WO1999049171A2 - Assemblage filete de tubes metalliques destines a contenir un fluide corrosif - Google Patents

Assemblage filete de tubes metalliques destines a contenir un fluide corrosif Download PDF

Info

Publication number
WO1999049171A2
WO1999049171A2 PCT/FR1999/000633 FR9900633W WO9949171A2 WO 1999049171 A2 WO1999049171 A2 WO 1999049171A2 FR 9900633 W FR9900633 W FR 9900633W WO 9949171 A2 WO9949171 A2 WO 9949171A2
Authority
WO
WIPO (PCT)
Prior art keywords
male
female
annular
threaded
tube
Prior art date
Application number
PCT/FR1999/000633
Other languages
English (en)
Other versions
WO1999049171A3 (fr
Inventor
Pierre Dutilleul
Thierry Noel
Original Assignee
Vallourec Mannesmann Oil & Gas France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EA200000986A priority Critical patent/EA001729B1/ru
Priority to UA2000106031A priority patent/UA66845C2/uk
Priority to US09/424,562 priority patent/US6312024B1/en
Priority to EP99909043A priority patent/EP1066450B1/fr
Priority to JP2000538117A priority patent/JP3866514B2/ja
Priority to AT99909043T priority patent/ATE217683T1/de
Application filed by Vallourec Mannesmann Oil & Gas France filed Critical Vallourec Mannesmann Oil & Gas France
Priority to CA002323715A priority patent/CA2323715C/fr
Priority to BR9909142-9A priority patent/BR9909142A/pt
Priority to DE69901492T priority patent/DE69901492T2/de
Publication of WO1999049171A2 publication Critical patent/WO1999049171A2/fr
Publication of WO1999049171A3 publication Critical patent/WO1999049171A3/fr
Priority to NO20004789A priority patent/NO325632B1/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • F16L15/004Screw-threaded joints; Forms of screw-threads for such joints with conical threads with axial sealings having at least one plastically deformable sealing surface
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/08Casing joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/001Screw-threaded joints; Forms of screw-threads for such joints with conical threads
    • F16L15/003Screw-threaded joints; Forms of screw-threads for such joints with conical threads with sealing rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/18Protection of pipes or pipe fittings against corrosion or incrustation specially adapted for pipe fittings
    • F16L58/182Protection of pipes or pipe fittings against corrosion or incrustation specially adapted for pipe fittings for screw-threaded joints

Definitions

  • the present invention relates to a threaded connection between two metal tubes with or without an inner coating and more particularly intended to contain a corrosive fluid.
  • threaded assemblies are generally of two types: a) integral, namely that the end of the first tube comprises a male assembly element and the end of the second tube to be assembled comprises a female assembly element; b) sleeved, namely that the ends to be assembled from the tubes comprise. each a male assembly element, each end being screwed onto a short sleeve comprising at each end a female assembly element.
  • Patent FR 1,489,013 thus describes an integral threaded assembly with trapezoidal threads, the end of the male element having a concave conical shape which,. at the end of assembly, comes to bear against a convex conical stop located at the base of the thread of the female element; in addition, the external end edge of the male element is slightly chamfered and mates against a corresponding concave frustoconical part on the female element, thus ensuring excellent gas tightness, even after several successive uses of the 5. elements of the assembly.
  • This patent also optionally describes an assembly of tubes internally coated with a layer of enamel or epoxy resin in the case where the fluid circulating in the tubes is an aggressive or corrosive fluid with respect to the metal of the o. tubes.
  • Patent FR 1,489,013 provides to prevent any infiltration of aggressive fluid at the level of the abutment from producing on the inside of the male end a housing for a complementary sealing ring bearing both on areas coated with the male end and stop in continuity with the inner lining of the tubes.
  • Patent application EP 759497 describes a threaded assembly more specifically intended for water injection wells making it possible to improve the recovery rate of hydrocarbons from an oil field, the water injected into such wells being in fact often a oxygenated brine which is extremely corrosive.
  • the document EP 759497 describes in particular a sleeved threaded assembly, the sleeve having internally on either side of a central part in relief, an annular shoulder followed by a female thread, the tubes having externally going towards their end a thread then a transverse annular support surface complementary to the shoulder of the sleeve and finally a smooth area terminated by a radial annular surface.
  • a sealing ring of soft synthetic material is interposed between the ends of the tubes and is compressed by the tube ends, the position of which at the end of assembly is determined by the bearing of the bearing surfaces of the tubes with those corresponding to the muff.
  • the inner surface and the annular end surfaces of the tubes are coated with synthetic resin so that the infiltration of corrosive liquid into the metal parts of the assembly is prevented by the ring thus put into compression.
  • EP 759497 also describes solutions for integral threaded assemblies directly derived from the solution described for the sleeved assembly, the bearing surface in this case being transferred to the free end of the female element.
  • the present invention has sought to produce an extremely threaded connection safe and watertight for metal tubes more particularly intended to contain a corrosive fluid.
  • the invention firstly relates to an integral threaded connection between two metal tubes more particularly intended to contain a corrosive fluid, of the type comprising a male element produced externally at the end of the first tube assembled with a female element produced internally at the end of the second tube. 5
  • the male element comprises a male threaded part and a male unthreaded part, the latter being disposed on the side of the free end of the male element.
  • the female element comprises a female threaded part and a female unthreaded part on the side opposite to the free end of the female element.
  • the male or female threaded parts can, for example be a conical thread • or a set of two two-stage cylindrical threads in a manner known per se.
  • the male threaded part of the male element is screwed into the female threaded part of the female element and the unthreaded part of the male element cooperates with that of the female element.
  • the unthreaded male part of the male element comprises, going towards the free end of said element:
  • Said radial annular surface is hereinafter called the annular surface of the inner end of the first tube. 0.
  • the female non-threaded part of the female element comprises, going from the side opposite to the free end of said element:
  • This radial annular surface is called the annular surface of the inner end of the second tube in the remainder of this document.
  • the bearing surface of the male element is placed in abutment against the bearing surface of the female element. 5.
  • the inner end annular surfaces of the two tubes are arranged in gaze and at a distance from each other.
  • annular surfaces of the inner end of the tubes indicate in this document that these surfaces have an orientation • perpendicular or almost perpendicular to the axis of the assembly.
  • a sealing ring made of synthetic material is interposed directly or indirectly between the annular inner end surfaces of the two tubes and provides a first means of sealing against the fluid contained internally ° • in the tubes, the ring sealing being put directly or indirectly in axial compression by the annular inner end surfaces of the two tubes.
  • the sealing ring is of course made of material inert with respect to the fluid 5. contained in the tubes of the assembly.
  • the assembly also includes, on each of the non-threaded parts of the male and female elements, a metallic sealing surface of annular shape situated between the threaded part and the bearing surface, the metallic sealing surface of the male element o. male coming to bear on the female metallic sealing surface of the female element with positive diametrical interference.
  • diametric interference is understood to mean between the conjugate points of two surfaces of revolution which radially interfere with the difference 5. algebraic diameter measured before assembly between a reference point of the male surface and the corresponding point in contact with the female surface, the value of the contact pressure between the metallic sealing surfaces male and female being a direct function of the value of diametral interference.
  • a clearance is also maintained between the outer peripheral surface of the nose of the male element and the peripheral surface of the reinforcement zone facing the female element.
  • the present invention solves the problem of obtaining a threaded assembly 5.
  • integral with high sealing properties by the use of two successive sealing means, suitably arranged and each having their function clean: the sealing ring which is subjected to a moderate contact pressure makes it possible to confine the corrosive phases of the fluid while the sealing surfaces which are subjected to very high contact pressures give the assembly its overall characteristics sealing. .
  • the clearance maintained between outer peripheral surface of the nose and inner peripheral surface of ° • the reinforcement zone prevents discharge of the contact pressure between the sealing surfaces.
  • the invention also relates to a threaded connection sleeved between two metal tubes more particularly intended to contain a corrosive fluid, of the kind comprising a male element produced externally at the end of each of the two tubes and a female element produced internally at each end of a 0. sleeve, the female elements being arranged opposite back to back on the sleeve.
  • Each male element comprises a male threaded part and a male unthreaded part, the latter being arranged on the side of the free end of each male element considered. 5.
  • Each female element comprises a female threaded part and a female unthreaded part on the side opposite the free end of the female element considered.
  • the male or female threaded parts can, for example, be a conical thread 0. or a set of two two-stage cylindrical threads in a manner known per se.
  • the male threaded part of each male element is screwed into the female threaded part of the corresponding female element and the unthreaded part of each male element cooperates with that of the corresponding female element.
  • each male element comprises, going towards the free end of said element:
  • Said radial annular surfaces are called in the remainder of this document annular surfaces of the inner end of the two tubes. They are arranged opposite and at a distance from each other.
  • each female element of the sleeve comprises, going from the side opposite to the free end of said element:
  • each male element is placed in abutment against the bearing surface of the corresponding female element.
  • a sealing ring made of synthetic material is interposed directly or indirectly between the annular inner end surfaces of the two tubes and provides a first means of sealing against the fluid contained internally in the tubes, the ring sealing being put directly or indirectly in axial compression by the annular inner end surfaces of the two tubes.
  • the sealing ring is of course made of material inert with respect to the fluid contained in the tubes of the assembly.
  • the assembly also comprises, on each of the non-threaded parts of each of the male and female elements, a metallic sealing surface of annular shape situated between the threaded part and the bearing surface, the metallic sealing surface of the male of each male element coming to bear on the female sealing metal surface of the corresponding female element with positive diametrical interference.
  • a clearance is also maintained between the outer peripheral surface of the nose of each male element and the peripheral surface of the reinforcement zone facing the corresponding female element.
  • the present invention solves the problem of obtaining a threaded • sleeved assembly having high sealing characteristics for the same reasons as those explained in the case of the integral threaded assembly.
  • the annular inner end surfaces of the tubes have a substantially identical outside diameter and inside diameter.
  • the bearing surface of the male element is a very open concave conical surface, the bearing surface of the female element being convex conical with the same angle at the top as the male bearing surface.
  • the half-angle at the top of these bearing surfaces is between 70 and 85 °.
  • the diameter of the inner peripheral surface of the reinforcement zone of the female element decreases as it moves away from the female support surface, which tends to mechanically reinforce the latter.
  • the angle between the bearing surface and the reinforcement surface thereof on the female element is a right or obtuse angle.
  • the metallic sealing surfaces male and female are conical surfaces with a half-angle at a substantially identical apex, the diameter of which decreases when one approaches the free end of the male element.
  • the half-angle at the top of the metallic sealing surfaces male and female is between 2 and 30 °.
  • the outer peripheral surface of the sealing ring advantageously bears against at least one cross section of the peripheral surface of the housing provided on the female element. .
  • mechanical locking means of the sealing ring may be provided to prevent a radial movement directed 'towards the axis likely to make it move out, resulting in the corrosive phase passing through the assembly.
  • These means can, for example, be means ° • for embedding the sealing ring on the nose or the end surface of the tubes.
  • these are made of metal very resistant to corrosion by the fluid contents and are provided with a coating on their inner peripheral surface 0 • and their annular internal end surface ensuring to ensure the continuity of the coating between these two surfaces to avoid any infiltration of liquid or corrosive condensate between them.
  • the invention then applies to composite tubes, each composed of a tube 5.
  • the ring bears in this case indirectly on the annular inner end surfaces by the coating produced on these.
  • the coating can thus be a layer of relatively thin material such as for example an epoxy resin applied or sprayed on the inner peripheral surface of the tubes of the assembly as well as on the annular inner end surfaces of these.
  • the coating can also be thicker.
  • the coating of the inner peripheral surface of the tubes can in particular be obtained by a tube made of synthetic or metallic material internally lining the main tube and secured to it by suitable means such as, for example, by cementing, by gluing, by interposition of an adherent resin, by welding, by plating, etc. .
  • the inner lining tubes preferably have a transverse end surface disposed in line with the annular inner end surface of the main tube and the coating is continued on the annular inner end surface of the main tubes using a flange ° • annular integral by one of its faces with said annular internal end surface and the end surface of the internal lining tube while the opposite face of the flange bears on the ring of sealing.
  • the flange then constitutes the extreme part of a composite nose 5. and its outer peripheral surface has a clearance relative to the inner peripheral surface of the reinforcement zone.
  • the sealing ring indirectly bears on the annular inner end surfaces of the tubes by means of the flanges which are secured to these 0s. surfaces.
  • the composite nose-on the male element or elements can be constituted only by the flange, the metal part of the composite nose having a zero length. 5
  • connection of the flange to the end of the doubling tube must be carried out so as to prevent the passage of the liquid phase between these two bodies; the joining can be carried out for example by gluing or by any other equivalent means.
  • the inner lining tube is secured to the main tube by a relatively thick layer of bonding material adhering to both the main tube and the inner lining tube.
  • the term “relatively thick bonding layer” is understood here to mean a layer of thickness of the order of mm or even 5. a few mm. Such a layer can in particular absorb geometric irregularities on the inner surface of the tubes such as resulting from a conification of the end of the main tube.
  • the face of the flange opposite the annular surface of the inner end of the tube comprises an anchoring means in relief cooperating with a means of complementary shape in the end surface of the bonding layer.
  • the flange can also be extended at right angles to the side of its inner diameter by a cuff secured by its peripheral outer surface to the inner peripheral surface of the inner lining tube.
  • connection of the cuff to the inner lining tube must ° • be carried out so as to prevent the passage of liquid phase between these 2 bodies; here again, the joining may be carried out for example by gluing or by any other equivalent means.
  • the flange is made of the same material as the tube of 5. inner lining, which facilitates their junction and prevents this junction from being subjected to stresses during hot operation of the assembly.
  • the material of the inner lining tube is of the epoxy resin type reinforced with glass fibers.
  • the surface of the annular flange bearing on the sealing ring is a very slightly conical convex surface. It has in fact been observed that such an arrangement reduces the risk of cracking of the flange when the latter is made of relatively fragile material. 5
  • the sealing ring can be replaced by a body of equivalent seal consisting of a deformable ring of synthetic material 0. arranged coaxially on either side of a central ring made of relatively hard material compared to that of the deformable rings and not sensitive to corrosion by the fluid contained internally.
  • Each of the two deformable rings bears on one side on an annular surface of the inner end of the tube, whether coated or not, on the other side on an end face of the central ring.
  • the deformable rings carry by their outer peripheral surface against a housing on the inner periphery of the sleeve.
  • FIG. 1 represents a general view in longitudinal section of two tubes intended to constitute a sleeved threaded assembly according to the invention.
  • FIG. 2 shows a detailed sectional view of the assembly according to the invention, the assembly of the tubes of Figure 1 having been carried out.
  • Figure 3 shows a detail of Figure 2 at the sealing ring.
  • Figure 4 shows in longitudinal section the central part of a threaded connection sleeved according to the invention, the assembly tubes being provided with inner lining tubes.
  • FIG. 5 represents a variant of the threaded assembly of FIG. 4..
  • FIG. 6 represents in longitudinal section the central part of a threaded connection sleeved according to the invention of tubes internally coated with a sprayed coating layer, the sealing ring being replaced by an equivalent sealing body. .
  • FIG. 7 still shows in longitudinal section the central part of an integral threaded assembly according to the invention, the tube corresponding to the male element being the only one provided with an inner lining tube.
  • FIG. 1 shows two metal tubes 10, 10 'intended to be assembled by screwing using a sleeve 20 which has already been assembled to the tube 10'.
  • the tube 10 will be called the first tube of the assembly and the tube 10 'the second tube of the assembly.
  • the tubes 10, 10 ' have externally at their opposite ends a male element 1, l', the element l 'being the symmetrical of the element 1.
  • the sleeve 20 has internally at each of its two ends a female element 2, 2 ', these female elements being identical but symmetrical with respect to the transverse median plane of the sleeve.
  • the metal tubes 10 and 10 ′ are for example production or casing tubes for oil or gas wells assembled in a column and intended to contain and circulate corrosive fluids such as, for example, hydrocarbons containing C0 2 wet or mixtures of hydrocarbons, water and chlorides (brine).
  • corrosive fluids such as, for example, hydrocarbons containing C0 2 wet or mixtures of hydrocarbons, water and chlorides (brine).
  • tubes 10, 10 ′ are for example therefore produced according to the nature of the corrosive fluid in martensitic stainless steel, in austenitic-ferritic stainless steel at 22% Cr or in nickel alloy at 28% Cr.
  • the male assembly element 1 comprises externally going towards the free end 17 a male conical thread 13 with trapezoidal threads followed by a non-threaded part comprising a metallic annular sealing surface 14, a transverse annular bearing surface 15 and extending beyond it by the outer peripheral surface of a nose 16.
  • the annular male metallic sealing surface 14 is a conical surface whose diameter decreases towards the free end 17 of the tube 10 and whose half-angle at the top is 20 °. We could also use other values of half angle at the top, as small as 2 ° and as large as 30 ° to ensure gas tightness.
  • the transverse annular bearing surface 15 is a very open concave conical surface with a semi-angle at the top 75 ° which is machined over only a fraction of the thickness, the height of this bearing surface being adapted to the screwing torque of assembly.
  • the nose 16 beyond the bearing surface 15 has a relatively small thickness due to the reduction in thickness caused by the transverse bearing surface.
  • the outer peripheral surface of the nose 16 is a conical surface whose diameter decreases towards the free end 17 and whose half-angle at the top is 20 °.
  • the nose 16 ends with the annular surface 17 which is radially oriented, that is to say 0. say perpendicular or substantially perpendicular to the axis of the assembly XX.
  • the tube 10 ends on the side of its inner periphery by a radial annular surface 17' opposite the radial annular surface 17 of the tube 10.
  • annular surfaces 17 and 17' have the same thickness radially and are designated by the term "annular surface of the inner end of the tubes".
  • the female element 2 comprises on its inner peripheral surface means corresponding to the means of the male element and capable of cooperating with ° - these.
  • the female element 2 comprises from the free end of the sleeve 20:
  • a housing (21, 22, 22 ') for a sealing ring 40 disposed in a slight recess on the inner periphery of the sleeve 20 and substantially in the middle of the latter. 5
  • the female conical reinforcement surface 26 forms an angle of 95 ° relative to the conical abutment surface 25. He appeared surprisingly that such a configuration made it possible to pass a large torque of screwing into the bearing surfaces 15, 25 lean the relatively small height thereof.
  • the sealing ring 40 shown in more detail in FIG. 3, is made of deformable synthetic material which is inert with respect to the fluid contained.
  • the outer peripheral surface 43 of the ring 40 is convex and consists of a cylindrical surface surrounded by 2 conical surfaces which externally limit the flanges 44, 44 '.
  • the central cylindrical surface comes to bear on the central cylindrical part of the housing 21 so as to avoid any radial displacement of the ring 40 during the screwing.
  • the outer conical surfaces of the edges 44, 44 'of the ring 40 have a clearance with respect to the equally conical edges 22, 22' of the housing 21.
  • This clearance measured axially is of the order of mm and allows, either 'introduce the ring 40 once the sleeve 20 assembled on the tube 10', or to be able to screw the tube 10 'on the sleeve 20 into which the ring 40 will have been previously introduced without said ring coming out of its housing.
  • the end faces 41 and 41 'of the ring 40 are flat surfaces substantially perpendicular to the axis of the assembly.
  • the end face 41 'directed towards the tube 10' carries axially directly on the annular inner end surface 17 'of the tube 10'.
  • the end face 41 directed towards the tube 10 is located opposite the annular inner end surface 17 of the tube 10.
  • the inner peripheral surface 42 has a diameter before assembly greater than that of the ends of the tubes 10 and 10 '. The value of this difference will be indicated later on the assembly carried out.
  • FIG. 1 shows the same elements as Figure 1 once the assembly • completed.
  • the value of the contact pressure between the metal sealing surfaces 14 and 24 is determined by the value of the diametrical interference obtained for a given geometry and in particular for a conicity of the surfaces 14, 24 given and 5. for a given metal thickness.
  • the contact pressure at the level of the metal surfaces 14 and 24 must not, however, exceed the elastic limit of the metal of the elements 1 and 2, an excess of the latter entailing a risk of seizing of the metal surfaces 14 and 24 and o. a modification of the operating characteristics of the assembly after subsequent unscrewing and re-screwing.
  • the outer peripheral surface of the nose 16 is a conical surface with an angle of 20 ° like the conical reinforcement surface 26 in look at the female element 2.
  • the female support height 25 is slightly lower than that of the male support surface 15, which allows a clearance of at least 0.1 mm at all moment during and at the end of assembly between the inner peripheral reinforcement surface 26 of the female element 2 and the outer peripheral surface of the nose 16.
  • the axial length of the nose 16 is a function of the geometry of the assembly, in particular of the axial thickness of the sealing ring 40 and of the distance between the bearing surfaces 25, 25 'of the sleeve 20.
  • a short nose 16 results in a narrow zone 26 and may require a sealing ring 40 relatively broad axially with respect to its radial thickness.
  • the aim is in fact to have for the sealing ring 40 a ratio of these two dimensions width / thickness less than or equal to 1.5, and if possible close to 1, a
  • the metal part 16 of the composite nose can optionally have a zero length.
  • the sealing ring 40 is made of composite material consisting of a PTFE matrix reinforced with 25% glass fibers.
  • a 3 ° • material can be used containing a lower proportion of glass fibers, but this leads to a reduction in the modulus of elasticity of the material and to having to deform the ring 40 more to obtain the same contact pressure.
  • the aim is to compress the sealing ring 40 by 10 to 25% at the end of assembly according to its dimensions, which makes it possible to ensure a contact pressure of 80 to 200 MPa approximately on the faces of end 41, 41 'of the ring 40.
  • the inner peripheral surface 42 of the sealing ring 40 must have, after assembly, a diameter not appreciably less than that of the ends of the tubes 10, 10 ′ otherwise the sealing ring would protrude inside and risk catching tools moved in the tubes. It therefore calculates the • initial diameter of the ring 40 from the assembled diameter considering the equality of axially compressed volume and the radially deformed in the diameter, the ring 40 being turned outwardly in the housing 21.
  • the ring 40 does not allow perfect gas tightness, it prevails, 0. taking into account the metallic sealing surfaces 14, 24, 14 ′, 24 ′, in steady state at the outer periphery of the ring 40, a gas pressure close to that of the fluid.
  • the back pressure on the outer periphery 43 of the ring 40 becomes greater than that of the fluid on its inner periphery 42 and can force the ring to leave its housing and put in 5. Consequently, a corrosive liquid phase in contact with the metal of the assembly.
  • the outer flanges 44, 44 ′ at the end of the end surfaces 41, 41 ′ of the ring 40 come to cap the end of the noses 16, 16 ′ and embed the deformable ring by the end of the noses 16 and 16 'preventing all 0. inadvertent radial movement directed towards the axis of the sealing ring 40.
  • Another means, not shown, for preventing the radial displacement towards the axis of the ring 40 is to slightly incline the annular end surfaces 17 and 17 ′ to give them the shape of slightly conical convex surfaces of half-angle 5. at the top a little less than 90 ° so that these radial annular surfaces wedge the deformable ring 40 and prevent it from moving radially towards the axis. A conical shape is then given conjugate to the end faces 41, 41 'of the sealing ring 40.
  • FIG. 4 represents an assembly according to the invention of metallic tubes 10 and 10 ′ of low alloy steel internally lined with tubes 51, 51 ′ of thickness of the order of 2 to 3 mm.
  • These inner lining tubes are for example made of epoxy resin 5. reinforced with glass fibers. Such a composite material is particularly suitable when the fluid contained internally is extremely corrosive. We can cite as an example of a fluid a hot mixture at more than 100 ° C of natural gas,
  • Epoxy resin filled with glass fibers is a material which is moreover resistant to the impact of tools likely to be moved in the tubes but it is a material which cannot be shaped by plastic deformation.
  • a cement or a synthetic resin is used in the form of a bonding layer
  • a sufficiently thick bonding layer 52 makes it possible to absorb the geometric discontinuity 18 resulting from the conification of the end of the main tube 10.
  • the inner lining tube 51 is preferably cut in line with the surface 0. inner end annular 17 of the tube 10; the presence of a nose 16 of sufficient length so that the cutting surface is located beyond the top of the bearing surface can facilitate the cutting operation.
  • Each flange 70, 70 'then constitutes, with the metal nose 16, 16', the end part of a composite nose and the sealing ring 40 bears indirectly on the surfaces 0. annular inner end 17, 17 'of the tubes via the flanges 70, 70' which are secured to these surfaces.
  • the two flanges 70, 70 ′ being identical and mounted symmetrically, only the flange 70 will be described. 5.
  • This has an annular shape disposed radially relative to the axis of the assembly. It has a face 71 glued against the inner end annular surface 17 and against the end surface of the inner lining tube 51, the adhesive preventing the infiltration of liquid phase between the inner lining tube 51 and the main tube 10 .
  • the face 71 has an annular relief 73 which is embedded in a groove of complementary shape produced at the end of the bonding layer 52.
  • the other face 72 of the flange 70 bears on the sealing ring 40.
  • the flange 70 is made like the inner lining tube in epoxy resin 5 • reinforced with glass fibers. Such a material is harder than the material of the sealing ring 40, which makes it possible to properly transmit the contact pressure given by the nose 16.
  • the inner peripheral surface of the flange 70 is a cylindrical surface located 0. in the extension of the inner peripheral surface of the inner lining tube 51. Such an arrangement ensures a constant passage section along the column of tubes.
  • the outer peripheral surface 74 of the flange 70 is a conical surface located 5 • substantially in the extension of the outer peripheral surface of the nose 16 so as to allow the flange 44 of the sealing ring 40 to come to grip on the surface 74.
  • FIG. 5 shows an alternative embodiment of FIG. 4, the flange 60 does not 0. comprising no annular relief on its face 61 but being extended at right angles to the side of its internal diameter by a sleeve 65, the external peripheral surface of which is secured by bonding to the internal peripheral surface of the internal lining tube 51.
  • each flange 60, 60 ' constitutes the end part of a composite nose and the sealing ring 40 bears indirectly on the annular end surfaces. inner 17, 17 'of the tubes via the flanges 60, 60' which are secured to these surfaces.
  • the thickness of the flange 60 and the thickness of the cuff 65 are sufficient for. withstand mechanical stress.
  • the thickness of the sleeve 65 is however limited so as not to risk catching or knocking tools likely to be displaced in the tubes in service: a thickness of the order of 2 to 3 mm for the sleeve 65 is quite quite quite ° • adequate.
  • the inner peripheral surface of the sleeve 65 tends to be connected with the inner peripheral surface of the inner lining tube 51. 5
  • the composite nose on the male elements consists only of the flange 70, 70 ', the metal part 16, 16' of the composite nose having zero length and the annular surface of the inner end 17, 17 'of the tubes being arranged at the foot of the male bearing surfaces 15, 15'. 0
  • an inner lining tube made of corrosion-resistant metal secured by plating, by co-lamination, 5. by co-extrusion with the main low alloy steel tube.
  • the continuity of the coating on the annular inner end surfaces 17 of the main tubes can then be ensured by a flange such as 60 or 70 glued.
  • the inner lining tube can also be made of synthetic material having sufficient ductility in particular to be able to fold the end of the inner lining tube at right angles so as to constitute a flange covering the annular surface of the inner end of the tube without risk of cracking of deformed areas.
  • Such highly deformable inner lining tubes can in particular be made of thermoplastic synthetic material.
  • the sealing ring is replaced by a sealing body 5.
  • equivalent consisting of deformable rings 31, 32 arranged on either side of a central ring 33 made of relatively hard material compared to that of the rings 31, 32 such as an epoxy resin loaded with glass fibers, the deformable rings 31, 32 being them in PTFE reinforced with 25% glass fibers.
  • the deformable rings 31, 32 can, for example, be glued to the end surfaces 35, 35 'of the central ring 33.
  • the inner peripheral surface of the central ring 33 is in line with the inner peripheral surface coated with the tubes 10 and 10 '. 5.
  • the end surfaces 35, 35 ′ of the central ring 33 can be slightly frustoconical convex surfaces with a half-angle at the top, for example 80 °, to wedge the deformable rings 31, 32 and prevent them from leaving their housing. 0.
  • Such a wedge effect can be completed by also inclining the annular end surfaces 17, 17 'of the tubes 10, 10' by giving them a slightly frustoconical convex shape.
  • the deformable rings 31, 32 carry by their outer periphery on the inner peripheral surface of the sleeve 120 and their internal diameter is, after assembly, at least equal to that of the internal peripheral surface of the tubes 10, 10 '.
  • FIG. 7 represents an integral threaded connection between, on the one hand a first - tube 10 of low-alloy steel lined internally with a tube 51 of epoxy-glass fibers and, on the other hand, a thick accessory 210 of resistant alloy corrosion by the contained fluid such as stainless steel or a nickel alloy with structural hardening.
  • the male threaded element 1 is similar to that of FIG. 5.
  • the female threaded element 200 is produced directly at the end of the tube 210 on its inner periphery and 5 - comprises the same female means 221, 223, 224, 225 , 226 arranged in the same way as the female means 21, 23, 24, 25, 26 of the female element 2 of FIGS. 1 to 5.
  • the female element 200 comprises a thread 223 on the end side of the tube 210 and 0 • a non-threaded part which successively comprises, away from the thread 223, a metallic sealing surface 224, a transverse annular bearing surface 225, a conical reinforcement surface 226, a housing 221 for a sealing ring 40 and a radial annular surface 217 called the inner end. 5.
  • the interior end annular surface 217 produced at the end of the female element 200 joins the interior peripheral surface of the body of the metal tube 210.
  • a flange 60 'identical to the flange 60 is glued against the surface 5.
  • the tube 210 then being thicker to recover the space freed by the flange 60' and its cuff 65 '.
  • the interior end surfaces 17, 217 of the main tubes 10, 210 are always facing each other but they have different interior diameters taking account of the presence of the coating 51.
  • a sealing ring 40 made of PTFE loaded with glass fibers is interposed between the flanges 60, 60 ′ and prevents infiltration of corrosive liquid phase into. assembly.
  • the sealing ring 40 indirectly bears on the annular inner end surfaces 17, 217 of the tubes by means of the flanges 60, 60 'which are secured to these surfaces. 5.
  • the following example describes the performances obtained from a threaded connection sleeved in a given configuration corresponding to FIG. 5.
  • Holiday test an electrical insulation test called "Holiday test” according to NACE TM 0186 specification between, on the one hand, the inner peripheral surface of the inner lining tubes and sleeves and, on the other hand, metal tubes.
  • This electrical insulation test (13 KV, direct current) allows ° • to detect any cracking of the inner lining tubes, the flanges and the sleeves associated with them during the mechanical tests.

Abstract

L'invention a pour objet un assemblage fileté intégral ou manchonné entre deux tubes métalliques munis ou non d'un revêtement intérieur et notamment destinés à contenir intérieurement un fluide corrosif. Le ou les éléments mâles (1) de l'assemblage comprennent chacun en allant vers leur extrémité libre une partie filetée (13) et une partie non filetée, cette dernière comprenant successivement une surface métallique d'étanchéité (14), une surface d'appui annulaire transversale (15) et une surface de nez (16) qui rejoint la surface périphérique intérieure du tube (10) par une surface annulaire radiale (17) dite d'extrémité intérieure. Le ou les éléments femelles (2) comprennent des éléments correspondant aux éléments mâles et coopérant avec ceux-ci. Un anneau d'étanchéité (40) est interposé entre les surfaces annulaires d'extrémité intérieure (17, 17') et empêche l'infiltration de phase liquide dans l'assemblage. L'assemblage se caractérise par la présence et la disposition des surfaces métalliques mâles d'étanchéité (14) entre partie filetée (13) et surface d'appui (15) et par l'existence d'un jeu entre la surface périphérique extérieure du nez (16) et la surface périphérique intérieure de renfort (26) en regard sur l'élément femelle (2). L'invention comprend notamment des solutions particulières lorsque les tubes (10, 10') sont munis d'un revêtement intérieur notamment sous forme de tubes de doublage intérieur (51, 51'). Des brides telles que (60, 60') permettent alors de réaliser la continuité du revêtement sur les surfaces annulaires d'extrémité.

Description

ASSEMBLAGE FILETE DE TUBES METALLIQUES DESTINES A CONTENIR UN
FLUIDE CORROSIF
La présente invention concerne un assemblage fileté entre deux tubes métalliques munis ou non d'un revêtement intérieur et plus particulièrement destinés à contenir un fluide corrosif.
On connaît déjà des assemblages filetés de tubes métalliques utilisés notamment dans les puits de pétrole ou de gaz comme tubes de production pour faire remonter en surface le pétrole ou le gaz ou comme tubes de cuvelage pour maintenir les terres autour du puits.
. Ces assemblages filetés sont généralement de deux types : a) intégral, à savoir que l'extrémité du premier tube comporte un élément mâle d'assemblage et l'extrémité du second tube à assembler comporte un élément femelle d'assemblage ; b) manchonné, à savoir que les extrémités à assembler des tubes comportent . chacune un élément mâle d'assemblage, chaque extrémité étant vissée sur un court manchon comportant à chaque extrémité un élément femelle d'assemblage.
Le brevet FR 1.489.013 décrit ainsi un assemblage fileté intégral à filets trapézoïdaux, l'extrémité de l'élément mâle ayant une forme conique concave qui, . en fin d'assemblage, vient prendre appui contre une butée conique convexe située à la base du filetage de l'élément femelle ; en outre, l'arête terminale externe de l'élément mâle est légèrement chanfreinée et vient se mater contre une partie tronconique concave correspondante sur l'élément femelle en assurant ainsi une excellente étanchéité aux gaz, même après plusieurs utilisations successives des 5 . éléments de l'assemblage.
Ce brevet décrit également en option un assemblage de tubes revêtus intérieurement d'une couche d'émail ou de résine époxy dans le cas où le fluide circulant dans les tubes est un fluide agressif ou corrosif vis-à-vis du métal des o . tubes.
On peut notamment être amené à utiliser des tubes revêtus intérieurement lorsque le fluide circulant dans les tubes comprend de l'eau avec des chlorures et/ou de l'oxygène dissous ou du C02 et est de ce fait très corrosif vis-à-vis du métal utilisé. Le brevet FR 1.489.013 prévoit pour empêcher toute infiltration de fluide agressif au niveau de la butée de réaliser sur l'intérieur de l'extrémité mâle un logement pour un anneau d'étanchéité complémentaire portant à la fois sur des zones revêtues de l'extrémité mâle et de la butée en continuité avec le revêtement intérieur des tubes.
La demande de brevet EP 759497 décrit un assemblage fileté plus spécialement destiné aux puits d'injection d'eau permettant d'améliorer le taux de récupération des hydrocarbures d'un champ pétrolifère, l'eau injectée dans de tels puits étant en fait souvent une saumure oxygénée qui est extrêmement corrosive.
Le document EP 759497 décrit notamment un assemblage fileté manchonné, le manchon comportant intérieurement de part et d'autre d'une partie centrale en relief, un épaulement annulaire suivi d'un filetage femelle, les tubes comportant extérieurement en allant vers leur extrémité un filetage puis une surface annulaire transversale d'appui complémentaire à l'épaulement du manchon et enfin une zone lisse terminée par une surface annulaire radiale.
Un anneau d'étanchéité en matière synthétique molle est interposé entre les extrémités des tubes et est comprimé par les extrémités de tube dont la position en fin d'assemblage est déterminée par la mise en appui des surfaces d'appui des tubes avec celles correspondantes du manchon. La surface intérieure et les surfaces annulaires d'extrémité des tubes sont revêtues de résine synthétique de sorte que l'infiltration de liquide corrosif dans les parties métalliques de l'assemblage est empêchée par l'anneau ainsi mis en compression.
Ce document EP 759497 décrit également des solutions pour les assemblages filetés intégraux directement dérivées de la solution décrite pour l'assemblage manchonné, la surface d'appui étant dans ce cas reportée à l'extrémité libre de l'élément femelle.
Un tel assemblage avec anneau d'étanchéité en matière synthétique molle ne peut être totalement étanche, notamment aux gaz, la pression de contact assurée par l'anneau en matière molle étant bien moindre que celle résultant d'une déformation élastique métal sur métal telle que décrite dans le brevet FR 1.489.013.
On a cherché par la présente invention à réaliser un assemblage fileté extrêmement sûr et étanche pour tubes métalliques plus particulièrement destinés à contenir un fluide corrosif.
On a cherché à conserver sur l'assemblage fileté de hautes qualités d'étanchéité et • de résistance aux sollicitations mécaniques malgré plusieurs cycles de vissage- dévissage, les tubes métalliques devant pouvoir être démontés puis remontés à d'autres plusieurs fois.
On a aussi cherché à réaliser l'assemblage fileté aussi bien sous forme . d'assemblage intégrai que d'assemblage manchonné et dans ce cas en utilisant des manchons relativement économiques à fabriquer.
On a en outre cherché à réaliser l'assemblage fileté aussi bien :
- entre deux tubes en métal résistant à la corrosion par le fluide contenu, . - qu'entre deux tubes en métal non résistant à la corrosion mais munis d'un revêtement intérieur inerte vis-à-vis du fluide corrosif,
- ou encore entre un tube en métal résistant à la corrosion et un tube muni d'un revêtement intérieur.
0 . || est bien évident que l'utilisation d'un revêtement intérieur permet d'utiliser un métal moins noble donc moins cher.
Dans le cas de l'utilisation de tubes revêtus intérieurement, on a cherché à réaliser un assemblage compatible aussi bien avec des revêtements minces de quelques 5 . centièmes de mm d'épaisseur qu'avec des revêtements sous forme de tubes d'épaisseur de l'ordre de quelques mm doublant intérieurement les tubes principaux et solidarisés à ceux-ci, les matériaux constitutifs de ces tubes de doublage intérieur pouvant être relativement fragiles.
0 • L'invention a en premier lieu pour objet un assemblage fileté intégral entre deux tubes métalliques plus particulièrement destinés à contenir un fluide corrosif, du genre comprenant un élément mâle réalisé extérieurement eh extrémité du premier tube assemblé à un élément femelle réalisé intérieurement à l'extrémité du second tube. 5
L'élément mâle comprend une partie filetée mâle et une partie non filetée mâle, cette dernière étant disposée du côté de l'extrémité libre de l'élément mâle. L'élément femelle comprend une partie filetée femelle et une partie non filetée femelle du côté opposé à l'extrémité libre de l'élément femelle.
Les parties filetées mâle ou femelle peuvent, par exemple être un filetage conique • ou un ensemble de deux filetages cylindriques bi-étagés de manière connue en soi. La partie filetée mâle de l'élément mâle est vissée dans la partie filetée femelle de l'élément femelle et la partie non filetée de l'élément mâle coopère avec celle de l'élément femelle.
0 . La partie non filetée mâle de l'élément mâle comprend en allant vers l'extrémité libre dudit élément :
- une surface d'appui annulaire transversale réalisée sur une fraction de l'épaisseur du tube,
- la surface périphérique extérieure d'un nez de diamètre extérieur réduit, 5 • - une surface annulaire radiale qui rejoint la surface périphérique intérieure du premier tube.
Ladite surface annulaire radiale est appelée dans la suite du présent document surface annulaire d'extrémité intérieure du premier tube. 0 .
La partie non filetée femelle de l'élément femelle comprend en allant du côté opposé à l'extrémité libre dudit élément :
- une surface d'appui annulaire transversale formant épaulement complémentaire de la surface d'appui de l'élément mâle, 5 . - la surface périphérique intérieure d'une zone dite de renfort,
- une surface périphérique intérieure de logement pour un anneau d'étanchéité,
- une surface annulaire radiale qui rejoint la surface périphérique intérieure du second tube.
0 • Cette surface annulaire radiale est appelée surface annulaire d'extrémité intérieure du second tube dans la suite du présent document.
La surface d'appui de l'élément mâle est placée en butée contre la surface d'appui de l'élément femelle. 5 .
Les surfaces annulaires d'extrémité intérieure des deux tubes sont disposées en regard et à distance l'une de l'autre.
Le qualificatif "radial" pour les surfaces annulaires d'extrémité intérieure des tubes indique dans le présent document que ces surfaces ont une orientation • perpendiculaire ou quasi perpendiculaire à l'axe de l'assemblage.
Un anneau d'étanchéité en matériau synthétique est interposé directement ou indirectement entre les surfaces annulaires d'extrémité intérieure des deux tubes et assure un premier moyen d'étanchéité vis-à-vis du fluide contenu intérieurement ° dans les tubes, l'anneau d'étanchéité étant mis directement ou indirectement en compression axiale par les surfaces annulaires d'extrémité intérieure des deux tubes.
L'anneau d'étanchéité est bien sûr réalisé en matériau inerte vis-à-vis du fluide 5 . contenu dans les tubes de l'assemblage.
L'assemblage comprend aussi sur chacune des parties non filetées des éléments mâle et femelle une surface métallique d'étanchéité de forme annulaire située entre partie filetée et surface d'appui, la surface métallique d'étanchéité mâle de l'élément o . mâle venant porter sur la surface métallique d'étanchéité femelle de l'élément femelle avec une interférence diamétrale positive.
Dans le présent document, on entend par interférence diamétrale entre les points conjugués de deux surfaces de révolution qui interfèrent radialement la différence 5 . algébrique de diamètre mesurée avant assemblage entre un point de référence de la surface mâle et le point correspondant en contact de la surface femelle, la valeur de la pression de contact entre les surfaces métalliques d'étanchéité mâle et femelle étant directement fonction de la valeur de l'interférence diamétrale.
0 . On maintient en outre un jeu entre la surface périphérique extérieure du nez de l'élément mâle et la surface périphérique de la zone de renfort en regard sur l'élément femelle.
Ainsi, la présente invention résout le problème de l'obtention d'un assemblage fileté 5 . intégral possédant de hautes propriétés d'étanchéité par l'emploi de deux moyens d'étanchéité successifs, disposés convenablement et ayant chacun leur fonction propre : l'anneau d'étanchéité qui est soumis à une pression de contact modérée permet de confiner les phases corrosives du fluide alors que les portées d'étanchéité qui sont soumises à des pressions de contact très élevées procurent à l'assemblage ses caractéristiques globales d'étanchéité. .
L'épaisseur relativement élevée des tubes au droit des portées d'étanchéité permet justement de développer de très importantes pressions de contact.
Le jeu maintenu entre surface périphérique extérieure du nez et surface ° périphérique intérieure de la zone de renfort évite toute décharge de la pression de contact entre les portées d'étanchéité.
L'interposition de surfaces d'appui en butée entre les portées d'étanchéité et l'anneau d'étanchéité diminue encore les risques éventuels de corrosion. 5 .
L'invention a aussi pour objet un assemblage fileté manchonné entre deux tubes métalliques plus particulièrement destinés à contenir un fluide corrosif, du genre comprenant un élément mâle réalisé extérieurement en extrémité de chacun des deux tubes et un élément femelle réalisé intérieurement à chaque extrémité d'un 0 . manchon, les éléments femelles étant disposés opposés dos à dos sur le manchon.
Chaque élément mâle comprend une partie filetée mâle et une partie non filetée mâle, cette dernière étant disposée du côté de l'extrémité libre de chaque élément mâle considéré. 5 .
Chaque élément femelle comprend une partie filetée femelle et une partie non filetée femelle du côté opposé à l'extrémité libre de l'élément femelle considéré.
Les parties filetées mâle ou femelle peuvent, par exemple être un filetage conique 0 . ou un ensemble de deux filetages cylindriques bi-étagés de manière connue en soi. La partie filetée mâle de chaque élément mâle est vissée dans la partie filetée femelle de l'élément femelle correspondant et la partie non filetée de chaque élément mâle coopère avec celle de l'élément femelle correspondant.
5 . La partie non filetée mâle de chaque élément mâle comprend en allant vers l'extrémité libre dudit élément :
- une surface d'appui annulaire transversale réalisée sur une fraction de l'épaisseur du tube,
- la surface périphérique extérieure d'un nez de diamètre extérieur réduit,
- une surface annulaire radiale qui rejoint la surface périphérique intérieure du tube considéré.
Lesdites surfaces annulaires radiales sont appelées dans la suite du présent document surfaces annulaires d'extrémité intérieure des deux tubes. Elles sont disposées en regard et à distance l'une de l'autre.
La partie non filetée femelle de chaque élément femelle du manchon comprend en allant du côté opposé à l'extrémité libre dudit élément :
- une surface d'appui annulaire transversale formant épaulement complémentaire de la surface d'appui de l'élément mâle,
- la surface périphérique intérieure d'une zone dite de renfort, - une surface de logement pour un anneau d'étanchéité commune à la surface de logement sur l'autre élément femelle du manchon.
La surface d'appui de chaque élément mâle est placée en butée contre la surface d'appui de l'élément femelle correspondant.
Un anneau d'étanchéité en matériau synthétique est interposé directement ou indirectement entre les surfaces annulaires d'extrémité intérieure des deux tubes et assure un premier moyen d'étanchéité vis-à-vis du fluide contenu intérieurement dans les tubes, l'anneau d'étanchéité étant mis directement ou indirectement en compression axiale par les surfaces annulaires d'extrémité intérieure des deux tubes.
L'anneau d'étanchéité est bien sûr réalisé en matériau inerte vis-à-vis du fluide contenu dans les tubes de l'assemblage.
L'assemblage comprend aussi sur chacune des parties non filetées de chacun des éléments mâle et femelle une surface métallique d'étanchéité de forme annulaire située entre partie filetée et surface d'appui, la surface métallique d'étanchéité mâle de chaque élément mâle venant porter sur la surface métallique d'étanchéité femelle de l'élément femelle correspondant avec une interférence diamétrale positive.
On maintient en outre un jeu entre la surface périphérique extérieure du nez de chaque élément mâle et la surface périphérique de la zone de renfort en regard sur l'élément femelle correspondant.
La présente invention résout le problème de l'obtention d'un assemblage fileté • manchonné possédant de hautes caractéristiques d'étanchéité pour les mêmes raisons que celles exposées dans le cas de l'assemblage fileté intégral.
Le présent document décrit maintenant des solutions préférentielles ou avantageuses qui, sauf indication contraire, peuvent être mises en œuvre aussi bien o • sur l'assemblage intégral que sur l'assemblage manchonné selon l'invention.
Préférentiellement, les surfaces annulaires d'extrémité intérieure des tubes possèdent un diamètre extérieur et un diamètre intérieur sensiblement identiques.
. Préférentiellement, la surface d'appui de l'élément mâle est une surface conique concave très ouverte, la surface d'appui de l'élément femelle étant conique convexe de même angle au sommet que la surface d'appui mâle. Très préférentiellement, le demi-angle au sommet de ces surfaces d'appui est compris entre 70 et 85°.
0 • Avantageusement, le diamètre de la surface périphérique intérieure de la zone de renfort de l'élément femelle diminue en s'éloignant de la surface d'appui femelle, ce qui tend à renforcer mécaniquement cette dernière.
Dans toute la suite du présent document, on désignera en abrégé par surface de 5 . renfort la surface périphérique intérieure de la zone de renfort de l'élément femelle.
Préférentiellement, l'angle entre la surface d'appui et la surface de renfort de celle-ci sur l'élément femelle est un angle droit ou obtus.
° Avantageusement, les surfaces métalliques d'étanchéité mâles et femelles sont des surfaces coniques de demi-angle au sommet sensiblement identique dont le diamètre va en diminuant lorsque l'on se rapproche de l'extrémité libre de l'élément mâle.
5 . Préférentiellement, le demi-angle au sommet des surfaces métalliques d'étanchéité mâles et femelles est compris entre 2 et 30°. Pour éviter que l'anneau d'étanchéité ne se déplace dans son logement, notamment au cours de l'assemblage, la surface périphérique extérieure de l'anneau d'étanchéité porte avantageusement contre au moins une section droite de la surface périphérique du logement ménagé sur l'élément femelle. .
Toujours avantageusement, on peut munir l'anneau d'étanchéité de moyens de blocage mécanique pour empêcher un déplacement radial dirigé ' vers l'axe susceptible de lui faire quitter son logement, ce qui entraînerait le passage de phase corrosive dans l'assemblage. Ces moyens peuvent, par exemple, être des moyens ° d'encastrement de l'anneau d'étanchéité sur le nez ou la surface d'extrémité des tubes.
On peut aussi donner une forme légèrement conique convexe aux surfaces annulaires d'extrémité des tubes en contact avec l'anneau d'étanchéité de manière 5 • à prendre l'anneau d'étanchéité en coin et à l'empêcher de se déplacer radialement vers l'axe.
Préférentiellement, pour limiter le coût des tubes, ceux-ci sont réalisés en métal peu résistant à la corrosion par le fluide contenu et sont munis d'un revêtement sur leur 0 • surface périphérique intérieure et sur leur surface annulaire d'extrémité intérieure en veillant à assurer la continuité du revêtement entre ces deux surfaces pour éviter toute infiltration de liquide ou de condensât corrosif entre elles.
L'invention s'applique alors à des tubes composites, composés chacun d'un tube 5 . principal en métal peu résistant à la corrosion et du revêtement dont ce tube est muni sur sa surface périphérique intérieure et sur sa surface annulaire d'extrémité intérieure. L'anneau porte dans ce cas indirectement sur les surfaces annulaires d'extrémité intérieure par le revêtement réalisé sur celles-ci.
0 . Le revêtement peut ainsi être une couche de matériau relativement mince tel que par exemple une résine époxy appliquée ou projetée sur la surface périphérique intérieure des tubes de l'assemblage ainsi que sur les surfaces annulaires d'extrémité intérieure de ceux-ci.
5 . Le revêtement peut aussi être de plus forte épaisseur.
Le revêtement de la surface périphérique intérieure des tubes peut notamment être obtenu par un tube en matériau synthétique ou métallique doublant intérieurement le tube principal et solidarisé à celui-ci par des moyens appropriés tels que, par exemple, par cimentation, par collage, par interposition d'une résine adhérente, par soudage, par placage, etc. .
Les tubes de doublage intérieur possèdent préférentiellement une surface transversale d'extrémité disposée au droit de la surface annulaire d'extrémité intérieure du tube principal et on vient assurer la continuité du revêtement sur la surface annulaire d'extrémité intérieure des tubes principaux à l'aide d'une bride ° annulaire solidarisée par une de ses faces à ladite surface annulaire d'extrémité intérieure ainsi qu'à la surface d'extrémité du tube de doublage intérieur tandis que la face opposée de la bride porte sur l'anneau d'étanchéité.
Sur les éléments mâles, la bride constitue alors la partie extrême d'un nez composite 5 . et sa surface périphérique extérieure présente un jeu par rapport à la surface périphérique intérieure de la zone de renfort.
L'anneau d'étanchéité porte indirectement sur les surfaces annulaires d'extrémité intérieure des tubes par l'intermédiaire des brides qui sont solidarisées à ces 0 . surfaces.
Optionnellement, compte tenu de l'épaisseur de la bride, le nez composite-sur le ou les éléments mâles peut être constitué uniquement par la bride, la partie métallique du nez composite ayant une longueur nulle. 5
Il va de soi que la solidarisation de la bride sur l'extrémité du tube de doublage doit être réalisée de manière à empêcher le passage de phase liquide entre ces deux corps ; la solidarisation peut être réalisée par exemple par collage ou par tout autre moyen équivalent. 0
Toujours préférentiellement, le tube de doublage intérieur est solidarisé au tube principal par une couche relativement épaisse d'un matériau de liaison adhérent à la fois au tube principal et au tube de doublage intérieur. On entend ici par couche de liaison relativement épaisse, une couche d'épaisseur de l'ordre du mm voire de 5 . quelques mm. Une telle couche peut notamment absorber des irrégularités géométriques sur la surface intérieure des tubes telles que résultant d'une conification de l'extrémité du tube principal. Avantageusement dans ce cas, la face de la bride en regard de la surface annulaire d'extrémité intérieure du tube comporte un moyen d'ancrage en relief coopérant avec un moyen de forme complémentaire dans la surface de bout de la couche de liaison.
• La bride peut aussi se prolonger à angle droit du côté de son diamètre intérieur par une manchette solidarisée par sa surface périphérique extérieure à la surface périphérique intérieure du tube de doublage intérieur.
Il va de soi que la solidarisation de la manchette au tube de doublage intérieur doit ° être réalisée de manière à empêcher le passage de phase liquide entre ces 2 corps ; là encore la solidarisation peut-être réalisée par exemple par collage ou par tout autre moyen équivalent.
Très avantageusement, la bride est réalisée dans le même matériau que le tube de 5 . doublage intérieur, ce qui facilite leur jonction et évite que cette jonction soit soumise à des contraintes lors d'un fonctionnement à chaud de l'assemblage.
Par exemple, le matériau du tube de doublage intérieur est du type résine époxy renforcée de fibres de verre. 0
Avantageusement encore, la surface de la bride annulaire portant sur l'anneau d'étanchéité est une surface très légèrement conique convexe. Il a en effet été observé qu'une telle disposition diminue le risque de fissuration de la bride lorsque celle-ci est réalisée en matériau relativement fragile. 5
Dans le cas d'un assemblage fileté manchonné qui nécessiterait d'utiliser un anneau d'étanchéité de trop grande largeur axiale qui risquerait notamment de flamber lors de sa mise en compression, on peut remplacer l'anneau d'étanchéité par un corps d'étanchéité équivalent constitué d'un anneau déformable en matériau synthétique 0 . disposé coaxialement de part et d'autre d'une bague centrale en matériau relativement dur par rapport à celui des anneaux déformables et non sensible à la corrosion par le fluide contenu intérieurement. Chacun des deux anneaux déformables porte d'un côté sur une surface annulaire d'extrémité intérieure du tube revêtue ou non, de l'autre côté sur une face d'extrémité de la bague centrale. Avantageusement, les anneaux déformables portent par leur surface périphérique extérieure contre un logement de la périphérie intérieure du manchon.
Les figures suivantes se rapportent à des exemples non limitatifs de modes particuliers de réalisation de l'invention qui seront ensuite décrits dans le détail.
La figure 1 représente une vue générale en coupe longitudinale de deux tubes destinés à constituer un assemblage fileté manchonné selon l'invention.
. La figure 2 représente une vue détaillée en coupe de l'assemblage selon l'invention, l'assemblage des tubes de la figure 1 ayant été effectué.
La figure 3 présente un détail de la figure 2 au niveau de l'anneau d'étanchéité.
La figure 4 représente en coupe longitudinale la partie centrale d'un assemblage fileté manchonné selon l'invention, les tubes de l'assemblage étant munis des tubes de doublage intérieur.
La figure 5 représente une variante de l'assemblage fileté de la figure 4. .
La figure 6 représente en coupe longitudinale la partie centrale d'un assemblage fileté manchonné selon l'invention de tubes revêtus intérieurement d'une couche de revêtement projeté, l'anneau d'étanchéité étant remplacé par un corps d'étanchéité équivalent. .
La figure 7 représente toujours en coupe longitudinale la partie centrale d'un assemblage fileté intégral selon l'invention, le tube correspondant à l'élément mâle étant seul muni d'un tube de doublage intérieur.
. La figure 1 représente deux tubes métalliques 10, 10' destinés à être assemblés par vissage à l'aide d'un manchon 20 qui a été déjà assemblé au tube 10'.
Le tube 10 sera appelé premier tube de l'assemblage et le tube 10' second tube de l'assemblage.
Les tubes 10, 10' présentent extérieurement à leurs extrémités en regard un élément mâle 1 , l', l'élément l' étant le symétrique de l'élément 1. Le manchon 20 présente intérieurement à chacune de ses deux extrémités un élément femelle 2, 2', ces éléments femelles étant identiques mais symétriques par rapport au plan médian transversal du manchon.
Compte tenu de la symétrie de l'assemblage, on s'intéressera surtout à l'assemblage du tube 10 au manchon 20 par les éléments coopérants 1 , 2, le tube 10' étant, quant à lui, similairement assemblé au manchon 20 par les éléments coopérants l', 2'.
Les tubes métalliques 10 et 10' sont par exemple des tubes de production ou de cuvelage pour puits de pétrole ou de gaz assemblés en colonne et destinés à contenir et à faire circuler des fluides corrosifs tels que, par exemple, des hydrocarbures contenant du C02 humide ou des mélanges d'hydrocarbures, d'eau et de chlorures (saumure).
Ces tubes 10, 10' sont par exemple de ce fait réalisés selon la nature du fluide corrosif en acier inoxydable martensitique, en acier inoxydable austéno-ferritique à 22 % Cr ou en alliage de nickel à 28 % Cr.
L'élément mâle 1 d'assemblage comporte extérieurement en allant vers l'extrémité libre 17 un filetage conique mâle 13 à filets trapézoïdaux suivi d'une partie non filetée comprenant une surface annulaire métallique d'étanchéité 14, une surface d'appui annulaire transversale 15 et se prolongeant au-delà de celle-ci par la surface périphérique extérieure d'un nez 16.
La surface annulaire métallique mâle d'étanchéité 14 est une surface conique dont le diamètre diminue en allant vers l'extrémité libre 17 du tube 10 et dont le demi- angle au sommet est de 20°. On pourrait aussi bien utiliser d'autres valeurs de demi- angle au sommet, aussi petites que 2° et aussi grandes que 30° pour assurer l'étanchéité aux gaz.
La surface d'appui annulaire transversale 15 est une surface conique concave très ouverte de demi-angle au sommet 75 ° qui est usinée sur une fraction seulement de l'épaisseur, la hauteur de cette surface d'appui étant adaptée au couple de vissage de l'assemblage. Le nez 16 au-delà de la surface d'appui 15 possède une épaisseur relativement faible du fait de la réduction d'épaisseur occasionnée par la surface d'appui transversale.
• La surface périphérique extérieure du nez 16 est une surface conique dont le diamètre diminue en allant vers l'extrémité libre 17 et dont le demi-angle au sommet est de 20°.
Le nez 16 se termine par la surface annulaire 17 qui est d'orientation radiale c'est-à- 0 . dire perpendiculaire ou sensiblement perpendiculaire à l'axe de l'assemblage XX.
Le tube 10' se termine du côté de sa périphérie intérieure par une surface annulaire radiale 17' en regard de la surface annulaire radiale 17 du tube 10.
5 ' Les surfaces annulaires 17 et 17' ont la même épaisseur radialement et sont désignées par le vocable " surface annulaire d'extrémité intérieure des tubes ".
L'élément femelle 2 comprend sur sa surface périphérique intérieure des moyens correspondant aux moyens de l'élément mâle et susceptibles de coopérer avec ° - ceux-ci.
L'élément femelle 2 comprend depuis l'extrémité libre du manchon 20 :
- un filetage femelle 23 du même type que celui de l'élément mâle et avec des filets complémentaires, 5 . - une surface conique 24 d'étanchéité dont la conicité correspond en valeur et en direction à celle de l'élément mâle,
- une surface d'appui 25 conique convexe dont la hauteur, la conicité et la direction correspondent à celle 15 de l'élément mâle,
- une surface conique de renfort 26 dont le diamètre diminue en s'éioignant de la 0 . surface d'appui et dont le demi-angle au sommet est de 20°, comme la surface périphérique extérieure du nez 16,
- et enfin, un logement (21 , 22, 22') pour un anneau d'étanchéité 40 disposé en léger creux sur la périphérie intérieure du manchon 20 et sensiblement au milieu de celui-ci. 5
On notera que la surface conique femelle de renfort 26 forme un angle de 95° par rapport à la surface conique 25 de butée. II est apparu de manière surprenante qu'une telle configuration permettait de faire passer un couple important de vissage dans les surfaces d'appui 15, 25 maigre la hauteur relativement faible de celles-ci.
L'anneau d'étanchéité 40, représenté plus en détail à la figure 3, est réalisé en matériau synthétique déformable et inerte vis-à-vis du fluide contenu.
Il comprend deux faces d'extrémité 41 , 41' terminées extérieurement par un rebord 44, 44', une surface périphérique intérieure 42 et une surface périphérique extérieure 43.
La surface périphérique extérieure 43 de l'anneau 40 est convexe et constituée d'une surface cylindrique entourée de 2 surfaces coniques lesquelles limitent extérieurement les rebords 44, 44'.
La surface cylindrique centrale vient porter sur la partie cylindrique centrale du logement 21 de manière à éviter tout déplacement radial de l'anneau 40 durant le vissage.
Les surfaces coniques extérieures des rebords 44, 44' de l'anneau 40 présentent par contre un jeu par rapport aux bords également coniques 22, 22' du logement 21. Ce jeu mesuré axialement est de l'ordre du mm et permet, soit d'introduire l'anneau 40 une fois le manchon 20 assemblé sur le tube 10', soit de pouvoir visser le tube 10' sur le manchon 20 dans lequel aura été préalablement introduit l'anneau 40 sans que ledit anneau ne sorte de son logement.
Les faces d'extrémité 41 et 41' de l'anneau 40 sont des surfaces planes sensiblement perpendiculaires à l'axe de l'assemblage.
La face d'extrémité 41' dirigée vers le tube 10' porte axialement directement sur la surface annulaire d'extrémité intérieure 17' du tube 10'.
La face d'extrémité 41 dirigée vers le tube 10 se trouve en regard de la surface annulaire d'extrémité intérieure 17 du tube 10.
Le rôle des rebords 44, 44' sera étudié plus loin sur l'assemblage réalisé.
La surface périphérique intérieure 42 a un diamètre avant assemblage supérieur à celui des extrémités des tubes 10 et 10'. La valeur de cet écart sera indiquée plus loin sur l'assemblage réalisé.
La figure 2 représente les mêmes éléments que la figure 1 une fois l'assemblage • réalisé.
A un moment donné, lors du vissage de l'élément mâle 1 dans l'élément femelle 2, la surface annulaire d'extrémité 17 vient en contact avec l'anneau d'étanchéité déformable 40. En poursuivant le vissage, on vient comprimer axialement l'anneau 0 . 40 entre les surfaces annulaires d'extrémité intérieure 17 et 17', ce qui empêche l'infiltration ultérieure dans l'assemblage de phase liquide du fluide corrosif contenu intérieurement.
A ce stade du vissage, un tel assemblage ne serait par contre pas parfaitement 5 • étanche à des gaz ou à des phases gazeuses sous haute pression.
On poursuit le vissage et on observe d'abord l'accostage des surfaces métalliques d'étanchéité 14 et 24, puis l'établissement d'une pression élastique de contact entre celles-ci et finalement l'accostage de la surface d'appui 15 contre la surface d'appui 0 . 25 qui se traduit par la brutale montée du couple de vissage.
La valeur de la pression de contact entre les surfaces métalliques d'étanchéité 14 et 24. est déterminée par la valeur de l'interférence diamétrale obtenue pour une géométrie donnée et notamment pour une conicité des surfaces 14, 24 donnée et 5 . pour une épaisseur de métal donnée.
La pression de contact au niveau des surfaces métalliques 14 et 24 ne doit toutefois pas excéder la limite d'élasticité du métal des éléments 1 et 2, un dépassement de cette dernière entraînant un risque de grippage des surfaces métalliques 14 et 24 et o . une modification des caractéristiques de fonctionnement de l'assemblage après dévissage et revissage ultérieurs.
Pour éviter tout contact entre la surface périphérique extérieure du nez 16 et la surface périphérique intérieure de renfort 26 en regard sur l'élément femelle 2, 5 . contact susceptible de réduire la valeur de l'interférence diamétrale entre les surfaces métalliques d'étanchéité 14 et 24, la surface périphérique extérieure du nez 16 est une surface conique d'angle 20° comme la surface conique de renfort 26 en regard sur l'élément femelle 2. En outre, la hauteur d'appui femelle 25 est légèrement plus faible que celle de la surface d'appui mâle 15, ce qui permet de ménager un jeu d'au moins 0,1 mm à tout moment durant et en fin d'assemblage entre la surface périphérique intérieure de renfort 26 de l'élément femelle 2 et la surface périphérique extérieure du nez 16.
La longueur axiale du nez 16 est fonction de la géométrie de l'assemblage, notamment de l'épaisseur axiale de l'anneau d'étanchéité 40 et de la distance entre les surfaces d'appui 25, 25' du manchon 20.
1 0
Un nez 16 court se traduit par une zone 26 étroite et peut nécessiter un anneau d'étanchéité 40 relativement large axialement par rapport à son épaisseur radiale. On vise en fait à avoir pour l'anneau d'étanchéité 40 un rapport de ces deux dimensions largeur/épaisseur inférieur ou égal à 1 ,5 et si possible proche de 1 , un
1 5 . rapport largeur/épaisseur élevé risquant de conduire à un flambage de l'anneau 40.
On verra plus loin que, lorsque l'on constitue un nez composite, la partie métallique 16 du nez composite peut optionnellement avoir une longueur nulle.
-2.Q . Un nez 16 trop long se traduit compte tenu de la conicité de sa surface extérieure par une surface annulaire d'extrémité intérieure 17 d'épaisseur insuffisante.
On est d'ailleurs souvent amené à déformer plastiquement l'extrémité des tubes 10, 10', de manière à venir placer en 18, 18' le métal là où il est nécessaire, c'est-à-dire
2 5 • plutôt vers le diamètre intérieur des tubes. Une telle opération dite de conification est bien connue de l'homme du métier.
L'anneau d'étanchéité 40 est réalisé en matériau composite constitué d'une matrice de PTFE renforcée avec 25% de fibres de verre. On peut utiliser un matériau 3 ° • contenant une moindre proportion de fibres de verre mais ceci conduit à diminuer le module d'élasticité du matériau et à devoir déformer davantage l'anneau 40 pour obtenir la même pression de contact.
Pour un renfort à 25% de fibres de verre possédant un module d'élasticité de l'ordre 35 . de 800 MPa, on vise à comprimer l'anneau d'étanchéité 40 de 10 à 25% en fin d'assemblage suivant ses dimensions, ce qui permet d'assurer une pression de contact de 80 à 200 MPa environ sur les faces d'extrémité 41 , 41' de l'anneau 40. La surface périphérique intérieure 42 de l'anneau d'étanchéité 40 doit présenter après assemblage un diamètre non sensiblement inférieur à celui des extrémités des tubes 10, 10' faute de quoi l'anneau d'étanchéité serait en saillie intérieure et risquerait d'accrocher des outils déplacés dans les tubes. On calcule donc le diamètre initial de l'anneau 40 à partir du diamètre assemblé en considérant l'égalité du volume comprimé axialement et de celui déformé radialement sur le diamètre, l'anneau 40 étant bloqué extérieurement dans le logement 21.
L'anneau 40 ne permettant pas de réaliser une parfaite étanchéité aux gaz, il règne, 0 . compte tenu des surfaces métalliques d'étanchéité 14, 24, 14', 24', en régime stabilisé à la périphérie extérieure de l'anneau 40, une pression de gaz voisine de celle du fluide. Lorsqu'on dépressurise rapidement le fluide, la contre-pression sur la périphérie extérieure 43 de l'anneau 40 devient supérieure à celle du fluide à sa périphérie intérieure 42 et peut obliger l'anneau à quitter son logement et mettre par 5 . conséquent une phase liquide corrosive en contact avec le métal de l'assemblage.
Les rebords extérieurs 44, 44' à l'extrémité des surfaces d'extrémité 41 , 41' de l'anneau 40 viennent coiffer l'extrémité des nez 16, 16' et réaliser un encastrement de l'anneau déformable par l'extrémité des nez 16 et 16' en empêchant tout 0 . déplacement radial intempestif dirigé vers l'axe de l'anneau d'étanchéité 40.
Un autre moyen non représenté pour empêcher le déplacement radial vers l'axe de l'anneau 40 est d'incliner légèrement les surfaces annulaires d'extrémité 17 et 17' pour leur donner la forme de surfaces légèrement coniques convexes de demi-angle 5 . au sommet un peu inférieur à 90° de manière à ce que ces surfaces annulaires radiales prennent en coin l'anneau déformable 40 et l'empêchent de se déplacer radialement vers l'axe. On donne alors une forme conique conjuguée aux faces d'extrémité 41 , 41' de l'anneau d'étanchéité 40.
0 . La figure 4 représente un assemblage selon l'invention de tubes métalliques 10 et 10' en acier faiblement allié doublés intérieurement de tubes 51 , 51' d'épaisseur de l'ordre de 2 à 3 mm.
Ces tubes de doublage intérieur sont par exemple réalisés en résine époxy 5 . renforcée de fibres de verre. Un tel matériau composite est particulièrement adapté lorsque le fluide contenu intérieurement est extrêmement corrosif. On peut citer comme exemple de fluide un mélange chaud à plus de 100°C de gaz naturel, de
C02 et de saumure (= H20 + chlorures) contenant en outre des particules abrasives de sable, la pression du fluide étant supérieure à 10 MPa.
. La résine époxy chargée en fibres de verre est un matériau qui est en outre résistant aux chocs d'outils susceptibles d'être déplacés dans les tubes mais c'est un matériau qui ne peut être mis en forme par déformation plastique.
Pour assurer la solidarisation du tube de doublage intérieur 51 au tube principal 10, ° on utilise un ciment ou une résine synthétique sous forme d'une couche de liaison
52 relativement épaisse qui est adhérente à la fois au tube principal 10 et au tube de doublage intérieur 51. Le brevet US 3,482,007 décrit un exemple d'un tel procédé de solidarisation par cimentation.
5 . Il est à noter qu'une couche de liaison 52 suffisamment épaisse permet d'absorber la discontinuité géométrique 18 résultant de la conification de l'extrémité du tube principal 10.
Le tube de doublage intérieur 51 est préférablement coupé au droit de la surface 0 . annulaire d'extrémité intérieure 17 du tube 10 ; la présence d'un nez 16 de longueur suffisante pour que la surface de coupe se situe au-delà du sommet de la surface d'appui peut faciliter l'opération de coupe.
Pour assurer la continuité du revêtement sur les surfaces annulaires d'extrémité 5 . intérieure 17, 17', on vient emboîter et solidariser une bride annulaire 70, 70' en extrémité des tubes doublés 10+51 , 10'+51'.
Chaque bride 70, 70' constitue alors avec le nez métallique 16, 16' la partie extrême d'un nez composite et l'anneau d'étanchéité 40 porte indirectement sur les surfaces 0 . annulaires d'extrémité intérieure 17, 17' des tubes par l'intermédiaire des brides 70, 70' qui sont solidarisées à ces surfaces.
Les deux brides 70, 70' étant identiques et montées symétriquement, on ne décrira que la bride 70. 5 .
Celle-ci présente une forme annulaire disposée radialement par rapport à l'axe de l'assemblage. Elle possède une face 71 collée contre la surface annulaire d'extrémité intérieure 17 et contre la surface d'extrémité du tube de doublage intérieur 51 , la colle empêchant l'infiltration de phase liquide entre le tube de doublage intérieur 51 et le tube principal 10. .
La face 71 comporte un relief annulaire 73 qui est encastré dans une rainure de forme complémentaire réalisée en bout de la couche de liaison 52.
La combinaison de ce relief 73 et de cette rainure permet d'ancrer la bride sur la o . surface d'extrémité du tube doublé.
L'autre face 72 de la bride 70 porte sur l'anneau d'étanchéité 40.
La bride 70 est réalisée comme le tube de doublage intérieur en résine époxy 5 renforcée de fibres de verre. Un tel matériau est plus dur que le matériau de l'anneau d'étanchéité 40, ce qui permet de bien transmettre la pression de contact donnée par le nez 16.
La surface périphérique intérieure de la bride 70 est une surface cylindrique située 0 . dans le prolongement de la surface périphérique intérieure du tube de doublage intérieur 51. Une telle disposition assure une section de passage constante tout au long de la colonne de tubes.
La surface périphérique extérieure 74 de la bride 70 est une surface conique située 5 • sensiblement dans le prolongement de la surface périphérique extérieure du nez 16 de manière à permettre au rebord 44 de l'anneau d'étanchéité 40 de venir se coiffer sur la surface 74.
La figure 5 montre une variante de réalisation de la figure 4, la bride 60 ne 0 . comportant pas de relief annulaire sur sa face 61 mais étant prolongée à angle droit du côté de son diamètre intérieur par une manchette 65 dont la surface périphérique extérieure est solidarisée par collage à la surface périphérique intérieure du tube de doublage intérieur 51.
5 . Là encore, chaque bride 60, 60' constitue la partie extrême d'un nez composite et l'anneau d'étanchéité 40 porte indirectement sur les surfaces annulaires d'extrémité intérieure 17, 17' des tubes par l'intermédiaire des brides 60, 60' qui sont solidarisées à ces surfaces.
L'épaisseur de la bride 60 et l'épaisseur de la manchette 65 sont suffisantes pour . résister aux sollicitations mécaniques.
L'épaisseur de la manchette 65 est toutefois limitée pour ne pas risquer un accrochage ou des coups d'outils susceptibles d'être déplacés dans les tubes en service : une épaisseur de l'ordre de 2 à 3 mm pour la manchette 65 est tout à fait ° adéquate.
Toujours pour éviter les accrochages et les coups d'outils déplacés dans les tubes en service, la surface périphérique intérieure de la manchette 65 tend à se raccorder avec la surface périphérique intérieure du tube de doublage intérieur 51. 5
En variante selon la figure 8, le nez composite sur les éléments mâles est constitué uniquement par la bride 70, 70', la partie métallique 16, 16' du nez composite ayant une longueur nulle et la surface annulaire d'extrémité intérieure 17, 17' des tubes étant disposée au droit du pied des surfaces d'appui mâles 15, 15'. 0
Le jeu existant entre la surface périphérique extérieure des brides annulaires par rapport à la surface périphérique intérieure de la zone de renfort 26, 26' évite toute décharge de la pression de contact entre les portées d'étanchéité 14, 24 et toute désolidarisation des brides 70, 70' par rapport aux tubes principaux. 5
Il faut en outre noter qu'une forme légèrement conique concave pour la surface 62 ou 72 de portée d'anneau entraîne un surcroît de contrainte sur les parties critiques de la bride 60 ou 70, donc un risque de fissuration de cette dernière. Bien que cela ne soit pas représenté sur les figures 4 ou 5, on pourra avantageusement adopter 0 . une forme conique convexe de demi-angle au sommet d'environ 85° pour les surfaces de portée 62 ou 72 de la bride 60 ou 70.
Bien que l'on ne l'ait pas représenté, on peut aussi utiliser un tube de doublage intérieur en métal résistant à la corrosion solidarisé par placage, par co-laminage, 5 . par co-extrusion avec le tube principal en acier peu allié. La continuité du revêtement sur les surfaces annulaires d'extrémité intérieure 17 des tubes principaux peut alors être assurée par une bride telle que 60 ou 70 collée. Le tube de doublage intérieur peut aussi être réalisé en matériau synthétique possédant une ductilité suffisante pour notamment pouvoir rabattre l'extrémité du tube de doublage intérieur à angle droit de manière à constituer une bride revêtant la surface annulaire d'extrémité intérieure du tube sans risque de fissuration des • zones déformées. De tels tubes de doublage intérieur hautement déformables peuvent notamment être réalisés en matériau synthétique thermoplastique.
La figure 6 illustre un assemblage fileté manchonné qui nécessiterait un anneau déformable trop large axialement, le revêtement de la surface périphérique ° intérieure et des surfaces annulaires d'extrémité intérieure 17, 17' des tubes 10, 10' étant une couche mince projetée d'épaisseur d'environ 0,04 mm en matériau synthétique de type époxy.
Dans ce cas, on remplace l'anneau d'étanchéité par un corps d'étanchéité 5 . équivalent constitué d'anneaux déformables 31 , 32 disposés de part et d'autre d'une bague centrale 33 en matière relativement dure par rapport à celle des anneaux 31 , 32 telle qu'une résine époxy chargée de fibres de verre, les anneaux déformables 31 , 32 étant eux en PTFE renforcé de 25% de fibres de verre.
0 . Les anneaux déformables 31 , 32 peuvent, par exemple, être collés aux surfaces d'extrémité 35, 35' de la bague centrale 33.
La surface périphérique intérieure de la bague centrale 33 se trouve dans le prolongement de la surface périphérique intérieure revêtue des tubes 10 et 10'. 5 .
Les surfaces d'extrémités 35, 35' de la bague centrale 33 peuvent être des surfaces légèrement tronconiques convexes de demi-angle au sommet par exemple 80° pour prendre en coin les anneaux déformables 31 , 32 et les empêcher de quitter leur logement. 0 .
Un tel effet de coin peut être complété en inclinant aussi les surfaces annulaires d'extrémité 17, 17' des tubes 10, 10' en leur donnant une forme légèrement tronconique convexe.
5 . Comme pour les figures précédentes, les anneaux déformables 31 , 32 portent par leur périphérie extérieure sur la surface périphérique intérieure du manchon 120 et leur diamètre intérieur est, après assemblage, au moins égal à celui de la surface périphérique intérieure des tubes 10, 10'.
La figure 7 représente un assemblage fileté intégral entre, d'une part un premier - tube 10 en acier peu allié doublé intérieurement d'un tube 51 en époxy-fibres de verre et, d'autre part, un accessoire épais 210 en alliage résistant à la corrosion par le fluide contenu tel qu'un acier inoxydable ou un alliage de nickel à durcissement structural.
• De tels accessoires épais dans lesquels on peut tailler des joints intégraux se rencontrent notamment en fond de puits pour hydrocarbures.
L'élément fileté mâle 1 est semblable à celui de la figure 5. L'élément fileté femelle 200 est réalisé directement à l'extrémité du tube 210 sur sa périphérie intérieure et 5 - comporte les mêmes moyens femelles 221 , 223, 224, 225, 226 disposés de la même façon que les moyens femelles 21 , 23, 24, 25, 26 de l'élément femelle 2 des figures 1 à 5.
L'élément femelle 200 comprend un filetage 223 du côté extrémité du tube 210 et 0 • une partie non filetée laquelle comprend successivement en s'éloignant du filetage 223 une surface métallique d'étanchéité 224, une surface d'appui annulaire transversale 225, une surface conique de renfort 226, un logement 221 pour un anneau d'étanchéité 40 et une surface annulaire radiale 217 dite d'extrémité intérieure. 5 .
La surface annulaire d'extrémité intérieure 217 réalisée à l'extrémité de l'élément femelle 200 rejoint la surface périphérique intérieure du corps du tube métallique 210.
° Comme dans le cas de la figure 5, la continuité du revêtement intérieur du côté tube 10 est assurée par la bride à manchette 60 collée au tube de doublage intérieur 51 et à la surface annulaire d'extrémité intérieure 17 du tube 10.
Par symétrie, une bride 60' identique à la bride 60 est collée contre la surface 5 . périphérique intérieure de l'accessoire tubulaire 210 et contre sa surface annulaire d'extrémité intérieure 217. On aurait pu aussi se passer de la bride 60', le tube 210 étant alors plus épais pour récupérer l'espace libéré par la bride 60' et sa manchette 65'.
Les surfaces d'extrémité intérieure 17, 217 des tubes principaux 10, 210 sont • toujours en regard mais elles possèdent des diamètres intérieurs différents compte tenu de la présence du revêtement 51.
Un anneau d'étanchéité 40 en PTFE chargé de fibres de verre est interposé entre les brides 60, 60' et empêche l'infiltration de phase liquide corrosive dans . l'assemblage.
L'anneau d'étanchéité 40 porte indirectement sur les surfaces annulaires d'extrémité intérieure 17, 217 des tubes par l'intermédiaire des brides 60, 60' qui sont solidarisées à ces surfaces. 5 .
L'exemple suivant permet de décrire les performances obtenues d'un assemblage fileté manchonné dans une configuration donnée correspondant à la figure 5.
- Colonne de tubes de diamètre extérieur 7" (177,8 mm) et de masse linéaire 29 Ib/ft 0 • (43,2 Kg/m) correspondant à une épaisseur des tubes métalliques à assembler de
10,36 mm en grade API L80 (acier faiblement allié de limite d'élasticité minimale 551 MPa),
- Filetage conique (conicité sur le diamètre = 1/16) à filets trapézoïdaux (5 filets par pouce), 5 . - Surfaces métalliques d'étanchéité inclinées à 20° sur l'axe,
- Surfaces d'appui coniques de demi-angle au sommet 75° et de hauteur 2,5 mm,
- Nez d'extrémité des tubes de longueur 4 mm incliné extérieurement à 20° par rapport à l'axe,
- Tubes de doublage intérieur d'épaisseur 2,5 mm en composite résine époxy-fibres 0 . de verre cimentés aux tubes métalliques,
- Bride d'épaisseur 2,5 mm également en composite résine époxy-fibres de verre avec manchette de même épaisseur 2,5 mm,
- Anneau en PTFE chargé de 25% de fibres de verre, de largeur axiale initiale 9,5 mm et d'épaisseur radiale initiale 7,6 mm, déformé de 15% après assemblage, 5 . . Le couple de vissage appliqué en fin d'assemblage est de 12750 N.m. Les essais réalisés ont été les suivants :
• vissage-dévissage 5 fois de suite
• tenue en pression interne d'eau selon spécification API 5CT
• tenue en pression interne de gaz (même pression que ci-dessus avec l'eau) • « 1ère combinaison de sollicitation :
35 MPa de pression interne d'eau
+ 330 MPa en traction (60% de la limite d'élasticité minimale du L80) + Flexion avec un angle de flexion de 10 30 m + dépressurisation instantanée ° - • 2ème combinaison de sollicitation :
35 MPa de pression interne de gaz à température ambiante et à 100°C + 330 MPa en traction (60% de la limite d'élasticité minimale du L80) + 3 cycles de flexion alternée avec un angle de flexion de 10 30m + dépressurisation à 1.4 MPa/mn. 5 .
Le critère de tenue à ces essais est un essai d'isolation électrique dit " Holiday test " selon spécification NACE TM 0186 entre, d'une part, la surface périphérique intérieure des tubes de doublage intérieur et des manchettes et, d'autre part, les tubes métalliques. Cet essai d'isolation électrique (13 KV, courant continu) permet ° de détecter toute fissuration des tubes de doublage intérieur, des brides et des manchettes associées à celles-ci durant les essais mécaniques.
L'intégrité de la structure des tubes de doublage intérieur, des brides et des anneaux d'étanchéité a également été contrôlée visuellement après les essais 5 . mécaniques. Les résultats à ce contrôle visuel ont tous été satisfaisants.
La présente invention n'est bien entendu pas limitée aux exemples ci-dessus mais couvre toute réalisation tombant dans le domaine protégé.

Claims

REVENDICAT1ONS
1 °) Assemblage fileté intégral entre deux tubes métalliques (10, 210) du genre comprenant un élément mâle (1) réalisé extérieurement en extrémité du premier tube (10) et un élément femelle (200) réalisé intérieurement à l'extrémité du second tube (210), - l'élément mâle (1) comprenant une partie filetée mâle (13) et une partie non filetée mâle, cette dernière étant disposée du côté de l'extrémité libre de l'élément mâle (1),
- l'élément femelle (200) comprenant une partie filetée femelle (223) et une partie non filetée femelle, cette dernière étant disposée du côté opposé à l'extrémité libre de l'élément femelle (200), 0 . - la partie filetée mâle (13) de l'élément mâle étant vissée dans la partie filetée femelle (223) de l'élément femelle et la partie non filetée de l'élément mâle (1) coopérant avec celle de l'élément femelle (200),
- la partie non filetée mâle de l'élément mâle (1) comprenant en allant vers l'extrémité libre dudit élément mâle une surface d'appui annulaire transversale (15) 5 . réalisée sur une fraction de l'épaisseur du tube, se prolongeant par la surface périphérique extérieure d'un nez de diamètre extérieur réduit et se terminant par une surface annulaire radiale (17) dite surface annulaire d'extrémité intérieure du premier tube qui rejoint la surface périphérique intérieure dudit premier tube (10),
- la partie non filetée femelle de l'élément femelle (200) comprenant en allant du o • côté opposé à l'extrémité libre dudit élément femelle une surface d'appui annulaire transversale (225) formant épaulement complémentaire de la surface d'appui (15) de l'élément mâle (1), se prolongeant par la surface périphérique intérieure d'une zone dite de renfort (226), puis par une surface périphérique intérieure de logement (221) pour un anneau d'étanchéité et se terminant par une surface annulaire radiale 5 . (217) dite surface annulaire d'extrémité intérieure du second tube qui rejoint la surface périphérique intérieure du second tube (210),
- la surface d'appui (15) de l'élément mâle (1) étant placée en butée contre la surface d'appui (225) de l'élément femelle (200),
- les surfaces annulaires d'extrémité intérieure (17, 217) des deux tubes (10, 210) ° étant disposées en regard et à distance l'une de l'autre,
- un anneau d'étanchéité (40) en matériau synthétique étant interposé directement ou indirectement entre les surfaces annulaires d'extrémité intérieure (17, 217) des deux tubes (10, 210) et étant mis directement ou indirectement en compression axiale par ces dernières, 5 . caractérisé en ce que : a) l'assemblage comprend sur chacune des parties non filetées des éléments mâle et femelle une surface métallique d'étanchéité de forme annulaire située entre partie filetée et surface d'appui, la surface métallique d'étanchéité mâle (14) de l'élément mâle (1) venant porter sur la surface métallique d'étanchéité femelle (224) de l'élément femelle (200) avec une interférence diamétrale positive, . b) on maintient un jeu entre la surface périphérique extérieure du nez (16) de l'élément mâle (1) et la surface périphérique de la zone de renfort (226) en regard sur l'élément femelle (200).
2°) Assemblage fileté manchonné entre deux tubes métalliques (10, 10') du genre o comprenant un élément mâle (1 , l') réalisé extérieurement en extrémité de chacun des deux tubes (10, 10'), et un élément femelle (2, 2') réalisé intérieurement à chaque extrémité d'un manchon (20), les éléments femelles (2, 2') étant disposés opposés dos à dos sur le manchon (20),
- chaque élément mâle (1 ,1') comprenant une partie filetée mâle (13,13') et une 5 . partie non filetée mâle, cette dernière étant disposée du côté de l'extrémité libre de chaque élément mâle considéré,
- chaque élément femelle (2, 2') comprenant une partie filetée femelle (23, 23') et une partie non filetée femelle du côté opposé à l'extrémité libre de l'élément femelle considéré, 0 . - la partie filetée mâle (13, 13') de chaque élément mâle (1 , l') étant vissée dans la partie filetée femelle (23, 23') de l'élément femelle correspondant (2, 2') et la partie non filetée de chaque élément mâle coopérant avec celle de l'élément femelle correspondant,
- la partie non filetée mâle de chaque élément mâle (1 , l') comprenant en allant vers 5 . l'extrémité libre dudit élément mâle une surface d'appui annulaire transversale (15,
15') réalisée sur une fraction de l'épaisseur du tube, se prolongeant par la surface périphérique extérieure d'un nez de diamètre extérieur réduit et se terminant par une surface annulaire radiale (17, 17') dite surface annulaire d'extrémité intérieure qui rejoint la surface périphérique intérieure du tube considéré (10, 10'), 0 . . lesdites surfaces annulaires d'extrémité intérieure (17, 17') étant disposées en regard et à distance l'une de l'autre,
- la partie non filetée femelle de chaque élément femelle (2; 2') du manchon (20) comprenant en allant du côté opposé à l'extrémité libre dudit élément femelle une surface d'appui annulaire transversale (25, 25') formant épaulement complémentaire 5 - de la surface d'appui (15, 15') de l'élément mâle (1 , l') correspondant, se prolongeant par la surface périphérique intérieure d'une zone dite de renfort (26, 26'), puis par une surface de logement (22, 21) pour un anneau d'étanchéité commune à la surface de logement (22', 21) de l'autre élément femelle du manchon
(20),
- la surface d'appui (15, 15') de chaque élément mâle (1 , l') étant placée en butée contre la surface d'appui (25, 25') de l'élément femelle correspondant, . - un anneau d'étanchéité (40) en matériau synthétique étant interposé directement ou indirectement entre les surfaces annulaires d'extrémité intérieure (17, 17') des deux tubes (10, 10') et étant mis directement ou indirectement en compression axiale par ces dernières, caractérisé en ce que : ° - a) l'assemblage comprend sur chacune des parties non filetées de chacun des éléments mâles (1 , l') et femelles (2, 2') une surface métallique d'étanchéité de forme annulaire située entre partie filetée et surface d'appui, la surface métallique d'étanchéité mâle (14, 14') de chaque élément mâle (1 , l') venant porter sur la surface métallique d'étanchéité femelle (24, 24') de l'élément femelle correspondant 5 . (2, 2') avec une interférence diamétrale positive. b) on maintient un jeu entre la surface périphérique extérieure du nez (16, 16') de chaque élément mâle (1 , l') et la surface périphérique de renfort (26, 26') en regard sur l'élément femelle correspondant (2, 2').
0 • 3°) Assemblage fileté selon la revendication 1 ou 2, caractérisé en ce que les surfaces annulaires d'extrémité intérieure (17, 17', 217) des tubes possèdent des diamètres extérieurs et intérieurs sensiblement identiques.
4°) Assemblage fileté selon l'une quelconque des revendications 1 à 3, caractérisé 5 . en ce que la surface d'appui (15) de l'élément mâle est une surface conique concave très ouverte, la surface d'appui (25, 225) de l'élément femelle (2, 200) étant conique mais convexe d'angle correspondant à celui de la surface d'appui (15) de l'élément mâle (1).
0 . 50) Assemblage fileté selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le diamètre de la surface périphérique intérieure de la zone de renfort (26, 226) sur l'élément femelle (2, 200) diminue en s'éloignant de la surface d'appui (25, 225).
5 - 6°) Assemblage fileté selon la revendication 5, caractérisé en ce que l'angle entre la surface d'appui (25, 225) de l'élément femelle (2, 200) et la surface de renfort (26, 226) de ce même élément est un angle droit ou obtus. 7°) Assemblage fileté selon l'une quelconque des revendications 1 à 6 caractérisé en ce que les surfaces métalliques d'étanchéité mâle (14) et femelle (24, 224) sont des surfaces coniques de demi-angle au sommet sensiblement identique, le diamètre de ces surfaces diminuant en se rapprochant de l'extrémité libre de l'élément mâle (1).
8°) Assemblage fileté selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la surface périphérique extérieure (43) de l'anneau d'étanchéité (40) porte contre au moins une section droite de la surface périphérique du logement (21 , 221) . ménagé sur l'élément femelle (2, 200).
9°) Assemblage fileté selon l'une quelconque des revendications 1 à 8 caractérisé en ce que l'anneau d'étanchéité (40) comporte des moyens de blocage mécanique (44, 44') empêchant son déplacement radial vers l'axe, déplacement susceptible de lui faire quitter son logement (21 , 221).
10°) Assemblage fileté selon l'une quelconque des revendications 1 à 9 caractérisé en ce que les surfaces annulaires d'extrémité des tubes de l'assemblage en contact avec l'anneau d'étanchéité (40) sont des surfaces légèrement coniques convexes . prenant en coin l'anneau d'étanchéité (40) et empêchant celui-ci de se déplacer radialement vers l'axe.
11 °) Assemblage fileté selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'on munit au moins un des tubes de l'assemblage d'un . revêtement sur sa surface périphérique intérieure et sur sa surface annulaire d'extrémité intérieure (17, 17', 217) en veillant à assurer la continuité du revêtement entre ces deux surfaces.
12°) Assemblage fileté selon la revendication 11 caractérisé en ce que le revêtement utilisé pour la surface périphérique intérieure du tube et la surface annulaire d'extrémité intérieure est une couche (1 , 11') de revêtement synthétique projeté ou appliqué.
13°) Assemblage fileté selon la revendication 11 , caractérisé en ce que le revêtement de la surface périphérique intérieure du ou des tubes à assembler est constitué par un tube de doublage intérieur (51) solidarisé au tube correspondant (10) de l'assemblage, dont la surface transversale d'extrémité est disposée au droit de la surface annulaire d'extrémité intérieure (17) dudit tube correspondant (10) de l'assemblage et en ce qu'on vient assurer la continuité du revêtement sur ladite surface annulaire d'extrémité intérieure (17) à l'aide d'une bride (60, 70) annulaire dont une des faces (61 , 71) est solidarisée à la surface annulaire d'extrémité intérieure (17) du tube (10) et à la surface d'extrémité du tube de doublage intérieur
(51) et dont la face opposée (62, 72) porte contre l'anneau d'étanchéité (40), le nez de l'élément mâle étant un nez composite constitué d'une partie métallique (16, 16' ) et de la bride annulaire (60, 70).
14°) Assemblage fileté selon la revendication 13 caractérisé en ce que le nez composite sur le ou les éléments mâles est constitué exclusivement par la bride annulaire (60, 70), la partie métallique (16, 16') du nez composite ayant une longueur nulle.
15°) Assemblage fileté selon la revendication 13 ou 14, caractérisé en ce que le tube de doublage intérieur (51) est solidarisé au tube (10) de l'assemblage par une couche (52) relativement épaisse d'un matériau de liaison adhérant au tube principal (10) et au tube de doublage intérieur (51).
16°) Assemblage fileté selon l'une quelconque des revendications 13 à 15 caractérisé en ce que la face (71) de la bride (70) dirigée vers la surface annulaire d'extrémité intérieure (17) comporte un moyen d'ancrage (73) en relief coopérant avec un moyen de forme complémentaire dans la surface de bout de la couche de - liaison (52).
17°) Assemblage fileté selon l'une quelconque des revendications 13 à 15 caractérisé en ce que la bride (60) se prolonge à angle droit du côté de son diamètre intérieur par une manchette (65) solidarisée par sa surface périphérique extérieure à . la surface périphérique intérieure du tube de doublage intérieur (51).
18°) Assemblage fileté selon l'une quelconque des revendications 13 à 17 caractérisé en ce que les brides (60, 60', 70, 70') sont réalisées dans le même type de matériau que les tubes de doublage intérieur (51 , 51').
19°) Assemblage fileté selon l'une quelconque des revendications 13 à 18 caractérisé en ce que la surface (62, 72) de portée d'anneau sur la bride (60, 70) est une surface très légèrement conique convexe.
20°) Assemblage fileté manchonné selon la revendication 2 prise seule ou conjointement à l'une quelconque des revendications 3 à 19, caractérisé en ce que • l'anneau d'étanchéité est un corps d'étanchéité équivalent constitué d'un anneau déformable (31 , 32) disposé coaxialement de part et d'autre d'une bague centrale (33) en matériau synthétique dur, chacun des deux anneaux déformables (31 , 32) portant axialement d'une part sur une face d'extrémité (35, 35') de la bague centrale (33), d'autre part sur la surface annulaire radiale d'extrémité intérieure (17, 17') des 0 . tubes (10, 10').
21°) Assemblage fileté manchonné selon la revendication 20 caractérisé en ce que les anneaux déformables (31 , 32) sont collés aux faces d'extrémité (35, 35') de la bague centrale (33) 5
22°) Assemblage fileté selon la revendication 20 ou 21 caractérisé en ce que les faces d'extrémité (35, 35') de la bague centrale (33) sont des surfaces tronconiques convexes de demi-angle au sommet au moins égal à 75°.
PCT/FR1999/000633 1998-03-26 1999-03-19 Assemblage filete de tubes metalliques destines a contenir un fluide corrosif WO1999049171A2 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
UA2000106031A UA66845C2 (uk) 1998-03-26 1999-03-19 Різьбове з'єднання металевих труб для корозійного текучого середовища
US09/424,562 US6312024B1 (en) 1998-03-26 1999-03-19 Threaded assembly of metal tubes designed to contain a corrosive fluid
EP99909043A EP1066450B1 (fr) 1998-03-26 1999-03-19 Assemblage filete de tubes metalliques destines a contenir un fluide corrosif
JP2000538117A JP3866514B2 (ja) 1998-03-26 1999-03-19 腐食性液体を入れる金属管のねじ接続部
AT99909043T ATE217683T1 (de) 1998-03-26 1999-03-19 Metallrohrschraubverbindung zur enthaltung einer korrodierenden flüssigkeit
EA200000986A EA001729B1 (ru) 1998-03-26 1999-03-19 Резьбовое соединение металлических труб для коррозионной текучей среды
CA002323715A CA2323715C (fr) 1998-03-26 1999-03-19 Assemblage filete de tubes metalliques destines a contenir un fluide corrosif
BR9909142-9A BR9909142A (pt) 1998-03-26 1999-03-19 União rosqueada de tubos metálicos destinados a conter um fluido corrosivo
DE69901492T DE69901492T2 (de) 1998-03-26 1999-03-19 Gewindeverbindung von Metallrohren, die ein korrosives Fluid enthalten sollen
NO20004789A NO325632B1 (no) 1998-03-26 2000-09-25 Gjengeforbindelser for metallror beregnet til a inneholde et korrosivt fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9803740A FR2776746B1 (fr) 1998-03-26 1998-03-26 Assemblage filete de tubes metalliques destines a contenir un fluide
FR98/03740 1998-03-26

Publications (2)

Publication Number Publication Date
WO1999049171A2 true WO1999049171A2 (fr) 1999-09-30
WO1999049171A3 WO1999049171A3 (fr) 1999-11-11

Family

ID=9524517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000633 WO1999049171A2 (fr) 1998-03-26 1999-03-19 Assemblage filete de tubes metalliques destines a contenir un fluide corrosif

Country Status (17)

Country Link
US (1) US6312024B1 (fr)
EP (1) EP1066450B1 (fr)
JP (1) JP3866514B2 (fr)
CN (1) CN1095022C (fr)
AR (1) AR014786A1 (fr)
AT (1) ATE217683T1 (fr)
BR (1) BR9909142A (fr)
CA (1) CA2323715C (fr)
DE (1) DE69901492T2 (fr)
EA (1) EA001729B1 (fr)
FR (1) FR2776746B1 (fr)
ID (1) ID27548A (fr)
MY (1) MY126513A (fr)
NO (1) NO325632B1 (fr)
SA (1) SA99200412B1 (fr)
UA (1) UA66845C2 (fr)
WO (1) WO1999049171A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009044851A1 (ja) * 2007-10-03 2011-02-10 住友金属工業株式会社 鋼管用ねじ継手

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596121B1 (en) * 1999-11-04 2003-07-22 Hydril Company Method of making composite liner for oilfield tubular goods
AR039538A1 (es) * 2002-05-03 2005-02-23 Robroy Ind Inc Conjunto y metodo de acoplamiento
FR2841626B1 (fr) * 2002-06-28 2004-09-24 Vallourec Mannesmann Oil & Gas Joint filete tubulaire renforce pour etancheite amelioree apres expansion plastique
US7731246B2 (en) * 2006-09-29 2010-06-08 Varco I/P, Inc. Pipe coupling system
US20080073905A1 (en) * 2006-09-27 2008-03-27 Mclaughlin Thomas Kilpatrick Pipe coupling system
US20090008929A1 (en) * 2007-07-05 2009-01-08 David Vernon Person Pipe coupling spacer insert
FR2922988B1 (fr) 2007-10-31 2012-10-12 Saint Gobain Performance Plast Assemblages de tuyaux
US8348236B2 (en) * 2007-10-31 2013-01-08 Saint-Gobain Performance Plastics Corporation Butterfly valve with a rigid seal
FR2922984B1 (fr) * 2007-10-31 2013-09-27 Saint Gobain Performance Plast Vanne ayant un joint rigide
US7857355B2 (en) * 2007-12-28 2010-12-28 Robroy Industries, Inc. High pressure pipe liner coupling assembly and method
CA2711468C (fr) * 2007-12-28 2013-02-26 Robroy Industries, Inc. Procede et ensemble d'accouplement de revetement de conduite haute pression
US7909368B2 (en) * 2008-05-30 2011-03-22 Robroy Industries, Inc. Pipe coupling assembly and method for lined and unlined pipe
US8678447B2 (en) 2009-06-04 2014-03-25 National Oilwell Varco, L.P. Drill pipe system
DE102010061006A1 (de) 2010-12-03 2012-06-06 Friedr. Ischebeck Gmbh Kupplung, insbesondere für das Verbinden von Ankerstangen
WO2012103018A1 (fr) * 2011-01-27 2012-08-02 National Oilwell Varco, L.P. Système et procédé pour raccorder des tuyaux
US8740259B2 (en) 2011-02-02 2014-06-03 Tenaris Connections Limited Internally lined pipe connections and related methods of makeup
CN102116135B (zh) * 2011-02-14 2016-09-07 江苏常宝钢管股份有限公司 防松动高气密螺纹套管连接结构
US8857860B2 (en) * 2011-03-29 2014-10-14 Composite Lining Systems, LP Coupling assembly with corrosion barrier for GRE-lined premium threaded pipe
US8894101B2 (en) * 2012-09-07 2014-11-25 Vetco Gray Inc. Protected integral metal to metal seal
US9255452B2 (en) 2013-05-13 2016-02-09 Robroy Industries, Inc. Flush fitting pipe lining system
US10274112B2 (en) 2013-06-06 2019-04-30 Bryan Lane Threaded connection
US10273765B2 (en) * 2013-06-06 2019-04-30 Bryan Lane Threaded connection
US9644771B1 (en) * 2013-06-06 2017-05-09 Bryan Lane Threaded coupling
FR3018333A1 (fr) 2014-03-10 2015-09-11 Saint Gobain Performance Plast
CN104142292B (zh) * 2014-08-05 2016-08-24 华北电力大学 一种用于电站锅炉过热器管高温腐蚀实验及表征的方法
FR3027338B1 (fr) 2014-10-16 2016-12-02 Vallourec Oil & Gas France Connexion polyvalente etanche a double butee
CA2920030A1 (fr) 2015-02-03 2016-08-03 925599 Alberta Ltd. Raccord de tuyau renforce
US11339634B2 (en) 2015-04-10 2022-05-24 925599 Alberta Ltd. Pipe connector
RU2616950C2 (ru) * 2016-02-17 2017-04-18 Открытое акционерное общество "Завод бурового оборудования" Двухупорное резьбовое соединение буровых труб
US20170292639A1 (en) * 2016-04-12 2017-10-12 Vetco Gray Inc. Carbon Fiber Composite Reinforcement With Circumferential And Axial Interlocking
CN107152246A (zh) * 2017-06-05 2017-09-12 中国海洋石油总公司 一种气密封油管螺纹接头
US10781962B2 (en) * 2017-08-18 2020-09-22 Baker Hughes, A Ge Company, Llc Corrosion protection element for downhole connections
CN114080486A (zh) * 2019-07-12 2022-02-22 海德瑞公司 用于烃井的勘探和生产的螺纹连接
FR3101659B1 (fr) * 2019-10-08 2022-01-21 Vallourec Oil & Gas France Joint filete avec portee d’etancheite realisee par fabrication additive
GB2608302B (en) * 2020-02-14 2023-11-15 Techlam Sealing device between two conduits, in particular for tranporting a fluid comprising a corrosive and/or abrasive component
FR3128507B1 (fr) * 2021-10-26 2023-09-08 Vallourec Oil & Gas France Composant tubulaire métallique, joint fileté tubulaire comprenant un tel composant et procédé d’obtention d’un tel composant.
CN114352211A (zh) * 2021-12-23 2022-04-15 西安德信成科技有限责任公司 一种油管和套管组合的密封螺纹连接装配方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1068068B (fr) * 1959-10-29
US3100656A (en) * 1959-05-11 1963-08-13 Hydril Co Synthetic resin seal ring in tubing joint for plastic coated tubing
DE1234162B (de) * 1964-07-31 1967-02-16 Thyssen Roehrenwerke Ag Gasdichte Schraubverbindung fuer OElfeldrohre
FR1486508A (fr) * 1966-05-25 1967-06-30 Phoenix Rheinrohr Ag Raccord vissé, étanche aux gaz pour tubes d'extraction de pétrole
FR1489013A (fr) * 1965-11-05 1967-07-21 Vallourec Joint d'assemblage pour tubes métalliques
US3482007A (en) * 1966-04-22 1969-12-02 Rice Eng & Operating Inc Method for lining a pipe
FR2286332A1 (fr) * 1974-09-27 1976-04-23 Mannesmann Roehren Werke Ag Dispositif de raccordement filete de tuyaux pour le petrole
US4161319A (en) * 1977-07-14 1979-07-17 Stocking Arnold G Expansion packer
GB2117469A (en) * 1982-03-23 1983-10-12 Nippon Kokan Kk Screw coupling joint
EP0212288A2 (fr) * 1985-08-19 1987-03-04 George M. Raulins Raccord tubulaire pour champs de pétrole et méthode de fabrication
US4679831A (en) * 1986-06-13 1987-07-14 Kielminski William P Pipe coupling connection sealing apparatus
US5282652A (en) * 1991-10-22 1994-02-01 Werner Pipe Service, Inc. Lined pipe joint and seal
US5470111A (en) * 1994-08-12 1995-11-28 Tuboscope Vetco International, Inc. Plastic coating thread and coupling assembly
EP0759497A2 (fr) * 1995-08-19 1997-02-26 Nippon Steel Corporation Raccord à vis pour tubage de production
US5689871A (en) * 1982-05-19 1997-11-25 Carstensen; Kenneth J. Couplings for standard A.P.I. tubings and casings and methods of assembling the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2086151A (en) * 1935-03-28 1937-07-06 Bannerman William Ewart Joint for lined pipe
US3167333A (en) * 1959-11-13 1965-01-26 Richard L Cannaday Sealed pipe joint
US3968552A (en) * 1974-10-24 1976-07-13 Hunter John J Method and apparatus for forming plastic lined junction in lined pipe
DE3565169D1 (en) * 1984-02-20 1988-10-27 Fischer Ag Georg Flange connection for fibre-reinforced plastic pipe sections
US4712815A (en) * 1984-10-02 1987-12-15 Hydril Company Metal-to-metal wedge thread coupling connector
US4619472A (en) * 1985-05-02 1986-10-28 Nippon Steel Corporation Pipe coupling
US5137310A (en) * 1990-11-27 1992-08-11 Vallourec Industries Assembly arrangement using frustoconical screwthreads for tubes
US5236230A (en) * 1991-05-09 1993-08-17 N.S. Pipe Technology, Inc. Coupling assembly
FR2725773B1 (fr) * 1994-10-13 1996-11-29 Vallourec Oil & Gas Assemblage filete pour tubes
FR2742840B1 (fr) * 1995-12-22 1998-02-27 Vallourec Oil & Gas Joint filete pour tubes metalliques avec revetement interieur

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1068068B (fr) * 1959-10-29
US3100656A (en) * 1959-05-11 1963-08-13 Hydril Co Synthetic resin seal ring in tubing joint for plastic coated tubing
DE1234162B (de) * 1964-07-31 1967-02-16 Thyssen Roehrenwerke Ag Gasdichte Schraubverbindung fuer OElfeldrohre
FR1489013A (fr) * 1965-11-05 1967-07-21 Vallourec Joint d'assemblage pour tubes métalliques
US3482007A (en) * 1966-04-22 1969-12-02 Rice Eng & Operating Inc Method for lining a pipe
FR1486508A (fr) * 1966-05-25 1967-06-30 Phoenix Rheinrohr Ag Raccord vissé, étanche aux gaz pour tubes d'extraction de pétrole
FR2286332A1 (fr) * 1974-09-27 1976-04-23 Mannesmann Roehren Werke Ag Dispositif de raccordement filete de tuyaux pour le petrole
US4161319A (en) * 1977-07-14 1979-07-17 Stocking Arnold G Expansion packer
GB2117469A (en) * 1982-03-23 1983-10-12 Nippon Kokan Kk Screw coupling joint
US5689871A (en) * 1982-05-19 1997-11-25 Carstensen; Kenneth J. Couplings for standard A.P.I. tubings and casings and methods of assembling the same
EP0212288A2 (fr) * 1985-08-19 1987-03-04 George M. Raulins Raccord tubulaire pour champs de pétrole et méthode de fabrication
US4679831A (en) * 1986-06-13 1987-07-14 Kielminski William P Pipe coupling connection sealing apparatus
US5282652A (en) * 1991-10-22 1994-02-01 Werner Pipe Service, Inc. Lined pipe joint and seal
US5470111A (en) * 1994-08-12 1995-11-28 Tuboscope Vetco International, Inc. Plastic coating thread and coupling assembly
EP0759497A2 (fr) * 1995-08-19 1997-02-26 Nippon Steel Corporation Raccord à vis pour tubage de production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009044851A1 (ja) * 2007-10-03 2011-02-10 住友金属工業株式会社 鋼管用ねじ継手
JP5100755B2 (ja) * 2007-10-03 2012-12-19 住友金属工業株式会社 鋼管用ねじ継手

Also Published As

Publication number Publication date
EA200000986A1 (ru) 2001-02-26
DE69901492T2 (de) 2002-12-19
JP3866514B2 (ja) 2007-01-10
AR014786A1 (es) 2001-03-28
CA2323715A1 (fr) 1999-09-30
UA66845C2 (uk) 2004-06-15
NO20004789D0 (no) 2000-09-25
MY126513A (en) 2006-10-31
EP1066450A2 (fr) 2001-01-10
FR2776746A1 (fr) 1999-10-01
NO20004789L (no) 2000-11-27
ID27548A (id) 2001-04-12
WO1999049171A3 (fr) 1999-11-11
SA99200412B1 (ar) 2006-09-20
NO325632B1 (no) 2008-06-30
BR9909142A (pt) 2000-12-05
FR2776746B1 (fr) 2000-04-28
CN1292058A (zh) 2001-04-18
CN1095022C (zh) 2002-11-27
JP2002507685A (ja) 2002-03-12
EA001729B1 (ru) 2001-08-27
CA2323715C (fr) 2006-05-09
DE69901492D1 (de) 2002-06-20
ATE217683T1 (de) 2002-06-15
US6312024B1 (en) 2001-11-06
EP1066450B1 (fr) 2002-05-15

Similar Documents

Publication Publication Date Title
EP1066450B1 (fr) Assemblage filete de tubes metalliques destines a contenir un fluide corrosif
CA2466791C (fr) Joint filete tubulaire superieur comprenant au moins un element filete avec levre d'extremite
EP3014157B1 (fr) Conduite flexible et procédé associé
EP0867596B1 (fr) Joint fileté pour tubes
EP3469244B1 (fr) Embout de connexion de ligne flexible, ligne flexible et procédé associés
EP2935965B1 (fr) Embout de connexion d'une conduite flexible de transport de fluide et procédé associé
EP1358421B1 (fr) Joint filete tubulaire a filets trapezoidaux avec face de filet bombee convexe
CA2489516C (fr) Joint filete tubulaire renforce pour etancheite amelioree apres expansion plastique
EP1532388B1 (fr) Joint filete tubulaire etanche vis-a-vis du milieu exterieur
EP0780617B1 (fr) Joint fileté pour tubes métalliques avec revêtement intérieur
EP3397886B1 (fr) Embout de connexion d'une ligne flexible, ligne flexible et procédé de montage associés
FR2863029A1 (fr) Realisation, par expansion plastique, d'un joint tubulaire etanche avec surepaisseur(s) de matiere locale(s) initiale(s)
EP3022477A1 (fr) Embout de connexion d'une conduite flexible, et conduite flexible associée
FR2863030A1 (fr) Realisation, par expansion plastique, d'un joint tubulaire etanche avec surface(s) de butee inclinee(s)
EP2989366A1 (fr) Procédé de fabrication d'un embout de connexion d'une conduite flexible et embout associé
FR3015628A1 (fr) Embout de connexion d'une conduite flexible, conduite flexible et procede associes
OA17482A (fr) Méthode de montage d'un embout de conduite flexible et pré-assemblage associé.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99803292.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): BR CA CN ID IN JP MX NO SG UA US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): BR CA CN ID IN JP MX NO SG UA US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09424562

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT US)

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/008682

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2323715

Country of ref document: CA

Ref document number: 2323715

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/433/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1999909043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200000986

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1999909043

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999909043

Country of ref document: EP