaux cimentaires de l'invention pour le stockage de déchets, soit comme matrice de stockage, soit comme barrière ouvragée disposée autour de déchets enrobés. Ceci permet d'isoler les déchets de l'environnement et d'assurer une fixation du césium dans la barrière au cas où le césium pourrait être dissous par de l'eau ayant migré dans les déchets. De même, on peut utiliser les matériaux cimentaires de l'invention pour la rétention de cations solubles dans l'eau tels que le césium, par mise en contact d'une solution aqueuse de ces cations avec le matériau cimentaire de l'invention.Therefore, the cement materials of the invention can be used for the storage of waste, either as a storage matrix or as an engineered barrier arranged around coated waste. This makes it possible to isolate the waste from the environment and to ensure that the cesium is fixed in the barrier in the event that the cesium could be dissolved by water which has migrated into the waste. Likewise, the cementitious materials of the invention can be used for the retention of water-soluble cations such as cesium, by bringing an aqueous solution of these cations into contact with the cementitious material of the invention.
Exemples 13 à 15Examples 13 to 15
Dans ces exemples, on utilise le second mode de réalisation du procédé pour préparer un matériau cimentaire à partir de fumée de silice carbosil (Si02) et d' hydroxyde de calcium Ca(0H)2 avec addition ou non de chlorure de lithium.In these examples, the second embodiment of the process is used to prepare a cementitious material from fume of silica carbosil (Si0 2 ) and calcium hydroxide Ca (OH) 2 with or without the addition of lithium chloride.
Les compositions utilisées pour la préparation du matériau sont données dans le tableau 5 qui suit.The compositions used for the preparation of the material are given in Table 5 which follows.
Dans ces exemples, on malaxe l'ensemble des constituants pendant environ 2 minutes, puis chacune des pâtes est introduite dans un moule de trois éprouvettes (4 cm x 4cm x 16 cm) . Le serrage des pâtes est obtenu par introduction en deux temps, en appliquant au moule 60 chocs à chaque fois.In these examples, all of the constituents are kneaded for approximately 2 minutes, then each of the pastes is introduced into a mold of three test tubes (4 cm x 4 cm x 16 cm). The tightening of the pasta is obtained by introduction in two stages, applying 60 shocks to the mold each time.
Le moule de l'exemple 13 est conservé dans de l'eau à 25°C pendant 28 jours. Les moules des exemples 14 et 15 sont placés dans un bac en plastique hermétique rempli d'eau à 85°C pendant 28 jours. On détermine ensuite la résistance à la compression des matériaux cimentaires obtenus dans chacun des exemples.The mold of Example 13 is stored in water at 25 ° C for 28 days. The molds of Examples 14 and 15 are placed in an airtight plastic container filled with water at 85 ° C. for 28 days. The resistance to compression of the cementitious materials obtained in each of the examples is then determined.
Les résultats obtenus sont donnés dans le tableau 6 qui suit. Les valeurs du tableau sont la moyenne de trois mesures effectuées sur trois éprouvettes différentes (dispersion < 10 %).The results obtained are given in Table 6 which follows. The values in the table are the average of three measurements made on three different test pieces (dispersion <10%).
Ainsi, on constate que la résistance mécanique des éprouvettes contenant du lithium (Ex 15) est significativement plus élevée que celle des éprouvettes sans Li, quelle que soit la température de durcissement .Thus, it is found that the mechanical strength of test pieces containing lithium (Ex 15) is significantly higher than that of test pieces without Li, whatever the hardening temperature.
L'emploi d'une température de 85 °C permet d'activer la cinétique d'hydratation car la fumée de silice est peu réactive.The use of a temperature of 85 ° C activates the kinetics of hydration because the silica smoke is not very reactive.
Sur la figure 10, on a représenté les spectres de résonance magnétique nucléaire du silicium des matériaux cimentaires obtenus dans les exemples 13 à 15. Sur cette figure, on constate que la fumée de silice résiduelle est importante lorsque l'hydratation se fait à 25°C. Lorsque la température de durcissement passe de 25°C à 85°C, l'hydratation de la fumée de silice est accélérée. Le système contient donc plus de silicate de calcium hydraté. Les silicates de calcium hydratés résultants ont des chaînes plus courtes qu'à 25°C. La proportion de tétraèdres Ql est en effet plus faible à 85°C qu'à 25°C. On observe alors un effondrement de la résistance mécanique (tableau 7) qui n'est donc pas liée à la quantité de fumée de silice hydratée.In FIG. 10, the nuclear magnetic resonance spectra of the silicon of the cementitious materials obtained in examples 13 to 15 are shown. In this figure, it can be seen that the residual silica smoke is important when the hydration takes place at 25 °. vs. When the hardening temperature goes from 25 ° C to 85 ° C, the hydration of the silica smoke is accelerated. The system therefore contains more hydrated calcium silicate. The resulting hydrated calcium silicates have shorter chains than at 25 ° C. The proportion of Ql tetrahedra is indeed lower at 85 ° C than at 25 ° C. A collapse in mechanical strength is then observed (Table 7) which is therefore not linked to the quantity of hydrated silica smoke.
L'ajout de LiCl active légèrement cette hydratation (effet connu des sels) . Cet ajout modifie pas ou peu la structure des chaînes de tétraèdres de silicium pour une même température de durcissement. La résistance mécanique n'est donc pas corrélée dans le présent cas à la longueur de chaînes de tétraèdres dans les silicates de calcium hydratés. L'augmentation de la résistance mécanique peut donc être attribuée à l'ajout du lithium, qui s'incorpore dans la structure des silicates de calcium hydratés en modifiant leurs propriétés d'interface. En effet, elle ne résulte pas d'un effet d'hydratation plus important des matériaux anhydres dû au sel de lithium car on aurait alors observé sur le spectre une diminution importante de la contribution Q4 correspondant à la fumée de silice non hydratée avec l'ajout de LiCl.The addition of LiCl slightly activates this hydration (known effect of salts). This addition changes little or no structure of the chains of silicon tetrahedra for the same hardening temperature. Mechanical resistance is therefore not correlated in the present case to the length of tetrahedron chains in hydrated calcium silicates. The increase in mechanical strength can therefore be attributed to the addition of lithium, which is incorporated into the structure of hydrated calcium silicates by modifying their interface properties. Indeed, it does not result from a greater hydration effect of the anhydrous materials due to the lithium salt because one would then have observed on the spectrum a significant reduction in the contribution Q4 corresponding to the silica smoke not hydrated with the addition of LiCl.
Référence citéeCitation cited
[1] : Avances in Cernent Research, 1995, 7, n°27, pages 93-102. [1]: Avances in Cernent Research, 1995, 7, n ° 27, pages 93-102.
Tableau 1Table 1
Figure imgf000024_0001
Figure imgf000024_0001
Tableau 2Table 2
Figure imgf000024_0002
Tableau 3
Figure imgf000024_0002
Table 3
Figure imgf000025_0001
Figure imgf000025_0001
Tableau 4Table 4
Ex Ca/Si % Cs fixé pour % Cs fixé pourEx Ca / Si% Cs fixed for% Cs fixed for
[Cs] initial [Cs] initial[Cs] initial [Cs] initial
Comparatif 0,5M 0,5 mmol/1Comparative 0.5M 0.5 mmol / 1
5 0,66 10-20 0, 01-0,025 0.66 10-20 0.01-0.02
(ex comp . D(ex comp. D
6 0,83 10-20 0,01-0,026 0.83 10-20 0.01-0.02
(ex. comp . 2)(e.g. comp. 2)
7 1,20 < 10 <0,017 1.20 <10 <0.01
(ex. comp . 3)(e.g. comp. 3)
8 1,70 < 5 <0,0058 1.70 <5 <0.005
(ex . comp . 4) Tableau 5(e.g. comp. 4) Table 5
Figure imgf000026_0001
Figure imgf000026_0001
Tableau 6Table 6
Figure imgf000026_0002
Figure imgf000026_0002

Claims

REVENDICATIONS
1. Matériau cimentaire comprenant au moins un silicate de calcium hydraté substitué par du lithium, ledit silicate substitué ayant un rapport molaire Ca : Si de 0,3 à 1,7 et un rapport molaire Li : Si de 0,01 à 1.1. Cementary material comprising at least one hydrated calcium silicate substituted with lithium, said substituted silicate having a Ca: Si molar ratio of 0.3 to 1.7 and a Li: Si molar ratio of 0.01 to 1.
2. Matériau cimentaire selon la revendication 1, dans lequel le rapport molaire Ca : Si dudit silicate est de 0,6 à 1,7.2. A cementitious material according to claim 1, in which the Ca: Si molar ratio of said silicate is from 0.6 to 1.7.
3. Matériau cimentaire selon la revendication 1 ou 2, dans lequel le rapport molaire Li : Si dudit silicate est de 0,01 à 0,75.3. A cementitious material according to claim 1 or 2, in which the Li: Si molar ratio of said silicate is from 0.01 to 0.75.
4. Matériau cimentaire selon l'une quelconque des revendications 1 à 3, comprenant en outre des constituants de ciment durci choisis parmi les aluminates de calcium, les ferroaluminates de calcium, la silice, les carboaluminates, la calcite, tous les hydrates pouvant précipiter dans un ciment, et leurs mélanges.4. cementitious material according to any one of claims 1 to 3, further comprising constituents of hardened cement chosen from calcium aluminates, calcium ferroaluminates, silica, carboaluminates, calcite, all hydrates which can precipitate in a cement, and their mixtures.
5. Procédé de préparation d'un matériau cimentaire selon l'une quelconque des revendications 1 à 4, qui consiste à mettre en contact un matériau cimentaire à base de silicate de calcium hydraté avec une solution aqueuse d' hydroxyde ou de sel de lithium pour substituer une partie des atomes de calcium du silicate de calcium hydraté par des atomes de lithium, la concentration en lithium de la solution aqueuse étant telle qu'elle corresponde à un rapport molaire Li : Si d'au moins 0,01.5. Method for preparing a cementitious material according to any one of claims 1 to 4, which consists in bringing a cementitious material based on hydrated calcium silicate into contact with an aqueous solution of hydroxide or lithium salt for substitute part of the calcium atoms of the hydrated calcium silicate with lithium atoms, the lithium concentration of the aqueous solution being such that it corresponds to a Li: Si molar ratio of at least 0.01.
6. Procédé selon la revendication 5, dans lequel la solution aqueuse d' hydroxyde ou de sel de lithium a une concentration en lithium de 0,5 mol/1. 6. The method of claim 5, wherein the aqueous solution of hydroxide or lithium salt has a lithium concentration of 0.5 mol / 1.
7. Procédé selon la revendication 5 ou 6, dans lequel le matériau cimentaire est tout matériau cimentaire à base de ciment Portland.7. The method of claim 5 or 6, wherein the cementitious material is any cementitious material based on Portland cement.
8. Procédé selon l'une quelconque des revendications 5 à 7, dans lequel le sel de lithium est le chlorure de lithium.8. Method according to any one of claims 5 to 7, in which the lithium salt is lithium chloride.
9. Procédé selon l'une quelconque des revendications 5 à 8, dans lequel on prépare tout d' abord le matériau cimentaire à base de silicate de calcium hydraté, en mélangeant dans de l'eau des composés de calcium et de silicium en quantités telles que le rapport molaire Ca : Si soit supérieur ou égal à 0,3.9. Method according to any one of claims 5 to 8, in which the cementitious material based on hydrated calcium silicate is first prepared, by mixing calcium and silicon compounds in water in such quantities that the Ca: Si molar ratio is greater than or equal to 0.3.
10. Procédé de préparation d'un matériau cimentaire à base de silicate (s) de calcium hydraté (s) substitué (s) par du lithium, comprenant les étapes suivantes de :10. Process for preparing a cementitious material based on hydrated calcium silicate (s) substituted with lithium, comprising the following steps:
- mélange dans une solution aqueuse de composés de calcium, de silicium et de lithium en proportions telles que le rapport molaire Ca : Si soit supérieur ou égal à 0,3 et que le rapport molaire Li : Si soit supérieur ou égal à 0,01, et- mixing in an aqueous solution of calcium, silicon and lithium compounds in proportions such that the Ca: Si molar ratio is greater than or equal to 0.3 and that the Li: Si molar ratio is greater than or equal to 0.01 , and
- durcissement du matériau cimentaire dans cette solution . - hardening of the cementitious material in this solution.
11. Procédé selon la revendication 9, dans lequel le composé de calcium est choisi parmi l'oxyde de calcium CaO, l' hydroxyde de calcium, les silicates de calcium, tout composé à base de calcium pouvant s'hydrater, et leurs mélanges. 11. The method of claim 9, wherein the calcium compound is chosen from calcium oxide CaO, calcium hydroxide, calcium silicates, any calcium-based compound which can hydrate, and mixtures thereof.
12. Procédé selon la revendication 9 ou 10, dans lequel le composé de silicium est choisi parmi la silice, la fumée de silice, les silicates de calcium, tout composé de silicium pouvant s'hydrater, et leurs mélanges .12. Method according to claim 9 or 10, in which the silicon compound is chosen from silica, silica smoke, calcium silicates, any silicon compound that can hydrate, and mixtures thereof.
13. Procédé selon la revendication 10, dans lequel le composé de lithium est le chlorure de lithium.13. The method of claim 10, wherein the lithium compound is lithium chloride.
14. Procédé de stockage de déchets comprenant l'utilisation d'une barrière en matériau cimentaire selon l'une quelconque des revendications 1 à 4 pour isoler les déchets de l'environnement. 14. A waste storage method comprising the use of a barrier made of cementitious material according to any one of claims 1 to 4 to isolate the waste from the environment.
15. Procédé selon la revendication 14, dans lequel les déchets sont des déchets radioactifs contenant du césium.15. The method of claim 14, wherein the waste is radioactive waste containing cesium.
16. Procédé de rétention de cations solubles dans l'eau par mise en contact d'une solution aqueuse desdits cations avec un matériau cimentaire selon l'une quelconque des revendications 1 à 4.16. A method of retaining water-soluble cations by bringing an aqueous solution of said cations into contact with a cementitious material according to any one of claims 1 to 4.
17. Procédé selon la revendication 16, dans lequel ledit cation est le césium.17. The method of claim 16, wherein said cation is cesium.
18. Procédé pour améliorer la résistance mécanique d'un matériau cimentaire comprenant au moins un silicate de calcium hydraté, qui consiste à mettre en contact le matériau cimentaire avec une solution aqueuse de sel ou d' hydroxyde de lithium pour remplacer une partie des atomes de calcium du silicate de calcium par des atomes de lithium.18. A method for improving the mechanical strength of a cementitious material comprising at least one hydrated calcium silicate, which consists in bringing the cementitious material into contact with an aqueous solution of lithium salt or hydroxide to replace part of the atoms of calcium from calcium silicate by lithium atoms.
19. Procédé selon la revendication 18, dans lequel la solution aqueuse est une solution de chlorure de lithium de 0,5 M.19. The method of claim 18, wherein the aqueous solution is a 0.5 M lithium chloride solution.
20. Procédé selon l'une quelconque des revendications 18 et 19, dans lequel le matériau cimentaire est un matériau obtenu à partir d'un ciment choisi parmi les ciments Portland, les laitiers de hauts-fourneaux, les matériaux pouzzolaniques, les cendres volantes et leurs mélanges. 20. A method according to any one of claims 18 and 19, wherein the cementitious material is a material obtained from a cement chosen from Portland cements, slag from blast furnaces, pozzolanic materials, fly ash and mixtures thereof.
PCT/FR1999/001140 1998-05-13 1999-05-12 Cement material containing lithium with improved mechanical properties, useful for retaining cations, and methods for making same WO1999058469A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR98/06024 1998-05-13
FR9806024A FR2778653A1 (en) 1998-05-13 1998-05-13 Cement material comprising hydrated calcium silicate with lithium used for e.g. the retention of cations, for nuclear waste storage containing e.g. cesium, for improving the mechanical strength of material in civil engineering
FR9813516A FR2778652B1 (en) 1998-05-13 1998-10-28 CEMENT MATERIAL CONTAINING LITHIUM HAVING IMPROVED MECHANICAL PROPERTIES, USEFUL FOR CATION RETENTION, AND METHODS FOR MAKING SAME
FR98/13516 1998-10-28

