WO1999049370A1 - Control method and controller - Google Patents

Control method and controller Download PDF

Info

Publication number
WO1999049370A1
WO1999049370A1 PCT/JP1998/001224 JP9801224W WO9949370A1 WO 1999049370 A1 WO1999049370 A1 WO 1999049370A1 JP 9801224 W JP9801224 W JP 9801224W WO 9949370 A1 WO9949370 A1 WO 9949370A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
target value
values
control
time
Prior art date
Application number
PCT/JP1998/001224
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiko Futatsugi
Hiroo Sato
Original Assignee
Adtex, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adtex, Inc. filed Critical Adtex, Inc.
Priority to AU64210/98A priority Critical patent/AU6421098A/en
Priority to JP52349198A priority patent/JP3352699B2/en
Priority to PCT/JP1998/001224 priority patent/WO1999049370A1/en
Publication of WO1999049370A1 publication Critical patent/WO1999049370A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric

Definitions

  • an operation value is calculated by changing a target value that rapidly changes beyond an allowable gradient to within an allowable limit. It relates to a control method that more accurately matches the target value and a control device using that method.
  • the control device inputs a target value (S), a control value (R), and a disturbance value (B), and stores a storage device (M) using these and an operation value (C). Finds and outputs C that matches S and R with the arithmetic unit (X) that has it.
  • the values used in control calculations differ from the input / output values from the device. For example, a value measured as a voltage value or a current value is converted into a power value and then operated, and the value calculated as the power value is converted into an AC phase value and output. Calculation is performed by converting the electromotive force of the thermocouple into a temperature. In order to increase the signal-to-noise ratio, the measurement values are averaged before calculation. Converts the result obtained by real number arithmetic into an integer and outputs it. And so on.
  • the conversion by such input / output is performed by using a well-known method or a trivial method by selecting the control system. Will also mean.
  • Control values, manipulated values, disturbance values, etc. form a time series that continues from the past, passes through the present, and continues into the future.
  • control has a starting point, and it is not necessary to mention an infinite past within a reasonable approximation.
  • Division is obtained by solving the multiplication method from the first term side.
  • a sequence in which all but the 0th term is 0 is identified with the numerical value (scalar) of the 0th term, and the numerical value represents the sequence.
  • 1 represents a sequence where the 0th term is 1 and all other terms are 0.
  • the definition of multiplication is the definition of scalar product.
  • N represents a sequence where the first term is 1 and all other terms are 0.
  • the product of a reciprocal of ⁇ and an arbitrary sequence a is the sum of a.
  • ⁇ ⁇ a ⁇ aA s + aA s + , + * ⁇ ⁇ + (AS is the first place of a) (5)
  • the term itself is not 0, the term whose future side is all 0 than that term (final term and A sequence with the term number and its terminator is called a finite sequence. Since a finite sequence is not zero, it has a first term and the number of nonzero terms is finite. Next, this sequence is used to express the transfer equation.
  • the transfer equation is an equation that relates the cause (operation value c, disturbance b) and the result (control value r).
  • the cause and effect shall represent the difference (change amount) at each time point.
  • the second item is the change in c that occurred two times before time n (- This indicates that the effect (f 2 ) after two points in 2 ) is realized at the n-th point ().
  • the available energy (exergy) in the natural world is constantly decreasing, the resulting change caused by the finite changes will eventually stop exponentially.
  • (11) has r on both the left and right sides.
  • (11) indicates that external causes c and b change to internal causes. The result remains even after the external cause disappears due to the internal cause.
  • d 'can be called the response function of the memory effect
  • f' and g 'can be called the response functions of the operation and disturbance considering the memory effect.
  • (11) only needs to go back a certain amount in the past.
  • ⁇ -r ⁇ -f-c + ⁇ -g-b
  • ⁇ ⁇ b is the amount of change (difference) of the cause
  • ⁇ ⁇ b is the sum of the The raw value (actual value) to be generated.
  • the time series that represents the result when the cause is increased by 1 during the point in time in terms of a pulse and is returned at the next point in time is called the pulse response function, and the time series when the cause is not returned is called the step response function.
  • d ', f', g ',; f, 9, h are the changes (differences) in the result (step response function) when not returned, and are a pulse response function.
  • the relationship between the pulse response function and the step response function, and the relationship between the amount of change in the cause or result and the actual value (the raw value of the measurement or setting) is the relationship between the difference and the sum.
  • the pulse response function and the amount of change in cause and effect are expressed in lowercase letters, and the step response function and the actual value of the cause and effect are expressed in uppercase letters.
  • Operate values C and c are the last time points and the manipulated values when the manipulated values are not changed in the future (no operation) If R and R are measured values from the past to the present and control values indicating the prediction when no operation is performed, it can be calculated sequentially from the first time point to any Q time point.
  • CE Q Q — P it can be obtained by using the least squares method with (16) as the observation equation.
  • the last (current) manipulated value Co C- + c '. Is output and controlled.
  • the finite settling method is known as the former example, and the optimal control method is known as the latter example.
  • the delay caused by the operation means being at the limit value, the delay caused by a sudden change of the target value so that the response cannot be made in time, and the excessive response (overshoot) caused by noise or insufficient accuracy of the response function are stopped. It is a phenomenon that cannot be obtained. However, if the programmed values follow the programmed and known targets, but the operating values have not reached their limits, there should be some improvement.
  • switchback (2) can be reduced.
  • Overshoot ( 3) is a recoil caused by turning back, so it is automatically reduced by corner cutting.
  • ⁇ , () indicates that the sum is taken for j in ().
  • This method calculates the value corresponding to the P + i time point of a curve such as a quadratic curve or a cubic curve that passes through some time points near the P + i time point (sometimes excluding the P + i time point). Includes the method of limiting, or using the method of least squares to limit the value corresponding to the point P + i of such a curve.
  • Determining the weights (a, J) that fit these curves is a well-known method that can be obtained by finding a linear equation with the weights as unknowns (the former) or the inverse matrix of the least squares structural equation (the latter). is.
  • the other is the value obtained by subtracting the maximum allowable slope from the time point P + i + 1, starting from the time point before the time point Q + 1 before the time point P.
  • T P + j S P + i + 1 - ⁇ j (M,, j 'sgn (sp + i + j )) (20).
  • the first term on the right side of (20) is a special case of weighted averaging.
  • the value obtained by subtracting the linear expression of the sign of the difference between the target value from the weighted average of the values is the limit value.
  • the target value at the P + i time is between the limit value at the P + i time point and the target value at the P + i + 1 time point (in some cases, the limit value has been corrected). You do not need to change it if the change is moderate. Therefore, usually
  • FIG.2 shows the case where only the point in time was changed from A to B as necessary.
  • the target value is indicated by a polygonal line, and the control value is indicated by a curve.
  • F I G. 1 is the block diagram of the control equipment »
  • FI G. 2 is a graph explaining the setting by the conventional method. 1: Target value 2: Switch back 3: Overshoot
  • Target value before correction B: Target value after correction Best mode for carrying out the invention
  • the end point of the memory effect which can be easily implemented, is selected as 1 and the target value changes in a time series.
  • the target value changes in a time series.
  • R 3 R 2 + d '1 ⁇ (R 2 -i) + g', 'bii + g' 2 * b, + g ' 3 * bo Next, evacuation of target value, calculation of limit value and target value Fix
  • the limit value is calculated using the following coefficient.
  • C '0 ⁇ (f, + f 2)' (S 2 -R 2 ) — f 1-(S 3 -R 3 ) ⁇ / ⁇ (f 1 + f 2 ) 2 -f, «(f, + f 2 + f 3 ) ⁇

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

In order that a manipulated value which makes the estimated value of a controlled value agree with a target value (1) is calculated, a limit value which is obtained by subtracting a liner expression of the sign of the difference of the target values from the weighted mean of the target values is found at a plurality of timings using the controlled value, the manipulated value and usable disturbance value. If the target value is not between the target value or the limit value of the next timing and the limit value of the present timing, the target value (A) is changed to the limit value (B). By calculating the manipulated value by using the changed target value, a control by which the increase before a sudden decrease, the decrease before a sudden increase (2), the overshoot when the target value (3) is reached, the delay of follow up (3), etc. can be suppressed is realized.

Description

明 細 s 制御方法とその装置 技術分野  Description s Control method and device
この発明は、 時系列で変化する目標値に制御値を追随させる制御にお いて、 許容勾配を超えた急激な変化をする目標値を、 許容限度内に変更 して操作値を計算することにより、 より正確に目標値に一致させる制御 方法とその方法を用いた制御装 に関します。 背景技術  According to the present invention, in a control in which a control value follows a target value that changes in a time series, an operation value is calculated by changing a target value that rapidly changes beyond an allowable gradient to within an allowable limit. It relates to a control method that more accurately matches the target value and a control device using that method. Background art
制御装置は、 F I G . 1 に示すように、 目標値 ( S ) , 制御値 ( R ) 及び外乱値 ( B ) を入力し、 これらと操作値 ( C ) とを用いて記憶装置 ( M ) をもつ演算装置 ( X ) で Sと Rとを一致させる Cを求めて出力し ます。  As shown in FIG. 1, the control device inputs a target value (S), a control value (R), and a disturbance value (B), and stores a storage device (M) using these and an operation value (C). Finds and outputs C that matches S and R with the arithmetic unit (X) that has it.
制御の演算で用いる値と装置からの入出力値とが異なる場合が少なくあ りません。 例えば、 電圧値又は電流値として測定した値を電力値に換算 してから演算し、 電力値として算出された値を、 交流の位相値に換算し て出力する。 熱電対の起電力を温度に換算して演算する。 信号ノ雑音比 を大きくするために、 測定値を平均化処理をしてから演算する。 実数澳 算で求めた結果を整数化して出力する。 等々です。 In many cases, the values used in control calculations differ from the input / output values from the device. For example, a value measured as a voltage value or a current value is converted into a power value and then operated, and the value calculated as the power value is converted into an AC phase value and output. Calculation is performed by converting the electromotive force of the thermocouple into a temperature. In order to increase the signal-to-noise ratio, the measurement values are averaged before calculation. Converts the result obtained by real number arithmetic into an integer and outputs it. And so on.
このような入出力での換箅は、 公知あるいは制御系の選択により自明な 手法を用いることになりますので、 惯例に従って、 演算数値を入出力す ると言う表現で、 換算値の入出力をも意味することにします。 The conversion by such input / output is performed by using a well-known method or a trivial method by selecting the control system. Will also mean.
最近では、 より精密で高速な制御を実現するために、 従来の P I D制御 に代わって、 応答関数を求め、 それによつて制御慷を予測し、 予測値を 目標値に一致させる制御値を算出することが行われています。 予測値を目標値に一致させる方法を説明します。 Recently, in order to realize more precise and high-speed control, instead of the conventional PID control, a response function has been obtained, and the usefulness of the control has been predicted. Calculating the control value that matches the target value is being performed. Learn how to match forecasts to goals.
制御値、 操作値、 外乱値等は、 過去から現在を通り未来に続く時系列を なします。 Control values, manipulated values, disturbance values, etc., form a time series that continues from the past, passes through the present, and continues into the future.
これらの関係を、 項番号が正負両側に無限に続き、 過去を小さな項番号 で、 未来を大きな項番号で表した両無限数列を用いて表します。 These relations are expressed using a bi-infinite sequence in which the term numbers continue infinitely on both the positive and negative sides, the past is represented by small term numbers, and the future is represented by large term numbers.
ただし、 制御には、 開始時点がありますし、 適当な近似の範囲では無限 の過去にまで言及する必要がありません。 However, the control has a starting point, and it is not necessary to mention an infinite past within a reasonable approximation.
そこで、 両無限数列として、 次の数列のみを考えます。 Therefore, we consider only the next sequence as both infinite sequences.
A ) それよりも小さい項番号の項がすべて 0になる、 0でない項 (初項 と言い、 その項番号を初位と言う) がある数列 (左正則数列) A) A sequence (left regular sequence) with non-zero terms (called the first term, and the term number is called the first place), where all the terms with smaller term numbers become 0
{•••,0,0,0,aA
Figure imgf000004_0001
S + t ,aAs + 2 , ' * - }
{•••, 0,0,0, aA
Figure imgf000004_0001
S + t, aAs + 2, '*-}
B ) すべての項が 0である数列 ( 0で表す) B) A sequence in which all terms are 0 (represented by 0)
0≡ {··· ,0,0,0, ···}  0≡ {··, 0,0,0, ···}
加法( + ), 減法(一), 乗法( · ), 除法( )を次式で定義します。
Figure imgf000004_0002
Addition (+), subtraction (1), multiplication (·), and division () are defined by the following formula.
Figure imgf000004_0002
a · b = b · a = { }ミ { · · · , 0 , CA s + e s, · · · , ",♦ · · }  a · b = b · a = {} mi {· · ·, 0, CA s + e s, · · ·, ", ♦ ·}
= { ··· , 0 , dA S be S , · · · . aA s bk - A S+ A S + l bk - A S - l+' ^ '+ak- B s B S , · · · } a / b = {c } = { ·♦· ,0,CA S - B S , CA S - B S + , ♦ · · , CA s - e s + k , ♦ · · } = {···, 0, dA S be S, · · · aA s bk -. A S + AS + l bk - AS - l + '^' + ak- B s BS, · · ·} a / b = { c} = {· ♦ ·, 0, CA S -BS, CA S -BS +, ♦ ·, CA s -es + k, ♦ ·}
ミ {•••,0,aAs/bB s , (aAs+ i - be s+ i CA s - B S)ゾ be s,* - *  M {•••, 0, aAs / bBs, (aAs + i-bes + iCAs-BS) zobes, *-*
, ( 3A S + k - bB S +, C A S - B S + k - 1 - · · · - bB S + k CA S - B S )Zbe S,* * * } 乗法は、 いわゆる叩き込み convolution で定義されています。  , (3A S + k-bB S +, CAS-BS + k-1-· ·-bB S + k CA S-BS) Zbe S, * * *} Multiplication is defined by the so-called hammering convolution .
除法は、 乗法を初項側から解いて得られます。 Division is obtained by solving the multiplication method from the first term side.
この演算は、 0による除算ができず、 分配法則、 結合法則、 加乗法の交 換法則を満たし、 普通の代数式の計算と同じように計算できます。 正負の累乗を乗法と除法の繰り返しで実数と同じように定義します。 a ' b = 0であれば、 a = 0又は b = 0が成り立ちます。 This operation does not divide by zero, satisfies the rules of distribution, associative, and multiplication, and can be calculated like ordinary algebraic expressions. Defines positive and negative powers as if they were real numbers by repeating multiplication and division. If a'b = 0, then a = 0 or b = 0.
第 0項以外がすべて 0となる数列を第 0項の数値 (スカラー) と同一視 し、 その数値で数列を表します。 A sequence in which all but the 0th term is 0 is identified with the numerical value (scalar) of the 0th term, and the numerical value represents the sequence.
例えば、 1 で、 第 0項が 1 で他のすべての項が 0の数列を表します。 この同一視で、 乗法の定義がスカラー積の定義になります。 For example, 1 represents a sequence where the 0th term is 1 and all other terms are 0. By this identification, the definition of multiplication is the definition of scalar product.
第 1 項が 1 で他のすべての項が 0の数列を Nで表します。 N represents a sequence where the first term is 1 and all other terms are 0.
Nの m乗は第 m項だけが 1 で他の項は 0となり、 任意の数列 a との積 N m · {aj = {a„—„}が、 aの m時点前を表す数列になります。 The m-th power of N is 1 only for the m-th term and 0 for the other terms, and the product N m · {aj = {a „—„} with an arbitrary sequence a is a sequence that represents the time point m before a. You.
Nの一 1 乗が、 Z変換の Z演算子になりますので、 Zで表します。 Since the first power of N is the Z operator of the Z transformation, it is represented by Z.
Zョ 1 //N - N— ' Z m · {an} = {a„ + m} ( 2 ) 数列厶≡ 1 一 Nと任意の数列 a との稽が、 数列 aの差分になります。 Z ョ 1 // N-N— 'Z m · {a n } = {a „ + m } (2) Sequence ≡ 1 The difference between N and any sequence a is the difference between the sequence a .
A* a = a — Ν · a = {an— a ( 3 ) Δの逆数∑と任意の数列 a との積∑ · aは、 aの和分になります。 A * a = a — Ν · a = {a n — a (3) The product of a reciprocal of Δ and an arbitrary sequence a is the sum of a.
∑ョ 1 ΖΔ = 1 / ( 1 — Ν ) = {··· ,0,0,1,1,1 ··. 初位 = 0 } ( 4 ) ∑ 1 ΖΔ = 1 / (1 — Ν) = {···, 0,0,1,1,1, ··· First place = 0} (4)
∑ · a = {aA s + aA s+ , + * · · + (ASは aの初位) ( 5 ) 自身は 0ではないが、 その項よりも未来側がすべて 0になる項 (終項と 苜ぃ、 その項番号を終位と霣ぅ) がある数列を有限数列と言います。 有限数列は 0でないので、 初項があり、 0でない項の数は有限個です。 次に、 この数列を用いて、 伝達方程式を表現します。 ∑ · a = {aA s + aA s + , + * · · + (AS is the first place of a) (5) Although the term itself is not 0, the term whose future side is all 0 than that term (final term and A sequence with the term number and its terminator is called a finite sequence. Since a finite sequence is not zero, it has a first term and the number of nonzero terms is finite. Next, this sequence is used to express the transfer equation.
伝達方程式は、 原因 (操作値 c , 外乱 b ) と結果 (制御値 r ) とを関係 づける方程式です。 The transfer equation is an equation that relates the cause (operation value c, disturbance b) and the result (control value r).
何の変化もないことを 0で表現するために、 原因や結果は、 各時点毎の 差分 (変化量) を表すものとします。 In order to express zero that there is no change, the cause and effect shall represent the difference (change amount) at each time point.
c =い · ·,0,ccs , · · · ,co ,c, , · · · } b = { · · · ,0, ss , · · · , bo , bi ,♦ · · } r = {·.·,0, rRS ,…, r0, r' ,… } ( 6 ) 線形性と重ね合わせの原理を仮定すると、 初位が 1 以上の数列 f , gを 応答関数 (原因が生じた後の効果を表す時系列) にして、 c = i · · · 0, ccs, · · ·, co, c,, · · ·} b = {· ·, 0, ss, · · ·, bo, bi, ♦ · r} { . ·, 0, r RS ,…, r 0 , r ′,…} (6) Assuming the principle of linearity and superposition, the sequence f, g whose first rank is 1 or more is defined as a response function (a time series representing the effect after the cause occurs), and
f =い · ·,0, f , , f 2, f 3 ,… } , g = {…, 0 , g , , g2 , g3 ,… } 、 7 ) 伝達方程式が次のようになります。 f = i · ·, 0, f,, f 2 , f 3,…}, g = {…, 0, g,, g 2 , g 3 ,…}, 7) The transfer equation is .
r = {r„}= f - c + g - b  r = {r „} = f-c + g-b
= { f 1 · C r> - 1 + T 2 ' C n - 2 + • • * + f r - C S , Cc S = {f 1 · C r>-1 + T 2 'C n-2 + • • * + fr-CS , Cc S
+ g i * b n - i + g 2 * b n - 2 + • • • + g n - B s , bB s } ( 8 ) 例えば、 第 2項目は、 n時点より 2時点前に起きた cの変化( - 2)の 2 時点後の効果 (f2) が第 n時点 ( ) で実現することを表しています。 自然界は利用可能なエネルギー (ェクセルギー) が常に減少するので、 有限の変化によって引き起こされる結果の変化はやがて指数関数的に停 止します。 (エネルギー定理) + gi * bn-i + g 2 * bn-2 + • • • + gn-B s , bB s} (8) For example, the second item is the change in c that occurred two times before time n (- This indicates that the effect (f 2 ) after two points in 2 ) is realized at the n-th point (). As the available energy (exergy) in the natural world is constantly decreasing, the resulting change caused by the finite changes will eventually stop exponentially. (Energy theorem)
この定理を伝達方程式で表現すると、 次のようになります。 Expressing this theorem as a transfer equation,
f , = {.--,0) f , 1 , - - - ) f , PE,0,---} = f - ( l - d ' ) 有限数列 f , = (.--, 0 ) f , 1 ,--- ) f , PE, 0, ---} = f-(l-d ') finite sequence
g' = {''',0,g' , ,''',g'QE,0,'''} = g'(1— d') 有限数列 g '= {''', 0, g ' ,, ''', g ' QE , 0,'''} = g '(1—d') finite sequence
(!' = {·· · ,0,d' , , · · · ,d' DE,0, · · ·} 有限数列 ( 9 ) 1 - d' = ( 1 一 d, · N )·( 1 - d2 · N ) ( 1 一 d【 N ) (! '= {··, 0, d',, · ·, d ' DE , 0, ···}} Finite sequence (9) 1-d' = (1 d, · N) · (1 - d 2 · N) (1 one d [N)
0 < d , , d 2 , · · · ,CIDE< 1 (10) r = { r n } = f ' · c + g ' · b + d ' · r 0 <d,, d 2 , ···, CIDE <1 (10) r = {rn} = f '· c + g' · b + d '· r
= { f , 1 * C n - l + f, 2 * C n - 2 + = {f , 1 * C n-l + f , 2 * C n-2 +
+ g, -, + g, 2 · - 2 + + g ' b - Q  + g,-, + g, 2 ·-2 + + g 'b-Q
+ d, fr„ - i +d, 2 T n - 2 + - - - ++ d 0 ' DD EE T' T nn -- DD 6e }} (11) (10) 式で減衰を表し、 ( 9 ) で減衰が有限の時間内に起こることを表 しています。 ( 9 ) を伝達方程式に代入整理して (11) になります。 振動的減衰を含めれば、 (10) を絶対値が 1 未満の条件に変えます。 結果は必ず原因に遅れて生じるので、 応答関数の初位は 1 以上です。 有限数列 d', f g'の初位も 1 以上であるので、 これらを応答関数と考 え、 次のように解釈することができます。 + d , fr „-i + d , 2 T n-2 +---++ d 0 'DD EE T' T n n-DD 6 e}} (11) (10) (9) expresses that the damping occurs within a finite time, (9) is substituted into the transfer equation and rearranged to (11), and (10) becomes the absolute value if the vibrational damping is included. Is changed to a condition less than 1. Since the result always comes after the cause, the first order of the response function is 1 or more. Since the first order of the finite sequences d 'and f g' are also 1 or more, they can be considered as response functions and interpreted as follows.
( 11) には、 左辺と右辺の両方に rがあります。  (11) has r on both the left and right sides.
この原因であり、 かつ、 結果である r を内部原因と言うことにします。 We call the cause and the resulting r the internal cause.
( 11) は、 外部原因 c , bが、 内部原因に変化することを表します。 内部原因によリ、 外部原因が消滅した後も結果が残ります。  (11) indicates that external causes c and b change to internal causes. The result remains even after the external cause disappears due to the internal cause.
即ち、 内部原因は、 過去の外部原因があったことの記憶を表します。 d'を記憶効果の応答関数、 f ', g'を記憶効果を考慮した操作及び外乱の 応答関数と言うことができます。 In other words, internal causes represent memories of past external causes. d 'can be called the response function of the memory effect, and f' and g 'can be called the response functions of the operation and disturbance considering the memory effect.
( 8 ) は原因の初項から計算しなければなりませんので、 制御が進むと 計算量が膨大になります。  Since (8) must be calculated from the first term of the cause, the amount of calculation becomes enormous as control progresses.
しかし、 (11) は過去に一定量遡った値だけで済みます。 However, (11) only needs to go back a certain amount in the past.
( 11) を用いて、 応答関数 d', f g'を求める方法が知られています。  It is known to use (11) to find the response functions d 'and f g'.
高棰安人著 システムと制御 上、 下 岩波嘗店 1 9 7 8年 f , gは、 ( 9 ) の関係を用いて、 d', f ', g 'より算出します。  By Takato Yasuto System and control Shimoiwanami store 19778 f, g is calculated from d ', f', g 'using the relationship of (9).
通常、 制御周期毎に、 現時点を表すパラメータ π を 1 つ大きくするか、 現時点を第 0項に固定して原因と結果の数列を 1 項ずつずらします。 ここでは、 第 0項で現時点を表す表現法を用います。 Normally, for each control cycle, increase the parameter π representing the current time by one, or fix the current time to the 0th term and shift the sequence of cause and effect by one term. Here, the expression that represents the present time is used in Section 0.
目標値や制御値を差分で表現するより、 測定や設定する生の値 : 実値 ( 差分の和分) で表現したほうが分かりやすいので、 伝達方程式の和分を 採ります。 Rather than expressing the target value or control value as a difference, it is easier to express the raw value to be measured or set: the actual value (sum of the difference), so the sum of the transfer equation is used.
∑ - r = ∑ - f - c + ∑ - g - b  ∑-r = ∑-f-c + ∑-g-b
= ∑ -f ' · c + ∑ -g' · b + ∑ -d' · r ( 12) 三つの数列の穣、 例えば∑ ' g * bは、 演算法則により、 ∑ · g と bとの 積とも、 g と∑ · bとの積とも考えることができます。  = ∑ -f '· c + ∑ -g' · b + ∑ -d '· r (12) The yield of three sequences, for example ∑' g * b, is the product of ∑ · g and b Can be thought of as the product of g and ∑ · b.
bは、 原因の変化量 (差分) ですが、 ∑ · bはその和分、 実際に測定さ れる生の値 (実値) です。 b is the amount of change (difference) of the cause, ∑ · b is the sum of the The raw value (actual value) to be generated.
原因をパルス的に〗 時点の間 1 だけ大きく し、 次時点で戻したときの結 果を表す時系列をパルス応答関数と言い、 戻さなかったときの時系列を ステツプ応答関数と言います。 The time series that represents the result when the cause is increased by 1 during the point in time in terms of a pulse and is returned at the next point in time is called the pulse response function, and the time series when the cause is not returned is called the step response function.
d' , f ', g', ; f , 9, hは、 戻さなかったときの結果 (ステップ応 答関数) の変化量 (差分) で、 パルス応答関数になっています。 d ', f', g ',; f, 9, h are the changes (differences) in the result (step response function) when not returned, and are a pulse response function.
パルス応答関数とステツプ応答関数との関係、 原因や結果の変化量と実 値 (測定や設定の生の値) との関係が、 差分と和分の関係になります。 パルス応答関数と原因や結果の変化量を英小文字で、 ステツプ応答関数 と原因や結果の実値を英大文字で表すことにします。 The relationship between the pulse response function and the step response function, and the relationship between the amount of change in the cause or result and the actual value (the raw value of the measurement or setting) is the relationship between the difference and the sum. The pulse response function and the amount of change in cause and effect are expressed in lowercase letters, and the step response function and the actual value of the cause and effect are expressed in uppercase letters.
R≡ ∑ · r r = A « = R - N - R R = N ' R十 r ( 13) 操作値 C, cを前時点を最後に今後操作値を変化させない場合 (無操 作時) の操作値、 Rを過去から現在迄の測定値と無操作時の予測を表す 制御値とすると、 第 1 時点から逐次、 任意の第 Q時点迄算出できます。  R≡ ∑ · rr = A «= R-N-RR = N 'R 10 r (13) Operate values C and c are the last time points and the manipulated values when the manipulated values are not changed in the future (no operation) If R and R are measured values from the past to the present and control values indicating the prediction when no operation is performed, it can be calculated sequentially from the first time point to any Q time point.
R = N · R +d' ·厶 · R + f ' 'c + g' 'b ( 14) このときに、 外乱値 bとして、 測定できる外乱であれば、 過去値や現在 値を、 計画的に引き起こされる外乱であれば過去値, 現在値, 未来値を 利用することができます。  R = N · R + d '· mm · R + f' 'c + g' 'b (14) At this time, if the disturbance b If the disturbance is caused by, the past value, present value, and future value can be used.
このような可知的外乱の影響が (14) の g' *bにより消去できます。 The effect of such intellectual disturbance can be eliminated by g '* b in (14).
C, c'を現時点以降の操作値 (過去は 0 ) 、 R'を cに続いて c'を実施し た場合の制御値 (過去と現在は測定値, 未来は予測値) としますと、 F 'c' - R'— R ( 15) となりますが、 第 P時点〜第 Q時点で、 有操作制御値 R'が目標値に一致 したとすると、 次式が成立します。 Let C, c 'be the manipulated value from the present time (past 0), and R' the control value when c 'is performed after c (measured values in the past and present, predicted values in the future), F 'c'-R'— R (15), but if the operative control value R 'matches the target value from the Pth point to the Qth point, the following equation is established.
{ F 'c ' = { S - R n= P〜Q ( 16) 今後の操作値 c'の終位を CEとすると、 未知数 c'0,c' ' ''',c'C E を、 CE= Q - Pの場合は(16)を連立一次方程式と考えることにより、 {F 'c' = {S-R n = P ~ Q (16) Assuming that the end of the future manipulated value c 'is CE, the unknowns c' 0 , c ''''',c' CE , In the case of CE = Q-P, by considering (16) as a system of linear equations,
CEく Q — Pの場合は、 ( 16) を観測方程式とした最小自乗法を用いるこ とにより求めることができます。  In the case of CE Q Q — P, it can be obtained by using the least squares method with (16) as the observation equation.
この直近 (現時点の) の操作値 Co = C- +c'。を出力して、 制御します。 前者の例として、 有限整定法が、 後者の例として最適制御法が知られて います。 ただし、 有限整定法は、 目標値が現時点以降不変 S == S。 · ∑の 場合で、 目標値を時系列化する場合が考慮されていません。 The last (current) manipulated value Co = C- + c '. Is output and controlled. The finite settling method is known as the former example, and the optimal control method is known as the latter example. However, in the finite settling method, the target value is invariable from the present time S == S. · In the case of ∑, time series of target values is not considered.
有限整定法では、 P = FE, Q = FE+ DE, CE= DE とします。 In the finite settling method, P = FE, Q = FE + DE, CE = DE.
この両方法とも、 前出の高橋安人氏の著香等に説明されています。 Both methods are explained in the book by Yasuto Takahashi mentioned above.
しかし、 (16) の目標値 Sに、 プログラム化された時系列を用いると、 F I G. 2に示す急激な減少の前の増加あるいは急激な増加の前の減少 ( 2 : 切り戻し) , 目標値に到達時の行き過ぎ ( 3 : 過剰応答, オーバ 一シュー ト) , 追随の遅れ ( 4 ) などの不都合が生じてしまいます。 この不都合は、 操作値が限界範囲内にある状態でも発生します。 However, if a programmed time series is used for the target value S of (16), the increase before the rapid decrease or decrease before the rapid increase shown in FIG. Inconveniences such as overshoot when reaching the value (3: excessive response, overshoot), and delay in following (4) may occur. This disadvantage occurs even when the operating values are within the limit range.
発明の開示 Disclosure of the invention
操作手段が限界値になっているために生じる遅れや応答が間に合わな い程に突然の目標値の変更による遅れ、 雑音や応答関数の精度不足によ る過剰応答 (オーバーシュート) は、 止むを得ない現象と言えます。 しかし、 プログラムで予定され、 予め分かっている目標値に追随するの に、 操作値が限界値に到達していなければ、 ある程度の改善の手段があ るはずです。  The delay caused by the operation means being at the limit value, the delay caused by a sudden change of the target value so that the response cannot be made in time, and the excessive response (overshoot) caused by noise or insufficient accuracy of the response function are stopped. It is a phenomenon that cannot be obtained. However, if the programmed values follow the programmed and known targets, but the operating values have not reached their limits, there should be some improvement.
現時点で制御値と目標値 Soとが一致しているとして、 滑らかな曲線で一 致すべき点を結ぶと、 F I G . 2の太い実線ような曲線になります。 このように、 第 P時点以前で切り戻しが生じる操作値が、 最も自然な整 定方程式 (16) の解になっていて、 実際に実現します。 Assuming that the control value and the target value So are the same at this point, connecting the points that should match with a smooth curve results in a thick solid curve of FIG.2. In this way, the manipulated value that causes a fallback before the time point P is the solution of the most natural settling equation (16) and is actually realized.
自動車で、 直角に曲がるときに、 曲がる方向の逆に一度ハン ドルを切ら ないと内輪差で脱輪を起こす状態に似ています。 In a car, when turning at a right angle, it is similar to a situation in which the driver must turn off the handle once in the opposite direction of the turn to lose the wheel due to the inner ring difference.
切り戻しが望ましくなければ曲がり角の隅を切らなければなりません。 目標値のプログラムに隅切 (すみき) り ( Aから Bへの変更) を入れる ことで、 切り戻し ( 2 ) を軽減できます。 If cutbacks are not desired, you must cut corners. By adding a corner cut (change from A to B) in the target value program, switchback (2) can be reduced.
オーバーシュート ( 3 ) は、 切り戻しによる反動ですので、 隅切りで自 動的に軽減されます。 Overshoot ( 3) is a recoil caused by turning back, so it is automatically reduced by corner cutting.
この隅切りは、 曲率の大きな部分で目標値の変化を先取り していますの で、 運れ ( 4 ) も小さくできます。 Since this corner cut is ahead of the change in the target value at the part with a large curvature, the carry (4) can also be reduced.
隈切リをするには、 2つの基本的な方法が考えられ、 この二方法を組み 合わせることができます。 There are two basic ways to do kumari, and you can combine these two methods.
1 つは、 目標値の加重平均  One is the weighted average of the target values
ΤΡ + Ι = ∑ ,(a, , i -SP+ j) ∑』(a,,』)= 1 ( 17) を限界値に採り、 変化を滑らかにする方法です。 ΤΡ + Ι = ∑, (a,, i -SP + j) ∑ ”(a ,,)) = 1 (17) is used as the limit value to smooth the change.
ここで、 ∑ ,()は()内の j について和をとることを表しています。 この方法は、 第 P + i 時点の近くの数時点 (第 P + i 時点を除くことも ある) を通る二次曲線や三次曲線のような曲線の第 P + i 時点に相当す る値を限界値にしたり、 最小自乗法でこのような曲線の第 P + i 時点に 相当する値を限界値にする方法を含みます。 Here, ∑, () indicates that the sum is taken for j in (). This method calculates the value corresponding to the P + i time point of a curve such as a quadratic curve or a cubic curve that passes through some time points near the P + i time point (sometimes excluding the P + i time point). Includes the method of limiting, or using the method of least squares to limit the value corresponding to the point P + i of such a curve.
これらの曲線に合う加重(a,, Jを決めることは、 加重を未知数とする一 次方程式 (前者) 又は最小自乗法の構造方程式の逆行列 (後者) を求め ることにより得られる公知の手法です。 Determining the weights (a, J) that fit these curves is a well-known method that can be obtained by finding a linear equation with the weights as unknowns (the former) or the inverse matrix of the least squares structural equation (the latter). is.
もう 1 つは、 第 P時点より先、 第 Q + 1 時点以前の時点より始めて、 第 P + i + 1 時点から許容最大勾配を差し引いた値 The other is the value obtained by subtracting the maximum allowable slope from the time point P + i + 1, starting from the time point before the time point Q + 1 before the time point P.
TP+ , = SP+ , + 1 - M , -sgn(sp+ , ) ( 18) sgn(X) =— 〗 (Xく 0), 0(X-0), + 1 (0< X) ( 19) を限界値に採り、 限界値によって生じる切り戻しを許容限度とします。 もしも、 第 P時点の目標値のみを、 この方法で修正するならば、 今まで の制御で階段的に目標値を変化させ、 切り戻しが許容値きリぎリとなる 目標値の差分 (変化量) の絶対値を SMAXとするとき、 M。 = SMAXとするこ とができます。 TP +, = SP +, +1-M, -sgn (sp + ,) (18) sgn (X) = —〗 (X 0 0), 0 (X-0), +1 (0 <X) (19) Is taken as the limit value, and the cutback caused by the limit value is regarded as an allowable limit. If only the target value at the Pth point is corrected by this method, the target value is changed stepwise by the control up to now, and the change back of the target value (the change when the absolute value of the amount) and S MAX, M. = S MAX .
( 18) の目標値 SP+, + ,が修正される場合を考慮すると、 一般的には Considering the case where the target value S P + , + , of (18) is modified, in general,
TP+ j = SP+i + 1 -∑ j(M, , j 'sgn(sp+ i + j)) (20) となります。 T P + j = S P + i + 1 -∑ j (M,, j 'sgn (sp + i + j )) (20).
(20) の右辺第 1 項は、 加重平均の特殊例になっています。  The first term on the right side of (20) is a special case of weighted averaging.
この 2つの方法を組み合わせると、 次式になります。 Combining these two methods gives:
TP+ i = ∑ j ((a', SP+') - M, , i -sgn(sp+i + i)) ∑ .(a, ,;)= 1 (21) この式によリ、 目標値の加重平均値から目標値の差分の符号の一次式を 減じた値が限界値になります。 T P + i = ∑ j ((a ', S P + ')-M,, i -sgn (sp + i + i )) ∑. (A,,;) = 1 (21) The value obtained by subtracting the linear expression of the sign of the difference between the target value from the weighted average of the values is the limit value.
( 17) 式のみを用いる場合は、 (21) の Μ, ,』は全て 0になります。  When only equation (17) is used, Μ,, in (21) is all zero.
この修正を、 第 Q時点側から第 P時点側に向かって実行します。 いずれの方法でも、 第 P + i 時点での目標値が第 P + i 時点での限界値 と第 P + i + 1 時点での目標値 (限界値に修正されている場合もある) の間に収まった緩やかな変化の場合には変更する必要がありません。 したがって、 通常は、 Perform this correction from point Q to point P. In either method, the target value at the P + i time is between the limit value at the P + i time point and the target value at the P + i + 1 time point (in some cases, the limit value has been corrected). You do not need to change it if the change is moderate. Therefore, usually
(Tp+ i - Sp+ , )-(SP+ i - Sp+, + , ) < 0 (22) の場合に目標値 SP+,を限界値 ΤΡ+,で置き換えて、 い 6) により、 操作値 を算出後、 目標値を元に戻して、 次の制御周期に移る作業をします。 目標値の変更目的が、 隅切りですので、 制御値を目標値に一致させる最 初の時点 (第 Ρ時点) を含む各時点でこの目標値の修正を実施する必要 があります。 If (Tp + i -Sp + ,)-(S P + i-Sp + , + ,) <0 (22), replace the target value SP + , with the limit value Τ Ρ + , and After calculating the operation value, return the target value to the original value and move on to the next control cycle. Since the purpose of changing the target value is corner cutting, it is necessary to correct the target value at each point in time, including the first time point (time point Ρ) at which the control value matches the target value.
(21 ) の特殊な場合として、 限界値が特定時点のみの目標値になる場合 や特定時点のみの差分を用いる場合がありますが、 隅切りを第 Ρ時点の みにした (18) は正しくこの場合で、 本発明にこの場合を含みます。 ただし、 常に、 すべての時点での限界値がその時点の目標値になる係数 a, , ο = 1 , a,,,*o= 0 , «I ,, ' = 0 (23) は、 隅切りになりませんので、 本発明の範囲外になります。  As a special case of (21), there are cases where the limit value is a target value only at a specific point in time and a case where the difference only at a specific point in time is used. The present invention includes this case. However, the coefficients a, ο = 1, a,, * o = 0, «I,, '= 0 (23) are always corner cut Therefore, it is out of the scope of the present invention.
F I G. 2に〗 時点のみを Aから Bに必要に応じて修正した場合を示し ます。 目標値が折れ線で、 制御値が曲線で表してあります。 FIG.2 shows the case where only the point in time was changed from A to B as necessary. The target value is indicated by a polygonal line, and the control value is indicated by a curve.
この修正により、 制御値が、 太実線が太点線に改善されます。 図面の簡単な説明 With this correction, the control value is improved from a bold solid line to a bold dotted line. BRIEF DESCRIPTION OF THE FIGURES
F I G. 1 は制御装 »の構成図です  F I G. 1 is the block diagram of the control equipment »
符号の説明  Explanation of reference numerals
S : 目標値 R : 制御値 B : 外乱値  S: Target value R: Control value B: Disturbance value
C : 操作値 X : 演算装 » M : 記憶装置  C: Operation value X: Computing device »M: Storage device
F I G. 2は、 従来法による整定の様子を説明するグラフです。 1 : 目標値 2 : 切り戻し 3 : オーバーシュー トFI G. 2 is a graph explaining the setting by the conventional method. 1: Target value 2: Switch back 3: Overshoot
4 : 遅れ 折れ線 : 目標値 曲線: 制御値 4: Delayed Line: Target value Curve: Control value
A : 修正前の目標値 B : 修正後の目標値 発明を実施する場合の最良の形態  A: Target value before correction B: Target value after correction Best mode for carrying out the invention
制御の実態は様々であり、 常に最良の実施形態というものはありませ ん。 そこで、 容易に実施できる、 記憶効果の終位を 1 に選び、 目標値が 時系列で変化するとして、 有限整定法的に操作値を求めるのに際し、 必 要に応じ第 P時点の目標値のみを修正する例を説明します。  The realities of control vary, and there is no always the best embodiment. Therefore, the end point of the memory effect, which can be easily implemented, is selected as 1 and the target value changes in a time series. Here is an example of modifying.
記悚効果を考慮した応答関数の終位が操作値、 外乱ともに 3で、 1 つの 外乱のみが利用可能であり、 応答関数は公知の方法で同定できていると します。 It is assumed that the end of the response function considering the memory effect is 3 for both the manipulated value and the disturbance, and only one disturbance is available, and the response function can be identified by a known method.
すると (14) より、 測定値 R。, R -、、 既設定値 c- 2, c -,、 計画値 (過去, 現在,未来) あるいは測定値 (過去及び現在, 未来は 0とする) b- 2〜b2 を用いて、 第 1 時点以降が次のように計算で求まります。 Then, from (14), the measured value R. , R - ,, preset value c- 2, c - ,, planned value (past, present and future) or measured values (past and present and future is 0) using b-2 ~b 2, the After the first time, it can be calculated as follows.
R, = Ro+d ' i ' (Ro-R-i)+f ' 2*c-.+f '3'C-2+g' i * bo+g , 2 · b -! +g , 3 · b - 2 2 = Ri+d' 1 · (R.-Ro) +f ' 3'C-i+g' i *bi+g' 2-bo +g' 3*b -、R, = Ro + d 'i' (Ro-Ri) + f '2 * c-. + F'3'C-2 + g 'i * bo + g, 2 · b-! + g, 3 · b - 2 2 = Ri + d '1 · (R.-Ro) + f'3'C-i + g 'i * bi + g' 2 -bo + g '3 * b -,
R3 = R2+d ' 1 · (R2- i ) +g' , 'bii+g' 2*b, +g' 3*bo 次に、 目標値の退避と限界値の計算及び目標値の修正を R 3 = R 2 + d '1 · (R 2 -i) + g', 'bii + g' 2 * b, + g ' 3 * bo Next, evacuation of target value, calculation of limit value and target value Fix
Ss = S2 Ss = S 2
T2 = ao♦ So+ai *Si+a2 ' S2+a3 * S 4 - M2 · sgn(S3-S2 ) ( 24) もし (S2— T2)(S3— S2)<0 ならば S2 = T2 とする T 2 = ao ♦ So + ai * Si + a 2 'S2 + a3 * S 4-M 2 · sgn (S 3 -S2) (24) If (S 2 — T 2 ) (S 3 — S 2 ) < If 0, set S 2 = T 2
の手順で実行します。 Follow the steps below.
(24) の係数は、 第 0時点, 第 1 時点, 第 3時点の目標値を通る二次曲 線を限界値に採用するならば、 次の係数で限界値を計算します。  For the coefficient of (24), if a quadratic curve that passes the target values at time 0, time 1, and time 3 is adopted as the limit value, the limit value is calculated using the following coefficient.
l = 0, a。 = -1/3, at = 1, a2 = 0, a3 = 1/3 ( 16) は、 操作値 c'。, c',についての二元連立一次方程式となります。 l = 0, a. = -1/3, at = 1, a 2 = 0, a 3 = 1/3 (16) is the operation value c '. , C ', is a binary system of linear equations.
( f i +f 2) *C' 0 + f 1 «c' 1 = S 2 -R2 (fi + f 2 ) * C '0 + f 1 «c' 1 = S 2 -R2
(f ,+f 2 + f 3) «C' 0 + (f i+f 2 ) 'C' 1 = S 3 -R3 (f, + f 2 + f 3 ) «C '0 + (f i + f 2)' C '1 = S 3 -R3
この方程式の解は、 次のようになります。 The solution to this equation is
C' 0 = { ( f,+f 2 ) ' ( S 2 -R2 ) — f 1 - ( S 3-R3 ) }/ { ( f 1 +f 2 ) 2 -f , « ( f , +f 2+f 3 ) } この直近の操作値を実値 C '。 = C- 1+C' oにして出力します。 C '0 = {(f, + f 2)' (S 2 -R 2 ) — f 1-(S 3 -R 3 )} / {(f 1 + f 2 ) 2 -f, «(f, + f 2 + f 3 )} The last operation value is the actual value C '. = C-1 + C'o and output.
c' , も求まりますが、 予測を表示する以外には、 制御に不要です。 c ', is also found, but is not needed for control other than displaying predictions.
目標値を元に戻し、 次の制御周期に移る作業をします。 Restore the target value and move on to the next control cycle.
産業上の利用可能性 Industrial applicability
機械を動かす上で、 制御手段を講じないことは考えられないのが現状 です。 より目標値に忠実で、 好ましくない挙動をしない制御が常に求め られています。 従来のカムや歯車を計算機による演算で置き換えた計算 機制御は、 装置部品そのもののソフ ト化です。 目標値を変更するという 簡単な手段で、 目標値忠実度を向上させる本発明の方法やこの方法を用 いた制御装 »は、 経済上の追加負担が殆どない産業上利用価値の高い発 明と言えます。  At present, it is unlikely that no control measures will be taken to operate the machine. There is always a need for controls that are more faithful to target values and that do not behave undesirably. Computer control, in which conventional cams and gears are replaced by computer calculations, is the softwareization of equipment components themselves. The method of the present invention and the control device using this method for improving the fidelity of the target value by a simple means of changing the target value »have a high industrial value with little economic burden. I can say.

Claims

請 求 の 範 囲 The scope of the claims
1 . 過去及び現在の制御値、 使用可能な外乱値、 過去の操作値及び今後 の操作値によって未来の制御値を予測し、 今後の操作値を、 未来の数時 点で制御値を目標値に一致させる値として算出する制御方法において、 制御値を目標値に一致させる最初の時点を含む各時点で、 目標値の加重 平均値 (特定時点のみの目標値になる場合を含み、 すべての時点でその 時点の目標値になる場合を除く) から目標値の差分の符号の一次式 (特 定時点のみの差分を用いる場合及び恒等的な 0を含む) を減じた値をそ の時点の限界値とし、 各時点の目標値が、 各時点の限界値と次時点の目 欏値又は限界値との間の値でない場合に目標値を限界値に置き換えて、 操作値を算出することを特徴とする制御方法。 1. Predict future control values based on past and present control values, usable disturbance values, past operation values, and future operation values, and set future operation values as control values at several future points. In the control method of calculating as a value that matches the target value, the weighted average value of the target value at each time point, including the first time point at which the control value matches the target value The value obtained by subtracting the linear expression of the sign of the difference of the target value (including the case where the difference at only a specific time is used and including an equal 0) is subtracted from the value at that time. If the target value at each time point is not between the limit value at each time point and the target value or limit value at the next time point, replace the target value with the limit value and calculate the operation value. Characteristic control method.
2 . 過去及び現在の制御値、 使用可能な外乱値、 過去の操作値及び今後 の操作値によって未来の制御値を予測し、 今後の操作値を、 未来の数時 点で制御値を目標値に一致させる値として出力する制御方法を用いた制 御装置において、 制御値を目標値に一致させる最初の時点を含む各時点 で、 目標値の加重平均値 (特定時点のみの目標値になる場合を含み、 す ベての時点でその時点の目標値になる場合を除く) から目標値の差分の 符号の一次式 (特定時点のみの差分を用いる場合及び恒等的な 0をを含 む) を減じた値をその時点の限界値とし、 各時点の目標値が、 各時点の 限界値と次時点の目標値又は限界値との間の値でない場合に目標値を限 界値に置き換えて算出した直近の操作値を出力することを特徴とする制 御装置。  2. Predict future control values based on past and current control values, available disturbance values, past operation values, and future operation values, and set future operation values as control values at several future points. In a control device that uses a control method that outputs a value that matches the target value, the weighted average value of the target value at each point in time, including the first point in time when the control value matches the target value And the linear expression of the sign of the difference between the target value and the target value at all points in time (excluding the case where the difference at only a specific point in time is used and the identity 0) If the target value at each time point is not between the limit value at each time point and the target value at the next time point or the limit value, the target value is replaced with the limit value. A control device for outputting the calculated latest operation value.
PCT/JP1998/001224 1998-03-23 1998-03-23 Control method and controller WO1999049370A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU64210/98A AU6421098A (en) 1998-03-23 1998-03-23 Control method and controller
JP52349198A JP3352699B2 (en) 1998-03-23 1998-03-23 Control method and device
PCT/JP1998/001224 WO1999049370A1 (en) 1998-03-23 1998-03-23 Control method and controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001224 WO1999049370A1 (en) 1998-03-23 1998-03-23 Control method and controller

Publications (1)

Publication Number Publication Date
WO1999049370A1 true WO1999049370A1 (en) 1999-09-30

Family

ID=14207864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001224 WO1999049370A1 (en) 1998-03-23 1998-03-23 Control method and controller

Country Status (3)

Country Link
JP (1) JP3352699B2 (en)
AU (1) AU6421098A (en)
WO (1) WO1999049370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056122A1 (en) * 2001-01-10 2002-07-18 Adtex Inc. New automatic control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128401A (en) * 1986-11-18 1988-06-01 Hitachi Ltd Proportion/integration type estimation adaptive control device
JPH04117501A (en) * 1990-09-07 1992-04-17 Toshiba Corp Fuzzy combination type 2-freedom degree controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128401A (en) * 1986-11-18 1988-06-01 Hitachi Ltd Proportion/integration type estimation adaptive control device
JPH04117501A (en) * 1990-09-07 1992-04-17 Toshiba Corp Fuzzy combination type 2-freedom degree controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056122A1 (en) * 2001-01-10 2002-07-18 Adtex Inc. New automatic control system

Also Published As

Publication number Publication date
JP3352699B2 (en) 2002-12-03
AU6421098A (en) 1999-10-18

Similar Documents

Publication Publication Date Title
Ławryńczuk Modelling and predictive control of a neutralisation reactor using sparse support vector machine Wiener models
Zhang et al. Adaptive iterative learning control for nonlinear pure-feedback systems with initial state error based on fuzzy approximation
JP2019087096A (en) Action determination system and automatic driving control device
Zhu et al. Adaptive tracking control for input delayed MIMO nonlinear systems
Kang et al. Neural network-based model predictive tracking control of an uncertain robotic manipulator with input constraints
JP6229799B2 (en) Flatness control device
CN107871180A (en) GM based on Newton-Cotes formulas tectonic setting value(1,1)Model prediction method
WO1999049370A1 (en) Control method and controller
Shimizu et al. A real‐time algorithm for nonlinear receding horizon control using multiple shooting and continuation/Krylov method
CN111091183A (en) Neural network acceleration system and method
Jammazi et al. On the rational stability of autonomous dynamical systems. Applications to control chained systems
JP6734938B2 (en) Neural network circuit
Wu et al. A new EP-based α–β–γ–δ filter for target tracking
US20200233921A1 (en) Data processing apparatus, data processing method, and computer-readable storage medium
JP6604060B2 (en) Information processing apparatus, information processing method, and program
JP2018081002A (en) Steering simulator
JP4405452B2 (en) Inverse conversion circuit
JP2002032104A (en) Method for identifying non-linear system by genetic algorithm
JP2013078990A (en) Posture control apparatus for artificial satellite
JP4365366B2 (en) A modeling device for a controlled object having nonlinear dynamics, a control device for a controlled object having nonlinear dynamics, a control device for a vehicle having nonlinear dynamics, and a modeling program for a controlled object having nonlinear dynamics.
Barot et al. Predictive control of non-minimum phase systems
Özdemir et al. Majorant recursions to determine eigenstate bounds of a symmetric exponential quantum anharmonic oscillator
Kang et al. HNN-Transformer Integrated Network for Estimating Robot Position
JP2008250665A (en) Linearization converter and linearization conversion program
CN116755339A (en) Self-adaptive non-backstepping control method and system for nonlinear strict feedback system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE GM GW HU ID IL IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA