WO1999052580A1 - Metodo de control automatico para el aporte de anestesico a un circuito cerrado a bajos flujos - Google Patents

Metodo de control automatico para el aporte de anestesico a un circuito cerrado a bajos flujos Download PDF

Info

Publication number
WO1999052580A1
WO1999052580A1 PCT/ES1999/000095 ES9900095W WO9952580A1 WO 1999052580 A1 WO1999052580 A1 WO 1999052580A1 ES 9900095 W ES9900095 W ES 9900095W WO 9952580 A1 WO9952580 A1 WO 9952580A1
Authority
WO
WIPO (PCT)
Prior art keywords
anesthetic
patient
amount
circuit
fresh gas
Prior art date
Application number
PCT/ES1999/000095
Other languages
English (en)
French (fr)
Inventor
Jaime Mas Marfany
Original Assignee
Jaime Mas Marfany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jaime Mas Marfany filed Critical Jaime Mas Marfany
Priority to EP99913318A priority Critical patent/EP1072279B1/en
Priority to DE69941840T priority patent/DE69941840D1/de
Priority to US09/673,525 priority patent/US6523537B1/en
Priority to AT99913318T priority patent/ATE452675T1/de
Publication of WO1999052580A1 publication Critical patent/WO1999052580A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/18Vaporising devices for anaesthetic preparations

Definitions

  • This invention relates to the self-control of the contribution of volatile anesthetic to a closed circuit of anesthesia at low flows.
  • a closed anesthesia circuit is an anesthetic system based on the readministration of exhaled gases, from which carbon dioxide has been absorbed, and to which oxygen and consumed anesthetics are added.
  • the concentration of volatile anesthetic in an anesthesia circuit is determined by the anesthesiologist as desired and in accordance with the Minimum Alveolar Concentration (C.A.M.) specific to each anesthetic.
  • C.A.M. Minimum Alveolar Concentration
  • the concentration of the anesthetic can be advantageously regulated by modifying the opening of the anesthetic vaporizer dial instead of modifying the flow of fresh gas. This way of controlling the concentration of anesthetic presents, among other advantages, that of reducing the consumption of anesthetic.
  • This invention relates to a method of automatic control of the contribution of a volatile anesthetic to a closed circuit of anesthesia at low flows.
  • a closed circuit of anesthesia at low flows refers to an anesthetic system based on the readministration of exhaled gases, from which carbon dioxide has been absorbed, and to which oxygen is added and the anesthetics consumed, and in which the total flow of fresh gas (oxygen) is less than 4 1 / min.
  • a typical closed anesthesia circuit, designed to work with volatile anesthetics and which can operate at low flows, in which the automatic volatile anesthetic control method object of this invention can be carried out, comprises the following elements:
  • a source of volatile anesthetic containing a vaporizer that incorporates a dial to regulate the output of anesthetic, so that the anesthetic is vaporized before mixing and entrained by the fresh gas;
  • Y a reservoir balloon or bag, of a capacity greater than the tidal volume, adaptable or replaceable by the concertina of a fan;
  • the inspiratory valve In expiration, the inspiratory valve is closed and the expired gases pass to the ball, where the fresh gases that at that time access the system also arrive.
  • the balloon When the balloon is full, the excess gas coming from the patient is expelled to the outside through the adjustable valve for the expulsion of the excess gas.
  • the expiratory valve On inspiration, the expiratory valve is closed, the inspiratory is opened and the patient receives the fresh gas that enters the circuit at that time, the fresh gas that the canister occupied during expiration and the exhaled gas contained in the balloon and that yields carbon dioxide through the canister.
  • patient as used in this description includes any subject, person or animal, recipient of the volatile anesthetic.
  • any of the known inhalation anesthetics can be used, for example, halogenated inhalation anesthetics such as halothane, desflurane, isoflurane and sevoflurane.
  • the method of the invention begins by setting the minute volume (VM) to be breathed by the patient, which is the amount of air entering and leaving the patient's lungs in 1 minute, and is set by adjusting the fan to the desired minute volume.
  • VM minute volume
  • the VM is equal to the sum of the alveolar volume [part of the VM that reaches the alveoli and serves for hematosis or gas exchange (oxygen, carbon dioxide and anesthetic)] and of the dead volume [amount of air entering and leaving the lungs without reaching the pulmonary alveoli, that is, without gas exchange].
  • the fresh gas consists solely of oxygen and serves as a vehicle to introduce the volatile anesthetic, in the form of steam, into the circuit and then into the patient.
  • the flow of fresh gas has to meet the needs of the oxygen consumed, that is, the amount of oxygen necessary for the maintenance of basal metabolic consumption.
  • said oxygen consumption can be calculated by the formula [1]:
  • Oxygen consumption Weight (kg) 34 x 10 [1]
  • the result obtained by applying the formula [1] normally ranges between 200 and 300 ml / min, which means that with a contribution of 500 ml / min of oxygen to a closed anesthesia circuit, which normally has a capacity of 4 or 5 liters, full of 100% oxygen, guarantees that any eventuality in oxygen consumption needs is covered.
  • the fraction inspired by the anesthetic patient is the percentage of volatile anesthetic administered by the ventilator in each inspiration, and can be determined by appropriate equipment using any conventional technique appropriate to quantify the gases that constitute the fraction inspired by the patient .
  • the fraction exhaled by the anesthetic patient is the percentage of volatile anesthetic that is measured in the expiratory branch of the circuit, that is, the amount of anesthetic that leaves the patient's lung once a certain amount of the fraction is captured inspired by the anesthetic patient (% FI).
  • the fraction exhaled by the anesthetic patient can be determined by appropriate equipment. using any conventional technique suitable to determine and quantify the gases that constitute the fraction exhaled by the patient, including carbon dioxide.
  • the volatile anesthetic vaporizer dial is opened the same value as the result of multiplying by 10 the differential of the fractions inspired (% FI) and exhaled (% FE) by the patient of anesthetic, that is, the opening of the dial corresponds to the result of performing the operation (% FI -% FE) x 10, thereby establishing the balance shown in equation [4] (see below).
  • the anesthetic vaporizer dial must vary in exactly the same direction with what in this way , the concentration preset by the anesthesiologist (CAM), remains unchanged over time (dynamic circuit stability).
  • CTAC (% FI -% FE) XV ALV [2]
  • CTAC is the total amount of anesthetic consumed by the patient
  • % FI is the fraction inspired by the anesthetic patient
  • % FE is the fraction exhaled by the anesthetic patient; and V ⁇ v is the alveolar volume of ventilation.
  • Said amount of anesthetic consumed by the patient comes from the amount of anesthetic provided to the circuit that, In a particular embodiment of the invention, it can be determined by equation [3]:
  • CAAC is the amount of anesthetic contributed to the circuit
  • FGF is the flow of fresh gas
  • Y is the amount of anesthetic contributed to the circuit
  • % dial represents the concentration of anesthetic at the exit of the anesthetic vaporizer.
  • CAAC anesthetic contributed to the circuit
  • CAC total amount of anesthetic consumed
  • Equation [4] reflects the pharmacodynamic balance of a closed circuit when nothing is poured outside. As can be seen in this equation [4], when the system is in equilibrium, the total anesthetic consumed (left part of equation [4]) is equal to the volume of volatile anesthetic supplied to the circuit (right part of equation [4 ]).
  • the anesthetic supplied can be considered to be equal to the sum of the anesthetic consumed by the patient and the anesthetic poured abroad.
  • the amount of anesthetic contributed to the circuit is equal to the total amount of anesthetic consumed by the patient plus the amount of anesthetic poured abroad, and therefore, can express by equation [5]:
  • CAAC (% FI-% FE) xV AIlV + [FGF- ((% 0 2 insp -% 0 2 esp ) xVM)] x% FE [5]
  • CAAC,% FI,% FE, V ALV , FGF and VM have the meanings indicated previously; 0 2 insp is the fraction of inspired oxygen, contributed by the flow of fresh gas; and ° 2 esp is I a fraction of oxygen exhaled by the patient.
  • the contribution of the amount of anesthetic to the circuit is carried out, according to the present invention, by opening the anesthetic vaporizer dial.
  • the invention provides, in a definitive way, a very considerable saving of anesthetic since never increasing the FGF anesthetic is not poured outside.
  • the present invention shows that by modifying the opening of the dial to vary the concentrations of the anesthetic (and not the flow of fresh gas) an exact, ecological and efficient model of anesthetic contribution to the system is achieved.
  • the volatile anesthetic provided by the vaporizer is mixed with the flow of fresh gas, which drag, before being introduced into the patient.
  • the method of the invention is not carried out on the human or animal body since it is carried out at a stage prior to the introduction of the anesthetic into the patient, it is suitable for quantifying, controlling and optimizing the consumption of anesthetic, and therefore , you can set the basis for a possible automation of an anesthesia workstation that works with a circular circuit at low fluids.
  • the method of the invention has numerous advantages, among which are:

Landscapes

  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • External Artificial Organs (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Accessories For Mixers (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

El método comprende las etapas de a) fijar el volumen minuto (VM) a respirar por el paciente; b) fijar automáticamente el flujo de gas fresco (FGF) al 10 % del VM; c) determinar las fracciones inspirada (% FI) y espirada (% FE) de anestésico volátil; d) abrir el dial del vaporizador de anestésico al valor resultante de multiplicar el diferencial (% FI-% FE) por 10; e) aportar al circuito una cantidad de anestésico que cubre, al menos, la cantidad total de anestésico consumido por el paciente, mediante la apertura del dial del vaporizador del anestésico; y f) mezclar la cantidad de anestésico con el FGF antes de introducirlo en el paciente. El método tiene aplicación en la administración de anestésicos inhalatorios en sistemas anestésicos a bajos flujos.

Description

MÉTODO DE CONTROL AUTOMÁTICO PARA EL APORTE DE ANESTÉSICO A UN CIRCUITO CERRADO A BAJOS FLUJOS
CAMPO DE LA INVENCIÓN Esta invención se relaciona con el autocontrol del aporte de anestésico volátil a un circuito cerrado de anestesia a bajos flujos.
ANTECEDENTES DE LA INVENCIÓN Un circuito cerrado de anestesia es un sistema anestésico basado en la readministración de los gases espirados, de los que se ha absorbido el dióxido de carbono, y a los que se añade el oxígeno y los anestésicos consumidos.
Como es conocido, la concentración de anestésico volátil en un circuito de anestesia la determina el anestesiólogo según desea y de acuerdo con la Concentración Alveolar Mínima (C.A.M.) propia de cada anestésico.
Los cambios de esta C.A.M. son los que clásicamente, en un circuito de bajos flujos, se modifican variando el flujo de gas fresco y, por tanto, la cantidad de anestésico volátil arrastrado por la corriente de gas fresco. Esta forma de controlar el anestésico plantea algunos inconvenientes, entre los que se encuentra un consumo excesivo de anestésico.
Ahora se ha encontrado que la concentración del anestésico puede regularse, ventajosamente, modificando la apertura del dial del vaporizador de anestésico en vez de modificando el flujo de gas fresco. Esta forma de controlar la concentración de anestésico presenta, entre otras ventajas, la de reducir el consumo de anestésico.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Esta invención se refiere a un método de control automático del aporte de un anestésico volátil a un circuito cerrado de anestesia a bajos flujos. El método de control automático para el aporte de un anestésico volátil a un circuito cerrado de anestesia a bajos flujos, objeto de esta invención, que comprende la etapa de mezclar gas fresco y anestésico volátil antes de su introducción en el paciente, se caracteriza porque: a) se fija el volumen minuto a respirar por el paciente; b) se fija automáticamente el flujo de gas fresco en el 10% del volumen minuto fijado; c) se determinan las fracciones inspirada (%FI) y espirada (%FE) por el paciente de anestésico volátil; d) se abre el dial del vaporizador de anestésico al valor resultante de multiplicar por 10 el diferencial de las fracciones inspirada (%FI) y espirada (%FE) por el paciente de anestésico volátil, es decir, %dial = (%FI-%FE) x 10, variando, en la misma relación, la apertura de dicho dial cada vez que varía dicho diferencial de las fracciones inspirada (%FI) y espirada (%FE) por el paciente de anestésico volátil; e) se aporta al circuito una cantidad de anestésico que cubre, al menos, la cantidad total de anestésico consumido por el paciente, mediante la apertura del dial del vaporizador del anestésico; y f) se mezcla la cantidad de anestésico con el flujo de gas fresco antes de introducirlo en el paciente. En el sentido utilizado en esta descripción, un circuito cerrado de anestesia a bajos flujos se refiere a un sistema anestésico basado en la readministración de los gases espirados, de los que se ha absorbido el dióxido de carbono, y a los que se añade el oxígeno y los anestésicos consumidos, y en el que el flujo total de gas fresco (oxígeno) es inferior a 4 1/min.
Un típico circuito cerrado de anestesia, diseñado para trabajar con anestésicos volátiles y que puede funcionar a bajos flujos, en el que puede llevarse a cabo el método de control automático de anestésico volátil objeto de esta invención, comprende los siguientes elementos:
- una fuente de gas fresco;
- una fuente de anestésico volátil que contiene un vaporizador que incorpora un dial para regular la salida de anestésico, de manera que el anestésico se vaporiza antes de su mezcla y arrastre por el gas fresco;
- una entrada de gas fresco cargado con el anestésico volátil ; - dos tubos que constituyen las ramas inspiratoria y espiratoria del circuito;
- dos válvulas unidireccionales, una de ellas en la rama inspiratoria y la otra en la rama espiratoria, que determinan el sentido del flujo dentro del circuito;
- una válvula regulable para expulsar el exceso de gas;
- una pieza en forma de Y o de T de conexión a la vía aérea del paciente;
- un balón o bolsa reservorio, de capacidad superior al volumen corriente, adaptable o sustituible por la concertina de un ventilador; y
- un canister o absorbedor de dióxido de carbono.
En la espiración, se cierra la válvula inspiratoria y los gases espirados pasan al balón, adonde llegan además los gases frescos que en ese momento acceden al sistema. Cuando el balón está lleno, el exceso de gas procedente del paciente se expulsa al exterior a través de la válvula regulable para la expulsión del exceso de gas.
En la inspiración, la válvula espiratoria se cierra, la inspiratoria se abre y el paciente recibe el gas fresco que en ese momento entra en el circuito, el gas fresco que ocupó el canister durante la espiración y el gas espirado contenido en el balón y que cede el dióxido de carbono al atravesar el canister. El término "paciente", tal como se utiliza en esta descripción incluye cualquier sujeto, persona o animal, receptor del anestésico volátil.
Como anestésico volátil puede utilizarse cualquiera de los anestésicos inhalatorios conocidos, por ejemplo, los anestésicos inhalatorios halogenados tales como halotano, desflurano, isoflurano y sevoflurano.
El método de la invención comienza fijando el volumen minuto (VM) a respirar por el paciente que es la cantidad de aire que entra y sale de los pulmones del paciente en 1 minuto, y se fija graduando el ventilador al volumen minuto deseado. El VM es igual a la suma del volumen alveolar [parte del VM que llega a los alveolos y sirve para la hematosis o recambio de gases (oxígeno, dióxido de carbono y anestésico) ] y del volumen muerto [cantidad de aire que entra y sale de los pulmones sin llegar a los alveolos pulmonares, es decir, sin recambio de gases] .
Una vez establecido el VM, se fija automáticamente el flujo de gas fresco. El gas fresco está constituido únicamente por oxígeno y sirve de vehículo para introducir el anestésico volátil, en forma de vapor, en el circuito y posteriormente en el paciente. El flujo de gas fresco tiene que cubrir las necesidades del oxígeno consumido, es decir, la cantidad de oxígeno necesaria para el mantenimiento del consumo metabólico basal. En general, dicho consumo de oxígeno puede calcularse mediante la fórmula [1]:
Consumo de oxígeno = Peso(kg)34 x 10 [1]
El resultado obtenido al aplicar la fórmula [1] oscila normalmente entre 200 y 300 ml/min, lo que significa que con un aporte de 500 ml/min de oxígeno a un circuito cerrado de anestesia, que normalmente tiene una capacidad de 4 ó 5 litros, lleno de oxígeno al 100%, se garantiza que esté cubierta cualquier eventualidad en las necesidades de consumo de oxígeno.
En el método de la presente invención, el flujo de gas fresco (FGF) se fija automáticamente en el 10% del volumen minuto (VM) establecido, es decir, FGF = 10% x VM.
La fracción inspirada por el paciente de anestésico (%FI) es el porcentaje de anestésico volátil que administra el ventilador en cada inspiración, y puede determinarse mediante un equipo apropiado utilizando cualquier técnica convencional adecuada para cuantificar los gases que constituyen la fracción inspirada por el paciente.
La fracción espirada por el paciente de anestésico (%FE) es el porcentaje de anestésico volátil que se mide en la rama espiratoria del circuito, es decir, la cantidad de anestésico que sale del pulmón del paciente una vez captada una cantidad determinada de la fracción inspirada por el paciente de anestésico (%FI) . La fracción espirada por el paciente de anestésico puede determinarse mediante un equipo apropiado utilizando cualquier técnica convencional adecuada para determinar y cuantificar los gases que constituyen la fracción espirada por el paciente, incluyendo el dióxido de carbono. Seguidamente, de acuerdo con el método de esta invención, se abre el dial del vaporizador del anestésico volátil el mismo valor que el resultante de multiplicar por 10 el diferencial de las fracciones inspirada (%FI) y espirada (%FE) por el paciente de anestésico, es decir, la apertura del dial corresponde al resultado de efectuar la operación (%FI - %FE) x 10, con lo que se establece el equilibrio que se muestra en la ecuación [4] (véase más adelante).
Cada vez que el diferencial (%FI-%FE) varía en el tiempo, por ejemplo, por las variaciones de captación de anestésico por el paciente, el dial del vaporizador de anestésico debe variar exactamente en el mismo sentido con lo que de esta manera, la concentración preestablecida por el anestesiólogo (C.A.M.), permanece invariable en el tiempo (estabilidad dinámica del circuito) .
A continuación, mediante la apertura del dial del vaporizador del anestésico, se aporta al circuito cerrado de anestesia a bajos flujos una cantidad de anestésico volátil que cubre, al menos, la cantidad total de anestésico consumida por el paciente, cantidad que viene determinada por la ecuación [2 ] :
CTAC = (%FI - %FE) X VALV [2]
donde
CTAC es la cantidad total de anestésico consumido por el paciente;
%FI es la fracción inspirada por el paciente de anestésico;
%FE es la fracción espirada por el paciente de anestésico; y V^v es el volumen alveolar de ventilación.
Dicha cantidad de anestésico consumida por el paciente procede de la cantidad de anestésico aportada al circuito que, en una realización particular de la invención, se puede determinar por la ecuación [3]:
CAAC = FGF x %dial [3]
donde
CAAC es la cantidad de anestésico aportado al circuito; FGF es el flujo de gas fresco; y
%dial representa la concentración de anestésico a la salida del vaporizador del anestésico.
En una situación de equilibrio, la cantidad de anestésico aportado al circuito (CAAC) es igual a la cantidad total de anestésico consumido (CTAC), por lo que las ecuaciones [2] y [3] se igualan, estableciéndose la ecuación [4]:
(%FI - %FE) x VALV = FGF x %dial [4]
donde %FI , %FE, V^, FGF y %dial tienen los significados indicados previamente.
La ecuación [4] refleja el equilibrio farmacodinámico de un circuito cerrado cuando no se vierte nada al exterior. Como se aprecia en dicha ecuación [4], cuando el sistema está en equilibrio, el total de anestésico consumido (parte izquierda de la ecuación [4]) se iguala al volumen de anestésico volátil suministrado al circuito (parte derecha de la ecuación [4]).
Sin embargo, habitúalmente, se produce una pérdida de gas al exterior, puesto que siempre se administra algo más de flujo de gas fresco (oxígeno) que el estrictamente captado por el paciente, así que, en realidad, el anestésico suministrado puede considerarse que es igual a la suma del anestésico consumido por el paciente y el anestésico vertido al exterior.
Por consiguiente, en una realización particular del método objeto de esta invención, la cantidad de anestésico aportada al circuito (CAAC) es igual a la cantidad total de anestésico consumido por el paciente más la cantidad de anestésico vertida al exterior, y, por tanto, puede expresarse mediante la ecuación [5]:
CAAC = ( %FI-%FE) xVAIlV + [ FGF- ( ( %02 insp-%02 esp) xVM) ] x%FE [ 5 ]
(Anestésico (Anestésico vertido) consumido)
donde
CAAC, %FI, %FE, VALV, FGF y VM tienen los significados indicados previamente; 02 insp es la fracción de oxígeno inspirado, aportado por el flujo de gas fresco; y °2 esp es Ia fracción de oxígeno espirado por el paciente.
Como puede apreciarse en la ecuación [5], cuanto más se acerca la cantidad de oxígeno suministrado por el flujo de gas fresco a la cantidad de oxígeno consumido por el paciente, menor es el oxígeno vertido al exterior y, por tanto, la eficiencia será máxima.
El aporte de la cantidad de anestésico al circuito se efectúa, según la presente invención, mediante la apertura del dial del vaporizador del anestésico. Esto constituye una diferencia sustancial con la forma clásica de aportar el anestésico al circuito que consiste en aumentar el flujo de gas fresco, y, aunque así se consigue un aumento rápido de la fracción inspirada, ese efecto se consigue a expensas de perder por la válvula de expulsión de gases todo el sobrante de oxígeno con una concentración importante del anestésico correspondiente. La invención proporciona, de forma definitiva, un ahorro muy considerable de anestésico ya que al no aumentar nunca el FGF no se vierte anestésico al exterior. A diferencia de la establecido habitualmente, la presente invención pone de manifiesto que modificando la apertura del dial para variar las concentraciones del anestésico (y no el flujo de gas fresco) se consigue un modelo exacto, ecológico y eficiente de aporte de anestésico al sistema.
Finalmente, el anestésico volátil aportado por el vaporizador se mezcla con el flujo de gas fresco, que lo arrastra, antes de ser introducido en el paciente.
El método de la invención no se realiza sobre el cuerpo humano o animal puesto que se lleva a cabo en una etapa anterior a la introducción del anestésico en el paciente, es adecuado para cuantificar, controlar y optimizar el consumo de anestésico, y, por tanto, puede establecer las bases para una posible automatización de una estación de trabajo de anestesia que funcione con un circuito circular a bajos fluidos . El método de la invención presenta numerosas ventajas, entre las que se encuentran:
- bajo consumo de anestésico;
- pérdida mínima de anestésico, ya que como el paciente no consume más de 300 mi de oxígeno por minuto, cada vez que se aporta al circuito valores muy superiores a dicha cifra (lo que tiene lugar cuando el control de aporte del anestésico al circuito se efectúa aumentando el flujo de gas fresco) , el resto es vertido al exterior con una concentración de anestésico igual a la de la fracción espirada por el paciente de anestésico. Al controlar el aporte de anestésico variando el dial del vaporizador, y sin aumentar el flujo de gas fresco más allá de 500 mi de oxígeno, la pérdida de anestésico es mínima;
- reducción de la emisión al exterior de anestésico lo que supone (i) una reducción de la contaminación del quirófano, que contribuye a la mejora de la salud laboral, y (ii) una reducción de la contaminación medioambiental no sólo por la considerable reducción en la emisión de los compuestos clorofluorocarbonados (CFCs) constituyentes de algunos anestésicos halogenados, que representan, aproximadamente, el 0,1% del total de CFCs vertidos a la atmósfera, contribuyendo de esta manera a preservar la capa de ozono, sino además, porque debido a que la mezcla anestésica no contiene protóxido de nitrógeno se elimina de la atmósfera un compuesto nitrogenado que contribuye al efecto invernadero;
- mejora en la temperatura y humidificación del gas que respira el paciente durante la anestesia, manteniéndose en unos valores de temperatura (28-322C) y humedad relativa (17- 30 mg H20/1) que se aproximan a los valores óptimos, puesto que, como es bien conocido, cuanto más alto es el flujo de gas fresco más frío y seco es el aire respirado por el paciente lo que provoca una pérdida de calor y una desecación de la mucosa bronquial; y
- contribuye a mejorar la monitorización debido a la homogeneidad y estabilidad de la mezcla de gases inspirados.

Claims

10 REIVINDICACIONES
1. Un método de control automático para el aporte de un anestésico volátil a un circuito cerrado de anestesia a bajos flujos, que comprende la etapa de mezclar gas fresco y anestésico volátil antes de su introducción en el paciente, caracterizado porque: a) se fija el volumen minuto a respirar por el paciente; b) se fija automáticamente el flujo de gas fresco en el 10% del volumen minuto fijado; c) se determinan las fracciones inspirada (%FI) y espirada (%FE) por el paciente de anestésico volátil; d) se abre el dial del vaporizador de anestésico al valor resultante de multiplicar por 10 el diferencial de las fracciones inspirada (%FI) y espirada (%FE) por el paciente de anestésico volátil, variando, en la misma relación, la apertura de dicho dial cada vez que varía dicho diferencial de las fracciones inspirada (%FI) y espirada (%FE) por el paciente de anestésico volátil; e) se aporta al circuito una cantidad de anestésico que cubre, al menos, la cantidad total de anestésico consumido por el paciente, mediante la apertura del dial del vaporizador del anestésico; y f) se mezcla la cantidad de anestésico con el flujo de gas fresco antes de introducirlo en el paciente.
2. Método según la reivindicación 1, en el que la cantidad total de anestésico consumido por el paciente viene determinada por la ecuación [2]:
CTAC = (%FI - %FE) X Vωv [2]
donde
CTAC es la cantidad total de anestésico consumido por el paciente;
%FI es la fracción inspirada por el paciente de anestésico;
%FE es la fracción espirada por el paciente de 11 anestésico; y
VAV es el volumen alveolar de ventilación.
3. Método según la reivindicación 1, en el que la cantidad de anestésico aportada al circuito viene determinada por la ecuación [3]:
CAAC = FGF x %dial [3]
donde
CAAC es la cantidad de anestésico aportada al circuito;
FGF es el flujo de gas fresco; y
%dial representa la concentración de anestésico a la salida del vaporizador del anestésico.
4. Método según la reivindicación 1, en el que la cantidad de anestésico aportada al circuito viene determinada por la ecuación [5]:
CAAC = (%FI-%FE)XVALV + [ FGF- ( (%02 ιnsp-%02 esp) XVM) ] X%FE [5]
donde
CAAC es la cantidad de anestésico aportada al circuito;
%FI es la fracción inspirada por el paciente de anestésico;
%FE es la fracción espirada por el paciente de anestésico;
Valv es el volumen alveolar de ventilación;
FGF es el flujo de gas fresco; 02 insp es la fracción de oxígeno inspirado, aportado por el flujo de gas fresco;
02 esp es la fracción de oxígeno espirado por el paciente; y
VM es el volumen minuto respirado por el paciente.
PCT/ES1999/000095 1998-04-14 1999-04-14 Metodo de control automatico para el aporte de anestesico a un circuito cerrado a bajos flujos WO1999052580A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99913318A EP1072279B1 (en) 1998-04-14 1999-04-14 Automatic control device for supplying anaesthetic to a low flow-type closed circuit
DE69941840T DE69941840D1 (de) 1998-04-14 1999-04-14 Automatische kontrollvorrichtung für die zugabe eines anästethikums an einen geschlossenen kreislauf mit geringer strömung
US09/673,525 US6523537B1 (en) 1998-04-14 1999-04-14 Automatic control method for supplying anaesthetic to a low flow-type closed circuit
AT99913318T ATE452675T1 (de) 1998-04-14 1999-04-14 Automatische kontrollvorrichtung für die zugabe eines anästethikums an einen geschlossenen kreislauf mit geringer strömung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES009800782A ES2139540B1 (es) 1998-04-14 1998-04-14 Metodo de control automatico para el aporte de anestesico a un circuito cerrado a bajos flujos.
ESP9800782 1998-04-14

Publications (1)

Publication Number Publication Date
WO1999052580A1 true WO1999052580A1 (es) 1999-10-21

Family

ID=8303449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000095 WO1999052580A1 (es) 1998-04-14 1999-04-14 Metodo de control automatico para el aporte de anestesico a un circuito cerrado a bajos flujos

Country Status (6)

Country Link
US (1) US6523537B1 (es)
EP (1) EP1072279B1 (es)
AT (1) ATE452675T1 (es)
DE (1) DE69941840D1 (es)
ES (1) ES2139540B1 (es)
WO (1) WO1999052580A1 (es)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232064A1 (en) * 2001-10-17 2003-12-18 Burns William H. Suppression of human activity in an enclosed space
FR2858236B1 (fr) * 2003-07-29 2006-04-28 Airox Dispositif et procede de fourniture de gaz respiratoire en pression ou en volume
CN101468221B (zh) * 2007-12-29 2013-10-23 北京谊安医疗系统股份有限公司 麻醉吸收回路
US8457706B2 (en) * 2008-05-16 2013-06-04 Covidien Lp Estimation of a physiological parameter using a neural network
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8434479B2 (en) 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8469031B2 (en) * 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8439037B2 (en) * 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
USD653749S1 (en) 2010-04-27 2012-02-07 Nellcor Puritan Bennett Llc Exhalation module filter body
USD655405S1 (en) 2010-04-27 2012-03-06 Nellcor Puritan Bennett Llc Filter and valve body for an exhalation module
USD655809S1 (en) 2010-04-27 2012-03-13 Nellcor Puritan Bennett Llc Valve body with integral flow meter for an exhalation module
US8770192B2 (en) * 2011-01-10 2014-07-08 General Electric Company System and method of preventing the delivery of hypoxic gases to a patient
US9233218B2 (en) 2011-01-10 2016-01-12 General Electric Comapny System and method of controlling the delivery of medical gases to a patient
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
EP2682147B1 (en) * 2012-07-06 2019-03-13 General Electric Company System for controlling the delivery of medical gases to a patient
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
JP6253029B2 (ja) * 2015-01-21 2017-12-27 大陽日酸株式会社 麻酔器用取付キット
DK3259000T3 (da) * 2015-03-31 2023-01-30 Fisher & Paykel Healthcare Ltd Apparat til høj gasstrømning
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
US11896767B2 (en) 2020-03-20 2024-02-13 Covidien Lp Model-driven system integration in medical ventilators

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0397011A2 (de) * 1989-05-10 1990-11-14 Drägerwerk Aktiengesellschaft Anästhesiebeatmungsgerät mit Atemkreislauf und Regelkreisen für Anästhesiegasbestandteile
WO1992011887A1 (en) * 1991-01-03 1992-07-23 Olof Werner Method and apparatus for controlling the concentration of at least one component in a gas mixture in an anaesthetic system
EP0496336A1 (en) * 1991-01-25 1992-07-29 Siemens-Elema AB Apparatus for the administration of a respiratory gas and at least one anaesthetic
DE4109629A1 (de) * 1991-03-23 1992-09-24 Draegerwerk Ag Narkosenmittelverdunster mit selbsttaetiger abschaltvorrichtung
EP0545567A1 (en) * 1991-11-15 1993-06-09 Instrumentarium Corporation Method and apparatus for metering an anaesthetic to a patient
EP0716861A1 (en) * 1994-11-21 1996-06-19 Ohmeda Inc. Pump flow vaporiser
EP0832662A2 (en) * 1996-09-26 1998-04-01 Ohmeda Inc. Anaesthesia systems
EP0835672A2 (en) * 1996-10-11 1998-04-15 Ohmeda Inc. Anaesthesia delivery system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1224478A (en) * 1967-11-29 1971-03-10 Cyprane Ltd Improvements in volatile anaesthetic vapourising apparatus
GB2084469B (en) * 1980-09-09 1984-02-01 Medishield The Corp Ltd Anaesthetic vaporiser
DE3378999D1 (en) * 1982-07-30 1989-02-23 Ronald Dunbar Rae Fluid flow regulator
US5293865A (en) * 1988-04-22 1994-03-15 Dragerwerk Ag Coding for an anesthetics device
US4932398A (en) * 1988-12-23 1990-06-12 Dentsply Limited Anaesthetic vaporizer interlock system and connector for anaesthetic apparatus
DE69103061T2 (de) * 1990-03-27 1994-11-17 Boc Group Plc Narkosemittelverdunster.
EP0469797B2 (en) * 1990-08-02 2001-12-12 Datex-Ohmeda Inc. Anaesthetic vaporiser
GB2276555B (en) * 1993-04-02 1997-04-09 Boc Group Plc Improvements in anaesthetic vaporisers
US6131571A (en) * 1997-04-30 2000-10-17 University Of Florida Ventilation apparatus and anesthesia delivery system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0397011A2 (de) * 1989-05-10 1990-11-14 Drägerwerk Aktiengesellschaft Anästhesiebeatmungsgerät mit Atemkreislauf und Regelkreisen für Anästhesiegasbestandteile
WO1992011887A1 (en) * 1991-01-03 1992-07-23 Olof Werner Method and apparatus for controlling the concentration of at least one component in a gas mixture in an anaesthetic system
EP0496336A1 (en) * 1991-01-25 1992-07-29 Siemens-Elema AB Apparatus for the administration of a respiratory gas and at least one anaesthetic
DE4109629A1 (de) * 1991-03-23 1992-09-24 Draegerwerk Ag Narkosenmittelverdunster mit selbsttaetiger abschaltvorrichtung
EP0545567A1 (en) * 1991-11-15 1993-06-09 Instrumentarium Corporation Method and apparatus for metering an anaesthetic to a patient
EP0716861A1 (en) * 1994-11-21 1996-06-19 Ohmeda Inc. Pump flow vaporiser
EP0832662A2 (en) * 1996-09-26 1998-04-01 Ohmeda Inc. Anaesthesia systems
EP0835672A2 (en) * 1996-10-11 1998-04-15 Ohmeda Inc. Anaesthesia delivery system

Also Published As

Publication number Publication date
ES2139540B1 (es) 2000-09-01
US6523537B1 (en) 2003-02-25
EP1072279B1 (en) 2009-12-23
EP1072279A1 (en) 2001-01-31
ATE452675T1 (de) 2010-01-15
DE69941840D1 (de) 2010-02-04
ES2139540A1 (es) 2000-02-01

Similar Documents

Publication Publication Date Title
WO1999052580A1 (es) Metodo de control automatico para el aporte de anestesico a un circuito cerrado a bajos flujos
US20030145853A1 (en) Expiration- dependent gas dosage
CN205849947U (zh) 麻醉通气循环系统
JP2006518617A (ja) 制御式、および自発式換気時の心拍出量をより簡単に測定するための呼吸回路
CA2222948A1 (en) Ventilator device
Aldrete et al. Humidity and temperature changes during low flow and closed system anaesthesia
US7367335B2 (en) Therapeutic agent delivery device and method
US9114222B2 (en) Phasic respiratory therapy
CN205924634U (zh) 麻醉呼吸回路结构
Chalon Low humidity and damage to tracheal mucosa.
US7533669B2 (en) Gas delivery system and method
US20060150977A1 (en) Respiratory assist device and method of providing respiratory assistance
WO2014066969A1 (pt) Circuito respiratório para aparelhos de anestesia
Kuo et al. Aerosol, humidity and oxygenation
Baraka Functional classification of anaesthesia circuits
Shanks et al. Airway Heat and Humidity during Endotracheal Intubation: I. Inspiration of Arid Gases via a Non-Rebreathing Circuit
Kuch et al. Respiratory Care Equipment
BARAKA et al. Automatic jet ventilation in children anaesthetized by the T‐piece circuit
Revell et al. Isoflurane in a circle system with low gas flow
Roth 15 ANESTHESIA DELIVERY SYSTEMS
BERRY JR et al. Humidification of anesthetic systems for prolonged procedures
Chaves et al. Oxygen Therapy in Cardiopulmonary Disease: A Statement by the Committee on Therapy
BARAKA Oxygen enrichment of entrained room air during Venturi jet ventilation of children undergoing bronchoscopy
Parameswari 03 BREATHING CIRCUITS
KAreti Anesthesia Breathing Systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999913318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09673525

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999913318

Country of ref document: EP