Publications (1)

Publication Number Publication Date
WO1999058469A1 true WO1999058469A1 (en) 1999-11-18

Family

ID=26234321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001140 WO1999058469A1 (en) 1998-05-13 1999-05-12 Cement material containing lithium with improved mechanical properties, useful for retaining cations, and methods for making same

Country Status (2)

Country Link
FR (1) FR2778652B1 (en)
WO (1) WO1999058469A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169737A (en) * 2010-12-28 2011-08-31 西南科技大学 High-salt high-alkali Medium-low-level radioactive liquid waste cement solidified body and preparation method thereof
CN105753341A (en) * 2016-02-26 2016-07-13 西南石油大学 Preparation method of calcium ferroaluminate
CN113003979A (en) * 2021-03-09 2021-06-22 荆州嘉华科技有限公司 Crystal nucleus type setting-accelerating antifreeze agent, preparation method thereof and polar region well cementation cement slurry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926957A (en) * 1982-08-02 1984-02-13 旭化成株式会社 Manufacture of calcium silicate hydrate hardened body
FR2569397A1 (en) * 1984-08-27 1986-02-28 Kitano Tatsuo FACIAL BODIES OF CALCIUM SILICATE
EP0319398A1 (en) * 1987-12-02 1989-06-07 Commissariat A L'energie Atomique Device for storing radioactive or toxic wastes in cement, and process for producing it
EP0644555A1 (en) * 1993-09-16 1995-03-22 Institute Of Nuclear Energy Research, Taiwan, R.O.C. Preparation of inorganic hardenable slurry and method for solidifying wastes with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926957A (en) * 1982-08-02 1984-02-13 旭化成株式会社 Manufacture of calcium silicate hydrate hardened body
FR2569397A1 (en) * 1984-08-27 1986-02-28 Kitano Tatsuo FACIAL BODIES OF CALCIUM SILICATE
EP0319398A1 (en) * 1987-12-02 1989-06-07 Commissariat A L'energie Atomique Device for storing radioactive or toxic wastes in cement, and process for producing it
EP0644555A1 (en) * 1993-09-16 1995-03-22 Institute Of Nuclear Energy Research, Taiwan, R.O.C. Preparation of inorganic hardenable slurry and method for solidifying wastes with the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8412, Derwent World Patents Index; Class E33, AN 84-072043, XP002090199 *
M.Y.HASSAAN ET AL.: "study of anhydrous and hydrated portland cement containing alkali ions by infrared spectroscopy", JOURNAL OF MATERIALS SCIENCE LETTERS, vol. 8, 1989, pages 578 - 580, XP002090198 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169737A (en) * 2010-12-28 2011-08-31 西南科技大学 High-salt high-alkali Medium-low-level radioactive liquid waste cement solidified body and preparation method thereof
CN102169737B (en) * 2010-12-28 2013-04-10 西南科技大学 High-salt high-alkali Medium-low-level radioactive liquid waste cement solidified body and preparation method thereof
CN105753341A (en) * 2016-02-26 2016-07-13 西南石油大学 Preparation method of calcium ferroaluminate
CN113003979A (en) * 2021-03-09 2021-06-22 荆州嘉华科技有限公司 Crystal nucleus type setting-accelerating antifreeze agent, preparation method thereof and polar region well cementation cement slurry

Also Published As

Publication number Publication date
FR2778652A1 (en) 1999-11-19
FR2778652B1 (en) 2000-06-16

Similar Documents

Publication Publication Date Title
EP0319398B1 (en) Device for storing radioactive or toxic wastes in cement, and process for producing it
EP0500845B1 (en) Method for obtaining a geopolymer binder allowing to stabilize, solidify and consolidate toxic or waste materials
EP0338060B1 (en) Method for stabilizing, solidifying and storing waste material
FR2568244A1 (en) SPECIAL SEALING SLAB AND ITS USE FOR THE STORAGE OF WASTE CONTAINING METAL CATIONS
EP2334615B1 (en) Composition containing a hydraulic and/or pozzolan material
WO2011020975A2 (en) Geopolymer cement and use thereof
EP2542511B1 (en) Method for inerting non-swelling clays
JP7243982B2 (en) Concrete repair agent
FR2980790A1 (en) BAG AND ITS USE TO ADJUVANT A HYDRAULIC COMPOSITION
EP2970011A1 (en) Binder and the use thereof for conditioning waste containing aluminium metal
FR2958284A1 (en) FLUIDIFYING MIXTURE FOR HYDRAULIC COMPOSITION
EP2714612B1 (en) Hydraulic binder comprising an accelerator, its application and process for preparation of a construction material
FR2528441A1 (en) AGENT FOR SEALING AND / OR CONSOLIDATING SOILS AND / OR BUILDING MATERIALS AND METHOD FOR IMPLEMENTING SAME
WO1999058469A1 (en) Cement material containing lithium with improved mechanical properties, useful for retaining cations, and methods for making same
FR3092835A1 (en) Compositions for conditioning radioactive waste and conditioning process
FR2525803A1 (en) METHOD FOR IMPROVING THE RETENTION OF RADIONUCLEIDS BY SOLIDIFIED RADIOACTIVE WASTE
EP2900733B1 (en) Copolymers having gem-acetophone groups
FR2875496A1 (en) Process of inerting clay in sands, useful for the preparation of mortar and concrete, comprises contacting sand with a polymeric product by condensation of dicyandiamide with formol, optionally in the presence of other compounds
EP2507189B1 (en) Agents for inerting clays in hydraulic compositions
WO2011161384A1 (en) Hydraulic composition, the delayed setting of which is initiated by an accelerator
EP2585417B1 (en) Delayed-setting hydraulic composition
FR2778653A1 (en) Cement material comprising hydrated calcium silicate with lithium used for e.g. the retention of cations, for nuclear waste storage containing e.g. cesium, for improving the mechanical strength of material in civil engineering
BG3539U1 (en) Two-dimensional inclusion nano-reinforced concrete
EP0625488A1 (en) Injection grout for the consolidation and sealing of soils
KR20200031234A (en) Silica Grout Composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase