WO1999053488A1 - Method and apparatus for exposing master disk for optical disk - Google Patents

Method and apparatus for exposing master disk for optical disk Download PDF

Info

Publication number
WO1999053488A1
WO1999053488A1 PCT/JP1999/001875 JP9901875W WO9953488A1 WO 1999053488 A1 WO1999053488 A1 WO 1999053488A1 JP 9901875 W JP9901875 W JP 9901875W WO 9953488 A1 WO9953488 A1 WO 9953488A1
Authority
WO
WIPO (PCT)
Prior art keywords
master
astigmatism
laser beam
objective lens
spot
Prior art date
Application number
PCT/JP1999/001875
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Miyamae
Kimio Nagasaka
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Publication of WO1999053488A1 publication Critical patent/WO1999053488A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming

Definitions

  • Patent application title Method and apparatus for exposing a master for an optical disc
  • the present invention relates to a process for processing an optical disc master, and more particularly to an exposure method and an exposure apparatus for an optical disc master, and a master processed by the same.
  • Optical discs are usually produced by using a stamper provided with a concavo-convex pattern such as guide grooves (groups) and pre-pits, and transferring the concavo-convex pattern by injection molding or the like.
  • a stamper provided with a concavo-convex pattern such as guide grooves (groups) and pre-pits, and transferring the concavo-convex pattern by injection molding or the like.
  • a means for forming the concavo-convex pattern of the stamper a method of exposing and recording a laser beam continuously or light-modulated on an original master coated with a photosensitive material is generally used. The photosensitive material exposed by the above-described exposure is developed to form a concavo-convex pattern, and the surface is plated to be transferred to a metal surface to form a stamper.
  • the laser beam 102 reflected by the mirrors 103, 105, 107 is condensed by the objective lens 108, and the master 10 9 Form an image on the photosensitive material coated on top and expose.
  • a signal is input to the acousto-optic modulator 104 and the acousto-optic deflector 106 to modulate and deflect the laser beam 102 to record a desired pattern group or pit. it can.
  • Numeral 9 is circular, and it is mounted on a turntable 110
  • the spot 111 of the laser beam 102 is circular.
  • the spot is an image forming portion of the laser beam on the surface of the master, and the diameter of the spot is called a spot size, and the position on the spot optical axis is called an in-focus position.
  • the spot width is a spot size perpendicular to the scanning direction, that is, in the radial direction.
  • an oval spot having a short axis in the scanning direction is desirable in order to increase the resolution in the scanning direction of the laser beam.
  • Japanese Patent Application Laid-Open No. Hei 9-240966 discloses a method in which a light-shielding plate is driven by a piezoelectric element to adjust a spot width.
  • a light-shielding plate is driven by a piezoelectric element to adjust a spot width.
  • the light-shielding plate is driven by the piezoelectric element, the driving range of the piezoelectric element is limited, and the adjustment range of the spot width is limited.
  • the present invention provides a method for processing a master for an optical disk, which can easily and widely adjust the width of an optical spot formed on the master without an insufficient amount of exposure light, and a method for processing the same.
  • the present invention provides a stamper that uses the optical disk and an optical disk that is molded and manufactured from the stamper. Disclosure of the invention
  • the present invention relates to a master exposure apparatus that irradiates a modulated laser beam to a master coated with a photosensitive material and forms a latent image of a group or pits on an optical recording medium on the master.
  • a laser beam generating means for emitting a laser beam; an intensity modulation means for intensity-modulating the laser beam with a supplied information signal; and an objective lens for condensing the intensity-modulated laser beam on the master.
  • Focusing position adjusting means for adjusting the height position (distance between the master and the objective lens); beam scanning means for relatively scanning the focused laser beam on the master;
  • a master exposure apparatus comprising: an astigmatism setting unit provided between the focusing position adjustment units to impart astigmatism to the laser beam and arbitrarily setting the degree of the astigmatism. .
  • the focused laser beam contains astigmatism in the radial direction, spots of various widths can be obtained without a shortage of the exposure light amount by slightly changing the focus position. .
  • the astigmatism is adjustable, so that the laser beam is adjustable in radial width.
  • the master exposure apparatus further includes a master adjustment unit.
  • the scanning width is determined by the shape of the beam spot. For example, it is possible to finely adjust the spot shape by selecting the spot shape relatively roughly according to the astigmatism parameter and finely setting the objective lens position parameter by servo control.o
  • the setting range of the height position of the objective lens includes the astigmatism astigmatism.
  • the selection range of the beam spot shape can be expanded.
  • the astigmatism setting means includes at least two cylindrical lenses arranged so that the laser beams pass therethrough and a distance between the two lenses is variable, and adjusts a distance between the two lenses.
  • the degree of the astigmatism Set is the degree of the astigmatism Set.
  • the master exposure apparatus of the present invention preferably includes automatic setting means for setting the amount of astigmatism according to an instruction.
  • the astigmatism can be adjusted instantaneously, and a wide range of groups or pits having different widths can be created on the same master without a shortage of exposure light quantity. .
  • the present invention also provides an exposure method of a master for forming a latent image by converging a light beam by an objective lens on a master on which a photosensitive film is formed and scanning the photosensitive film with an obtained light spot.
  • a plurality of correspondences between the amount of astigmatism of the light beam, the distance of the objective lens from the master and the shape of the light spot are stored in advance, and when setting a light spot of a desired shape, The astigmatism of the light beam and the position of the objective lens are adjusted with reference to the amount of astigmatism corresponding to the shape of the corresponding light spot and the distance of the objective lens from the master.
  • the shape of the beam spot is automatically set with the position of the objective lens and the astigmatism as two parameters.
  • the present invention provides an exposure apparatus for a master, which irradiates an intensity-modulated light beam from an optical pickup onto a master on which a photosensitive film is formed, and scans the photosensitive film with the light beam to form a latent image.
  • an astigmatism adjusting means capable of adjusting the amount of astigmatism by giving astigmatism to the light beam; and an objective lens for condensing the light beam on the master to form an optical spot.
  • Focus adjustment means for adjusting the distance from the master; spot data storage means for previously storing a plurality of correspondences between the amount of astigmatism, the distance of the objective lens from the master and the shape of the optical spot; The amount of astigmatism and the distance from the master of the objective lens corresponding to the shape of the designated optical spot are read out from the spot data storage means, and the amount of astigmatism and the master of the objective lens are read out. Or Setting the distance to it that the astigmatism adjusting means and focusing means And an exposure setting device for setting an original master.
  • the beam spot shape is automatically set (adjusted) to the designated shape.
  • a master manufactured using the above-described exposure method.
  • the width of the CRUBE ⁇ BIT can be changed widely in one master.
  • FIG. 4 shows the ideal beam focusing state without aberration.
  • the spot shape is circular, and the spot size becomes the minimum value.
  • Fig. 5 shows the spot shape when astigmatism is present in this beam.
  • the spot shape changes to 501 a, 501 b, and 501 c, and changes as the focus position changes. That is, at the focal point 501a in the scanning direction, an oval having a major axis in the radial direction, at the focal point 501c, an oval having a major axis in the scanning direction, and at about 501b, which is almost in between, It becomes substantially circular. Since this shape changes continuously between 501 a and 501 c, that is, between the astigmatic difference 502, the focusing position can be adjusted between them to obtain an arbitrary width. You can get a spot.
  • a cylindrical lens 601 and a cylindrical lens 602 are arranged in the optical path of the parallel light with their optical axes aligned.
  • the focal length of the cylindrical lens 601 is f 1 and the focal length of the cylindrical lens 602 is f 2
  • the relative distance between the two lenses is f 1 + f 2 as shown in (a).
  • no astigmatism occurs.
  • the relative distance between the two lenses is longer than f1 + f2, as in (b), or short, as in (c)
  • astigmatism will occur according to the difference, and its magnitude will be large.
  • the length can be controlled by adjusting the relative distance between the two lenses.
  • the magnitude of astigmatism and the astigmatism 502 correspond to 1: 1 in the same optical system, and the larger the astigmatism, the greater the astigmatism, so a larger spot width can be obtained. .
  • FIG. 1 is an explanatory diagram showing the overall configuration of an exposure apparatus that performs the master processing method of the present invention.
  • FIG. 2 is an optical path diagram showing the entire configuration of a conventional mastering method.
  • FIG. 3 is an example of the astigmatism generation unit used in the mastering method of the present invention.
  • FIG. 4 is a principle diagram showing a spot shape when there is no astigmatic difference.
  • FIG. 5 is a principle diagram showing a spot shape when there is astigmatism.
  • FIG. 6 is a principle diagram showing a method of adjusting the amount of astigmatism using two convex cylindrical lenses.
  • FIG. 7 is a principle diagram showing a method for adjusting the amount of astigmatism using two cylindrical lenses.
  • FIG. 1 is an explanatory diagram showing the overall configuration of an exposure apparatus that performs the master processing method of the present invention.
  • FIG. 2 is an optical path diagram showing the entire configuration of a conventional mastering method.
  • FIG. 3 is an example of the astigmatism generation
  • FIG. 8 is an example showing various spot shapes in a combination when the in-focus position and the amount of astigmatism are respectively changed.
  • FIG. 9 is an explanatory diagram illustrating an example of an apparatus for setting the shape and scanning width of a laser spot by adjusting the amount of astigmatism and the force of a laser beam.
  • FIG. 10 is a block diagram illustrating a configuration example of the controller shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an explanatory diagram illustrating an example of an exposure apparatus that performs an optical disk master processing method according to an embodiment of the present invention.
  • the laser beam 102 emitted from the laser device 101 is reflected by the mirrors 103, 105, and 107, and is incident on the objective lens 108.
  • the intensity is modulated as necessary at 4 and the astigmatism is added at the astigmatism generation unit 119, deflection is performed as necessary at the acousto-optic deflector 106.
  • receive The laser beam transmitted through the objective lens 108 is condensed on a master 109 coated with a photosensitive material, and spots 111 are formed on the surface of the master.
  • a movable optical table 1 13 equipped with an objective lens 108, a mirror 107, an acousto-optic deflector 106, and an astigmatism generator 1 119 gradually moves at a constant speed in the radial direction of the master 109.
  • the master 1109 is mounted on the turntable 110 and rotated, so that the groups or pits 112 are recorded in a spiral shape on the master.
  • the focus servo system 114 includes a semiconductor laser 115, a two-segment photodiode 116, a control circuit 117, and a focus actuator 118.
  • the light emitted from the semiconductor laser is reflected by the mirror 107, passes through the peripheral edge of the objective lens 108, is reflected by the master disk 109, and is reflected on the opposite peripheral edge of the objective lens 108.
  • the light passes through the portion, is reflected again by the mirror 107, and enters the two-division photodiode 116.
  • the optical axis position of the incident light of the two-divided photodiode 116 changes, so that the output of the two photodiodes has a difference. appear.
  • the difference between the outputs is used as an error signal, which is amplified by the control (focus) circuit 117 and applied to the focus actuator 118 to perform feedback control of the focus position. .
  • control is performed so that the relative distance between the objective lens 108 and the master disk 109 remains constant so that the spot size does not change during exposure. Since the laser beam of the semiconductor laser 115 has a different wavelength from the recording laser beam 102, the photosensitive material applied to the master 109 is not exposed to light, and adverse effects such as interference are caused. Nor.
  • the astigmatism generator 1 19 is composed of two convex cylindrical lenses 301 and 302 having the same focal length f as shown in FIG. 3, and the two lenses have the optical axis of the laser beam 1. It is equal to the optical axis of 0 2 and its relative distance is approximately equal to the sum of the focal lengths of the two lenses, 2 f.
  • the exit-side lens 302 is a mechanism that can automatically adjust the relative distance between the entrance-side lens 301 and the feed screw 303 and the stepping motor 304 by an instruction from the controller 300. It has become. Since the amount of astigmatism of the laser beam 102 changes depending on the relative distance between the two lenses, the amount of astigmatism can be automatically adjusted.
  • the laser beam with astigmatism added is at spot 1 1 1 As shown in FIG. 5, various oval spots are formed depending on the focus position. By changing the set value of the control circuit 1 17, the focus position changes, and the spot shape can be automatically adjusted.
  • FIG. 8 is an example of various spot shapes when the in-focus position and the astigmatism amount are respectively changed.
  • the shape of the beam spot is set according to the in-focus position and the amount of astigmatism. These in-focus positions, astigmatism amounts, and spot-shaped table data are held in a memory described later as data.
  • an oval shape with a short axis in the scanning direction is desirable.
  • the state must be changed between a, b, and c in Fig. 8. Is good.
  • the resolution in the scanning direction is not required as in the case of a single group, this is not a limitation, and the state can be selected more freely. Since the setting of the focus servo system and the setting of the controller of the astigmatism generation unit can be performed automatically, groups or pits of various widths can be obtained by the same exposure process on the same master.
  • FIG. 9 and FIG. 10 show another embodiment.
  • the table shown in Fig. 8 for the relationship between the distance between the objective lens and the master (the height position of the objective lens), the amount of astigmatism, and the spot shape is stored in advance on the data base.
  • the controller 305a gives the shape corresponding to the spot shape selected by the operator, and adjusts the distance between the objective lens and the master and the amount of astigmatism as well as the focus sensors 117 and Set by controlling the stepping mode.
  • the controller 305a includes, for example, a CPU 351, a RAM 352, an input unit 353, a motor drive control unit 354, a 0 / oct conversion unit 355, a ROM 356, and the like. Is done.
  • the ROM 356, which is a non-volatile memory, stores programs (boot program, OS, control program, etc.) related to the CPU 351 and the table information (database) shown in FIG.
  • the random access memory RAM 352 stores ⁇ S, control programs, processing data, and the like, and is used for data processing.
  • the input unit 353 includes a keyboard switch, a sunset panel, and the like, and can specify a spot shape. If necessary, the contents, operation procedures, and An indicator for displaying the slot shape can be provided.
  • the CPU 351 calculates the distance data and the astigmatism amount of the objective lens corresponding to the spot shape.
  • Read from the ROM 356 database. Convert the distance data of the objective lens to the bias voltage of the focus servo, and set the voltage data in the D / A converter 355.
  • a bias voltage is supplied from the D / A converter 355 to the focus servo 117.
  • the distance of the objective lens from the master is set, and the focus servo is performed based on the distance.
  • a rotation angle of the stepping mode corresponding to the inter-lens distance is obtained.
  • the motor drive control section 354 rotates the stepping motor 304 by giving a pulse only for the rotation angle corresponding to the difference between the current rotation angle of the motor from the reference position and the target rotation angle. Control. In this manner, the position of the objective lens and the distance between the two cylindrical lenses are determined, and the spot shape of the laser beam specified in the exposure apparatus, and accordingly, the scanning width of the laser beam are set.
  • convex cylindrical lenses 71 1 and 70 2 may be used in combination.
  • another method may be used as long as the method can adjust the amount of astigmatism.
  • the focus servo system 114 is used as the automatic focusing position adjusting means.
  • the automatic focusing position adjusting means may be provided independently of the focusing servo system.
  • the master may be not only a recording medium (disk) driven in rotation but also a recording medium moved in the X and Y directions.
  • the present invention is also applicable to these exposure apparatuses and information recording apparatuses.
  • a group or a pit is exposed using a laser beam containing astigmatism, and the focus position is adjusted. Since the adjustment and the astigmatism amount can be performed, the width of the light spot formed on the master can be easily adjusted over a wide range without insufficient exposure light quantity. As a result, it is possible to provide an optical disk master, a stamper, and an optical disk molded and manufactured from the optical disk, which have a high quality or a variable group or pit width.
  • various elliptical spots having a minor axis in the scanning direction enable groups or pits of various widths to be obtained without impairing the resolution in the scanning direction.
  • the spot shape of a specified light (laser) beam can be quickly determined using the data of the objective lens position, the amount of astigmatism, and the beam spot shape based on the data. It can be set in the exposure apparatus, and the condition is good.

Abstract

A method and apparatus for exposing a master disk for an optical disk to light, in which the width of the spot of a laser beam projected onto a master disk coated with a photosensitive material can be easily adjusted in a wide range. A method of machining a master disk for an optical disk in which grooves or pits are formed by irradiating a master disk (109) coated with a photosensitive material with a laser beam (102) focused to the master disk (109) through an objective (108), wherein the astigmatism is adjusted by an astigmatism generating section (119) provided along the optical axis of the laser beam (102), and the focal point is adjusted by automatic focal point adjusting means (114) to adjust the width of the spot with a high degree of freedom in a wide range.

Description

明 細 光ディスク用原盤の露光方法及び装置  Patent application title: Method and apparatus for exposing a master for an optical disc
技術分野  Technical field
本発明は、 光ディスク原盤の加工工程に関するものであり、 特に光ディスク用 原盤の露光方法及び露光装置、 それにより加工された原盤に関する。  The present invention relates to a process for processing an optical disc master, and more particularly to an exposure method and an exposure apparatus for an optical disc master, and a master processed by the same.
^景技術 ^ Scenic technology
光ディスクは、 通常、 案内溝 (グループ) やプリピットなどの凹凸パターンを 備えたスタンパを用いて、 射出成形などの方法でその凹凸パターンを転写するこ とにより作成される。 このスタンパの凹凸パターンを作成する手段として、 感光 性材料が塗布された原盤上にレーザビームを連続的に又は、 光変調して露光、 記 録する方法が一般的に用いられている。 上記露光によって感光された感光性材料 は、 現像によって凹凸パターンが作成され、 その表面にメツキを施すことにより 金属表面に転写されてスタンパが作成される。  Optical discs are usually produced by using a stamper provided with a concavo-convex pattern such as guide grooves (groups) and pre-pits, and transferring the concavo-convex pattern by injection molding or the like. As a means for forming the concavo-convex pattern of the stamper, a method of exposing and recording a laser beam continuously or light-modulated on an original master coated with a photosensitive material is generally used. The photosensitive material exposed by the above-described exposure is developed to form a concavo-convex pattern, and the surface is plated to be transferred to a metal surface to form a stamper.
上記露光プロセスは、 図 2に示すように、 ミラ一 1 0 3、 1 0 5、 1 0 7によ り反射されたレーザビーム 1 0 2を対物レンズ 1 0 8で集光し、 原盤 1 0 9上に 塗布された感光性材料に結像して露光する。 この時、 音響光学変調器 1 0 4及び 音響光学偏向器 1 0 6に信号を入力し、 レーザビーム 1 0 2に変調及び偏向を施 して、 所望のパターンのグループ又はピットを記録することができる。 原盤 1 0 In the above exposure process, as shown in FIG. 2, the laser beam 102 reflected by the mirrors 103, 105, 107 is condensed by the objective lens 108, and the master 10 9 Form an image on the photosensitive material coated on top and expose. At this time, a signal is input to the acousto-optic modulator 104 and the acousto-optic deflector 106 to modulate and deflect the laser beam 102 to record a desired pattern group or pit. it can. Master 1 0
9は円形であり、 ターンテーブル 1 1 0に搭載して回転させながら、 可動光学台Numeral 9 is circular, and it is mounted on a turntable 110
1 1 3を半径方向に徐々に移動させることにより、 スパイラル状のグループまた はピット 1 1 2が作成される。 このとき、 レーザビーム 1◦ 2及び対物レンズ 1By gradually moving 1 13 in the radial direction, a spiral group or pit 1 12 is created. At this time, the laser beam 1◦2 and the objective lens 1
0 8は極力収差が取り除かれており、 レーザビーム 1 0 2のスポット 1 1 1は円 形である。 ここで、 スポットとは、 原盤表面におけるレーザビームの結像部のこ とで、 スポットの直径をスポッ トサイズ、 スポッ トめ光軸上での位置を合焦位置 と呼ぶことにする。 08 has the aberration removed as much as possible, and the spot 111 of the laser beam 102 is circular. Here, the spot is an image forming portion of the laser beam on the surface of the master, and the diameter of the spot is called a spot size, and the position on the spot optical axis is called an in-focus position.
ところで、 近年、 高密度記録媒体としてランド · グループ記録が提唱され、 実 用化されている。 これは、 グループとグループ間 (ランド) の両方にデータを記 録する方式である。 かかる方式として、 例えば、 特開平 7— 2 9 1 8 6号には、 トラッキング用のグループとプリピット列を有する光学的記録媒体であって、 グ ループの間隔を Pとしたとき、 プリビット列はその中心線がグループの中心線よ りほぼ P / 4だけ左右いずれか一方の側にずれるように形成され、 かつプリピッ ト列で構成されるプリフォーマット領域にはグループが形成されていないことを 特徴とするランド ·グループ記録方式の光学的情報記録媒体が開示されている。 上記のようなグループとプリピット列が必要な光ディスク原盤の露光には、 グ ループやプリピヅ ト列のパターンに合わせて様々な幅の光スポッ トを原盤上に形 成することが必要となる。 ここで、 スポッ トの幅とは、 走査方向と垂直、 即ち半 径方向のスポッ トサイズのことである。 特に幅の広いプリピッ トを形成するため には、 レーザビームの走査方向の分解能を上げるために、 走査方向に短軸を持つ 長円形状のスポヅトであることが望ましい。 In recent years, land group recording has been proposed as a high-density recording medium. Has been used. In this method, data is recorded both in groups and between groups (lands). As such a method, for example, Japanese Patent Application Laid-Open No. Hei 7-291186 discloses an optical recording medium having a tracking group and a pre-pit string, and when the interval between groups is P, the pre-bit string is The center line is formed so as to be shifted to the right or left by almost P / 4 from the center line of the group, and no group is formed in the preformat area composed of the pre-pit rows. A land group recording type optical information recording medium is disclosed. For exposing an optical disc master that requires a group and a prepit array as described above, it is necessary to form light spots of various widths on the master according to the pattern of the group or the prepit array. Here, the spot width is a spot size perpendicular to the scanning direction, that is, in the radial direction. In particular, in order to form a wide pre-pit, an oval spot having a short axis in the scanning direction is desirable in order to increase the resolution in the scanning direction of the laser beam.
このような問題を解決するため、 例えば特開平 9— 2 0 4 6 9 6号では、 遮光 版を圧電素子によって駆動し、 スポット幅を調節する方法が開示されている。 上記のような遮光版を使用してスポット幅を調整する方法では、 大きなスポッ ト幅を得ようとすると遮光量を大きくすることが必要となり、 感光性材料を感光 させるために必要な光量が不足してしまうという問題があった。 また、 遮光版を 圧電素子によって駆動するため、 圧電素子の駆動範囲が限定され、 スポット幅の 調整範囲が限定されるという問題もあった。  In order to solve such a problem, for example, Japanese Patent Application Laid-Open No. Hei 9-240966 discloses a method in which a light-shielding plate is driven by a piezoelectric element to adjust a spot width. In the method of adjusting the spot width using a light-shielding plate as described above, it is necessary to increase the light-shielding amount in order to obtain a large spot width, and the amount of light required to expose the photosensitive material is insufficient. There was a problem of doing it. In addition, since the light-shielding plate is driven by the piezoelectric element, the driving range of the piezoelectric element is limited, and the adjustment range of the spot width is limited.
よって、 本発明は、 原盤上に形成される光スポッ 卜の幅を、 露光光量が不足す ることなく、 容易に、 広範囲に調整することができる光ディスク用原盤の加工方 法と、 その加工方法を用いたスタンパ及び、 それから成形し製造された光デイス クを提供するものである。 発明の開示  Therefore, the present invention provides a method for processing a master for an optical disk, which can easily and widely adjust the width of an optical spot formed on the master without an insufficient amount of exposure light, and a method for processing the same. The present invention provides a stamper that uses the optical disk and an optical disk that is molded and manufactured from the stamper. Disclosure of the invention
本発明は、 感光性材料が塗布された原盤に変調されたレーザビームを照射し、 該原盤に光記録媒体のグループ又はピットの潜像を形成する原盤露光装置におい て、 レーザビームを出射するレーザビーム発生手段と、 供給される情報信号によ つて上記レーザビームを強度変調する強度変調手段と、 上記強度変調されたレー ザビームを上記原盤上に集光する対物レンズの高さ位置 (原盤と対物レンズとの 距離) を調整する合焦位置調整手段と、 集光したレーザビームを上記原盤上に相 対的に走査させるビーム走査手段と、 上記レーザ発生手段及び上記合焦位置調整 手段の相互間に設けられて上記レーザビームに非点収差を与えかっこの非点収差 の程度を任意に設定可能な非点収差設定手段と、 を備える原盤露光装置が提供さ れる。 The present invention relates to a master exposure apparatus that irradiates a modulated laser beam to a master coated with a photosensitive material and forms a latent image of a group or pits on an optical recording medium on the master. A laser beam generating means for emitting a laser beam; an intensity modulation means for intensity-modulating the laser beam with a supplied information signal; and an objective lens for condensing the intensity-modulated laser beam on the master. Focusing position adjusting means for adjusting the height position (distance between the master and the objective lens); beam scanning means for relatively scanning the focused laser beam on the master; A master exposure apparatus is provided, comprising: an astigmatism setting unit provided between the focusing position adjustment units to impart astigmatism to the laser beam and arbitrarily setting the degree of the astigmatism. .
これにより、 集光するレーザビームは半径方向に非点収差が含まれているので 、 合焦位置を微妙に変化させることにより、 露光光量が不足することなく、 様々 な幅のスポッ トが得られる。 非点収差が調整可能であり、 それによつてレーザビ —ムは半径方向の幅が調整可能である。  As a result, since the focused laser beam contains astigmatism in the radial direction, spots of various widths can be obtained without a shortage of the exposure light amount by slightly changing the focus position. . The astigmatism is adjustable, so that the laser beam is adjustable in radial width.
好ましくは、 入力に対応して上記非点収差の程度と上記対物レンズの高さ位置 とを設定することによって、 上記レーザビームの走査幅若しくはビ一ムスポッ ト の形状を所望に設定するレーザビームスポッ ト調整手段を更に備える原盤露光装 置が提供される。  Preferably, by setting the degree of the astigmatism and the height position of the objective lens in accordance with the input, the scanning width of the laser beam or the shape of the beam spot is set as desired. The master exposure apparatus further includes a master adjustment unit.
かかる構成によれば、 2つのパラメ一夕 (非点収差、 対物レンズ位置) によつ てビームスポッ トの種々の形状を設定することが可能となる。 また、 ビームスポ ットの形状によって走査幅が決定される。 例えば、 非点収差パラメ一夕により比 較的に大まかにスポット形状を選び、 対物レンズ位置パラメ一夕をサーボ制御に よって細かく設定することによってスポット形状を微調整することが可能である o  According to such a configuration, it is possible to set various shapes of the beam spot by two parameters (astigmatism and objective lens position). The scanning width is determined by the shape of the beam spot. For example, it is possible to finely adjust the spot shape by selecting the spot shape relatively roughly according to the astigmatism parameter and finely setting the objective lens position parameter by servo control.o
好ましくは、 上記対物レンズの高さ位置の設定範囲は、 上記非点収差の非点隔 差を包含する。 それにより、 ビームスポットの長円の長軸方向の向きが異なるも のが得られ、 ビームスポット形状の選択範囲を広げることが可能となる。  Preferably, the setting range of the height position of the objective lens includes the astigmatism astigmatism. As a result, a beam spot having a different direction in the major axis direction of the ellipse is obtained, and the selection range of the beam spot shape can be expanded.
好ましくは、 上記非点収差設定手段は、 上記レーザビームが共に通過するよう に配置されかつ相互間の距離が可変である少なくとも 2つのシリンドリカルレン ズを含み、 両レンズ相互間の距離を調整することによって前記非点収差の程度を 設定する。 Preferably, the astigmatism setting means includes at least two cylindrical lenses arranged so that the laser beams pass therethrough and a distance between the two lenses is variable, and adjusts a distance between the two lenses. The degree of the astigmatism Set.
かかる構成とすることによって非点収差を可変に設定する (調整する) ことが 可能となる。  With this configuration, it is possible to variably set (adjust) astigmatism.
本発明の原盤露光装置は、 好ましくは、 上記非点収差量を指示に応じて設定す る自動設定手段を備える。  The master exposure apparatus of the present invention preferably includes automatic setting means for setting the amount of astigmatism according to an instruction.
かかる構成とすることによって、 非点収差の調整を瞬時に行うことができ、 露 光光量が不足することなく、 広範囲に幅の異なるグループあるいはピッ トを同一 原盤上に作成することが可能となる。  With this configuration, the astigmatism can be adjusted instantaneously, and a wide range of groups or pits having different widths can be created on the same master without a shortage of exposure light quantity. .
また、 本発明は、 感光膜が形成された原盤上に光ビームを対物レンズによって 集光し、 得られる光スポッ トによって上記感光膜を走査して潜像を形成する原盤 の露光方法において、 上記光ビームの非点収差の量及び上記対物レンズの上記原 盤からの距離と光スポッ卜の形状との対応関係を予め複数記憶しておき、 所望の 形状の光スポッ トを設定する際に、 該当する光スポッ トの形状に対応する上記非 点収差の量及び上記対物レンズの原盤からの距離を参照して、 上記光ビームの非 点収差及び上記対物レンズ位置の各調整を行う。  The present invention also provides an exposure method of a master for forming a latent image by converging a light beam by an objective lens on a master on which a photosensitive film is formed and scanning the photosensitive film with an obtained light spot. A plurality of correspondences between the amount of astigmatism of the light beam, the distance of the objective lens from the master and the shape of the light spot are stored in advance, and when setting a light spot of a desired shape, The astigmatism of the light beam and the position of the objective lens are adjusted with reference to the amount of astigmatism corresponding to the shape of the corresponding light spot and the distance of the objective lens from the master.
かかる構成によれば、 光ビームのスポッ トの形状を指定すれば、 対物レンズの 位置と非点収差とを 2つのパラメ一夕としてビームスポッ卜の形状が自動的に設 定される。  According to this configuration, if the shape of the spot of the light beam is specified, the shape of the beam spot is automatically set with the position of the objective lens and the astigmatism as two parameters.
また、 本発明は、 感光膜が形成された原盤上に光ピックアップから強度変調さ れた光ビームを照射し、 該光ビームによって上記感光膜を走査して潜像を形成す る原盤の露光装置において、 上記光ビームに非点収差を与えかっこの非点収差の 量を調整可能な非点収差調整手段と、 上記光ビームを上記原盤上に集光して光ス ポットを形成する対物レンズの上記原盤からの距離を調整するフォーカス調整手 段と、 上記非点収差の量及び上記対物レンズの原盤からの距離と光スポッ トの形 状との対応関係を予め複数記憶するスポットデータ記憶手段と、 指定された光ス ポットの形状に対応する上記非点収差の量及び上記対物レンズの原盤からの距離 を上記スポットデ一夕記憶手段から読出し、 これ等非点収差の量及び対物レンズ の原盤からの距離をそれそれ上記非点収差調整手段及びフォーカス調整手段に設 定するデ一夕設定手段と、 を備える原盤の露光装置を提供する。 Further, the present invention provides an exposure apparatus for a master, which irradiates an intensity-modulated light beam from an optical pickup onto a master on which a photosensitive film is formed, and scans the photosensitive film with the light beam to form a latent image. And an astigmatism adjusting means capable of adjusting the amount of astigmatism by giving astigmatism to the light beam; and an objective lens for condensing the light beam on the master to form an optical spot. Focus adjustment means for adjusting the distance from the master; spot data storage means for previously storing a plurality of correspondences between the amount of astigmatism, the distance of the objective lens from the master and the shape of the optical spot; The amount of astigmatism and the distance from the master of the objective lens corresponding to the shape of the designated optical spot are read out from the spot data storage means, and the amount of astigmatism and the master of the objective lens are read out. Or Setting the distance to it that the astigmatism adjusting means and focusing means And an exposure setting device for setting an original master.
かかる構成によれば、 所望のビームスポットの形状を指定 (選択) すれば、 ビ ームのスポット形状が自動的に指定形状に設定 (調整) される。  According to this configuration, if the desired beam spot shape is designated (selected), the beam spot shape is automatically set (adjusted) to the designated shape.
また、 上記露光方法を用いて製造された原盤が提供される。 かかる原盤は、 1 つの原盤において、 途中でクルーブゃビットの幅を広範囲に変更可能である。  Also provided is a master manufactured using the above-described exposure method. In such a master, the width of the CRUBE ゃ BIT can be changed widely in one master.
以下に、 本発明の原盤の加工方法の基本原理を説明する。 図 4には、 収差のな い状態の理想的なビームの集光状態を示す。 焦点 4 0 1を合焦位置としたとき、 スポッ ト形状は円形であり、 スポットサイズは最小の値となる。 次に、 このビー ムに非点収差が存在した場合のスポット形状を図 5に示す。 この場合のスポット 形状は、 5 0 1 a、 5 0 1 b , 5 0 1 cと、 合焦位置を変化させるとそれに伴つ て変化する。 即ち、 走査方向の焦点 5 0 1 aでは半径方向に長軸を持つ長円形、 半径方向の焦点 5 0 1 cでは走査方向に長軸を持つ長円形、 そのほぼ中間である 5 0 1 bでは略円形となる。 この形状は、 5 0 1 aから 5 0 1 cの間、 即ち非点 隔差 5 0 2の間で連続的に変化するため、 合焦位置をこの間で調整することによ り、 任意の幅のスポットを得ることができる。  Hereinafter, the basic principle of the method for processing a master according to the present invention will be described. Figure 4 shows the ideal beam focusing state without aberration. When the focal point 401 is set to the in-focus position, the spot shape is circular, and the spot size becomes the minimum value. Next, Fig. 5 shows the spot shape when astigmatism is present in this beam. In this case, the spot shape changes to 501 a, 501 b, and 501 c, and changes as the focus position changes. That is, at the focal point 501a in the scanning direction, an oval having a major axis in the radial direction, at the focal point 501c, an oval having a major axis in the scanning direction, and at about 501b, which is almost in between, It becomes substantially circular. Since this shape changes continuously between 501 a and 501 c, that is, between the astigmatic difference 502, the focusing position can be adjusted between them to obtain an arbitrary width. You can get a spot.
次に、 上記非点収差の生成方法について説明する。 図 6において、 平行光の光 路中にシリンドリカルレンズ 6 0 1と、 シリンドリカルレンズ 6 0 2が、 光軸を 一致させて配置されている。 シリンドリカルレンズ 6 0 1の焦点距離を f 1、 シ リンドリカルレンズ 6 0 2の焦点距離を: f 2とすると、 (a ) のようにこの 2つ のレンズの相対距離が、 f 1 + f 2である場合、 非点収差は発生しない。 しかし ( b ) のように 2つのレンズの相対距離が: f 1 + f 2よりも長い場合、 又は (c ) のように短い場合は、 その差分に応じた非点収差が発生し、 その大きさは 2つ のレンズの相対距離を調整することにより制御できる。 非点収差の大きさと非点 隔差 5 0 2は、 同一の光学系では 1 : 1に対応し、 非点収差が大きいほど非点隔 差も大きくなるため、 より大きなスポット幅を得ることができる。  Next, a method for generating the astigmatism will be described. In FIG. 6, a cylindrical lens 601 and a cylindrical lens 602 are arranged in the optical path of the parallel light with their optical axes aligned. Assuming that the focal length of the cylindrical lens 601 is f 1 and the focal length of the cylindrical lens 602 is f 2, the relative distance between the two lenses is f 1 + f 2 as shown in (a). In the case of, no astigmatism occurs. However, if the relative distance between the two lenses is longer than f1 + f2, as in (b), or short, as in (c), astigmatism will occur according to the difference, and its magnitude will be large. The length can be controlled by adjusting the relative distance between the two lenses. The magnitude of astigmatism and the astigmatism 502 correspond to 1: 1 in the same optical system, and the larger the astigmatism, the greater the astigmatism, so a larger spot width can be obtained. .
また、 図 7に示すように、 2つのシリンドリカルレンズが凹と凸であっても、 ( a ) のように 2つのレンズの焦点を一致させたときは収差が発生しないが、 ( b ) 、 (c ) のようにその相対距離を変化させた場合、 同様の原理で非点収差が 発生する。 Also, as shown in FIG. 7, even if the two cylindrical lenses are concave and convex, no aberration occurs when the focal points of the two lenses are matched as shown in (a), but (b), ( When the relative distance is changed as in c), astigmatism is reduced by the same principle. appear.
このように、 非点収差のある系で、 合焦位置の調整、 及び非点収差量の調整に より様々な形状、 幅のスポットを得ることが可能である。 このことにより、 スポ ットの幅を、 露光光量が不足することなく、 容易に、 広範囲に調整することが可 能となる。 上記合焦位置の調整と非点収差量の調整はそれそれ独立に行っても良 いが、 組み合わせて用いればさらに広範囲で自由度の大きな調整が可能である。 図面の簡単な説明  As described above, in a system having astigmatism, it is possible to obtain spots having various shapes and widths by adjusting the focus position and adjusting the amount of astigmatism. As a result, the width of the spot can be easily adjusted over a wide range without insufficient exposure light quantity. The adjustment of the in-focus position and the adjustment of the amount of astigmatism may be performed independently of each other. However, if used in combination, adjustment in a wider range and a higher degree of freedom is possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の原盤加工方法を実施する露光装置の全体構成を示す説明図で ある。 図 2は、 従来の原盤加工方法の全体構成を示す光路図である。 図 3は、 本 発明の原盤加工方法に用いられる非点収差生成部の一例である。 図 4は、 非点収 差のない場合のスポット形状を示す原理図である。 図 5は、 非点収差のある場合 のスポッ ト形状を示す原理図である。 図 6は、 2つの凸シリンドリカルレンズを 用いて非点収差量を調整する方法を示す原理図である。 図 7は、 凹凸 2つのシリ ンドリカルレンズを用いて非点収差量を調整する方法を示す原理図である。 図 8 は、 合焦位置と非点収差量をそれそれ変化させたときの組み合せにおける様々な スポッ ト形状を示す一例である。 図 9は、 レーザビームの非点収差量とフォー力 スとを調整することによってレ一ザビ一ムスポッ 卜の形状 ·走査幅を設定する装 置例を説明する説明図である。 図 1 0は、 図 9に示すコントローラの構成例を説 明するブロック図である。 発明を実施するための最良の形態  FIG. 1 is an explanatory diagram showing the overall configuration of an exposure apparatus that performs the master processing method of the present invention. FIG. 2 is an optical path diagram showing the entire configuration of a conventional mastering method. FIG. 3 is an example of the astigmatism generation unit used in the mastering method of the present invention. FIG. 4 is a principle diagram showing a spot shape when there is no astigmatic difference. FIG. 5 is a principle diagram showing a spot shape when there is astigmatism. FIG. 6 is a principle diagram showing a method of adjusting the amount of astigmatism using two convex cylindrical lenses. FIG. 7 is a principle diagram showing a method for adjusting the amount of astigmatism using two cylindrical lenses. FIG. 8 is an example showing various spot shapes in a combination when the in-focus position and the amount of astigmatism are respectively changed. FIG. 9 is an explanatory diagram illustrating an example of an apparatus for setting the shape and scanning width of a laser spot by adjusting the amount of astigmatism and the force of a laser beam. FIG. 10 is a block diagram illustrating a configuration example of the controller shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施例について、 図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の実施形態に関わる光ディスク原盤加工方法を実施する露光装 置の例を説明する説明図である。 レーザ装置 1 0 1より出射されたレーザビーム 1 0 2は、 ミラー 1 0 3、 1 0 5、 1 0 7に反射して対物レンズ 1 0 8に入射す る間に、 音響光学変調器 1 0 4にて必要により強度変調され、 非点収差生成部 1 1 9にて非点収差が付加された後、 音響光学偏向器 1 0 6にて必要により偏向を 受ける。 対物レンズ 1 0 8を透過したレーザビームは、 感光性材料が塗布された 原盤 1 0 9に集光され、 原盤の表面にスポッ ト 1 1 1を形成する。 対物レンズ 1 0 8、 ミラ一 1 0 7、 音響光学偏向器 1 0 6、 非点収差生成部 1 1 9を搭載した 可動光学台 1 1 3が原盤 1 0 9の半径方向に一定速度で徐々に移動すると同時に 、 原盤 1 0 9がターンテーブル 1 1 0に搭載されて回転することにより、 原盤上 にはスパイラル状にグループ又はピット 1 1 2が記録される。 FIG. 1 is an explanatory diagram illustrating an example of an exposure apparatus that performs an optical disk master processing method according to an embodiment of the present invention. The laser beam 102 emitted from the laser device 101 is reflected by the mirrors 103, 105, and 107, and is incident on the objective lens 108. After the intensity is modulated as necessary at 4 and the astigmatism is added at the astigmatism generation unit 119, deflection is performed as necessary at the acousto-optic deflector 106. receive. The laser beam transmitted through the objective lens 108 is condensed on a master 109 coated with a photosensitive material, and spots 111 are formed on the surface of the master. A movable optical table 1 13 equipped with an objective lens 108, a mirror 107, an acousto-optic deflector 106, and an astigmatism generator 1 119 gradually moves at a constant speed in the radial direction of the master 109. At the same time, the master 1109 is mounted on the turntable 110 and rotated, so that the groups or pits 112 are recorded in a spiral shape on the master.
フォーカスサ一ボ系 1 1 4は、 半導体レーザ 1 1 5、 2分割フォトダイオード 1 1 6、 制御回路 1 1 7及びフォーカスァクチユエ一夕 1 1 8より構成されてい る。 半導体レーザを出射した光はミラ一 1 0 7に反射した後、 対物レンズ 1 0 8 の周端部を透過し、 原盤 1 0 9に反射して、 対物レンズ 1 0 8の反対側の周端部 を透過し、 再びミラー 1 0 7に反射して 2分割フォトダイオード 1 1 6に入射す る。 ここで、 対物レンズ 1 0 8と原盤 1 0 9との相対距離が変化すると、 2分割 フォトダイオード 1 1 6の入射光の光軸位置が変化するため、 この 2つのフォト ダイオードの出力に差が発生する。 この出力の差分を誤差信号とし、 制御 (フォ —カスサ一ボ) 回路 1 1 7にて増幅してフォーカスァクチユエ一夕 1 1 8に印加 することにより、 合焦位置のフィードバック制御が行われる。 通常は露光中にス ポッ トサイズが変化しないよう、 対物レンズ 1 0 8と原盤 1 0 9の相対距離が一 定になるように制御を行っている。 尚、 半導体レーザ 1 1 5のレーザビームは、 記録用レーザビーム 1 0 2とは波長が異なるため、 原盤 1 0 9に塗布された感光 性材料を感光することはなく、 また、 干渉等による悪影響もない。  The focus servo system 114 includes a semiconductor laser 115, a two-segment photodiode 116, a control circuit 117, and a focus actuator 118. The light emitted from the semiconductor laser is reflected by the mirror 107, passes through the peripheral edge of the objective lens 108, is reflected by the master disk 109, and is reflected on the opposite peripheral edge of the objective lens 108. The light passes through the portion, is reflected again by the mirror 107, and enters the two-division photodiode 116. Here, when the relative distance between the objective lens 108 and the master 109 changes, the optical axis position of the incident light of the two-divided photodiode 116 changes, so that the output of the two photodiodes has a difference. appear. The difference between the outputs is used as an error signal, which is amplified by the control (focus) circuit 117 and applied to the focus actuator 118 to perform feedback control of the focus position. . Normally, control is performed so that the relative distance between the objective lens 108 and the master disk 109 remains constant so that the spot size does not change during exposure. Since the laser beam of the semiconductor laser 115 has a different wavelength from the recording laser beam 102, the photosensitive material applied to the master 109 is not exposed to light, and adverse effects such as interference are caused. Nor.
非点収差生成部 1 1 9は、 図 3に示す様に等しい焦点距離 f をもつ 2つの凸シ リンドリカルレンズ 3 0 1, 3 0 2より成り、 その 2つのレンズは光軸がレーザ ビーム 1 0 2の光軸に等しく、 その相対距離は 2つのレンズの焦点距離の和 2 f に略等しい。 ここで、 出射側レンズ 3 0 2は、 コントローラ 3 0 5からの指示に より、 送りねじ 3 0 3とステッピングモー夕 3 0 4にて入射側レンズ 3 0 1との 相対距離が自動調整できる機構となっている。 2つのレンズの相対距離によりレ 一ザビーム 1 0 2の非点収差量が変化することから、 非点収差量の自動調整が可 能となっている。 非点収差の付加されたレーザビームは、 スポット 1 1 1におい て、 図 5に示すように合焦位置によって様々な長円形状のスポットとなる。 制御 回路 1 1 7の設定値を変更することにより合焦位置が変化し、 スポット形状の自 動調整が可能となる。 The astigmatism generator 1 19 is composed of two convex cylindrical lenses 301 and 302 having the same focal length f as shown in FIG. 3, and the two lenses have the optical axis of the laser beam 1. It is equal to the optical axis of 0 2 and its relative distance is approximately equal to the sum of the focal lengths of the two lenses, 2 f. Here, the exit-side lens 302 is a mechanism that can automatically adjust the relative distance between the entrance-side lens 301 and the feed screw 303 and the stepping motor 304 by an instruction from the controller 300. It has become. Since the amount of astigmatism of the laser beam 102 changes depending on the relative distance between the two lenses, the amount of astigmatism can be automatically adjusted. The laser beam with astigmatism added is at spot 1 1 1 As shown in FIG. 5, various oval spots are formed depending on the focus position. By changing the set value of the control circuit 1 17, the focus position changes, and the spot shape can be automatically adjusted.
図 8は、 上記合焦位置と、 上記非点収差量をそれそれ変化させたときの様々な スポット形状の一例である。 合焦位置及び非点収差量によってビームスポッ卜の 形状が設定される。 これ等、 合焦位置、 非点収差量及びスポッ ト形状の各テープ ルデータはデ一夕べ一スとして後述するメモリに保持される。 ビットの走査方向 の分解能を上げるためには走査方向に短軸を持つ長円形状が望ましいが、 この目 的を達成するためには図 8における a, b, cの間で状態を変移させるのが良い 。 しかし、 単一グループのように走査方向の分解能を必要としない場合はこの限 りでなく、 より自由に状態を選択することができる。 上記フォーカスサーボ系の 設定と非点収差生成部のコントローラの設定は自動で行うことができるので、 同 一原盤の同一露光プロセスにて、 様々な幅のグループ又はピッ トを得ることがで o  FIG. 8 is an example of various spot shapes when the in-focus position and the astigmatism amount are respectively changed. The shape of the beam spot is set according to the in-focus position and the amount of astigmatism. These in-focus positions, astigmatism amounts, and spot-shaped table data are held in a memory described later as data. To increase the resolution in the bit scanning direction, an oval shape with a short axis in the scanning direction is desirable. To achieve this purpose, the state must be changed between a, b, and c in Fig. 8. Is good. However, when the resolution in the scanning direction is not required as in the case of a single group, this is not a limitation, and the state can be selected more freely. Since the setting of the focus servo system and the setting of the controller of the astigmatism generation unit can be performed automatically, groups or pits of various widths can be obtained by the same exposure process on the same master.
図 9及び図 1 0は、 他の実施例を示している。 この例では、 図 8に示す、 対物 レンズと原盤間との距離 (対物レンズの高さ位置) と、 非点収差量と、 スポッ ト 形状の各関係のテーブルを予めデ一夕ベースに記憶している。 コントローラ 3 0 5 aは、 操作者が選択したスポッ ト形状に対応してこの形状を与える、 対物レン ズ及び原盤間の距離と、 非点収差量とをそれそれフォーカスサ一ボ 1 1 7及びス テツピングモ一夕 3 0 4を制御して設定する。  FIG. 9 and FIG. 10 show another embodiment. In this example, the table shown in Fig. 8 for the relationship between the distance between the objective lens and the master (the height position of the objective lens), the amount of astigmatism, and the spot shape is stored in advance on the data base. ing. The controller 305a gives the shape corresponding to the spot shape selected by the operator, and adjusts the distance between the objective lens and the master and the amount of astigmatism as well as the focus sensors 117 and Set by controlling the stepping mode.
コントローラ 3 0 5 aは、 例えば、 C P U 3 5 1、 R A M 3 5 2、 入力部 3 5 3、 モー夕駆動制御部 3 5 4、 0 /八変換部3 5 5、 R O M 3 5 6等によって構 成される。 不揮発メモリである R O M 3 5 6には、 C P U 3 5 1に関係するプロ グラム (ブートプログラム、 O S、 制御プログラム等) 及び図 8のテーブル情報 (データベース) 等が記憶される。 ランダムアクセスメモリ R A M 3 5 2は、 〇 S、 制御プログラム、 処理データ等を記憶してデータ処理に用いられる。 入力部 3 5 3は、 キーボードスィッチ、 夕ツチパネル、 等からなり、 スポッ ト形状の指 定が可能である。 なお、 必要により、 デ一夕ベースの内容、 操作手順、 選択スポ ット形状を表示する表示器を設けることができる。 操作者によって、 入力部 3 5 3からスポッ ト形状の指定が C P U 3 5 1に伝えられると、 C P U 3 5 1は、 こ のスポッ ト形状に対応する対物レンズの距離データ及び非点収差量を R O M 3 5 6のデータベースから読出す。 対物レンズの距離データをフォーカスサ一ボのバ ィァス電圧に換算し、 電圧データを D /A変換部 3 5 5に設定する。 D /A変換 部 3 5 5からフォーカスサ一ボ 1 1 7にバイアス電圧が供給される。 これにより 、 対物レンズの原盤からの距離が設定され、 当該距離を基準としてフォーカスサ —ボが行われる。 また、 非点収差量に対応するレンズ間距離を設定するべく、 こ のレンズ間距離に該当するステッピングモー夕の回転角度を得る。 これを目標値 としてモー夕駆動制御部 3 5 4に設定する。 モー夕駆動制御部 3 5 4は、 基準位 置からのモー夕の現在の回転角度量と目標回転角度量の差に応じた回転角度分だ けパルスを与えてステッピングモー夕 3 0 4を回転制御する。 このようにして、 対物レンズ位置、 及び 2つのシリンドリカルレンズ間の距離が決定され、 露光装 置に指定されたレ一ザビームのスポッ ト形状、 従ってレ一ザビームの走査幅が設 定される。 The controller 305a includes, for example, a CPU 351, a RAM 352, an input unit 353, a motor drive control unit 354, a 0 / oct conversion unit 355, a ROM 356, and the like. Is done. The ROM 356, which is a non-volatile memory, stores programs (boot program, OS, control program, etc.) related to the CPU 351 and the table information (database) shown in FIG. The random access memory RAM 352 stores 〇S, control programs, processing data, and the like, and is used for data processing. The input unit 353 includes a keyboard switch, a sunset panel, and the like, and can specify a spot shape. If necessary, the contents, operation procedures, and An indicator for displaying the slot shape can be provided. When the operator specifies the spot shape from the input unit 353 to the CPU 351, the CPU 351 calculates the distance data and the astigmatism amount of the objective lens corresponding to the spot shape. Read from the ROM 356 database. Convert the distance data of the objective lens to the bias voltage of the focus servo, and set the voltage data in the D / A converter 355. A bias voltage is supplied from the D / A converter 355 to the focus servo 117. Thereby, the distance of the objective lens from the master is set, and the focus servo is performed based on the distance. In addition, in order to set an inter-lens distance corresponding to the amount of astigmatism, a rotation angle of the stepping mode corresponding to the inter-lens distance is obtained. This is set as the target value in the motor drive controller 354. The motor drive control section 354 rotates the stepping motor 304 by giving a pulse only for the rotation angle corresponding to the difference between the current rotation angle of the motor from the reference position and the target rotation angle. Control. In this manner, the position of the objective lens and the distance between the two cylindrical lenses are determined, and the spot shape of the laser beam specified in the exposure apparatus, and accordingly, the scanning width of the laser beam are set.
上記例では非点収差量の調整手段として、 2つの凸シリンドリカルレンズを用 いたが、 図 7に示すように凸と凹のシリンドリカルレンズ 7 0 1、 7 0 2を組み 合わせて用いても良い。 また、 非点収差量を調整できる方法ならば他の方法を用 いてもかまわない。  In the above example, two convex cylindrical lenses are used as the means for adjusting the astigmatism amount. However, as shown in FIG. 7, convex and concave cylindrical lenses 71 1 and 70 2 may be used in combination. In addition, another method may be used as long as the method can adjust the amount of astigmatism.
また、 上記例では自動合焦位置調整手段として、 フォーカスサ一ボ系 1 1 4を 用いたが、 それとは独立に自動合焦位置調整手段を設けてもよい。  In the above example, the focus servo system 114 is used as the automatic focusing position adjusting means. However, the automatic focusing position adjusting means may be provided independently of the focusing servo system.
なお、 原盤は回転駆動される記録媒体 (ディスク) のみならず、 X方向および Y方向に移動される記録媒体であっても良い。 本発明は、 これ等の露光装置や情 報記録装置にも適用可能である。 産業上の利用可能性  The master may be not only a recording medium (disk) driven in rotation but also a recording medium moved in the X and Y directions. The present invention is also applicable to these exposure apparatuses and information recording apparatuses. Industrial applicability
以上のように、 本発明の原盤の露光方法及び露光装置によれば、 非点収差を含 むレーザビームを用いてグループ又はピッ 卜の露光を行い、 しかも合焦位置の調 整と非点収差量の調整を行うことができるため、 原盤上に形成される光スポッ ト の幅を、 露光光量が不足することなく、 容易に、 広範囲に調整することができる 。 それにより、 品質の良い、 あるいはグループやピッ ト幅可変な光ディスク用原 盤、 スタンパ及びそれから成形し製造された光ディスクを提供することが可能と なる。 As described above, according to the master disc exposure method and the exposure apparatus of the present invention, a group or a pit is exposed using a laser beam containing astigmatism, and the focus position is adjusted. Since the adjustment and the astigmatism amount can be performed, the width of the light spot formed on the master can be easily adjusted over a wide range without insufficient exposure light quantity. As a result, it is possible to provide an optical disk master, a stamper, and an optical disk molded and manufactured from the optical disk, which have a high quality or a variable group or pit width.
特に、 走査方向に短軸を持つ様々な長円形状のスポットにより、 走査方向の分 解能を損なうことなく様々な幅のグループ又はピットを得ることができる。  In particular, various elliptical spots having a minor axis in the scanning direction enable groups or pits of various widths to be obtained without impairing the resolution in the scanning direction.
また、 本発明によれば、 デ一夕ベース化された、 対物レンズ位置及び非点収差 量とビームスポット形状のデ一夕を用いて、 指定された光 (レーザ) ビームのス ポット形状を素早く露光装置に設定することが可能となり、 具合がよい。  Further, according to the present invention, the spot shape of a specified light (laser) beam can be quickly determined using the data of the objective lens position, the amount of astigmatism, and the beam spot shape based on the data. It can be set in the exposure apparatus, and the condition is good.

Claims

請 求 の 範 囲 The scope of the claims
1 . 感光性材料が塗布された原盤に変調されたレーザビームを照射し、 該原盤 に光記録媒体のグルーブ又はピットの潜像を形成する原盤露光装置であって、 レーザビームを出射するレーザビーム発生手段と、 1. A master disc exposure device that irradiates a modulated laser beam to a master disc coated with a photosensitive material and forms a latent image of grooves or pits on an optical recording medium on the master disc, and a laser beam that emits a laser beam Generating means;
供給される情報信号によって前記レーザビームを強度変調する強度変調手段と 前記強度変調された前記レ一ザビームを前記原盤上に集光する対物レンズの高 さ位置を調整する合焦位置調整手段と、  Intensity modulation means for intensity-modulating the laser beam with the supplied information signal, and focus position adjustment means for adjusting a height position of an objective lens for condensing the intensity-modulated laser beam on the master,
集光したレーザビームを前記原盤上に相対的に走査させるビーム走査手段と、 前記レ一ザ発生手段及び前記合焦位置調整手段の相互間に設けられて前記レ一 ザビームに非点収差を与えかっこの非点収差の量を任意に設定可能な非点収差設 定手段と、  Beam scanning means for relatively scanning the converged laser beam on the master; and laser beam generating means and focusing position adjusting means provided between the laser generating means and the focusing position adjusting means to impart astigmatism to the laser beam. Astigmatism setting means capable of arbitrarily setting the amount of bracket astigmatism;
を備える原盤露光装置。  Master exposure apparatus equipped with:
2 . 入力に対応して前記非点収差の量と前記対物レンズの高さ位置とを設定す ることによって、 前記レーザビームの走査の幅若しくは前記レーザビームのスポ ット形状を所望に設定するレーザビームスポッ ト調整手段を更に備える、 請求項 1記載の原盤露光装置。  2. By setting the amount of astigmatism and the height position of the objective lens according to the input, the scanning width of the laser beam or the spot shape of the laser beam is set as desired. 2. The master exposure apparatus according to claim 1, further comprising a laser beam spot adjustment unit.
3 . 前記対物レンズの高さ位置の設定範囲は、 上記非点収差の非点隔差を包含 することを特徴とする請求項 2記載の原盤露光装置。  3. The master exposure apparatus according to claim 2, wherein the setting range of the height position of the objective lens includes the astigmatism astigmatism difference.
4 . 前記非点収差設定手段は、 前記レーザビームが共に通過するように配置さ れかつ相互間の距離が可変である少なくとも 2つのシリンドリカルレンズを含み 、 両レンズ相互間の距離を調整することによって前記非点収差の程度を設定する 、 請求項 1乃至 3のいずれかに記載の原盤露光装置。  4. The astigmatism setting means includes at least two cylindrical lenses arranged so that the laser beams pass therethrough and a distance between the two lenses is variable, and by adjusting a distance between the two lenses. The master exposure apparatus according to claim 1, wherein a degree of the astigmatism is set.
5 . 前記非点収差量を指示に応じて設定する自動設定手段を備える、 請求項 1 に記載の原盤露光装置。  5. The master exposure apparatus according to claim 1, further comprising an automatic setting unit configured to set the astigmatism amount according to an instruction.
6 . 感光膜が形成された原盤上に光ビームを対物レンズによって集光し、 得ら れる光スポットによって前記感光膜を走査して潜像を形成する原盤の露光方法で あって、 6. A method of exposing a master on which a light beam is condensed by an objective lens on a master on which a photosensitive film is formed, and which scans the photosensitive film with an obtained light spot to form a latent image. So,
前記光ビームの非点収差の量及び前記対物レンズの前記原盤からの距離と光ス ポットの形状との対応関係を予め複数記憶しておき、  A plurality of correspondences between the amount of astigmatism of the light beam and the distance of the objective lens from the master and the shape of the light spot are stored in advance,
所望の形状の光スポットを設定する際に、 該当する光スポッ卜の形状に対応す る前記非点収差の量及び前記対物レンズの原盤からの距離を参照して、 前記光ビ 一ムの非点収差及び前記対物レンズ位置の各調整を行う、 原盤の露光方法。  When a light spot having a desired shape is set, the amount of astigmatism corresponding to the shape of the corresponding light spot and the distance from the master of the objective lens are referred to. An exposure method of a master disc, wherein each adjustment of astigmatism and the position of the objective lens is performed.
7 . 感光膜が形成された原盤上に光ビックアップから強度変調された光ビーム を照射し、 該光ビームによって前記感光膜を走査して潜像を形成する原盤の露光 装置であって、  7. An exposure apparatus for a master, which irradiates an intensity-modulated light beam from a light up onto a master on which a photosensitive film is formed, and scans the photosensitive film with the light beam to form a latent image,
前記光ビームに非点収差を与えかっこの非点収差の量を調整可能な非点収差調 整手段と、  Astigmatism adjusting means for giving astigmatism to the light beam and adjusting an amount of the astigmatism;
前記光ビームを前記原盤上に集光して光スポッ トを形成する対物レンズの前記 原盤からの距離を調整するフォーカス調整手段と、  Focus adjusting means for adjusting a distance of the objective lens, which forms the light spot by condensing the light beam on the master, from the master;
前記非点収差の量及び前記対物レンズの原盤からの距離と光スポットの形状と の対応関係を予め複数記憶するスポットデ一夕記憶手段と、  Spot data storage means for storing in advance a plurality of correspondences between the amount of the astigmatism, the distance from the master of the objective lens and the shape of the light spot,
指定された光スポットの形状に対応する前記非点収差の量及び前記対物レンズ の原盤からの距離を前記スポッ トデ一夕記憶手段から読出し、 これ等非点収差の 量及び対物レンズの原盤からの距離をそれそれ前記非点収差調整手段及びフォー カス調整手段に設定するデータ設定手段と、  The amount of the astigmatism corresponding to the shape of the designated light spot and the distance from the master of the objective lens are read out from the spot data storage means, and the amount of the astigmatism and the amount of the objective lens from the master are read. Data setting means for setting a distance to the astigmatism adjustment means and focus adjustment means, respectively;
を備える原盤の露光装置。  Master exposure device equipped with
8 . 請求項 6記載の露光方法を用いて製造された原盤。  8. A master produced by using the exposure method according to claim 6.
PCT/JP1999/001875 1998-04-08 1999-04-08 Method and apparatus for exposing master disk for optical disk WO1999053488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/96500 1998-04-08
JP9650098 1998-04-08

Publications (1)

Publication Number Publication Date
WO1999053488A1 true WO1999053488A1 (en) 1999-10-21

Family

ID=14166832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001875 WO1999053488A1 (en) 1998-04-08 1999-04-08 Method and apparatus for exposing master disk for optical disk

Country Status (2)

Country Link
TW (1) TW445441B (en)
WO (1) WO1999053488A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024302A (en) * 2004-07-09 2006-01-26 Pioneer Electronic Corp Device and method for measuring outgoing light of optical pickup
JP2006024301A (en) * 2004-07-09 2006-01-26 Pioneer Electronic Corp Device and method for measuring outgoing light of optical pickup
JP2010533972A (en) * 2007-07-16 2010-10-28 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー Scan drawing exposure pattern on substrate
WO2016056622A1 (en) * 2014-10-08 2016-04-14 オリンパス株式会社 Pair of phase modulation elements for image-forming optical system, image-forming optical system, illumination device, and microscope device
WO2017046860A1 (en) * 2015-09-15 2017-03-23 学校法人東京理科大学 Laser system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186417U (en) * 1984-05-22 1985-12-10 日本電気ホームエレクトロニクス株式会社 Astigmatism removal device
JPH0424607A (en) * 1990-05-18 1992-01-28 Mitsubishi Electric Corp Beam shaping device
JPH04324139A (en) * 1991-04-23 1992-11-13 Ricoh Co Ltd Optical master disk exposure device
JPH05342641A (en) * 1992-06-08 1993-12-24 Ricoh Co Ltd Exposure device for optical master disk
JPH07326066A (en) * 1994-05-31 1995-12-12 Asahi Optical Co Ltd Optical information recording and reproducing device
JPH0981941A (en) * 1995-09-11 1997-03-28 Hitachi Ltd Optical disk recording and reproducing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186417U (en) * 1984-05-22 1985-12-10 日本電気ホームエレクトロニクス株式会社 Astigmatism removal device
JPH0424607A (en) * 1990-05-18 1992-01-28 Mitsubishi Electric Corp Beam shaping device
JPH04324139A (en) * 1991-04-23 1992-11-13 Ricoh Co Ltd Optical master disk exposure device
JPH05342641A (en) * 1992-06-08 1993-12-24 Ricoh Co Ltd Exposure device for optical master disk
JPH07326066A (en) * 1994-05-31 1995-12-12 Asahi Optical Co Ltd Optical information recording and reproducing device
JPH0981941A (en) * 1995-09-11 1997-03-28 Hitachi Ltd Optical disk recording and reproducing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024302A (en) * 2004-07-09 2006-01-26 Pioneer Electronic Corp Device and method for measuring outgoing light of optical pickup
JP2006024301A (en) * 2004-07-09 2006-01-26 Pioneer Electronic Corp Device and method for measuring outgoing light of optical pickup
JP4656879B2 (en) * 2004-07-09 2011-03-23 パイオニア株式会社 Optical pickup outgoing light measuring device and measuring method
JP4656880B2 (en) * 2004-07-09 2011-03-23 パイオニア株式会社 Optical pickup outgoing light measuring device and adjustment method
JP2010533972A (en) * 2007-07-16 2010-10-28 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー Scan drawing exposure pattern on substrate
WO2016056622A1 (en) * 2014-10-08 2016-04-14 オリンパス株式会社 Pair of phase modulation elements for image-forming optical system, image-forming optical system, illumination device, and microscope device
JPWO2016056622A1 (en) * 2014-10-08 2017-07-20 オリンパス株式会社 A pair of phase modulation elements for an imaging optical system, an imaging optical system, an illumination device, and a microscope device
US10330905B2 (en) 2014-10-08 2019-06-25 Olympus Corporation Pair of phase modulation elements for imaging optical system, imaging optical system, illuminating device, and microscope apparatus
WO2017046860A1 (en) * 2015-09-15 2017-03-23 学校法人東京理科大学 Laser system

Also Published As

Publication number Publication date
TW445441B (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US4507763A (en) Optical information recording and/or reproducing apparatus and optical record medium for use in such apparatus
JP2006155831A (en) Hologram recording medium and hologram recording and reproducing apparatus
US5105407A (en) Optical information-processing apparatus
USRE34719E (en) Optical recording apparatus for forming grooves and pits in an optically recordable disc
US5018127A (en) Light emitting apparatus having a plurality of light emitting points
JP2001043562A (en) Manufacture of optical information recording medium and manufacturing device for optical information recording medium
WO1999053488A1 (en) Method and apparatus for exposing master disk for optical disk
EP0737964A1 (en) An apparatus for and method of reproducing information from different types of optical disks and an optical disk recording/reproducing apparatus
US5341355A (en) Multibeam optical pickup and servo method thereof
JP3307081B2 (en) Optical disc master manufacturing method
JP2748894B2 (en) Exposure equipment
JPH0773509A (en) Exposure device
JPH11283283A (en) Production of master disk for producing recording medium, master disk for producing recording medium, substrate for recording medium, and recording medium
JP2941366B2 (en) Light beam intensity adjusting method of exposure apparatus
JP2656529B2 (en) Optical recording / reproducing device
JPH10334503A (en) Exposure device for optical master disk
JP2000113521A (en) Production of master disk
JP2748900B2 (en) Exposure equipment
JP2000011401A (en) Optical disk device
JPH09231609A (en) Optical recording device
JP2002245688A (en) Method and device for exposure, original, disk for manufacturing optical recording medium, and optical recording medium
JP2746973B2 (en) Optical information processing device
JP2002312984A (en) Device and method for exposing optical master disk
JPH0719397B2 (en) Optical disc manufacturing equipment
JP2001035022A (en) Method and device for manufacturing optical information recording medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US