WO1999056851A1 - Ceramic filter - Google Patents

Ceramic filter Download PDF

Info

Publication number
WO1999056851A1
WO1999056851A1 PCT/JP1999/002258 JP9902258W WO9956851A1 WO 1999056851 A1 WO1999056851 A1 WO 1999056851A1 JP 9902258 W JP9902258 W JP 9902258W WO 9956851 A1 WO9956851 A1 WO 9956851A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
ceramic
ceramic filter
fins
support layer
Prior art date
Application number
PCT/JP1999/002258
Other languages
French (fr)
Japanese (ja)
Inventor
Tomio Suzuki
Yasuhisa Sakurai
Kazushi Odani
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Publication of WO1999056851A1 publication Critical patent/WO1999056851A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam

Definitions

  • the present invention relates to a ceramic filter for filtering a large amount of water and other liquids.
  • Ceramic filters have excellent characteristics such as high separation performance, high strength, high corrosion resistance, high stability against chemical cleaning, and long life.Therefore, they are compared with organic membrane filters mainly composed of organic filtration membranes made of synthetic resin. It has been attracting attention as a superior and even more sophisticated form.
  • One of these forms is Japanese Patent Publication No. 6-16819, Japanese Patent Publication No. 6-86918, and Japanese Patent Publication No. 6-9.
  • a monolithic ceramic filter disclosed in, for example, Japanese Patent Application Publication No. 9-339 is known.
  • the monolithic ceramic filter comprises a porous ceramic support having a plurality of flow passages extending in a longitudinal direction in parallel with each other.
  • a porous ceramic filtration membrane having a fine pore diameter is provided, and a part of the liquid to be treated, which is supplied to the upstream passage from one end or both ends, penetrates through the ceramic filtration membrane and penetrates the inside of the partition wall. It functions to flow out of the ceramic support through the inside of the partition wall.
  • the monolithic ceramic filter proposed in Japanese Patent Publication No. 6-16819 requires the outer periphery of the ceramic support.
  • a plurality of slots extending to the center are provided, and a means for plugging each open end of each flow passage through which the slot passes is employed.
  • a ceramic support is provided with a wall which is integral with a partition and is thicker than the partition. It is provided as a means to penetrate the support and form the wall as a flow resistance reducing portion.
  • a plurality of grooves or recesses extending from the outer periphery of the ceramic support to the center are provided, A means for plugging each open end of each flow passage through which the groove or the recess penetrates is employed.
  • the ceramic support as the base is generally fired after being extruded, but it is easily deformed at the time of molding, and a ceramic support having a special structure is formed. It is difficult to machine, and the shaped and fired ceramic support is brittle and hard, so it is difficult to machine the ceramic support into a special structure and it is susceptible to damage during machining. Therefore, it is inevitable that the strength is reduced due to the damage.
  • the ceramic support is provided integrally with a partition and a wall thicker than the partition is provided through the ceramic support to provide flow resistance. Forming the relief part has few processing problems by selecting the die nozzle used for extrusion molding, but the filtration area is reduced by the presence of the flow resistance relief part, and the filtration area is reduced. However, there is a problem that the effect of reducing flow resistance is small.
  • An object of the present invention is to provide a ceramic filter which has a completely different structure from a monolithic ceramic filter of the type described above, has a large filtration area, and can filter a large amount of liquid, and solves the above-mentioned problems. .
  • the present invention relates to a ceramic filter, and a first ceramic filter according to the present invention includes a porous filtration layer having a pore diameter smaller than the pore diameter of the support layer on the surface side of the support layer of the porous ceramic.
  • the present invention relates to a ceramic filter having a multi-layer structure formed of a raw material, wherein a liquid to be treated permeates through the filtration layer and penetrates into the support layer, and the permeated filtrate flows out through the support layer to the outside.
  • the second ceramic filter according to the present invention is a ceramic filter having a single-layer structure of a porous ceramic in which a liquid to be treated permeates from one peripheral surface side to the other peripheral surface side and flows out as a filtrate. About the evening.
  • the first and second ceramic filters according to the present invention comprise a cylindrical base and a number of fins projecting outward from the outer periphery of the base, each fin being defined in a longitudinal direction of the base. It is characterized in that it is located while maintaining the interval, and the inner hole of the base forms an outflow path of the filtrate.
  • the fin has a hollow portion communicating with an inner hole of the cylindrical base, and a distance between an outer surface and an inner surface of the fin is uniform. There may be some.
  • the method for producing a ceramic filter further comprising a step of casting a ceramic slurry or earth in a mold and a step of firing, wherein the mold comprises a A cylindrical core corresponding to the inner hole, wherein in the forming step, the slurry or the earth is poured, and a portion corresponding to a cavity of the fin and a gap between the fins from one end side in the longitudinal direction of the base.
  • the firing step a ceramic film that burns out the cardboard is performed by alternately pouring a slurry or earth into the formwork and setting the cardboard while sandwiching cardboard having an appropriate thickness.
  • a manufacturing method is provided.
  • the ceramic filter according to the above comprising a step of joining and laminating a plurality of plate-like molded bodies provided with through holes constituting the inner hole of the base body at a peripheral portion of the through hole. And a molded body for a fin lower plate provided with a through-hole forming an inner hole of the base and a formed body for a fin upper plate provided with a through-hole forming an inner hole of the base.
  • a step of alternately joining and laminating wherein the fin upper plate forming body and the fin lower plate forming body adjacent above the fin lower plate forming body are bonded to each other at a peripheral portion of each through hole;
  • a method for manufacturing a ceramic filler is provided in which an upper plate molding and a fin lower plate molding adjacent to the lower plate are joined at their outer edges.
  • the filtration layers on the surface side of many fins and on the surface side of the substrate function as filtration membranes, and the filtrate passing through these filtration layers becomes the support layer of each fin. And through the support layer of the substrate to the outflow channel formed by the inner hole of the substrate, and flows out of the ceramic filler.
  • the filtration area of the filtration membrane composed of each fin and the filtration layer of the substrate is extremely large, and the flow path of the filtrate composed of the support layer of each fin and the substrate is large.
  • the flow resistance is low, the filtration capacity of the liquid to be treated is extremely high.
  • the ceramic filter by adopting a structure completely different from the monolithic ceramic filter, the filtration area is increased and the flow resistance is reduced. It is possible to increase the filtration capacity of the liquid to be treated and to solve the problems inherent in the monolithic ceramic filter.
  • each fin is formed in a plate shape independent of each other, each fin is formed in a spiral plate shape connected to each other, and each fin is formed in a disk shape as viewed in a plane.
  • each fin is formed to have a shape in which a part of the outer periphery thereof is missing, and the missing portions of each fin are located at positions facing each other in the vertical direction. The size of the missing portion is gradually changed in the vertical direction.
  • the missing portion of each fin is formed in two symmetrical portions, and each missing portion located on one of the left portions is formed from above to below. For example, it is possible to adopt a configuration in which each of the missing parts located on the other side of the left and right is gradually reduced from the upper side to the lower side.
  • the ceramic filter when the ceramic filter is disposed in the casing forming the filter device and is located between the supply port and the discharge port of the liquid to be treated in the casing, the liquid to be treated is missing each fin.
  • the surface of the fins that polymerize with each other through the site is more easily in contact with each other, thereby increasing the filtration efficiency.
  • the support layer and the filter layer are formed of different porous ceramic materials having different pore diameters from each other, and the filter layer is formed by attaching the filter layer to the surface of the support body.
  • the support layer and the filtration layer are formed of a porous ceramic material having a myriad of pores formed by foaming a foaming agent, and a layer in which pores having small pore diameters are unevenly distributed on the surface side is formed. It can be a filtration layer.
  • the first ceramic filter according to the present invention is suitable for a field where a precise filtration process is required, but is a ceramic filter having a single-layer structure of a porous ceramic in a field where a very fine filtration process is not required.
  • the second ceramic filter according to the present invention is advantageous in terms of filtration efficiency and cost.
  • the ceramic filter having the multilayer structure described above supports the base and each fin in a body shape.
  • the membrane is adhered to the surface of the body, and the support is formed by compressing ceramic powder by adding an organic binder, an inorganic binder, water, etc., and kneading the resulting mixture. It is formed by means such as shape, injection molding, and injection molding.
  • the support has a plurality of plate-like molded bodies 40 each having a through-hole 39 constituting an inner hole 21 a of the base 21, and a plurality of the plate-like molded bodies are provided around the through-hole 39. It may be manufactured by joining and laminating. In FIG. 8, the joints are indicated by thick lines. Generally, each plate-like molded body is formed in a disk shape, and the through hole is provided at the center of the plate-like molded body.
  • the plate-like molded body 40 may be manufactured by press molding using an earth or slurry prepared by adding an organic binder, an inorganic binder, water, etc. to the ceramic powder and kneading the mixture.
  • an earth or slurry prepared by adding an organic binder, an inorganic binder, water, etc. to the ceramic powder and kneading the mixture.
  • substantially the same composition means that the type of the ceramic powder in the slurry or the earth used in the joining is the same as the type of the ceramic powder in the slurry or the earth used in the production of the plate-like molded product, It means that only the amount of water is changed.
  • a glass mixed slurry obtained by mixing glass with a slurry or earth having substantially the same composition as described above may be used for joining the plate-like molded bodies 40.
  • the use of a glass mixed slurry has the advantage that bonding is facilitated and defects due to poor bonding are less likely to occur.
  • the joining and lamination of the plate-shaped molded body may be performed after the plate-shaped molded body is dried, or may be performed after the plate-shaped molded body is fired.
  • the filtration layer is formed by applying or accumulating a ceramic slurry on the surface of such a support to form a thin film, which is then fired.
  • the support forms a support layer
  • a ceramic filter having a filtration layer formed of a membrane is formed on the surface side of the support layer.
  • an appropriate ceramic powder such as alumina, silica, mullite, cordierite, silicon carbide, and silicon nitride can be used.
  • a hollow portion 25 communicating with the inner hole 21 a of the cylindrical base 21 is provided inside the fin 22, and the fin 2 If the distance between the outer surface and the inner surface is made uniform, the liquid from the passage of the liquid to be treated through the filter layer on the surface of the fin The resistance is reduced, and the filtration efficiency can be further improved. The reason why the distance between the outer surface and the inner surface of the fins 22 is made uniform is to prevent variations in filtration efficiency between the ceramic filters.
  • the size of the ceramic filter can be further reduced in accordance with the improvement of the filtration efficiency.
  • the ceramic filter can be installed in a general household at a water tap or the like. It can be suitably used as a kitchen water filter.
  • the strength of the fins 22 is reduced, and the water pressure during the filtration may damage the ceramic filter 20D. Therefore, as shown in FIG. 6 (c), it is preferable to provide a columnar reinforcing portion 27 in the gap 26 formed between the adjacent fins 22 and the hollow portion 25 of the fin 22.
  • the reinforcing portion 27 is preferably made of a ceramic constituting the ceramic filter 20D from the viewpoint of easy manufacturing.
  • the ceramic filler 20D is a multi-layer structure in which a base film 21 is bonded to the surface of a support in which the base 21 and each fin 22 are integrally formed, and the support is composed of ceramic powder and organic powder. It is formed by means of compression molding, injection molding, injection molding, etc., using earth and slurry prepared by adding and kneading a binder, an inorganic binder, and water. It is formed by applying or accumulating a rally to form a thin film and firing it. As a result, the support constitutes a support layer, and a ceramic filter 20D having a filtration layer formed of a membrane on the surface side of the support layer is formed. As shown in FIG.
  • the slurry or the earth was formed by forming a mold 30 having a cylindrical core 29 corresponding to the inner hole of the base from one end in the longitudinal direction of the base.
  • the thick paper 31 having an appropriate thickness is sandwiched between the hollow portions of the fins and the portions corresponding to the gaps between the fins.
  • the pouring of the slurry or earth into the formwork 30 and the placement of the thick paper 31 are alternately performed. It is performed by performing.
  • the cardboard 31 may have water resistance on both sides. For example, a cardboard having a thickness of about lmm is used. Also, it is installed in the molded body The cardboard burns out during the firing process.
  • the thick paper 31 provided with a through hole 32 for forming a reinforcing portion from the viewpoint of manufacturing efficiency.
  • the material of the reinforcing portion is the same as the material of the support.
  • sublimable materials such as theopromine, nylon, graphite, filter paper, and the like, and low-temperature combustion materials that burn at 50 to 500 ° C, such as paraffin, organic polymers, and carbon, are used. You may.
  • the molding is specifically performed as follows. As shown in Fig. 7 (a), first, the first slurry or earth 34 is poured into the mold 30 with the top cover 33 removed, and then the first cardboard 35 is set. After the second slurry or embankment 36 has been poured into the container, a second cardboard 37 is installed. By repeating such an operation from one end to the other end in the longitudinal direction of the base, the pouring is completed. After the pouring, the upper lid 33 is placed and compression molding is performed.
  • the support is composed of a molded body 41 for the lower fin plate provided with a through hole 39 forming the inner hole 21 a of the base and a through hole forming the inner hole of the base 21. It may be manufactured by alternately joining and laminating the fin upper plate forming bodies 42 provided with the holes 39.
  • the fin upper plate molded body 4 2 a and the fin lower plate molded body 4 1 a adjacent to the upper side are joined together at the periphery of the through hole 39 to form the fin upper plate.
  • the body 42a and the molded body for the lower fin lower plate 4lb adjacent to the lower side thereof are joined to each other at their outer edges.
  • the joints are indicated by thick lines.
  • Each plate compact is generally disc-shaped, and the through hole is provided at the center of the plate-like compact.
  • either the fin outer reinforcing part 27a or the fin inner reinforcing part 27b is provided on the fin lower plate molding 41, and the fin upper plate molding 42 is provided with a fin.
  • the other of the outer reinforcing portion 27a and the fin inner reinforcing portion 27b is provided, and when joining the plate-formed bodies, the reinforcing portion is joined by joining the end face of the reinforcing portion 27 to the adjacent plate-formed body surface. 27 may be formed.
  • the fin lower plate molded body 41 has a fin outer reinforcing part 27a
  • the fin upper plate molded body 42 has fins.
  • the case where the inner reinforcement 27 b is provided is shown. In FIG. 9, the joints are indicated by thick lines.
  • the reinforcing parts are provided on the fin lower plate molded body 41 and the fin upper plate molded body 42, respectively, with the fin outer reinforcing part 27a and the fin inner part.
  • the reinforcing part fragments 43 constituting the reinforcing part 27 b are provided, and when joining the plate moldings, the reinforcing parts 27 of the adjacent plate moldings are joined to form the reinforcing part 27. It may be formed. In FIG. 10, the joining portion is indicated by a thick line.
  • the shape of the reinforcing portion pieces 43 provided on the molded bodies for each plate is also the same. Therefore, it is preferable that the reinforcing portion fragment 43 is formed by dividing the reinforcing portion 27 into two in the height direction so that each fragment has the same shape. Also in this case, it is not necessary to provide the outer fin reinforcing portion 27a on the uppermost fin upper plate molded body 42 and the lowermost fin lower plate molded body 41.
  • the plate compacts 41 and 42 are manufactured by press molding using earth and slurry prepared by adding and kneading an organic binder, an inorganic binder, and water to ceramic powder.
  • a slurry or soil having substantially the same composition as the slurry or the ground used in the production of the plate-shaped molded body may be used. It is preferable from the viewpoint of adhesiveness.
  • substantially the same composition is as described above.
  • the plate molded bodies 41 and 42 may be joined to each other using a slurry having substantially the same composition or a glass mixed slurry obtained by mixing glass with earth.
  • the joining and lamination of the plate compacts 4 1 and 4 2 may be performed after the plate compacts 4 1 and 4 2 are dried, or may be performed after the plate compacts 4 1 and 4 2 are sintered. Good.
  • Each of the above multilayer ceramic filters has a multilayer structure by attaching a thin film to a support. However, these can be formed into a ceramic filter having a multilayer structure in which a support layer and a filtration layer are integrally provided.
  • a ceramic filler In order to form the ceramic filler, an appropriate ceramic powder and a hydrophilic polyurethane monomer are mixed with water to prepare a ceramic slurry, and the ceramic slurry is poured into a ceramic filler mold. Inject molding.
  • the resin monomer reacts to generate carbon dioxide gas and foams inside the ceramic molded body. Then, when this ceramic foam is fired, a porous material having innumerable pores is obtained.
  • Ceramic molded body In this molded product, pores having a small pore diameter are unevenly distributed in a surface layer (for example, 10 m) in contact with the inner peripheral surface of the ⁇ -shaped cavity, and this surface layer constitutes a filtration layer. The portion constitutes the support layer, and becomes the ceramic film according to the present invention.
  • FIG. 1 is a longitudinal sectional side view of a filter device employing a ceramic filter according to an example of the present invention.
  • FIG. 2 is a cross-sectional plan view of the filter device.
  • FIG. 3 is a perspective view of a ceramic filter according to another example of the present invention.
  • FIG. 4 is a longitudinal sectional side view of a filter device employing a ceramic filter according to still another example of the present invention.
  • Fig. 5 is a cross-sectional plan view of the filter device.
  • FIG. 6 shows (a) a longitudinal sectional side view of a filter device employing a ceramic filter according to still another example of the present invention, and (b) and (c) partially enlarged longitudinal sectional views of (a). is there.
  • FIGS. 7A and 7B are (a) a vertical sectional side view showing an example of a method for manufacturing a ceramic filler according to the present invention, and (b) a schematic view showing an example of cardboard used in the above-described manufacturing method.
  • FIG. 8 is a vertical sectional side view showing another example of the method for manufacturing a ceramic filler according to the present invention.
  • FIG. 9 is a longitudinal sectional view showing still another example of the method for manufacturing a ceramic filter according to the present invention.
  • -11-It is a side view.
  • FIG. 10 is a cross-sectional perspective view showing an example of a plate forming body.
  • FIGS. 1 and 2 show a filter device using a ceramic filter according to an example of the first ceramic filter of the present invention.
  • the filter device is configured by disposing a ceramic filter 2 OA in a vertically long casing 10.
  • the casing 10 has a cylindrical, vertically long casing body 11, an upper lid 12 for covering an upper end opening of the casing main body 11, and a lower lid 13 for covering a lower end opening of the casing main body 11.
  • the lids 12 and 13 are liquid-tightly mounted at upper and lower flange portions 11 a and 11 b of the casing 11.
  • Each of the upper and lower lids 12 and 13 has a disk shape, and has circular recesses 12 a and 13 a which open inward at the center, and a circle at the center of each recess 12 a and 13 a.
  • the upper lid 12 has a supply pipe 12 c attached thereto, and the lower lid 13 has a discharge pipe 13 c attached thereto.
  • the supply pipe 12c of the upper lid 12 constitutes a supply port of the liquid to be treated, and the discharge pipe 13c of the lower lid 13 constitutes a discharge port of the liquid to be treated.
  • the upper and lower ends of the ceramic filler 2 OA are liquid-tightly fitted into the recesses 12 &, 13 a of the lids 12, 13, and in this state, the lids 12, 13 are attached to the casing body 1.
  • Each of the flange portions 11a and 11b of 1 is mounted in a liquid-tight manner so as to be accommodated in the casing 10.
  • the ceramic filler 2OA is composed of a cylindrical base 21 and a number of disk-shaped fins 22 projecting outward from the outer periphery of the base 21.
  • Each fin 22 has the same diameter and is formed on the outer periphery of the base 21. And is formed integrally with a predetermined interval in the longitudinal direction.
  • the base 21 and each of the fins 22 are composed of a support layer made of a porous ceramic material and a filtration layer adhered to the surface of the support layer and made of a porous ceramic material.
  • the filtration layer has a pore diameter of the support layer. The pore size is set to be smaller than that of.
  • the ceramic fill 2 OA has a base body 21 having a diameter of 10 O mm, a diameter of each fin 22 being 300 111 111, a thickness of 1 mm, an interval between the tip portions of l mm, and an overall height. Is 100 O mm in size, and the filtration area is set to 22 m 2 .
  • the ceramic filter 2OA is located between the supply pipe 12c and the discharge pipe 13c in the casing 10, and an inner hole 21a of the base 21 is open to the outside.
  • each fin 22 forms an inlet for the liquid to be treated
  • the inner hole 21a of the base 21 forms an outlet for the filtrate, and is supplied into the casing 10 through the supply pipe 12c.
  • the liquid to be treated flows through the casing 10 to the discharge pipe 13c, and is discharged through the discharge pipe 13c.
  • the liquid to be treated flowing in the casing 10 comes into contact with the surface of each fin 22, and a part of the liquid permeates through the filtration layer of each fin 22 and enters the support layer, and flows in the support layer. As a result, the liquid reaches the inner hole 21 a of the base 21, flows out through the inner hole 21 a, and the liquid to be treated is filtered.
  • the filtration layers mainly on the surface side of a large number of fins 22 function as filtration membranes, and the filtrate passing through these filtration layers is used as a support layer and a substrate for each fin 22. It flows out of the ceramic filter 2OA through an outflow passage formed by the inner hole 21a of the base 21 through the support layer 21. Therefore, the filtration area formed by the filtration layer of each fin 22 is extremely large, and the flow path of the filtrate formed by each fin 22 and the support layer of the base 21 is large and the flow resistance is small. The filtration capacity of the liquid to be treated is extremely high.
  • a ceramic filter 20B shown in FIG. 3 can be employed instead of the ceramic filter 2OA.
  • This ceramic filler 20B is composed of two spiral plates 23a and 23b in which each fin 23 is continuous with each other. Each fin 23 forms an inlet for the liquid to be treated, and the inner hole 21 a of the base 21 forms an outlet for the filtrate, as in the case of the ceramic filter 2 OA. Is filtered with a high filtration efficiency as in the case of ceramic filter 20 A.
  • FIG. 4 and FIG. 5 show a filter device using a ceramic filter according to another example of the present invention.
  • the filter device is configured by disposing a ceramic filter 20 C in a vertically long casing 10.
  • the ceramic filter 20C has the same configuration as the ceramic filter 20A except that the shape of each fin is different, and the ceramic filter 20C is arranged in the casing 10 similarly to the ceramic filter 20A. It is set up.
  • each fin 24 constituting the ceramic fill 20 C is formed to have a shape in which a part of the outer peripheral edge is missing, and the upper end fin 24 a located at the upper end is the missing portion 2.
  • 4 a 1 is provided only at one location on the left side of the figure, and the lower fin 24 b located at the lower end is provided with a missing part 24 b 1 only at one location on the right side of the figure.
  • All the intermediate fins 24c located between the fins 24a and 24b have missing portions 24c1 and 24c2 at two locations on the left and right sides.
  • the missing portions 24al, 24bl, 24cl, and 24c2 are positioned at positions facing each other in the vertical direction, and the missing portions 24a1, 24b
  • the size of 1, 24c1, 24c2 is gradually changed in the vertical direction, and each missing portion 24c2 located on the right side is gradually formed from the upper side to the lower side, and Each of the missing portions 24c1 located on the left side portion is formed to be gradually smaller from the upper side to the lower side.
  • the filter device when the ceramic filter 20 C is positioned between the supply pipe 12 c and the discharge pipe 13 c of the casing 10, the liquid to be treated is not applied to each of the fins 24.
  • the surface side of each fin 24 that is superimposed on each other through the missing portions of the fins 24 can easily come into contact with each other, thereby increasing the filtration efficiency.
  • FIG. 6 shows a filter device using a ceramic filter according to still another example of the present invention.
  • the filter device is configured by disposing a ceramic filter 20D in a vertically long casing 10.
  • the casing 10 includes a cylindrical, vertically long casing body 11, an upper lid 12 for covering an upper end opening of the casing body 11, and a lower lid 1 for covering a lower end opening of the casing body 11.
  • the lids 12 and 13 are liquid-tightly attached to the casing 11.
  • Each of the upper and lower lids 12 and 13 has a disk shape, and the upper lid 12 has a circular concave portion 12a which opens to the inner side at the center, and a central portion of each concave portion 12a.
  • the upper lid 12 is provided with a discharge pipe to form a discharge port for the liquid to be treated.
  • the lower lid 13 has circular recesses 13 a and 13 h which are not communicated with each other at the center of both sides, and the recess 13 h communicates with the casing 10 through the flow path 28. .
  • a supply pipe is attached to the lower lid 13 and forms a supply port for the liquid to be treated.
  • the upper and lower ends of the ceramic filler 20D are liquid-tightly fitted into the respective recesses 12a and 13a of the lids 12 and 13. , 13 are accommodated in the casing 10 by being attached to the casing body 11 in a liquid-tight manner.
  • the ceramic filter 20D includes a cylindrical base 21 and a number of disk-shaped fins 22 projecting outward from the outer periphery of the base 21.
  • Each fin 22 has the same diameter as the base. 21 are formed integrally with each other at a predetermined interval in the longitudinal direction on the outer periphery of the same.
  • the base 21 and each of the fins 22 are composed of a support layer made of a porous ceramic material and a filtration layer adhered to the surface of the support layer and made of a porous ceramic material.
  • the filtration layer has a pore diameter of the support layer. The pore size is set to be smaller than that of.
  • Each fin 22 has a cavity 25 communicating with the inner hole 21 a of the base 21, and a gap 26 formed between adjacent fins 22 and a cavity 2 of the fin 22. 5 is provided with a columnar reinforcing portion 27.
  • the ceramic filler 20D has, for example, a diameter of the substrate 21 of 2 O mm, 2 diameter 9 0 mm, thickness 5 mm, spacing of the tip with l mm, is intended overall height of the size of 2 6 9 mm, the filtration area is 0. 5 4 3 m 2 Is set.
  • the distance between the outer surface and the inner surface of the fin 22 is uniform and 2 mm.
  • the reinforcing portions 27 each having a diameter of 4 mm are provided 24 in each of the gaps and the hollow portions.
  • an inner hole 2la of the base 21 is open to the outside in the casing 10.
  • each fin 22 forms an inlet for the liquid to be treated
  • the inner hole 21 a of the base 21 forms an outlet for the filtrate
  • the supply pipe The liquid to be processed supplied into the casing 10 from the flow passage 28 flows through the casing 10 to the opening 12b, and is discharged through the discharge pipe.
  • the liquid to be treated flowing in the casing 10 comes into contact with the surface of each fin 22, and a part of the liquid permeates through the filtration layer of each fin 22 and enters the support layer, and flows through the support layer. It flows and reaches the inner hole 21 a of the base 21, flows out through the inner hole 21 a, and the liquid to be treated is filtered.
  • the filtration layers mainly on the surface side of the large number of fins 22 function as filtration membranes, and the filtrate that has passed through these filtration layers is used as the support layer and the support layer of each fin 22.
  • ⁇ ⁇ They flow out of the ceramic filter 20D through the outflow path formed by the inner hole 21a of the base 21 through the support layer of the base 21. Accordingly, the filtration area formed by the filtration layer of each fin 22 is extremely large, and the flow path of the filtrate formed by each fin 22 and the support layer of the base 21 is large. Compared with OA, the flow resistance is much lower, so the filtration capacity of the liquid to be treated is extremely high.
  • the ceramic filter can be made even smaller than the ceramic filter 2 OA with the improvement of filtration efficiency.
  • kitchen water filtration installed in a household at a water tap etc. It can be suitably used as an instrument.
  • Each of the above ceramic filters 20 A to 20 D is a ceramic filter having a multilayer structure including a support layer and a filtration layer (first ceramic filter according to the present invention). Ceramic filters 20 A to 20 D are suitable for fields that require precise filtration, but each ceramic filter 20 A to 20 D is composed of only a support layer without a filtration layer It can be configured as a single-layer ceramic filter (second ceramic filter according to the present invention).
  • Such a single-layer ceramic filter is suitable for a field where a very precise filtration is not required. In the filtration in such a field, the filtration efficiency is high, and each of the ceramic filters 20A to 20D is used. This is also advantageous in terms of cost as compared with. Industrial applicability
  • the ceramic filter of the present invention can be suitably used in fields requiring large-scale filtration of water and other liquids, such as water treatment.
  • the first ceramic filter according to the present invention is suitable for a field where a precise filtration process is required, but in a field where a very fine filtration process is not required, a ceramic filter having a porous ceramic single-layer structure is used.
  • the second ceramic filter according to the present invention which is an evening, is advantageous in terms of filtration efficiency and cost.
  • the ceramic filter can be further miniaturized with an improvement in filtration efficiency.
  • it can be suitably used as a water filter for kitchen used in a household at a water tap or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)

Abstract

A ceramic filter of a monolayer or multilayer structure of a porous ceramic material, comprising a cylindrical base member (2l), and a plurality of fins (22) outwardly projecting from an outer circumferential surface of the base member, the fins (22) being positioned with a predetermined distance retained thereamong in the lengthwise direction of the base member (2l), an inner bore (2la) of the base member (2l) forming a filtrate discharge passage, the outer surfaces of the fins (22) being utilized as sections for introducing a liquid to be treated, to increase a filtration area and reduce a flow resistance of the filtrate. This ceramic filter has a large filtration area, a low flow resistance of a filtrate and a high water permeability, and is suitable for filtering a liquid to be treated, in large quantities.

Description

明 細 セラミックフィルタ 技術分野  Description Ceramic filter Technical field
本発明は、 水、 その他の液体を大量に濾過処理するためのセラミックフィルタに 関するものである。  The present invention relates to a ceramic filter for filtering a large amount of water and other liquids.
背景技術 Background art
セラミックフィルタは、 高分離性能、 高強度、 高耐食性、 薬液洗浄に対する高安 定性、 長寿命等という優れた特性を有することから、 合成樹脂等の有機濾過膜を主 体とする有機膜フィルタに比較してより優れたフィル夕であるとして注目されてお り、 その一形式として、 特公平 6— 1 6 8 1 9号公報、 特開平 6— 8 6 9 1 8号公 報、 特開平 6— 9 9 0 3 9号公報等に示されているモノリス形セラミックフィル夕 が知られている。  Ceramic filters have excellent characteristics such as high separation performance, high strength, high corrosion resistance, high stability against chemical cleaning, and long life.Therefore, they are compared with organic membrane filters mainly composed of organic filtration membranes made of synthetic resin. It has been attracting attention as a superior and even more sophisticated form. One of these forms is Japanese Patent Publication No. 6-16819, Japanese Patent Publication No. 6-86918, and Japanese Patent Publication No. 6-9. A monolithic ceramic filter disclosed in, for example, Japanese Patent Application Publication No. 9-339 is known.
当該モノリス形セラミックフィルタは、 互いに並列して長手方向に延びる多数の 流通路を有する多孔質のセラミック支持体の各流通路を区画する隔壁の内周面に、 セラミック支持体の細孔径ょり小さい細孔径の多孔質のセラミツク濾過膜を備え、 一端側または両端側から前流通路に供給される被処理液体の一部をセラミック濾過 膜を透過して隔壁内に侵入させ、 侵入した濾液を同隔壁内を通してセラミック支持 体の外部へ流出させるベく機能する。  The monolithic ceramic filter comprises a porous ceramic support having a plurality of flow passages extending in a longitudinal direction in parallel with each other. A porous ceramic filtration membrane having a fine pore diameter is provided, and a part of the liquid to be treated, which is supplied to the upstream passage from one end or both ends, penetrates through the ceramic filtration membrane and penetrates the inside of the partition wall. It functions to flow out of the ceramic support through the inside of the partition wall.
近年、 水、 その他の液体を大量に濾過処理することが要請されることがあり、 当 該形式のモノリス形セラミックフィル夕においても大型化して濾過面積を高めて、 上水処理等大量の水、 その他の大量の液体 (被処理液体) の処理に使用する試みが なされている。 又、 大量の液体を処理できるだけではなく、 処理が速やかであり、 かつフィル夕一のサイズが小型であること、 即ち、 濾過効率が高いことも重要であ る。 In recent years, there has been a demand for a large amount of water and other liquids to be filtered, and the monolithic ceramic filter of this type has also been increased in size to increase the filtration area, thereby enabling a large amount of water, such as water treatment. Attempts have been made to use other large volumes of liquid (the liquid to be treated). It is also important that not only large amounts of liquid can be treated, but also that the treatment is rapid and that the size of the filter is small, that is, that the filtration efficiency is high. You.
しかしながら、 当該形式のモノリス形セラミックフィル夕を大型化する場合、 フ ィル夕を大型化するほどその内部の流動抵抗が大きくなつて、 透水性等、 被処理液 体の透過性が低下し、 単位濾過面積当たりの被処理液体の透過性能が低下するとい う問題があり、 フィルタの濾過能力を高めるべくフィル夕を大型化することは、 そ の効果はさほど期待し得ない。  However, when increasing the size of the monolithic ceramic filter of this type, as the size of the filter increases, the flow resistance inside the filter increases and the permeability of the liquid to be treated, such as water permeability, decreases. There is a problem in that the permeation performance of the liquid to be treated per unit filtration area is reduced, and increasing the size of the filter to increase the filtration capacity of the filter cannot be expected to be so effective.
これに対処すべく、 上記した各公報のうち、 特公平 6— 1 6 8 1 9号公報 (第 1 の公報) にて提案されているモノリス形セラミックフィルタにおいては、 セラミツ ク支持体の外周から中心部に延びる複数のスロットを設けるとともに、 スロッ卜が 貫通する各流通路の各開口端部を目封じする手段が採られている。  To cope with this, among the above publications, the monolithic ceramic filter proposed in Japanese Patent Publication No. 6-16819 (the first publication) requires the outer periphery of the ceramic support. A plurality of slots extending to the center are provided, and a means for plugging each open end of each flow passage through which the slot passes is employed.
また、 特開平 6— 8 6 9 1 8号公報 (第 2の公報) にて提案されているモノリス 形セラミックフィル夕においては、 セラミック支持体に、 隔壁と一体で同隔壁より 厚い壁部をセラミック支持体内に貫通して設けて、 同壁部を流動抵抗緩和部に形成 する手段力採られている。  Further, in a monolithic ceramic filter proposed in Japanese Patent Application Laid-Open No. 6-86918 (second publication), a ceramic support is provided with a wall which is integral with a partition and is thicker than the partition. It is provided as a means to penetrate the support and form the wall as a flow resistance reducing portion.
また、 特開平 6— 9 9 0 3 9号公報 (第 3の公報) に提案されているモノリス形 セラミックフィルタにおいては、 セラミック支持体の外周から中心部に延びる複数 の溝部または凹部を設けるとともに、 溝部または凹部が貫通する各流通路の各開口 端部を目封じする手段が採られている。  Further, in a monolithic ceramic filter proposed in JP-A-6-99039 (third publication), a plurality of grooves or recesses extending from the outer periphery of the ceramic support to the center are provided, A means for plugging each open end of each flow passage through which the groove or the recess penetrates is employed.
ところで、 当該形式のモノリス形セラミックフィルタにおいては、 その基体であ るセラミック支持体は一般には押出し成形された後に焼成されるが、 成形時には変 形し易くて特殊な構造のセラミック支持体を成形することが困難であり、 かつ、 成 形され、 焼成されたセラミック支持体は脆くて硬いため、 セラミック支持体を特殊 な構造に機械加工することは困難であるとともに、 機械加工の際に損傷し易くて加 ェ傷による強度低下は避けられない。  By the way, in the monolithic ceramic filter of this type, the ceramic support as the base is generally fired after being extruded, but it is easily deformed at the time of molding, and a ceramic support having a special structure is formed. It is difficult to machine, and the shaped and fired ceramic support is brittle and hard, so it is difficult to machine the ceramic support into a special structure and it is susceptible to damage during machining. Therefore, it is inevitable that the strength is reduced due to the damage.
従って、 上記した第 1の公報および第 3の公報にて提案されているモノリス形セ ラミックフィルタのごとく、 セラミック支持体の外周から中心部に延びる複数のス ロットゃ、 複数の溝部または凹部を設けることは成形上および機械加工上困難であ り、 かつ、 加工傷に起因する強度低下が避けられないという問題がある。 また、 上 記した第 2の公報にて提案されているモノリス形セラミックフィル夕のごとく、 セ ラミック支持体に隔壁と一体で同隔壁より厚い壁部をセラミック支持体内に貫通し て設けて流動抵抗緩和部を形成することは、 押出成形に使用する金型ノズルを選定 することにより加工上の問題は少ないが、 流動抵抗緩和部が存在する分だけ濾過面 積が減少するとともに、 濾過面積が減少する割には流動抵抗が緩和する効果は小さ いという問題がある。 Therefore, as in the monolithic ceramic filters proposed in the first and third publications described above, a plurality of slots 延 び る extending from the outer periphery of the ceramic support to the center and a plurality of grooves or recesses are provided. Is difficult to form and machine. In addition, there is a problem that strength reduction due to processing scratches cannot be avoided. In addition, as in the monolithic ceramic filter proposed in the above-mentioned second publication, the ceramic support is provided integrally with a partition and a wall thicker than the partition is provided through the ceramic support to provide flow resistance. Forming the relief part has few processing problems by selecting the die nozzle used for extrusion molding, but the filtration area is reduced by the presence of the flow resistance relief part, and the filtration area is reduced. However, there is a problem that the effect of reducing flow resistance is small.
発明の開示 Disclosure of the invention
本発明は、 上記した形式のモノリス形セラミックフィルタとは全く異なる構造で 濾過面積が大きく、 大量の液体を濾過処理し得るセラミックフィルタを提供して、 上記した各問題を解消することを目的とする。  An object of the present invention is to provide a ceramic filter which has a completely different structure from a monolithic ceramic filter of the type described above, has a large filtration area, and can filter a large amount of liquid, and solves the above-mentioned problems. .
即ち、 本発明はセラミックフィルタに関し、 本発明に係る第 1のセラミックフィ ル夕は、 多孔質セラミックの支持層の表面側に同支持層の細孔径より小さい細孔径 の多孔質の濾過層を備えた素材にて形成され、 被処理液体を前記濾過層を透過して 前記支持層に侵入させて、 侵入した濾液を前記支持層を通して外部へ流出させる複 層構造のセラミックフィルタに関する。  That is, the present invention relates to a ceramic filter, and a first ceramic filter according to the present invention includes a porous filtration layer having a pore diameter smaller than the pore diameter of the support layer on the surface side of the support layer of the porous ceramic. The present invention relates to a ceramic filter having a multi-layer structure formed of a raw material, wherein a liquid to be treated permeates through the filtration layer and penetrates into the support layer, and the permeated filtrate flows out through the support layer to the outside.
また、 本発明に係る第 2のセラミックフィルタは、 被処理液体を一方の周面側か ら他方の周面側へ透過して濾液として外部へ流出させる多孔質セラミックの単層構 造のセラミックフィル夕に関する。  Further, the second ceramic filter according to the present invention is a ceramic filter having a single-layer structure of a porous ceramic in which a liquid to be treated permeates from one peripheral surface side to the other peripheral surface side and flows out as a filtrate. About the evening.
しかして、 本発明に係る第 1および第 2のセラミックフィル夕は、 筒状の基体と、 同基体の外周から外側へ突出する多数のフィンからなり、 各フィンは前記基体の長 手方向に所定間隔を保持して位置するとともに、 同基体の内孔が前記濾液の流出路 を形成していることを特徴とするものである。  Thus, the first and second ceramic filters according to the present invention comprise a cylindrical base and a number of fins projecting outward from the outer periphery of the base, each fin being defined in a longitudinal direction of the base. It is characterized in that it is located while maintaining the interval, and the inner hole of the base forms an outflow path of the filtrate.
又、 本発明に係るセラミックフィルタは、 フィンが、 その内部に、 前記筒状の基 体の内孔と連通する空洞部を有し、 前記フィンの外表面と内表面との距離が均一で あるものであってもよい。 Further, in the ceramic filter according to the present invention, the fin has a hollow portion communicating with an inner hole of the cylindrical base, and a distance between an outer surface and an inner surface of the fin is uniform. There may be some.
さらに、 本発明によれば、 セラミックスラリー又ははい土を型枠に流し込んで成 形する工程及び焼成工程を有する上記に記載のセラミックフィル夕の製造方法であ つて、 前記型枠は、 前記基体の内孔に相当する円柱形状の芯を備え、 前記成形工程 において、 スラリー又ははい土の流し込みは、 前記基体の長手方向の一端側より、 前記フィンの空洞部及び各フィン間の隙間に相当する部分に適宜な厚さを有する厚 紙を挟みつつ、 前記型枠へのスラリ一又ははい土の流し込みと厚紙の設置を交互に 行うことにより行い、 焼成工程において、 前記厚紙を焼失させるセラミックフィル 夕の製造方法が提供される。 又、 本発明によれば、 基体の内孔を構成する貫通孔を 備えた板状成形体複数を、 貫通孔の周囲部分にて接合し、 積層する工程を有する上 記に記載のセラミックフィル夕の製造方法が提供され、 さらに、 基体の内孔を構成 する貫通孔を備えたフィン下側プレー卜用成形体と基体の内孔を構成する貫通孔を 備えたフィン上側プレート用成形体とを交互に接合し積層する工程を有し、 上記フ ィン上側プレート用成形体と、 その上側に隣接するフィン下側プレート用成形体と は互いの貫通孔の周囲部分にて接合し、 上記フィン上側プレート用成形体と、 その 下側に隣接するフィン下側プレート用成形体とは、 互いの外縁部分にて接合するセ ラミックフィル夕の製造方法が提供される。  Further, according to the present invention, there is provided the method for producing a ceramic filter according to the above, further comprising a step of casting a ceramic slurry or earth in a mold and a step of firing, wherein the mold comprises a A cylindrical core corresponding to the inner hole, wherein in the forming step, the slurry or the earth is poured, and a portion corresponding to a cavity of the fin and a gap between the fins from one end side in the longitudinal direction of the base. In the firing step, a ceramic film that burns out the cardboard is performed by alternately pouring a slurry or earth into the formwork and setting the cardboard while sandwiching cardboard having an appropriate thickness. A manufacturing method is provided. Further, according to the present invention, there is provided the ceramic filter according to the above, comprising a step of joining and laminating a plurality of plate-like molded bodies provided with through holes constituting the inner hole of the base body at a peripheral portion of the through hole. And a molded body for a fin lower plate provided with a through-hole forming an inner hole of the base and a formed body for a fin upper plate provided with a through-hole forming an inner hole of the base. A step of alternately joining and laminating, wherein the fin upper plate forming body and the fin lower plate forming body adjacent above the fin lower plate forming body are bonded to each other at a peripheral portion of each through hole; A method for manufacturing a ceramic filler is provided in which an upper plate molding and a fin lower plate molding adjacent to the lower plate are joined at their outer edges.
本発明に係る第 1のセラミックフィル夕においては、 多数のフィンの表面側およ び基体の表面側の濾過層が濾過膜として機能し、 これらの濾過層を透過した濾液は 各フィンの支持層および基体の支持層を通って基体の内孔が形成する流出路に達し て、 セラミックフィル夕の外部へ流出する。  In the first ceramic filter according to the present invention, the filtration layers on the surface side of many fins and on the surface side of the substrate function as filtration membranes, and the filtrate passing through these filtration layers becomes the support layer of each fin. And through the support layer of the substrate to the outflow channel formed by the inner hole of the substrate, and flows out of the ceramic filler.
従って、 当該セラミックフィル夕においては、 各フィンおよび基体の濾過層にて 構成される濾過膜の濾過面積が極めて大きく、 かつ、 各フィンおよび基体の支持層 にて構成される濾液の流通路が大きくて流通抵抗が小さいため、 被処理液体の濾過 処理能力が極めて高い。  Therefore, in the ceramic filter, the filtration area of the filtration membrane composed of each fin and the filtration layer of the substrate is extremely large, and the flow path of the filtrate composed of the support layer of each fin and the substrate is large. As the flow resistance is low, the filtration capacity of the liquid to be treated is extremely high.
従って、 当該セラミックフィル夕によれば、 モノリス形セラミックフィルタとは 全く異なる構造を採用することにより、 濾過面積を大きくかつ流通抵抗を低くして 被処理液体の濾過処理能力を高め、 モノリス形セラミックフィルタが有する固有の 問題点を解消することができる。 Therefore, according to the ceramic filter, by adopting a structure completely different from the monolithic ceramic filter, the filtration area is increased and the flow resistance is reduced. It is possible to increase the filtration capacity of the liquid to be treated and to solve the problems inherent in the monolithic ceramic filter.
本発明に係るセラミックフィルタにおいては、 各フィンを互いに独立した板状に 形成すること、 各フィンを互いに連結された螺旋板状に形成すること、 各フィンを 平面的にみて円板状に形成すること等の構成を採ることができ、 これにより、 各フ ィンでの濾過面積を流通抵抗を低下させることなく増大させることができる。 また、 本発明に係るセラミックフィル夕においては、 各フィンをその外周緣部の 一部を欠落した形状に形成すること、 各フィンの欠落部位を上下方向に互いに対向 した部位に位置させて、 同欠落部位の大きさを上下方向に漸次変化させること、 各 フィンの前記欠落部位を左右対称の 2箇所の部位に形成して、 左おの一方の部位に 位置する各欠落部位を上方から下方に向かって漸次大きく形成し、 かつ、 左右の他 方の部位に位置する各欠落部位を上方から下方に向かって漸次小さく形成すること 等の構成を採用することができる。  In the ceramic filter according to the present invention, each fin is formed in a plate shape independent of each other, each fin is formed in a spiral plate shape connected to each other, and each fin is formed in a disk shape as viewed in a plane. Thus, the filtration area of each fin can be increased without lowering the flow resistance. Further, in the ceramic filler according to the present invention, each fin is formed to have a shape in which a part of the outer periphery thereof is missing, and the missing portions of each fin are located at positions facing each other in the vertical direction. The size of the missing portion is gradually changed in the vertical direction.The missing portion of each fin is formed in two symmetrical portions, and each missing portion located on one of the left portions is formed from above to below. For example, it is possible to adopt a configuration in which each of the missing parts located on the other side of the left and right is gradually reduced from the upper side to the lower side.
これにより、 当該セラミックフィルタを、 フィル夕装置を構成するケ一シング内 に配置して、 ケーシングの被処理液体の供給口と排出口の間に位置させた場合、 被 処理液体は各フィンの欠落部位を通して互いに重合する各フィンの表面側により接 触し易くなつて、 濾過効率を高めることができる。  As a result, when the ceramic filter is disposed in the casing forming the filter device and is located between the supply port and the discharge port of the liquid to be treated in the casing, the liquid to be treated is missing each fin. The surface of the fins that polymerize with each other through the site is more easily in contact with each other, thereby increasing the filtration efficiency.
本発明に係るセラミックフィルタにおいては、 支持層および濾過層を互いに細孔 径を異にする異なる多孔質セラミック素材で形成して、 同濾過層を支持屠の表面に 貼着することにより形成することができるとともに、 支持層および濾過層を発泡剤 の発泡により形成された無数の細孔を有する多孔質セラミック素材にて形成して、 表面側に細孔径の小さい細孔が偏在している層を濾過層とすることができる。 本発明に係る第 1のセラミックフィルタにおいては、 精密な濾過処理が要求され る分野に適するが、 さほど精密な濾過処理が要求されない分野においては、 多孔質 セラミックの単層構造のセラミックフィル夕である本発明に係る第 2のセラミック フィル夕が濾過効率の点でも、 またコストの点でも有利である。  In the ceramic filter according to the present invention, the support layer and the filter layer are formed of different porous ceramic materials having different pore diameters from each other, and the filter layer is formed by attaching the filter layer to the surface of the support body. In addition, the support layer and the filtration layer are formed of a porous ceramic material having a myriad of pores formed by foaming a foaming agent, and a layer in which pores having small pore diameters are unevenly distributed on the surface side is formed. It can be a filtration layer. The first ceramic filter according to the present invention is suitable for a field where a precise filtration process is required, but is a ceramic filter having a single-layer structure of a porous ceramic in a field where a very fine filtration process is not required. The second ceramic filter according to the present invention is advantageous in terms of filtration efficiency and cost.
上記の複層構造のセラミックフィルタは、 基体と各フィンとがー体の形状の支持 体の表面に簿膜を貼着してなり、 支持体は、 セラミック粉末に有機バインダー、 無 機結合剤、 水等を添加して混練して調製されたはい土やスラリーを用いて、 圧縮成 形、 射出成形、 铸込み成形等の手段にて形成される。 The ceramic filter having the multilayer structure described above supports the base and each fin in a body shape. The membrane is adhered to the surface of the body, and the support is formed by compressing ceramic powder by adding an organic binder, an inorganic binder, water, etc., and kneading the resulting mixture. It is formed by means such as shape, injection molding, and injection molding.
又、 支持体は、 図 8に示すように、 基体 2 1の内孔 2 1 aを構成する貫通孔 3 9 を備えた板状成形体 4 0複数を、 上記貫通孔 3 9の周囲部分にて接合して積層する ことにより製造してもよい。 図 8において、 接合部分は太線にて示す。 一般的には、 各板状成形体は円盤形状とされ、 貫通孔は板状成形体の中心部に設けられる。  In addition, as shown in FIG. 8, the support has a plurality of plate-like molded bodies 40 each having a through-hole 39 constituting an inner hole 21 a of the base 21, and a plurality of the plate-like molded bodies are provided around the through-hole 39. It may be manufactured by joining and laminating. In FIG. 8, the joints are indicated by thick lines. Generally, each plate-like molded body is formed in a disk shape, and the through hole is provided at the center of the plate-like molded body.
尚、 板状成形体 4 0は、 セラミック粉末に有機バインダー、 無機結合剤、 水等を 添加して混練して調製されたはい土やスラリーを用いてプレス成形にて製造しても よく、 又、 板状成形体 4 0どうしの接合には、 板状成形体の製造に用いたスラリー 又ははい土と実質的に同じ組成のスラリー又ははい土を用いることが、 接着性とい う観点より好ましい。 ここで、 「実質的に同じ組成」 とは、 接合に用いるスラリー 又ははい土におけるセラミック粉末の種類が、 板状成形体の製造に用いたスラリー 又ははい土中におけるセラミック粉末の種類と同じで、 水分量のみを変化させたも のをいう。 又、 板状成形体 4 0どうしの接合には、 上記実質的に同じ組成のスラリ 一又ははい土にガラスを混合して成るガラス混合スラリーを用いてもよい。 ガラス 混合スラリーを用いることにより、 接合が容易になり、 接合不良による欠点が生じ にくくなるという利点がある。 板状成形体の接合 ·積層は、 板状成形体を乾燥した 後に行ってもよく、 板状成形体を焼成した後に行ってもよい。  Incidentally, the plate-like molded body 40 may be manufactured by press molding using an earth or slurry prepared by adding an organic binder, an inorganic binder, water, etc. to the ceramic powder and kneading the mixture. For joining the plate-shaped molded products 40, it is preferable to use a slurry or a soil having substantially the same composition as the slurry or the soil used in the production of the plate-shaped molded product from the viewpoint of adhesiveness. Here, “substantially the same composition” means that the type of the ceramic powder in the slurry or the earth used in the joining is the same as the type of the ceramic powder in the slurry or the earth used in the production of the plate-like molded product, It means that only the amount of water is changed. Further, for joining the plate-like molded bodies 40, a glass mixed slurry obtained by mixing glass with a slurry or earth having substantially the same composition as described above may be used. The use of a glass mixed slurry has the advantage that bonding is facilitated and defects due to poor bonding are less likely to occur. The joining and lamination of the plate-shaped molded body may be performed after the plate-shaped molded body is dried, or may be performed after the plate-shaped molded body is fired.
濾過層は、 かかる支持体の表面にセラミックスラリーを塗布しまたは滞積して薄 膜を形成し、 これを焼成することにより形成される。 これにより、 支持体は支持層 を構成し、 この支持層の表面側に簿膜にて構成された濾過層を有するセラミックフ ィル夕が形成される。 セラミック素材としては、 アルミナ、 シリカ、 ムライト、 コ —ディライト、 炭化珪素、 窒化珪素等、 適宜のセラミック粉末を採用することがで さる。  The filtration layer is formed by applying or accumulating a ceramic slurry on the surface of such a support to form a thin film, which is then fired. Thus, the support forms a support layer, and a ceramic filter having a filtration layer formed of a membrane is formed on the surface side of the support layer. As the ceramic material, an appropriate ceramic powder such as alumina, silica, mullite, cordierite, silicon carbide, and silicon nitride can be used.
本発明に係る第 1のセラミックフィルタにおいて、 図 6に示すように、 フィン 2 2の内部に、 筒状の基体 2 1の内孔 2 1 aと連通する空洞部 2 5を設け、 フィン 2 2の外表面と内表面との距離が均一になるようにすれば、 被処理液がフィン 2 2の 表面の濾過層を通過してから、 基体 2 1の内孔 2 1 aに達するまでの抵抗が小さく なり、 濾過効率をさらに大幅に向上させることができる。 尚、 フィン 2 2の外表面 と内表面との距離を均一にするのは、 セラミックフィルタ間で濾過効率にばらつき が生じるのを防ぐためである。 In the first ceramic filter according to the present invention, as shown in FIG. 6, a hollow portion 25 communicating with the inner hole 21 a of the cylindrical base 21 is provided inside the fin 22, and the fin 2 If the distance between the outer surface and the inner surface is made uniform, the liquid from the passage of the liquid to be treated through the filter layer on the surface of the fin The resistance is reduced, and the filtration efficiency can be further improved. The reason why the distance between the outer surface and the inner surface of the fins 22 is made uniform is to prevent variations in filtration efficiency between the ceramic filters.
又、 上記のような構成とすることにより、 濾過効率の向上に伴い、 セラミックフ ィル夕をより小型化することができ、 例えば、 一般家庭で、 水道の蛇口等に設置し て使用される台所用上水濾過器具として好適に用いることが可能となる。  In addition, by adopting the above configuration, the size of the ceramic filter can be further reduced in accordance with the improvement of the filtration efficiency. For example, the ceramic filter can be installed in a general household at a water tap or the like. It can be suitably used as a kitchen water filter.
上記のように、 フィン 2 2の内部を空洞にした場合には、 フィン 2 2の強度が小 さくなるため、 濾過中の水圧により、 セラミックフィルタ 2 0 Dが破損するおそれ がある。 そのため、 図 6 ( c ) に示すように、 隣接するフィン 2 2の間に形成され る隙間 2 6及びフイン 2 2の空洞部 2 5に柱状の補強部 2 7を設けることが好まし レ^ 補強部 2 7は、 セラミックフィルタ 2 0 Dを構成するセラミックから成ること が、 製造の容易さという観点より好ましい。  As described above, when the inside of the fins 22 is hollow, the strength of the fins 22 is reduced, and the water pressure during the filtration may damage the ceramic filter 20D. Therefore, as shown in FIG. 6 (c), it is preferable to provide a columnar reinforcing portion 27 in the gap 26 formed between the adjacent fins 22 and the hollow portion 25 of the fin 22. The reinforcing portion 27 is preferably made of a ceramic constituting the ceramic filter 20D from the viewpoint of easy manufacturing.
セラミックフィル夕 2 0 Dは、 基体 2 1と各フィン 2 2とが一体の形状の支持体 の表面に簿膜を貼着してなる複層構造体であり、 支持体は、 セラミック粉末に有機 バインダー、 無機結合剤、 水等を添加して混練して調製されたはい土やスラリーを 用いて、 圧縮成形、 射出成形、 铸込み成形等の手段にて形成され、 かかる支持体の 表面にセラミックスラリーを塗布しまたは滞積して薄膜を形成し、 これを焼成する ことにより形成される。 これにより、 支持体は支持層を構成し、 この支持層の表面 側に簿膜にて構成された濾過層を有するセラミックフィルタ 2 0 Dが形成される。 スラリー又ははい土の成形は、 図 7 ( a ) に示すように、 基体の内孔に相当する 円柱形状の芯 2 9を備えた型枠 3 0に、 基体の長手方向の一端側より、 前記フィン の空洞部及び各フィン間の隙間に相当する部分に適宜な厚さを有する厚紙 3 1を挟 みっつ、 前記型枠 3 0へのスラリー又ははい土の流し込みと厚紙 3 1の設置を交互 に行うことにより行う。 厚紙 3 1は、 両面に耐水性能を有するものを用いてもよい。 厚紙は、 例えば、 厚さが l mm程度のものが用いられる。 又、 成形体内に設置され た厚紙は、 焼成過程において焼失する。 The ceramic filler 20D is a multi-layer structure in which a base film 21 is bonded to the surface of a support in which the base 21 and each fin 22 are integrally formed, and the support is composed of ceramic powder and organic powder. It is formed by means of compression molding, injection molding, injection molding, etc., using earth and slurry prepared by adding and kneading a binder, an inorganic binder, and water. It is formed by applying or accumulating a rally to form a thin film and firing it. As a result, the support constitutes a support layer, and a ceramic filter 20D having a filtration layer formed of a membrane on the surface side of the support layer is formed. As shown in FIG. 7 (a), the slurry or the earth was formed by forming a mold 30 having a cylindrical core 29 corresponding to the inner hole of the base from one end in the longitudinal direction of the base. The thick paper 31 having an appropriate thickness is sandwiched between the hollow portions of the fins and the portions corresponding to the gaps between the fins. The pouring of the slurry or earth into the formwork 30 and the placement of the thick paper 31 are alternately performed. It is performed by performing. The cardboard 31 may have water resistance on both sides. For example, a cardboard having a thickness of about lmm is used. Also, it is installed in the molded body The cardboard burns out during the firing process.
上記の厚紙 3 1は、 図 7 ( b ) に示すように、 補強部を形成するための貫通孔 3 2を設けたものを用いることが、 製造効率の観点から好ましい。 この場合、 補強部 の材質は支持体の材質と同じとなる。 尚、 上記の厚紙に代えて、 テオプロミン、 力 一ボン、 グラフアイト、 濾紙等の昇華性材料、 パラフィン、 有機高分子、 カーボン 等の 5 0〜5 0 0 °Cで燃焼する低温燃焼材料を用いてもよい。  As shown in FIG. 7 (b), it is preferable to use the thick paper 31 provided with a through hole 32 for forming a reinforcing portion from the viewpoint of manufacturing efficiency. In this case, the material of the reinforcing portion is the same as the material of the support. In addition, instead of the above cardboard, sublimable materials such as theopromine, nylon, graphite, filter paper, and the like, and low-temperature combustion materials that burn at 50 to 500 ° C, such as paraffin, organic polymers, and carbon, are used. You may.
成形は具体的には以下のように行う。 図 7 ( a ) に示すように、 まず、 上蓋 3 3 を外した型枠 3 0に第 1回目分のスラリー又ははい土 3 4を流し込んだ後、 第 1の 厚紙 3 5を設置し、 次に第 2回目分のスラリー又ははい土 3 6を流し込んだ後、 第 2の厚紙 3 7を設置する。 このような操作を、 基体の長手方向の一端側より他端側 まで繰り返し行うことにより流し込みが完了する。 流し込みが終わった後、 上蓋 3 3を載せ、 圧縮成形を行う。  The molding is specifically performed as follows. As shown in Fig. 7 (a), first, the first slurry or earth 34 is poured into the mold 30 with the top cover 33 removed, and then the first cardboard 35 is set. After the second slurry or embankment 36 has been poured into the container, a second cardboard 37 is installed. By repeating such an operation from one end to the other end in the longitudinal direction of the base, the pouring is completed. After the pouring, the upper lid 33 is placed and compression molding is performed.
又、 支持体は、 図 9に示すように、 基体の内孔 2 1 aを構成する貫通孔 3 9を備 えたフィン下側プレート用成形体 4 1と基体 2 1の内孔を構成する貫通孔 3 9を備 えたフィン上側プレート用成形体 4 2とを交互に接合し積層することにより製造し てもよい。 この場合、 フィン上側プレート用成形体 4 2 aと、 その上側に隣接する フィン下側プレート用成形体 4 1 aとは互いの貫通孔 3 9の周囲部分にて接合し、 フィン上側プレート用成形体 4 2 aと、 その下側に隣接するフィン下側プレート用 成形体 4 l bとは、 互いの外縁部分にて接合する。 図 9において、 接合部分は太線 にて示す。 各プレート用成形体は、 一般に円盤形状とされ、 貫通孔は板状成形体の 中心部に設けられる。  Further, as shown in FIG. 9, the support is composed of a molded body 41 for the lower fin plate provided with a through hole 39 forming the inner hole 21 a of the base and a through hole forming the inner hole of the base 21. It may be manufactured by alternately joining and laminating the fin upper plate forming bodies 42 provided with the holes 39. In this case, the fin upper plate molded body 4 2 a and the fin lower plate molded body 4 1 a adjacent to the upper side are joined together at the periphery of the through hole 39 to form the fin upper plate. The body 42a and the molded body for the lower fin lower plate 4lb adjacent to the lower side thereof are joined to each other at their outer edges. In FIG. 9, the joints are indicated by thick lines. Each plate compact is generally disc-shaped, and the through hole is provided at the center of the plate-like compact.
補強部については、 フィン下側プレート用成形体 4 1にフィン外補強部 2 7 a及 びフィン内補強部 2 7 bのいずれか一方を設け、 フィン上側プレ一ト用成形体 4 2 にフィン外補強部 2 7 a及びフィン内補強部 2 7 bの他方を設け、 プレート用成形 体どうしを接合する際に、 補強部 2 7の端面を隣接するプレート用成形体面に接合 することにより補強部 2 7を形成してもよい。 図 9に、 フィン下側プレート用成形 体 4 1にフィン外補強部 2 7 aを設け、 フィン上側プレート用成形体 4 2にフィン 内補強部 2 7 bを設けた場合を示す。 図 9において、 接合部分は太線にて示す。 尚、 最下段のフィン下側プレート用成形体 4 1 cには、 補強部を設ける必要はない。 フィン下側プレート用成形体 4 1とフィン上側プレート用成形体 4 2の形状は、 例えば図 1 0に示すように同じであることが、 プレート用成形体を製造する際の効 率という点から好ましい。 この場合、 補強部については、 図 1 0に示すように、 フ ィン下側プレート用成形体 4 1及びフィン上側プレート用成形体 4 2のそれぞれに、 フィン外補強部 2 7 a及びフィン内補強部 2 7 bを構成する補強部断片 4 3を設け、 プレート用成形体どうしを接合する際に、 隣接するプレート用成形体の補強部断片 4 3どうしを接合することにより補強部 2 7を形成してもよい。 図 1 0において、 接合部分は太線にて示す。 尚、 フィン下側プレート用成形体 4 1とフィン上側プレ ート用成形体 4 2の形状を同じにするためには、 各プレート用成形体に設けた補強 部断片 4 3の形状をも同じにする必要があり、 従って、 補強部断片 4 3は、 補強部 2 7を各断片が同一形状となるようにその高さ方向に 2分することにより形成する ことが好ましい。 この場合においても、 最上段のフィン上側プレート用成形体 4 2 及び最下段のフィン下側プレート用成形体 4 1には、 フィン外補強部 2 7 aを設け る必要はない。 Regarding the reinforcing part, either the fin outer reinforcing part 27a or the fin inner reinforcing part 27b is provided on the fin lower plate molding 41, and the fin upper plate molding 42 is provided with a fin. The other of the outer reinforcing portion 27a and the fin inner reinforcing portion 27b is provided, and when joining the plate-formed bodies, the reinforcing portion is joined by joining the end face of the reinforcing portion 27 to the adjacent plate-formed body surface. 27 may be formed. In Fig. 9, the fin lower plate molded body 41 has a fin outer reinforcing part 27a, and the fin upper plate molded body 42 has fins. The case where the inner reinforcement 27 b is provided is shown. In FIG. 9, the joints are indicated by thick lines. Note that it is not necessary to provide a reinforcing portion on the lowermost fin lower plate molded body 41c. The shape of the molded body 41 for the lower fin plate and the molded body 42 for the upper fin plate 42 are the same as shown in FIG. 10, for example, in view of the efficiency in manufacturing the molded body for the plate. preferable. In this case, as shown in FIG. 10, the reinforcing parts are provided on the fin lower plate molded body 41 and the fin upper plate molded body 42, respectively, with the fin outer reinforcing part 27a and the fin inner part. The reinforcing part fragments 43 constituting the reinforcing part 27 b are provided, and when joining the plate moldings, the reinforcing parts 27 of the adjacent plate moldings are joined to form the reinforcing part 27. It may be formed. In FIG. 10, the joining portion is indicated by a thick line. In addition, in order to make the shape of the molded body 41 for the lower fin plate and the molded body 42 for the upper fin plate the same, the shape of the reinforcing portion pieces 43 provided on the molded bodies for each plate is also the same. Therefore, it is preferable that the reinforcing portion fragment 43 is formed by dividing the reinforcing portion 27 into two in the height direction so that each fragment has the same shape. Also in this case, it is not necessary to provide the outer fin reinforcing portion 27a on the uppermost fin upper plate molded body 42 and the lowermost fin lower plate molded body 41.
尚、 プレート用成形体 4 1、 4 2は、 セラミック粉末に有機バインダー、 無機結 合剤、 水等を添加して混練して調製されたはい土やスラリーを用いてプレス成形に て製造してもよく、 又、 プレート用成形体 4 1、 4 2どうしの接合には、 プレート 用成形体の製造に用いたスラリー又ははい土と実質的に同じ組成のスラリー又はは い土を用いることが、 接着性という観点より好ましい。 ここで、 「実質的に同じ組 成」 は前述した通りである。 又、 プレート用成形体 4 1 、 4 2どうしの接合には、 上記実質的に同じ組成のスラリー又ははい土にガラスを混合して成るガラス混合ス ラリーを用いてもよい。 プレート用成形体 4 1、 4 2の接合 ·積層は、 プレート用 成形体 4 1、 4 2を乾燥した後に行ってもよく、 プレート用成形体 4 1、 4 2を焼 成した後に行ってもよい。  The plate compacts 41 and 42 are manufactured by press molding using earth and slurry prepared by adding and kneading an organic binder, an inorganic binder, and water to ceramic powder. In addition, when joining the plate-shaped molded bodies 41, 42, a slurry or soil having substantially the same composition as the slurry or the ground used in the production of the plate-shaped molded body may be used. It is preferable from the viewpoint of adhesiveness. Here, “substantially the same composition” is as described above. In addition, the plate molded bodies 41 and 42 may be joined to each other using a slurry having substantially the same composition or a glass mixed slurry obtained by mixing glass with earth. The joining and lamination of the plate compacts 4 1 and 4 2 may be performed after the plate compacts 4 1 and 4 2 are dried, or may be performed after the plate compacts 4 1 and 4 2 are sintered. Good.
上記の各複層構造セラミックフィルタは、 支持体に薄膜を貼着して複層構造に構 成しているものであるが、 これらを支持層と濾過層を一体に備えた複層構造のセラ ミックフィル夕に構成することができる。 当該セラミックフィル夕を形成するには、 適宜のセラミック粉未と親水性ゥレタンモノマーを水に混合してセラミックスラリ 一を調製し、 このセラミックスラリーをセラミックフィル夕用の銬型に注入して铸 込み成形する。 Each of the above multilayer ceramic filters has a multilayer structure by attaching a thin film to a support. However, these can be formed into a ceramic filter having a multilayer structure in which a support layer and a filtration layer are integrally provided. In order to form the ceramic filler, an appropriate ceramic powder and a hydrophilic polyurethane monomer are mixed with water to prepare a ceramic slurry, and the ceramic slurry is poured into a ceramic filler mold. Inject molding.
この铸込み成形時、 ゥレ夕ンモノマーを反応させて炭酸ガスを発生させてセラミ ック成形体の内部にて発泡させ、 その後このセラミック発泡体を焼成すれば、 無数 の細孔を有する多孔質のセラミック成形体となる。 この成形体は、 铸型のキヤビテ ィの内周面に接している表層部分 (例えば 1 0 m) に細孔径の小さい細孔が偏在 し、 この表層部分が濾過層を構成し、 残りの全ての部分が支持層を構成し、 本発明 に係るセラミックフィル夕となる。 図面の簡単な説明  At the time of the injection molding, the resin monomer reacts to generate carbon dioxide gas and foams inside the ceramic molded body. Then, when this ceramic foam is fired, a porous material having innumerable pores is obtained. Ceramic molded body. In this molded product, pores having a small pore diameter are unevenly distributed in a surface layer (for example, 10 m) in contact with the inner peripheral surface of the 、 -shaped cavity, and this surface layer constitutes a filtration layer. The portion constitutes the support layer, and becomes the ceramic film according to the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一例に係るセラミックフィル夕を採用したフィル夕装置の縦断 側面図である。  FIG. 1 is a longitudinal sectional side view of a filter device employing a ceramic filter according to an example of the present invention.
図 2は、 同フィルタ装置の横断平面図である。  FIG. 2 is a cross-sectional plan view of the filter device.
図 3は、 本発明の他の一例に係るセラミックフィル夕の斜視図である。  FIG. 3 is a perspective view of a ceramic filter according to another example of the present invention.
図 4は、 本発明のさらに他の一例に係るセラミックフィルタを採用したフィル夕 装置の縦断側面図である。  FIG. 4 is a longitudinal sectional side view of a filter device employing a ceramic filter according to still another example of the present invention.
図 5は、 同フィル夕装置の横断平面図である。  Fig. 5 is a cross-sectional plan view of the filter device.
図 6は、 (a ) 本発明のさらに他の一例に係るセラミックフィル夕を採用したフ ィル夕装置の縦断側面図、 (b ) 及び (c ) ( a ) の一部拡大縦断側面図である。 図 7は、 (a ) 本発明に係るセラミックフィル夕の製造方法の一例を示す縦断側 面図、 (b ) 上記の製造方法に用いられる厚紙の一例を示す模式図である。  FIG. 6 shows (a) a longitudinal sectional side view of a filter device employing a ceramic filter according to still another example of the present invention, and (b) and (c) partially enlarged longitudinal sectional views of (a). is there. FIGS. 7A and 7B are (a) a vertical sectional side view showing an example of a method for manufacturing a ceramic filler according to the present invention, and (b) a schematic view showing an example of cardboard used in the above-described manufacturing method.
図 8は、 本発明に係るセラミックフィル夕の製造方法の他の例を示す縦断側面図 である。  FIG. 8 is a vertical sectional side view showing another example of the method for manufacturing a ceramic filler according to the present invention.
図 9は、 本発明に係るセラミックフィルタの製造方法のさらに他の例を示す縦断 TJP FIG. 9 is a longitudinal sectional view showing still another example of the method for manufacturing a ceramic filter according to the present invention. TJP
- 11 - 側面図である。  -11-It is a side view.
図 10は、 プレート用成形体の一例を示す断面斜視図である。 発明を実施するための最良の形態  FIG. 10 is a cross-sectional perspective view showing an example of a plate forming body. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を図示の実施例を用いてさらに詳しく説明するが、 本発明はこれら の実施例に限られるものではない。  Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments, but the present invention is not limited to these embodiments.
(実施例 1 )  (Example 1)
図 1および図 2には、 本発明の第 1のセラミックフィル夕の一例に係るセラミツ クフィルタを使用したフィルタ装置が示されている。 当該フィル夕装置は、 縦長の ケーシング 10内にセラミックフィル夕 2 OAを配設して構成されている。  FIGS. 1 and 2 show a filter device using a ceramic filter according to an example of the first ceramic filter of the present invention. The filter device is configured by disposing a ceramic filter 2 OA in a vertically long casing 10.
ケーシング 10は、 円筒状で縦長のケ一シング本体 1 1と、 ケ一シング本体 1 1 の上端開口部を覆蓋する上蓋 12と、 ケ一シング本体 1 1の下端開口部を覆蓋する 下蓋 13からなり、 各蓋 12、 13はケ一シング本体 1 1の上下の各フランジ部 1 1 a、 11 bにて液密的に取り付けられている。  The casing 10 has a cylindrical, vertically long casing body 11, an upper lid 12 for covering an upper end opening of the casing main body 11, and a lower lid 13 for covering a lower end opening of the casing main body 11. The lids 12 and 13 are liquid-tightly mounted at upper and lower flange portions 11 a and 11 b of the casing 11.
上下各蓋 12、 13は円板状を呈するもので、 中央部に内面側へ開口する円形状 の凹所 12 a、 13 aを備えるとともに、 各凹所 12 a、 13 aの中央部に円形状 の開口部 12 b、 13 bを備えるもので、 上蓋 12には供給パイプ 12 cが取り付 けられており、 下蓋 13には排出パイプ 13 cが取り付けられている。 上蓋 12の 供給パイプ 12 cは被処理液体の供給口を構成し、 かつ、 下蓋 13の排出パイプ 1 3 cは被処理液体の排出口を構成する。  Each of the upper and lower lids 12 and 13 has a disk shape, and has circular recesses 12 a and 13 a which open inward at the center, and a circle at the center of each recess 12 a and 13 a. The upper lid 12 has a supply pipe 12 c attached thereto, and the lower lid 13 has a discharge pipe 13 c attached thereto. The supply pipe 12c of the upper lid 12 constitutes a supply port of the liquid to be treated, and the discharge pipe 13c of the lower lid 13 constitutes a discharge port of the liquid to be treated.
セラミックフィル夕 2 OAは、 その上下各端部を各蓋 12、 13の各凹所12 &、 13 aに液密的に嵌合されていて、 この状態で各蓋 12、 13をケーシング本体 1 1の各フランジ部 1 1 a、 1 1 bにて液密的に取り付けることにより、 ケーシング 10内に収容されている。  The upper and lower ends of the ceramic filler 2 OA are liquid-tightly fitted into the recesses 12 &, 13 a of the lids 12, 13, and in this state, the lids 12, 13 are attached to the casing body 1. Each of the flange portions 11a and 11b of 1 is mounted in a liquid-tight manner so as to be accommodated in the casing 10.
セラミックフィル夕 2 OAは、 円筒状の基体 21と、 基体 21の外周から外側へ 突出する円板状の多数のフィン 22からなるもので、 各フィン 22は、 同一径で基 体 21の外周にてその長手方向に所定の間隔を保持して一体的に形成されている。 基体 2 1および各フィン 2 2は、 多孔質セラミック素材からなる支持層と、 その表 面側に貼着され多孔質セラミック素材からなる濾過層からなるもので、 濾過層は支 持層の細孔径に比較して小さい細孔径に設定されている。 The ceramic filler 2OA is composed of a cylindrical base 21 and a number of disk-shaped fins 22 projecting outward from the outer periphery of the base 21. Each fin 22 has the same diameter and is formed on the outer periphery of the base 21. And is formed integrally with a predetermined interval in the longitudinal direction. The base 21 and each of the fins 22 are composed of a support layer made of a porous ceramic material and a filtration layer adhered to the surface of the support layer and made of a porous ceramic material. The filtration layer has a pore diameter of the support layer. The pore size is set to be smaller than that of.
セラミックフィル夕 2 O Aは、 例えば、 基体 2 1の直径が 1 0 O mm、 各フィン 2 2の直径が3 0 0 111111、 厚みが 1 mm、 先端部の間隔が l mmで、 全体の高さが 1 0 0 O mmの大きさのものであり、 濾過面積が 2 2 m2に設定されている。 For example, the ceramic fill 2 OA has a base body 21 having a diameter of 10 O mm, a diameter of each fin 22 being 300 111 111, a thickness of 1 mm, an interval between the tip portions of l mm, and an overall height. Is 100 O mm in size, and the filtration area is set to 22 m 2 .
セラミックフィルタ 2 O Aは、 ケ一シング 1 0内にて、 供給パイプ 1 2 cと排出 パイプ 1 3 cとの間に位置し、 基体 2 1の内孔 2 1 aが外部に開口している。 これ により、 各フィン 2 2が被処理液体の導入部を形成するとともに、 基体 2 1の内孔 2 1 aが濾液の流出路を形成し、 供給パイプ 1 2 cを通してケーシング 1 0内に供 給された被処理液体はケ一シング 1 0内を流動して排出パイプ 1 3 cに至り、 排出 パイプ 1 3 cを通して排出される。  The ceramic filter 2OA is located between the supply pipe 12c and the discharge pipe 13c in the casing 10, and an inner hole 21a of the base 21 is open to the outside. Thus, each fin 22 forms an inlet for the liquid to be treated, the inner hole 21a of the base 21 forms an outlet for the filtrate, and is supplied into the casing 10 through the supply pipe 12c. The liquid to be treated flows through the casing 10 to the discharge pipe 13c, and is discharged through the discharge pipe 13c.
この間、 ケーシング 1 0内を流動する被処理液体は各フィン 2 2の表面に接触し、 その一部が各フィン 2 2の濾過層を透過して支持層に侵入し、 支持層内を流動して 基体 2 1の内孔 2 1 aに達し、 内孔 2 1 aを経て外部へ流出し、 被処理液体は濾過 処理される。  During this time, the liquid to be treated flowing in the casing 10 comes into contact with the surface of each fin 22, and a part of the liquid permeates through the filtration layer of each fin 22 and enters the support layer, and flows in the support layer. As a result, the liquid reaches the inner hole 21 a of the base 21, flows out through the inner hole 21 a, and the liquid to be treated is filtered.
このように、 セラミックフィル夕 2 O Aにおいては、 主として多数のフィン 2 2 の表面側の濾過層が濾過膜として機能し、 これらの濾過層を透過した濾液は各フィ ン 2 2の支持層および基体 2 1の支持層を通って基体 2 1の内孔 2 1 aが形成する 流出路を経てセラミックフィルタ 2 O Aの外部へ流出する。 従って、 各フィン 2 2 の濾過層が形成する濾過面積が極めて大きく、 かつ、 各フィン 2 2およぴ基体 2 1 の支持層にて形成される濾液の流通路が大きくて流通抵抗が小さいため、 被処理液 体の濾過処理能力が極めて高い。  As described above, in the ceramic filter 2 OA, the filtration layers mainly on the surface side of a large number of fins 22 function as filtration membranes, and the filtrate passing through these filtration layers is used as a support layer and a substrate for each fin 22. It flows out of the ceramic filter 2OA through an outflow passage formed by the inner hole 21a of the base 21 through the support layer 21. Therefore, the filtration area formed by the filtration layer of each fin 22 is extremely large, and the flow path of the filtrate formed by each fin 22 and the support layer of the base 21 is large and the flow resistance is small. The filtration capacity of the liquid to be treated is extremely high.
(実施例 2 )  (Example 2)
当該フィルタ装置においては、 セラミックフィル夕 2 O Aに変えて図 3に示すセ ラミックフィルタ 2 0 Bを採用することができる。 このセラミックフィル夕 2 0 B は、 各フィン 2 3が互いに連続する 2条の螺旋状板 2 3 a、 2 3 bにて構成されて いるもので、 セラミックフィル夕 2 O Aと同様に、 各フィン 2 3が被処理液体の導 入部を形成するとともに、 基体 2 1の内孔 2 1 aが濾液の流出路を形成し、 被処理 液体をセラミックフィル夕 2 0 Aと同様に高い濾過効率で濾過処埋する。 In the filter device, a ceramic filter 20B shown in FIG. 3 can be employed instead of the ceramic filter 2OA. This ceramic filler 20B is composed of two spiral plates 23a and 23b in which each fin 23 is continuous with each other. Each fin 23 forms an inlet for the liquid to be treated, and the inner hole 21 a of the base 21 forms an outlet for the filtrate, as in the case of the ceramic filter 2 OA. Is filtered with a high filtration efficiency as in the case of ceramic filter 20 A.
(実施例 3 )  (Example 3)
図 4および図 5には、 本発明の他の一例に係るセラミックフィルタを使用したフ ィルタ装置が示されている。 当該フィル夕装置は、 縦長のケーシング 1 0内にセラ ミックフィル夕 2 0 Cを配設して構成されている。 セラミックフィルタ 2 0 Cは、 セラミックフィル夕 2 0 Aとは各フィンの形状を異にする以外同様に構成されてい るもので、 ケ一シング 1 0内にはセラミックフィル夕 2 O Aと同様に配設されてい る。  FIG. 4 and FIG. 5 show a filter device using a ceramic filter according to another example of the present invention. The filter device is configured by disposing a ceramic filter 20 C in a vertically long casing 10. The ceramic filter 20C has the same configuration as the ceramic filter 20A except that the shape of each fin is different, and the ceramic filter 20C is arranged in the casing 10 similarly to the ceramic filter 20A. It is set up.
しかして、 セラミックフィル夕 2 0 Cを構成する各フィン 2 4は、 その外周縁部 の一部を欠落した形状に形成されていて、 上端部に位置する上端フィン 2 4 aは欠 落部位 2 4 a 1を図示左側の 1箇所の部位にのみ備えるとともに、 下端部に位置す る下端フイン 2 4 bは欠落部位 2 4 b 1を図示右側の 1箇所の部位にのみ備え、 こ れら両フィン 2 4 a、 2 4 bの間に位置する全ての中間フィン 2 4 cは、 欠落部位 2 4 c 1、 2 4 c 2を左右両側の 2箇所の部位に備えている。  Thus, each fin 24 constituting the ceramic fill 20 C is formed to have a shape in which a part of the outer peripheral edge is missing, and the upper end fin 24 a located at the upper end is the missing portion 2. 4 a 1 is provided only at one location on the left side of the figure, and the lower fin 24 b located at the lower end is provided with a missing part 24 b 1 only at one location on the right side of the figure. All the intermediate fins 24c located between the fins 24a and 24b have missing portions 24c1 and 24c2 at two locations on the left and right sides.
各フィン 2 4においては、 各欠落部位 2 4 a l、 2 4 b l、 2 4 c l、 2 4 c 2 を上下方向に互いに対向した部位に位置させて、 同欠落部位 2 4 a 1、 2 4 b 1、 2 4 c 1、 2 4 c 2の大きさを上下方向に漸次変化させており、 右側の部位に位置 する各欠落部位 2 4 c 2を上方から下方に向かって漸次大きく形成し、 かつ、 左側 の部位に位置する各欠落部位 2 4 c 1を上方から下方に向かって漸次小さく形成し ている。  In each of the fins 24, the missing portions 24al, 24bl, 24cl, and 24c2 are positioned at positions facing each other in the vertical direction, and the missing portions 24a1, 24b The size of 1, 24c1, 24c2 is gradually changed in the vertical direction, and each missing portion 24c2 located on the right side is gradually formed from the upper side to the lower side, and Each of the missing portions 24c1 located on the left side portion is formed to be gradually smaller from the upper side to the lower side.
これにより、 当該フィル夕装置においては、 セラミックフィル夕 2 0 Cをケーシ ング 1 0の、 供給パイプ 1 2 cと排出パイプ 1 3 cの間に位置させた場合、 被処理 液体は各フィン 2 4の欠落部位を通して互いに重合する各フィン 2 4の表面側によ り接触し易くなつて、 濾過効率を高めることができる。  As a result, in the filter device, when the ceramic filter 20 C is positioned between the supply pipe 12 c and the discharge pipe 13 c of the casing 10, the liquid to be treated is not applied to each of the fins 24. The surface side of each fin 24 that is superimposed on each other through the missing portions of the fins 24 can easily come into contact with each other, thereby increasing the filtration efficiency.
(実施例 4 ) 図 6には、 本発明のさらに他の一例に係るセラミックフィル夕を使用したフィル 夕装置が示されている。 当該フィル夕装置は、 縦長のケ一シング 1 0内にセラミツ クフィルタ 2 0 Dを配設して構成されている。 (Example 4) FIG. 6 shows a filter device using a ceramic filter according to still another example of the present invention. The filter device is configured by disposing a ceramic filter 20D in a vertically long casing 10.
ケ一シング 1 0は、 円筒状で縦長のケーシング本体 1 1と、 ケ一シング本体 1 1 の上端開口部を覆蓋する上蓋 1 2と、 ケーシング本体 1 1の下端開口部を覆蓋する 下蓋 1 3からなり、 各蓋 1 2、 1 3はケ一シング本体 1 1に液密的に取り付けられ ている。  The casing 10 includes a cylindrical, vertically long casing body 11, an upper lid 12 for covering an upper end opening of the casing body 11, and a lower lid 1 for covering a lower end opening of the casing body 11. The lids 12 and 13 are liquid-tightly attached to the casing 11.
上下各蓋 1 2、 1 3は円板状を呈するもので、 上蓋 1 2は中央部に内面側へ開口 する円形状の凹所 1 2 aを備えるとともに、 各凹所 1 2 aの中央部に円形状の開口 部 1 2 bを備えるもので、 上蓋 1 2には排出パイプが取り付けられ、 被処理液体の 排出口を構成する。 一方、 下蓋 1 3は、 両面中央部に互いに連通しない円形状の凹 所 1 3 a、 1 3 hを備え、 又、 凹所 1 3 hは流路 2 8を通じてケーシング 1 0内に 連通する。 下蓋 1 3には供給パイプが取り付けられ、 被処理液体の供給口を構成す る。  Each of the upper and lower lids 12 and 13 has a disk shape, and the upper lid 12 has a circular concave portion 12a which opens to the inner side at the center, and a central portion of each concave portion 12a. The upper lid 12 is provided with a discharge pipe to form a discharge port for the liquid to be treated. On the other hand, the lower lid 13 has circular recesses 13 a and 13 h which are not communicated with each other at the center of both sides, and the recess 13 h communicates with the casing 10 through the flow path 28. . A supply pipe is attached to the lower lid 13 and forms a supply port for the liquid to be treated.
セラミックフィル夕 2 0 Dは、 その上下各端部を各蓋 1 2、 1 3の各凹所 1 2 a、 1 3 aに液密的に嵌合されていて、 この状態で各蓋 1 2、 1 3をケーシング本体 1 1に液密的に取り付けることにより、 ケーシング 1 0内に収容されている。  The upper and lower ends of the ceramic filler 20D are liquid-tightly fitted into the respective recesses 12a and 13a of the lids 12 and 13. , 13 are accommodated in the casing 10 by being attached to the casing body 11 in a liquid-tight manner.
セラミックフィルタ 2 0 Dは、 円筒状の基体 2 1と、 基体 2 1の外周から外側へ 突出する円板状の多数のフィン 2 2からなるもので、 各フィン 2 2は、 同一径で基 体 2 1の外周にてその長手方向に所定の間隔を保持して一体的に形成されている。 基体 2 1および各フィン 2 2は、 多孔質セラミック素材からなる支持層と、 その表 面側に貼着され多孔質セラミック素材からなる濾過層からなるもので、 濾過層は支 持層の細孔径に比較して小さい細孔径に設定されている。 各フィン 2 2は、 基体 2 1の内孔 2 1 aと連通する空洞部 2 5を有し、 又、 隣接するフィン 2 2の間に形成 される隙間 2 6及びフィン 2 2の空洞部 2 5には柱状の補強部 2 7が設けられてい る。  The ceramic filter 20D includes a cylindrical base 21 and a number of disk-shaped fins 22 projecting outward from the outer periphery of the base 21. Each fin 22 has the same diameter as the base. 21 are formed integrally with each other at a predetermined interval in the longitudinal direction on the outer periphery of the same. The base 21 and each of the fins 22 are composed of a support layer made of a porous ceramic material and a filtration layer adhered to the surface of the support layer and made of a porous ceramic material. The filtration layer has a pore diameter of the support layer. The pore size is set to be smaller than that of. Each fin 22 has a cavity 25 communicating with the inner hole 21 a of the base 21, and a gap 26 formed between adjacent fins 22 and a cavity 2 of the fin 22. 5 is provided with a columnar reinforcing portion 27.
セラミックフィル夕 2 0 Dは、 例えば、 基体 2 1の直径が 2 O mm、 各フィン 2 2の直径が 9 0 mm、 厚みが 5 mm、 先端部の間隔が l mmで、 全体の高さが 2 6 9 mmの大きさのものであり、 濾過面積が 0 . 5 4 3 m2に設定されている。 又、 フ イン 2 2の外表面と内表面との距離は均一であり 2 mmである。 補強部 2 7は、 直 径 4 mmのものを各隙間及び空洞部に 2 4個ずつ設けている。 The ceramic filler 20D has, for example, a diameter of the substrate 21 of 2 O mm, 2 diameter 9 0 mm, thickness 5 mm, spacing of the tip with l mm, is intended overall height of the size of 2 6 9 mm, the filtration area is 0. 5 4 3 m 2 Is set. The distance between the outer surface and the inner surface of the fin 22 is uniform and 2 mm. The reinforcing portions 27 each having a diameter of 4 mm are provided 24 in each of the gaps and the hollow portions.
セラミックフィル夕 2 0 Dは、 ケ一シング 1 0内にて、 基体 2 1の内孔 2 l aが 外部に開口している。 これにより、 図 6中の矢印で示すように、 各フィン 2 2が被 処理液体の導入部を形成するとともに、 基体 2 1の内孔 2 1 aが濾液の流出路を形 成し、 供給パイプを通して、 流路 2 8からケーシング 1 0内に供給された被処理液 体はケ一シング 1 0内を流動して開口部 1 2 bに至り、 排出パイプを通して排出さ れる。  In the ceramic filler 20D, an inner hole 2la of the base 21 is open to the outside in the casing 10. As a result, as shown by the arrows in FIG. 6, each fin 22 forms an inlet for the liquid to be treated, and the inner hole 21 a of the base 21 forms an outlet for the filtrate, and the supply pipe The liquid to be processed supplied into the casing 10 from the flow passage 28 flows through the casing 10 to the opening 12b, and is discharged through the discharge pipe.
この間、 ケ一シング 1 0内を流動する被処理液体は各フィン 2 2の表面に接触し、 その一部が各フィン 2 2の濾過層を透過して支持層に侵入し、 支持層内を流動して 基体 2 1の内孔 2 1 aに達し、 内孔 2 1 aを経て外部へ流出し、 被処理液体は濾過 処理される。  During this time, the liquid to be treated flowing in the casing 10 comes into contact with the surface of each fin 22, and a part of the liquid permeates through the filtration layer of each fin 22 and enters the support layer, and flows through the support layer. It flows and reaches the inner hole 21 a of the base 21, flows out through the inner hole 21 a, and the liquid to be treated is filtered.
このように、 セラミックフィルタ 2 0 Dにおいては、 主として多数のフィン 2 2 の表面側の濾過層が濾過膜として機能し、 これらの濾過層を透過した濾液は各フィ ン 2 2の支持層およぴ基体 2 1の支持層を通って基体 2 1の内孔 2 1 aが形成する 流出路を経てセラミックフィルタ 2 0 Dの外部へ流出する。 従って、 各フィン 2 2 の濾過層が形成する濾過面積が極めて大きく、 かつ、 各フィン 2 2および基体 2 1 の支持層にて形成される濾液の流通路が大きく、 実施例 1のセラミックフィルタ 2 O Aと比べ、 さらに流通抵抗が小さいため、 被処理液体の濾過処理能力が極めて高 い。  As described above, in the ceramic filter 20D, the filtration layers mainly on the surface side of the large number of fins 22 function as filtration membranes, and the filtrate that has passed through these filtration layers is used as the support layer and the support layer of each fin 22.を 通 They flow out of the ceramic filter 20D through the outflow path formed by the inner hole 21a of the base 21 through the support layer of the base 21. Accordingly, the filtration area formed by the filtration layer of each fin 22 is extremely large, and the flow path of the filtrate formed by each fin 22 and the support layer of the base 21 is large. Compared with OA, the flow resistance is much lower, so the filtration capacity of the liquid to be treated is extremely high.
そのため、 濾過効率の向上に伴い、 セラミックフィルタを、 セラミックフィル夕 2 O Aよりもさらに小型化することができ、 例えば、 一般家庭で、 水道の蛇口等に 設置して使用される台所用上水濾過器具として好適に用いることができる。  As a result, the ceramic filter can be made even smaller than the ceramic filter 2 OA with the improvement of filtration efficiency.For example, kitchen water filtration installed in a household at a water tap etc. It can be suitably used as an instrument.
以上の各セラミックフィルタ 2 0 A〜2 0 Dは、 支持層と濾過層からなる複層構 造のセラミックフィルタ (本発明に係る第 1のセラミックフィルタ) であって、 各 セラミックフィル夕 2 0 A〜 2 0 Dは精密な濾過処理が要求される分野に適するも のであるが、 各セラミックフィルタ 2 0 A〜2 0 Dを、 濾過層を省略した支持層の みからなる単層構造のセラミックフィル夕 (本発明に係る第 2のセラミックフィル 夕) に構成することができる。 Each of the above ceramic filters 20 A to 20 D is a ceramic filter having a multilayer structure including a support layer and a filtration layer (first ceramic filter according to the present invention). Ceramic filters 20 A to 20 D are suitable for fields that require precise filtration, but each ceramic filter 20 A to 20 D is composed of only a support layer without a filtration layer It can be configured as a single-layer ceramic filter (second ceramic filter according to the present invention).
かかる単層構造のセラミックフィルタは、 さほど精密な濾過処理が要求されない 分野に適するものであり、 かかる分野での濾過処理においては、 濾過効率が高く、 かつ、 各セラミックフィルタ 2 0 A〜2 0 Dに比較してコストの点でも有利である。 産業上の利用の可能性  Such a single-layer ceramic filter is suitable for a field where a very precise filtration is not required. In the filtration in such a field, the filtration efficiency is high, and each of the ceramic filters 20A to 20D is used. This is also advantageous in terms of cost as compared with. Industrial applicability
本発明のセラミックフィルタは、 上水処理等、 水、 その他の液体を大量に濾過処 理することが要請される分野において好適に使用することができる。  INDUSTRIAL APPLICABILITY The ceramic filter of the present invention can be suitably used in fields requiring large-scale filtration of water and other liquids, such as water treatment.
特に、 本発明に係る第 1のセラミックフィル夕は、 精密な濾過処理が要求される 分野に適するが、 さほど精密な濾過処理が要求されない分野においては、 多孔質セ ラミックの単層構造のセラミックフィル夕である本発明に係る第 2のセラミックフ ィル夕が濾過効率の点でも、 またコストの点でも有利である。  In particular, the first ceramic filter according to the present invention is suitable for a field where a precise filtration process is required, but in a field where a very fine filtration process is not required, a ceramic filter having a porous ceramic single-layer structure is used. The second ceramic filter according to the present invention, which is an evening, is advantageous in terms of filtration efficiency and cost.
又、 本発明に係る第 1のセラミックフィル夕において、 フィンの内部に、 筒状の 基体の内孔と連通する空洞部を設ければ、 濾過効率の向上に伴い、 セラミックフィ ルタをより小型化することができ'、 例えば、 一般家庭で、 水道の蛇口等に設置して 使用される台所用上水濾過器具として好適に用いることが可能となる。  Further, in the first ceramic filter according to the present invention, if a hollow portion communicating with the inner hole of the cylindrical base is provided inside the fin, the ceramic filter can be further miniaturized with an improvement in filtration efficiency. For example, it can be suitably used as a water filter for kitchen used in a household at a water tap or the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . 多孔質セラミックの支持層の外周面に同支持層の細孔径ょり小さい細孔径の多 孔質の濾過層を備えた素材にて形成され、 被処理液体を前記濾過層を透過して前記 支持層に侵入させ、 侵入した濾液を前記支持層を通して外部へ流出させる複層構造 のセラミックフィル夕であり、 筒状の基体と、 同基体の外周から外側へ突出する多 数のフィンからなり、 各フィンは前記基体の長手方向に所定間隔を保持して位置す るとともに、 同基体の内孔が前記濾液の流出路を形成しているセラミックフィルタ。1. A porous ceramic support layer is formed of a material provided with a porous filter layer having a smaller pore diameter on the outer peripheral surface of the support layer, and the liquid to be treated permeates through the filter layer. A ceramic filter having a multi-layer structure in which the filtrate penetrates into the support layer and infiltrated filtrate flows out through the support layer to the outside, and comprises a cylindrical substrate and a number of fins protruding outward from the outer periphery of the substrate. A ceramic filter, wherein each fin is located at a predetermined interval in a longitudinal direction of the base, and an inner hole of the base forms an outflow passage of the filtrate.
2 . 請求項 1に記載のセラミックフィル夕において、 前記各フィンは互いに連結さ れた螺旋板状を呈しているセラミックフィルタ。 2. The ceramic filter according to claim 1, wherein each of the fins has a spiral plate shape connected to each other.
3 . 請求項 1に記載のセラミックフィルタにおいて、 前記各フィンは互いに連結さ れた螺旋板状を呈しているセラミックフィルタ。  3. The ceramic filter according to claim 1, wherein each of the fins has a spiral plate shape connected to each other.
4 . 請求項 1に記載のセラミックフィル夕において、 前記各フィンは平面的にみて 円板状を呈しているセラミックフィルタ。  4. The ceramic filter according to claim 1, wherein each of the fins has a disk shape in plan view.
5 . 請求項 1に記載のセラミックフィルタにおいて、 前記各フィンはその外周縁部 の一部が欠落しているセラミックフィルタ。  5. The ceramic filter according to claim 1, wherein each of the fins has a part of an outer peripheral edge thereof missing.
6 . 請求項 5に記載のセラミックフィル夕において、 前記各フィンの欠落部位は上 下方向に互いに対向した部位に位置していて、 同欠落部位の大きさが上下方向に漸 次変化しているセラミックフィルタ。  6. The ceramic filler according to claim 5, wherein the missing portions of the fins are located at locations facing each other in an up-down direction, and the size of the missing portions gradually changes in the up-down direction. Ceramic filter.
7 . 請求項 6に記載のセラミックフィルタにおいて、 前記各フィンは前記欠落部位 を左右対称の 2箇所の部位に備え、 左右の一方の部位に位置する各欠落部位は上方 から下方に向かって漸次大きく形成され、 かつ、 左右の他方の部位に位置する各欠 落部位は上方から下方に向かって漸次小さく形成されているセラミックフィルタ。 7. The ceramic filter according to claim 6, wherein each of the fins has the missing portion at two symmetrical portions, and each of the missing portions located at one of the left and right portions is gradually larger from top to bottom. A ceramic filter that is formed, and each of the missing portions located on the other of the left and right sides is gradually reduced from top to bottom.
9 . 請求項 1に記載のセラミックフィルタにおいて、 前記支持層および前記濾過層 は互いに細孔径を異にする異なる多孔質セラミック素材で形成されていて、 同濾過 層が前記支持層の表面に貼着されているセラミックフィル夕。 9. The ceramic filter according to claim 1, wherein the support layer and the filtration layer are formed of different porous ceramic materials having different pore sizes from each other, and the filtration layer is attached to a surface of the support layer. Ceramic Fill Evening.
1 0 . 請求項 1に記載のセラミックフィル夕において、 前記支持層および前記濾過 層は互いに細孔径を異にする異なる多孔質セラミック素材で形成されていて、 同濾 過層が前記支持層の表面に貼着されているセラミックフィルタ。 10. The ceramic filter according to claim 1, wherein the support layer and the filtration are provided. A ceramic filter, wherein the layers are formed of different porous ceramic materials having different pore diameters from each other, and the filtration layer is attached to a surface of the support layer.
1 1 . 請求項 1に記載のセラミックフィル夕において、 前記支持層および濾過層は 発泡剤の発泡に起因する無数の細孔を有する多孔質セラミック素材にて形成されて いて、 表面側に細孔径の小さい細孔が偏在して前記濾過層を形成しているセラミツ 11. The ceramic filter according to claim 1, wherein the support layer and the filtration layer are formed of a porous ceramic material having a myriad of pores caused by foaming of a foaming agent, and have a pore diameter on the surface side. Having small pores unevenly forming the filtration layer
1 2 . 前記フィンが、 その内部に、 前記筒状の基体の内孔と連通する空洞部を有し、 前記フィンの外表面と内表面との距離が均一である請求項 1に記載のセラミックフ ィル夕。 12. The ceramic according to claim 1, wherein the fin has a cavity therein, the cavity communicating with an inner hole of the cylindrical base, and a distance between an outer surface and an inner surface of the fin is uniform. Fil evening.
1 3 . 隣接する前記フィンの間に形成される隙間及び前記空洞部に柱状の補強部を 設けた請求項 1 2に記載のセラミックフィルタ。  13. The ceramic filter according to claim 12, wherein a columnar reinforcing portion is provided in a gap formed between the adjacent fins and the hollow portion.
1 4. 台所用上水濾過器具である請求項 1 1に記載のセラミックフィルタ。  14. The ceramic filter according to claim 11, which is a kitchen water filter.
1 5 . 被処理液体を一方の周面側から他方の周面側へ透過して濾液として外部へ流 出させる多孔質セラミックの単層構造のセラミックフィル夕であり、 筒状の基体と、 同基体の外周から外側へ突出する多数のフィンからなり、 各フィンは前記基体の長 手方向に所定間隔を保持して位置するとともに、 同基体の内孔が前記濾液の流出路 を形成しているセラミックフィル夕。  15. A porous ceramic single-layer ceramic filter that allows the liquid to be treated to permeate from one peripheral surface side to the other peripheral surface and flow out as a filtrate. The fin comprises a large number of fins projecting outward from the outer periphery of the base, each fin being located at a predetermined interval in the longitudinal direction of the base, and an inner hole of the base forming an outflow passage of the filtrate. Ceramic fill evening.
1 6 . 請求項 1 5に記載のセラミックフィル夕において、 前記各フィンは互いに独 立した板状を呈しているセラミックフィル夕。  16. The ceramic filler according to claim 15, wherein each of the fins has an independent plate shape.
1 7 . 請求項 1 5に記載のセラミックフィル夕において、 前記各フィンは互いに連 結された螺旋板状を呈しているセラミックフィルタ。  17. The ceramic filter according to claim 15, wherein each of the fins has a spiral plate shape connected to each other.
1 8 . 請求項 1 5に記載のセラミックフィル夕において、 前記各フィンは平面的に みて円板状を呈しているセラミックフィルタ。  18. The ceramic filter according to claim 15, wherein each of the fins has a disk shape in plan view.
1 9 . 請求項 1 5に記載のセラミックフィル夕において、 前記各フィンはその外周 縁部の一部が欠落しているセラミックフィル夕。  19. The ceramic filter according to claim 15, wherein each of the fins has a portion of an outer peripheral portion thereof missing.
2 0 . 請求項 1 9に記載のセラミックフィルタにおいて、 前記各フィンの欠落部位 は上下方向に互いに対向した部位に位置していて、 同欠落部位の大きさが上下方向 に漸次変化しているセラミックフィルタ。 20. The ceramic filter according to claim 19, wherein the missing portions of each of the fins are located at positions facing each other in the vertical direction, and the size of the missing portions is vertical. Ceramic filter that is gradually changing.
2 1 . 請求項 2 0に記載のセラミックフィル夕において、 前記各フィンは前記欠落 部位を左右対称の 2箇所の部位に備え、 左右の一方の部位に位置する各欠落部位は 上方から下方に向かって漸次大きく形成され、 かつ、 左右の他方の部位に位置する 各欠落部位は上方から下方に向かつて漸次小さく形成されているセラミックフィル 夕。  21. The ceramic filler according to claim 20, wherein each of the fins has the missing portion at two symmetrical portions, and each of the missing portions located at one of the left and right portions is directed downward from above. A ceramic filler that is formed gradually larger, and each of the missing parts located on the other side of the left and right is formed gradually smaller from top to bottom.
2 2 . 前記フィンが、 その内部に、 前記筒状の基体の内孔と連通する空洞部を有し、 前記フィンの外表面と内表面との距離が均一である請求項 1 5に記載のセラミック フィルタ。  22. The fin according to claim 15, wherein the fin has a cavity therein, which communicates with an inner hole of the cylindrical base, and a distance between an outer surface and an inner surface of the fin is uniform. Ceramic filter.
2 3 . 隣接する前記フィンの間に形成される隙間及び前記空洞部に柱状の補強部を 設けた請求項 2 2に記載のセラミックフィル夕。  23. The ceramic filler according to claim 22, wherein a columnar reinforcing portion is provided in a gap formed between the adjacent fins and the hollow portion.
2 4 . 台所用上水濾過器具である請求項 2 2に記載のセラミックフィル夕。  24. The ceramic filler according to claim 22, which is a kitchen water filter.
2 5 . 多孔質セラミックの支持層の外周面に同支持層の細孔径より小さい細孔径の 多孔質の濾過層を備えた素材にて形成され、 被処理液体を前記濾過層を透過して前 記支持層に侵入させ、 侵入した濾液を前記支持層を通して外部へ流出させる複層構 造又は、 被処理液体を一方の周面側から他方の周面側へ透過して濾液として外部へ 流出させる多孔質セラミックの単層構造を有し、 筒状の基体と、 同基体の外周から 外側へ突出する多数のフィンからなり、 各フィンは前記基体の長手方向に所定間隔 を保持して位置するとともに、 同基体の内孔が前記濾液の流出路を形成し、 かつ前 記フィンが、 その内部に、 前記筒状の基体の内孔と連通する空洞部を有し、 前記フ ィンの外表面と内表面との距離が均一であるセラミックフィルタの製造方法であつ て、 セラミックスラリー又ははい土を型枠に流し込んで成形する工程、 及び焼成ェ 程を有し、 前記型枠は、 前記基体の内孔に相当する円柱形状の芯を備え、 前記成形 工程において、 スラリー又ははい土の流し込みは、 前記基体の長手方向の一端側よ り、 前記フィンの空洞部及び各フィン間の隙間に相当する部分に適宜な厚さを有す る厚紙を挟みつつ、 前記型枠へのスラリー又ははい土の流し込みと厚紙の設置を交 互に行うことにより行い、 焼成工程において、 前記厚紙を焼失させるセラミックフ ィル夕の製造方法。 25. The porous ceramic support layer is formed of a material provided with a porous filtration layer having a pore diameter smaller than the pore diameter of the support layer on the outer peripheral surface of the support layer. Or a multilayer structure in which the infiltrated filtrate flows out through the support layer to the outside, or the liquid to be treated permeates from one peripheral surface side to the other peripheral surface side and flows out as a filtrate. It has a single-layer structure of porous ceramic, and comprises a cylindrical base and a number of fins projecting outward from the outer periphery of the base. Each fin is located at a predetermined interval in the longitudinal direction of the base, and An inner hole of the base forms an outflow path of the filtrate; and the fin has a cavity therein communicating with the inner hole of the cylindrical base, and an outer surface of the fin. Of ceramic filter with uniform distance between the surface and inner surface A method comprising: casting a ceramic slurry or earth in a mold to form; and a firing step, wherein the mold includes a cylindrical core corresponding to an inner hole of the base; In the step, the slurry or the earth is poured while sandwiching a cardboard having an appropriate thickness in a portion corresponding to the cavity of the fin and a gap between the fins from one end side in the longitudinal direction of the base. The casting of the slurry or the earth into the formwork and the setting of the cardboard are performed alternately, and in the firing step, the ceramic foil for burning out the cardboard is used. Manufacturing method
2 6 . 前記厚紙が、 前記補強部を形成するための貫通孔を有する請求項 2 5に記載 のセラミックフィル夕の製造方法。  26. The method for producing a ceramic filter according to claim 25, wherein the cardboard has a through hole for forming the reinforcing portion.
2 7 . 前記厚紙に代えて、 昇華性材料を用いる請求項 2 5に記載のセラミックフィ ル夕の製造方法。  27. The method for producing a ceramic filter according to claim 25, wherein a sublimable material is used instead of the cardboard.
2 8 . 前記昇華性材料がテオプロミン、 カーボン、 グラフアイト又は濾紙である請 求項 2 7に記載のセラミックフィルタの製造方法。  28. The method for producing a ceramic filter according to claim 27, wherein the sublimable material is theopromine, carbon, graphite or filter paper.
2 9 . 前記厚紙に代えて、 低温燃焼材料を用いる請求項 2 5に記載のセラミックフ ィル夕の製造方法。  29. The method for producing a ceramic filter according to claim 25, wherein a low-temperature combustion material is used instead of the cardboard.
3 0 . 前記低温燃焼材料がパラフィン、 有機高分子又はカーボンである請求項 2 9 に記載のセラミックフィル夕の製造方法。  30. The method for producing a ceramic filter according to claim 29, wherein the low-temperature combustion material is paraffin, an organic polymer, or carbon.
3 1 . 多孔質セラミックの支持層の外周面に同支持層の細孔径より小さい細孔径の 多孔質の濾過層を備えた素材にて形成され、 被処理液体を前記濾過層を透過して前 記支持層に侵入させ、 侵入した濾液を前記支持層を通して外部へ流出させる複層構 造又は、 被処理液体を一方の周面側から他方の周面側へ透過して濾液として外部へ 流出させる多孔質セラミックの単層構造を有し、 筒状の基体と、 同基体の外周から 外側へ突出する多数のフィンからなり、 各フィンは前記基体の長手方向に所定間隔 を保持して位置するとともに、 同基体の内孔が前記濾液の流出路を形成しているセ ラミックフィルタの製造方法であって、 該基体の内孔を構成する貫通孔を備えた板 状成形体複数を、 該貫通孔の周囲部分にて接合し、 積層する工程を有するセラミツ クフィル夕の製造方法。  31. The porous ceramic support layer is formed of a material having a porous filtration layer having a pore diameter smaller than the pore diameter of the support layer on the outer peripheral surface of the support layer. Or a multi-layer structure in which the infiltrated filtrate is allowed to flow out through the support layer to the outside, or the liquid to be treated permeates from one peripheral surface side to the other peripheral surface and flows out as filtrate. It has a single-layer structure of a porous ceramic, and comprises a cylindrical substrate and a number of fins projecting outward from the outer periphery of the substrate. Each fin is positioned at a predetermined interval in the longitudinal direction of the substrate and A method for manufacturing a ceramic filter, wherein an inner hole of the substrate forms an outflow passage of the filtrate, comprising: forming a plurality of plate-like molded bodies having through holes constituting the inner hole of the substrate; Has a process of joining and laminating around the periphery of Seramitsu IAI Kfir evening method of production.
3 2 . 該板状成形体が円盤形状を有し、 該貫通孔をその中心部に備えた請求項 3 1 に記載のセラミックフィルタの製造方法。  32. The method for producing a ceramic filter according to claim 31, wherein the plate-shaped formed body has a disk shape, and the through-hole is provided at a central portion thereof.
3 3 . 多孔質セラミックの支持層の外周面に同支持層の細孔径より小さい細孔径の 多孔質の濾過層を備えた素材にて形成され、 被処理液体を前記濾過層を透過して前 記支持層に侵入させ、 侵入した濾液を前記支持層を通して外部へ流出させる複層構 造又は、 被処理液体を一方の周面側から他方の周面側へ透過して濾液として外部へ 流出させる多孔質セラミックの単層構造を有し、 筒状の基体と、 同基体の外周から 外側へ突出する多数のフィンからなり、 各フィンは前記基体の長手方向に所定間隔 を保持して位置するとともに、 同基体の内孔が前記濾液の流出路を形成し、 かつ前 記フィンが、 その内部に、 前記筒状の基体の内孔と連通する空洞部を有し、 前記フ ィンの外表面と内表面との距離が均一であるセラミックフィル夕の製造方法であつ て、 該基体の内孔を構成する貫通孔を備えたフィン下側プレート用成形体と該基体 の内孔を構成する貫通孔を備えたフィン上側プレー卜用成形体とを交互に接合し積 層する工程を有し、 該フィン上側プレート用成形体と、 その上側に隣接するフィン 下側プレート用成形体とは互いの該貫通孔の周囲部分にて接合し、 該フィン上側プ レート用成形体と、 その下側に隣接するフィン下側プレート用成形体とは、 互いの 外縁部分にて接合するセラミックフィルタの製造方法。 33. The porous ceramic support layer is formed of a material having a porous filtration layer having a pore diameter smaller than the pore diameter of the support layer on the outer peripheral surface of the support layer. Or a multi-layer structure in which the infiltrated filtrate is allowed to flow out through the support layer to the outside, or the liquid to be treated permeates from one peripheral surface side to the other peripheral surface side to be filtrated to the outside. It has a single-layer structure of porous ceramic to be discharged, and comprises a cylindrical base and a number of fins projecting outward from the outer periphery of the base, each fin being positioned at a predetermined interval in the longitudinal direction of the base. And an inner hole of the base forms an outflow passage of the filtrate, and the fin has a hollow portion therein communicating with the inner hole of the cylindrical base. A method for producing a ceramic filler having a uniform distance between an outer surface and an inner surface, the method comprising forming a fin lower plate forming body having a through-hole forming an inner hole of the base and an inner hole of the base. A step of alternately joining and forming a fin upper plate forming body having a through-hole having a through hole, and forming the fin upper plate forming body and a fin lower plate forming body adjacent above the fin upper plate forming body. Joined at the periphery of each other through hole, A fin upper Plate molding body, the fins lower plate molding body adjacent to the lower side, the manufacturing method of the ceramic filter to be joined at the outer edge portion of one another.
3 4 . 該フィン下側プレート用成形体がフィン外補強部及びフィン内補強部のいず れか一方を備え、 該フィン上側プレート用成形体がフィン外補強部及びフィン内補 強部の他方を備え、 該補強部の端面を隣接するプレート用成形体面にさらに接合す る請求項 3 3に記載のセラミックフィルタの製造方法。  34. The formed body for the fin lower plate includes one of a fin outer reinforcing part and a fin inner reinforcing part, and the fin upper plate formed body is the other of the fin outer reinforcing part and the fin inner reinforcing part. 34. The method for producing a ceramic filter according to claim 33, further comprising: bonding the end face of the reinforcing portion to an adjacent surface of the molded plate.
3 5 . フィン下側プレート用成形体とフィン上側プレート用成形体が同一形状を有 する請求項 3 3に記載のセラミックフィルタの製造方法。  35. The method for producing a ceramic filter according to claim 33, wherein the molded body for the fin lower plate and the molded body for the fin upper plate have the same shape.
3 6 . フィン下側プレート用成形体及びフィン上側プレート用成形体のそれぞれが、 フィン外補強部及びフィン内補強部を構成する補強部断片を有し、 該補強部断片は、 該補強部を各断片が同一形状となるようにその高さ方向に 2分して成り、 隣接する 該プレート用成形体の補強部断片どうしをさらに接合する請求項 3 5に記載のセラ ミックフィル夕の製造方法。  36. Each of the molded body for the fin lower plate and the molded body for the fin upper plate has a reinforcing portion fragment constituting a fin outer reinforcing portion and a fin inner reinforcing portion, and the reinforcing portion fragment forms the reinforcing portion. The method for producing a ceramic film according to claim 35, wherein each of the fragments is divided into two in the height direction so as to have the same shape, and the reinforcing portion fragments of the adjacent plate molding are further joined together. .
3 7 . 該フィン下側プレート用成形体と該フィン上側プレート用成形体が円盤形状 を有し、 該貫通孔をそれらの中心部に備えた請求項 3 3に記載のセラミックフィル 夕の製造方法。  37. The method for producing a ceramic filter according to claim 33, wherein the molded body for the lower fin plate and the molded body for the upper fin plate have a disk shape, and the through-hole is provided at a central portion thereof. .
3 8 . 該板状成形体又は該フィン下側プレート用成形体及び該フィン上側プレート 用成形体をプレス成形にて製造する請求項 3 3に記載のセラミックフィル夕の製造 方法。 38. The production of the ceramic filler according to claim 33, wherein the plate-shaped molded body, the molded body for the fin lower plate, and the molded body for the fin upper plate are produced by press molding. Method.
3 9 . 該板状成形体又は該フィン下側プレート用成形体及び該フィン上側プレート 用成形体の製造に用いたスラリー又ははい土と実質的に同じ組成のスラリー又はは い土にて接合する請求項 3 3に記載のセラミックフィル夕の製造方法。  39. Joining with a slurry or earth having substantially the same composition as the slurry or earth used in the production of the plate-shaped body or the fin lower plate body and the fin upper plate body 34. The method for producing a ceramic filler according to claim 33.
4 0 . 該スラリー又ははい土にガラスを混合して成るガラス混合スラリーにて接合 する請求項 3 9に記載のセラミックフィルタの製造方法。 40. The method for producing a ceramic filter according to claim 39, wherein the ceramic filter is joined by a glass mixture slurry obtained by mixing glass with the slurry or the earth.
4 1 . 該板状成形体又は該フィン下側プレート用成形体及び該フィン上側プレート 用成形体を乾燥した後に、 接合 ·積層を行う請求項 3 3に記載のセラミックフィル 夕の製造方法。  41. The method for manufacturing a ceramic film according to claim 33, wherein the plate-like molded body, the molded body for the fin lower plate, and the molded body for the fin upper plate are dried and then joined and laminated.
4 2 . 該板状成形体又は該フィン下側プレート用成形体及び該フィン上側プレ一ト 用成形体を焼成した後に、 接合 ·積層を行う請求項 3 3に記載のセラミックフィル 夕の製造方法。  42. The method for producing a ceramic film according to claim 33, wherein the plate-like molded body, the molded body for the fin lower plate, and the molded body for the fin upper plate are fired and then joined and laminated. .
PCT/JP1999/002258 1998-05-07 1999-04-27 Ceramic filter WO1999056851A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP12495198 1998-05-07
JP10/124951 1998-05-07
JP10/354834 1998-12-14
JP35483498 1998-12-14

Publications (1)

Publication Number Publication Date
WO1999056851A1 true WO1999056851A1 (en) 1999-11-11

Family

ID=26461512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002258 WO1999056851A1 (en) 1998-05-07 1999-04-27 Ceramic filter

Country Status (1)

Country Link
WO (1) WO1999056851A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024727A (en) * 2001-07-17 2003-01-28 Nippon Seisen Co Ltd Sintered filter
WO2018235901A1 (en) 2017-06-21 2018-12-27 エム・テクニック株式会社 Filtration membrane module and filtration method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135557U (en) * 1974-09-09 1976-03-17
JPS6125616A (en) * 1984-07-12 1986-02-04 Tatsuro Hayashi Porous ceramic filtration body
JPS63236509A (en) * 1987-03-24 1988-10-03 Ebara Corp Ceramic filter
JPH0315617U (en) * 1989-06-27 1991-02-18

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135557U (en) * 1974-09-09 1976-03-17
JPS6125616A (en) * 1984-07-12 1986-02-04 Tatsuro Hayashi Porous ceramic filtration body
JPS63236509A (en) * 1987-03-24 1988-10-03 Ebara Corp Ceramic filter
JPH0315617U (en) * 1989-06-27 1991-02-18

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024727A (en) * 2001-07-17 2003-01-28 Nippon Seisen Co Ltd Sintered filter
WO2018235901A1 (en) 2017-06-21 2018-12-27 エム・テクニック株式会社 Filtration membrane module and filtration method
KR20200020680A (en) 2017-06-21 2020-02-26 엠. 테크닉 가부시키가이샤 Filtration membrane module and filtration treatment method
US11161079B2 (en) 2017-06-21 2021-11-02 M. Technique Co., Ltd. Filtration membrane module and filtration processing method

Similar Documents

Publication Publication Date Title
US8465648B2 (en) Ceramic pervaporation membrane and ceramic vapor-permeable membrane
EP2045001A1 (en) Ceramic filter
US6214227B1 (en) Ceramic filter module
EP2161073B1 (en) Inorganic separation membrane complex, and production thereof
EP2116348B1 (en) Method for manufacturing sealing honeycomb structure
JPH09313831A (en) Device for changing feed material and its production and its utilization
US20180147534A1 (en) Single-piece column structure for the separation of a fluid medium
JP3277918B2 (en) Filter using porous ceramics
WO2004028690A1 (en) Honeycomb catalyst carrier and method for production thereof
JP6110750B2 (en) Plugged honeycomb structure
WO1999056851A1 (en) Ceramic filter
JP5597579B2 (en) Membrane element, membrane module, and method for manufacturing membrane element
WO2012056668A1 (en) Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module
EP0923983A1 (en) Monolithic ceramic filter
JP3671108B2 (en) Monolithic ceramic filter device
KR100671867B1 (en) Ceramic filter
WO2004085028A1 (en) Ceramic filter
EP0956137B1 (en) Filter cassette
JP2002143655A (en) Ceramic filter and producing method of ceramic filter
US20220305443A1 (en) Method of manufacturing a single-piece column structure for the separation of a fluid medium
JP4866512B2 (en) Water purification cartridge, water purifier and water purification shower using cylindrical filter media
JPH0615127A (en) Ceramic filter and its production
KR102489780B1 (en) Intermediate plate for ceramic support body, method for manufacturing same, ceramic support body comprising the intermediate plate and method for manufacturing same
JPS62186908A (en) Production of asymmetric membrane
WO2017070775A1 (en) Potted flat sheet membrane filtration module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase