WO1999048225A1 - Systeme de communication sans contact au moyen d'un procede a induction entre une borne et des objets portatifs, comprenant des moyens de test fonctionnel de la borne - Google Patents

Systeme de communication sans contact au moyen d'un procede a induction entre une borne et des objets portatifs, comprenant des moyens de test fonctionnel de la borne Download PDF

Info

Publication number
WO1999048225A1
WO1999048225A1 PCT/FR1999/000564 FR9900564W WO9948225A1 WO 1999048225 A1 WO1999048225 A1 WO 1999048225A1 FR 9900564 W FR9900564 W FR 9900564W WO 9948225 A1 WO9948225 A1 WO 9948225A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
test module
response
communication
test
Prior art date
Application number
PCT/FR1999/000564
Other languages
English (en)
Inventor
Jean-Pierre Fortune
Original Assignee
Innovatron Electronique (Societe Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovatron Electronique (Societe Anonyme) filed Critical Innovatron Electronique (Societe Anonyme)
Priority to KR1019997010661A priority Critical patent/KR20010012700A/ko
Priority to JP54663699A priority patent/JP2001527679A/ja
Priority to EP99909007A priority patent/EP0983639A1/fr
Priority to AU28402/99A priority patent/AU2840299A/en
Publication of WO1999048225A1 publication Critical patent/WO1999048225A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0095Testing the sensing arrangement, e.g. testing if a magnetic card reader, bar code reader, RFID interrogator or smart card reader functions properly
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10336Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the near field type, inductive coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • G06K7/10465Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being capable of self-diagnosis, e.g. in addition to or as part of the actual interrogation process

Definitions

  • the invention relates to contactless communication techniques between a portable object and a terminal ("terminal" will be the term used in the present description to designate a data transmitter / receiver terminal capable of cooperating with portable objects).
  • each user is provided with a portable object.
  • This coupling is carried out by varying a magnetic field produced by an induction coil.
  • the terminal includes an inductive circuit excited by an alternating signal which produces an alternating magnetic field in the surrounding space.
  • the portable object in this space detects this field and modulates in return the charge of the object
  • EP-A-0 565 469 in the name of the applicant, describes the manner in which such an exchange of data is carried out, and reference may be made to this document for more details, in particular concerning the management of
  • the equipment which uses this technique is for the most part isolated and autonomous, that is to say far from an operator.
  • the system which controls the terminal is not always capable of detecting a fault state, insofar as it is not it is not possible to differentiate a coil failure (which prevents the emission of the magnetic field in the surrounding space) from the absence of a portable object in this surrounding space (the field is well emitted, but it is not disturbed by the no portable object).
  • Current equipment generally only checks that the antenna, which is generally mounted on a cover separate from the processing electronics, is properly connected, for example by an electrical continuity test on a specific terminal of the antenna connector .
  • test means capable of checking the correct operation of the terminal into the data exchange system and of producing a signal in response. status, for example to a maintenance center, indicating whether the terminal is functional or not.
  • another object of the invention is to allow the self-adjustment of one or more parameters for adjusting the terminal, in particular concerning the transmission circuits and the induction coil, this in order to optimally adapt this terminal to its own electromagnetic environment and possibly allow automatic readjustment of the setting in the event of a change in this environment.
  • the data exchange system of the invention is of the aforementioned known type, that is to say in which a non-galvanic bidirectional communication is established by inductive coupling between a terminal forming 3
  • the system comprises, associated with the terminal, a test module comprising a circuit capable of cooperating with the terminal by inductive coupling so as to emulate communication with a portable object located in said field of action, and the terminal comprises functional test means, capable of discriminating a communication with the test module, of detecting a good communication or of a defective communication with the test module and of producing a fault signal in the event of defective communication .
  • the communication can in particular be established by emission of interrogation messages by the terminal, response of the portable objects to these interrogation messages, and reception of this response by the terminal; in this case, the functional test means discriminates a response received from the test module, detects the correct response or non-response of the test module to an interrogation message and produces the fault signal in non-response.
  • the functional test means include measurement means capable of qualitatively evaluating, in the event response of the test module, the coupling between the terminal and the test module, as well as control means of the adjustment means, operating in response to indications given by the measuring means.
  • the circuit of the test module can be structurally similar to the corresponding circuit of a portable object, in particular a circuit remotely powered by the terminal, the test module can even be structurally similar to a portable object.
  • the functional test means are activated iteratively and / or inhibited in the event of detection of a response from a portable object to a terminal interrogation message, or in the event of detection of a collision between such responses .
  • the discrimination operated by the functional test means can in particular be obtained by emission of an interrogation message 4
  • the fault signal can be particularly used as a remote alarm signal transmitted to a remote site.
  • Figure 1 is a block diagram showing, in a contactless data exchange system according to the invention, an assembly consisting of a terminal, its associated test module and a portable object located in the surrounding field.
  • Figure 2 is a block diagram of the test module of the system of Figure 1.
  • FIG. 3 is a flowchart showing the different stages of the automatic functional test of the system according to the invention.
  • FIG. 4 is a flowchart showing the various stages of the automatic adjustment of the transmission parameters of the terminal.
  • the reference 10 designates a terminal for the exchange of contactless data by induction by means of a coil 12 emitting an alternating electromagnetic field intended for portable objects or "badges" such as 14, capable of enter the space where the field of the coil 12 is radiated.
  • the terminal comprises, in a manner known per se, a modulator / demodulator circuit 16 producing an alternating signal for excitation of the coil 12 and detecting the modifications of this field created by a load modulation carried out inside a portable object 14.
  • the circuit 16 is connected to a central processing unit 18 ensuring in particular the management of the various communication protocols, and connected to a remote site for the purpose of reporting and sending a message of sta- 5
  • test module capable of simulating the presence of a portable object in the field of the coil. 12.
  • test module 20 will have a behavior (detection of the field emitted by the terminal and sending of a response) similar - except for the differences which will be indicated below - to that of a portable object. 14 which would enter this same surrounding space.
  • the terminal will in this way be able to independently control its ability to interact with a portable object presented in its field, thus verifying the influence of the transmission on reception and guaranteeing the proper functioning of the terminal.
  • the circuit of the test module can be structurally similar to that of a standard portable object such as 14. In this case, it is advantageous to provide a circuit remotely powered by the magnetic field generated by the terminal, the module test then being a completely isolated circuit which therefore does not require connection with the electronics of the antenna.
  • the module From the point of view of the exchange of signals, the module must be at least capable of communicating in a manner analogous to portable objects from the point of view of the physical layer of the communication protocol; optionally, it may also be capable of generating, in the load modulation, signals of programmable form useful for various measurements and tests with a view to optimal automatic adjustment of the parameters of the terminal (see below).
  • FIG. 2 gives an example of a block diagram of such a test module 20, the structure of which is comparable to that of a portable object such as 14.
  • the test module comprises an induction coil 22 (intended to cooperate with the coil 12 of the terminal), a modulator / demodulator circuit 24, a circuit 26 for transmitting and generating signals and a circuit 28 for reception of commands sent by the terminal, capable of acting on circuit 26 to transmit to the terminal a 6
  • the test module 20 also includes an energy management circuit 30 capable of producing a direct supply voltage for the various components of the module, so as to make it fully autonomous.
  • an external supply for example a supply connected to the general supply of the circuits of terminal 10 (the wired connection, intended to supply the supply energy, then being the only galvanic connection between the test module and the associated terminal).
  • the terminal In general, in an exchange between terminal and portable object, the terminal is the master of communication. This means that, to establish communication with a card, the terminal starts by sending an interrogation message or call message, then waits for a short time. If a portable object receives this message, it issues a response; the terminal receives this response and then continues the dialogue by sending a command to the portable object. If, on the other hand, the terminal has not received a response within a given time, it repeats the transmission of the interrogation message.
  • this process is the same with the test module 20, that is to say that the terminal is the master of the communication and it is it which initiates the dialogue with the test module by sending a message d 'interrogation.
  • this message includes for example a header byte at the start of the communication protocol indicating it is an interrogation message intended for a normal portable object ("broadcast condition") or, on the contrary, reserved for the sole use of the test module.
  • the terminal receives a response from the test module, this means that it is functional, and the corresponding status can be sent to the maintenance center.
  • the status may be accompanied by an "in service” signaling indicating to the user that he is dealing with an effectively functional terminal: an absence of reaction from the terminal to a 7
  • the absence of response received from the test module indicates a functional fault, which must lead to the immediate production of a remote alarm signal to the remote site and the deactivation of the terminal, accompanied for example by a signaling "out of order".
  • the response returned by the test module can always be in the same format and limited to the communication of the minimum information necessary for communication with the terminal and for monitoring the link.
  • certain types of fault are likely to be poorly detected in this case, in particular when the functional test runs continuously (ten times per second) on the test module in the absence of a portable object.
  • the functional test runs continuously (ten times per second) on the test module in the absence of a portable object.
  • a terminal-specific RAM can temporarily store the data contained in the cards of successive travelers, the test module assuming a cal- applie on the last portable object presented in order to change its identity.
  • the test module will be able to simulate continuously, not a portable object preferably determined once and for all, but a succession of "portable objects” corresponding to travelers or other users having successively appeared before the validator .
  • no "sensitive" data that is to say no confidential or personal data, will be copied into this RAM (then in the EEPROM of the smart card).
  • the test module only finally stops when the presence of a real user portable object is detected: - presence detection, by any means, or
  • an indicator light permanently displays the words "In Service”, this indication meaning very exactly that the device was in working order less than a second previously: that is, a very low probability of technical failure during the passage of 'a user.
  • the system of the invention detects the functional nature or not of the terminal, but it also allows the adaptation of the transmission / reception circuits to the own electromagnetic environment of the terminal .
  • terminal 10 includes a circuit 32 for adjusting various parameters such as the transmission power of the modulator 16 and fine tuning of the resonant circuit associated with the coil 12.
  • This circuit 32 ensures, in the event of a response from the test module, a qualitative evaluation of the inductive coupling between the coil 12 of the terminal and the coil 22 of the test module 20, thus making it possible to seek an optimum coupling as a function the particular situation of the terminal (we know in particular that the induction circuits are very sensitive to the surrounding metallic masses), and a possible readjustment of these settings in the event of a change in the environment.
  • the test module can advantageously include, in its signal generation module 26, means for varying the response signal, for example the waveform, the duty cycle of a square signal. , etc., useful for measurement and testing.
  • the test module can also, for example, vary the energy it absorbs, in particular to assess the transmission power required on the terminal side to allow satisfactory data exchange.
  • FIGS 3 and 4 are flowcharts explaining in more detail the sequence of the different test steps.
  • the flow diagram of FIG. 3 illustrates the detection of the functional nature or not of the terminal by the test module.
  • step 100 The particular steps of the invention are incorporated into the conventional process, which includes the transmission of an interrogation message intended for a portable object, or "user card", possibly present in the field of action of the terminal (step 100).
  • step 104 If such a portable object is detected, that is to say if the terminal detects a response in return (step 102), the data exchange continues with the portable object so as to process the information in the desired manner (step 104).
  • the absence of response is due to the fact that no portable object is in the field of action of the terminal; exceptionally, this lack of response can however be due to a fault in the terminal's transmit / receive circuits.
  • the functional test steps are implemented after the expiration of a time delay (steps 106, 108), for example of the order of one minute.
  • the terminal transmits (step 110) an interrogation message intended for the test module, this interrogation message including the specific protocol (particular header byte) allowing the test module to recognize that it it is an interrogation message intended for it and preventing recognition of this interrogation message by surrounding portable objects.
  • this interrogation message including the specific protocol (particular header byte) allowing the test module to recognize that it it is an interrogation message intended for it and preventing recognition of this interrogation message by surrounding portable objects.
  • step 112 If the test is correct (step 112), that is to say if the terminal detects a return response from the test module, the flowchart returns to its starting point, if necessary indicating a "end of failure" in the event that, on the previous iteration, the test was not correct (steps 114, 116).
  • the test is not correct, that is to say if the terminal does not receive a response or a non-conforming response (degraded signal for example), an alarm "start of failure" is given. If the previous test was not correct either, the flowchart loops over the steps 110 and 112 of execution of the test and analysis of the results of the test, until a satisfactory result is obtained; this last loop avoids any attempt to send an interrogation or processing message to a portable object until it has been remedied.
  • the flow diagram of FIG. 4 illustrates the automatic and adaptive adjustment of the modulator / demodulator circuit 16 of the terminal.
  • the terminal first of all addresses to the test module a command to generate a first signal of particular shape, for example a square signal of given duty cycle (step 200).
  • the terminal circuit 32 then qualitatively assesses the 10 range for this particular signal (step 202) and, if the measurement obtained is not considered satisfactory, modifies one of the settings of the modulator / demodulator 16 of the terminal and of the tuned circuit associated with the coil 12 (step 204 ).
  • step 206 If all the adjustment possibilities have been exhausted (step 206), this means that, despite all the possible adjustments, it is not possible to obtain a satisfactory coupling, and the reader is then considered to be non-functional (step 208). It is then immediately deactivated and corresponding status information is sent to the remote site in to require maintenance.
  • the terminal repeats to the test module its command to generate the particular signal chosen (step 200), and the process thus continues until a satisfactory coupling is obtained, that is to say d 'a measurement considered to be correct in step 202.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Biomedical Technology (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Dans ce système, une communication bidirectionelle non galvanique est établie par couplage inductif entre une borne (10) formant terminal d'émission-réception de données et un ou plusieurs objets portatifs (14) présents dans le champ d'action de cette borne. Le système comprend, associé à la borne, un module d'essai (20) comportant un circuit apte à coopérer avec la borne par couplage inductif de manière à émuler une communication avec un objet portatif situé dans ledit champ d'action, et la borne comprend des moyens de test fonctionnel, aptes à discriminer une communication avec le module d'essai, à détecter une bonne communication ou une communication défectueuse avec le module d'essai et à produire un signal de défaut en cas de communication défectueuse. Le module d'essai peut, avantageusement, être structurellement semblable à un objet portatif et téléalimenté par la borne.

Description

1
Système de communication sans contact au moyen d'un procédé à induction entre une borne et des objets portatifs, comprenant des moyens de test fonctionnel de la borne
c L'invention concerne les techniques de communication sans contact entre un objet portatif et une borne ("borne" sera le terme utilisé dans la présente description pour désigner un terminal émetteur/récepteur de données apte à coopérer avec des objets portatifs).
L'échange de données sans contact est bien connu ; parmi les appli¬
10 cations de cette technique, on trouve — de façon non limitative — le contrôle d'accès, le paiement électronique (applications du type "porte- monnaie électronique") et le télépéage, par exemple pour l'accès et le péage des transports en commun.
Dans ce dernier exemple, chaque usager est muni d'un objet porta-
-^5 tif du type "carte sans contact" ou "badge sans contact", qui est un objet susceptible d'échanger les informations avec une borne fixe (ou éventuellement mobile) en approchant le badge de cette dernière de manière à permettre un couplage mutuel non galvanique.
Dans la technique connue sous le nom de "procédé par induction",
20 ce couplage est réalisé en faisant varier un champ magnétique produit par une bobine d'induction. La borne comporte à cet effet un circuit inductif excité par un signal alternatif qui produit dans l'espace environnant un champ magnétique alternatif. L'objet portatif se trouvant dans cet espace détecte ce champ et module en retour la charge de l'objet
25 portatif couplé à la borne ; cette variation est détectée par la borne, établissant ainsi la communication bidirectionnelle recherchée.
Le EP-A-0 565 469, au nom de la demanderesse, décrit la manière dont est opéré un tel échange de données, et l'on pourra se référer à ce document pour plus de précisions concernant notamment la gestion des
30 échanges d'informations entre objet portatif et borne ainsi que les divers protocoles de communication utilisés.
Les avantages de cette technologie par induction sont bien connus, notamment la très bonne définition de la zone dans laquelle il peut y avoir échange d'informations et le coût très bas de la fonction communi-
35 cation, qui la font généralement préférer au couplage radioélectrique, 2
plus coûteux et plus sensible aux variations de portée.
Toutefois, en pratique, les équipements qui utilisent cette technique sont pour la plupart isolés et autonomes, c'est-à-dire loin d'un opérateur. En cas de défaut de la borne, notamment si la bobine d'induc- tion de cette dernière est défectueuse, le système qui pilote la borne n'est pas toujours capable de détecter un état de panne, dans la mesure où il n'est pas possible de différencier une panne de bobine (qui empêche l'émission du champ magnétique dans l'espace environnant) de l'absence d'objet portatif dans cet espace environnant (le champ est bien émis, mais il n'est perturbé par la présence d'aucun objet portatif). Les équipements actuels se contentent généralement de vérifier que l'antenne, qui est en général montée sur un capot séparé de l'électronique de traitement, est bien connectée, par exemple par un test de continuité électrique sur une borne spécifique du connecteur d'antenne. II s'agit cependant là d'un test purement électrique, qui signale l'enfi- chage ou le non-enfichage du connecteur de la bobine, mais qui n'est pas capable de détecter une panne fonctionnelle, par exemple en cas de défaillance d'un composant, gêne au dialogue du fait de la présence d'une masse métallique extérieure, etc. L'un des buts de l'invention est de remédier à cette limitation, en proposant d'intégrer au système d'échange de données des moyens de test susceptibles de vérifier de vérifier le fonctionnement correct de la borne et de produire en réponse un signal de statut, par exemple à destination d'un central de maintenance, indiquant si la borne est foncti- onnelle ou non.
Outre le point de savoir si la borne est ou non fonctionnelle, un autre but de l'invention est de permettre l'auto-ajustement d'un ou de plusieurs paramètres de réglage de la borne, concernant notamment les circuits d'émission et la bobine d'induction, ceci afin d'adapter de façon optimale cette borne à son environnement électromagnétique propre et permettre éventuellement un réajustement automatique du réglage en cas de changement de cet environnement.
Le système d'échange de données de l'invention est du type connu précité, c'est-à-dire dans lequel une communication bidirectionnelle non galvanique est établie par couplage inductif entre une borne formant 3
terminal d'émission-réception de données et un ou plusieurs objets portatifs présents dans le champ d'action de cette borne.
Selon l'invention, le système comprend, associé à la borne, un module d'essai comportant un circuit apte à coopérer avec la borne par couplage inductif de manière à émuler une communication avec un objet portatif situé dans ledit champ d'action, et la borne comprend des moyens de test fonctionnel, aptes à discriminer une communication avec le module d'essai, à détecter une bonne communication ou une communication défectueuse avec le module d'essai et à produire un si- gnal de défaut en cas de communication défectueuse.
La communication peut notamment être établie par émission de messages d'interrogation par la borne, réponse des objets portatifs à ces messages d'interrogation, et réception de cette réponse par la borne ; dans ce cas, les moyens de test fonctionnel discriminent une réponse re- çue en provenance du module d'essai, détectent la réponse ou la non- réponse correcte du module d'essai à un message d'interrogation et produisent le signal de défaut en cas de non-réponse.
Dans un mode de réalisation particulièrement avantageux, dans lequel la borne comprend des moyens de réglage d'au moins un para- mètre propre à influer sur ledit couplage inductif, les moyens de test fonctionnel comprennent des moyens de mesure aptes à évaluer qualitativement, en cas de réponse du module d'essai, le couplage entre la borne et le module d'essai, ainsi que des moyens de commande des moyens de réglage, opérant en réaction à des indications données par les moyens de mesure.
Le circuit du module d'essai peut être structurellement semblable au circuit correspondant d'un objet portatif, notamment un circuit téléalimenté par la borne, le module d'essai pouvant même être structurellement semblable à un objet portatif. Avantageusement, les moyens de test fonctionnel sont activés de manière itérative et/ou inhibés en cas de détection d'une réponse d'un objet portatif à un message d'interrogation de la borne, ou en cas de détection de collision entre de telles réponses.
La discrimination opérée par les moyens de test fonctionnel peut en particulier être obtenue par émission d'un message d'interrogation pro- 4
pre par la borne, reconnaissable par le module d'essai et non par les objets portatifs.
Le signal de défaut peut être tout particulièrement utilisé comme signal de téléalarme transmis à un site distant.
0
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture détaillée ci-dessous d'un exemple de mise en oeuvre du système de l'invention, en référence aux dessins annexés.
La figure 1 est un synoptique montrant, dans un système d'échange de données sans contact selon l'invention, un ensemble constitué d'une borne, de son module d'essai associé et d'un objet portatif situé dans le champ environnant. La figure 2 est un synoptique du module d'essai du système de la figure 1.
La figure 3 est un organigramme montrant les différentes étapes du test fonctionnel automatique du système selon l'invention.
La figure 4 est un organigramme montrant les différentes étapes du réglage automatique des paramètres d'émission de la borne.
0
Sur la figure 1, la référence 10 désigne une borne pour l'échange de données sans contact par induction au moyen d'une bobine 12 émettant un champ électromagnétique alternatif à destination d'objets portatifs ou "badges" tels que 14, susceptibles d'entrer dans l'espace où est rayonné le champ de la bobine 12.
La borne comporte, de façon en elle-même connue, un circuit modu- lateur/démodulateur 16 produisant un signal alternatif d'excitation de la bobine 12 et détectant les modifications de ce champ créées par une modulation de charge opérée à l'intérieur d'un objet portatif 14. Le circuit 16 est relié à une unité centrale de traitement 18 assurant notamment la gestion des divers protocoles de communication, et relié à un site distant à des fins de compte rendu et d'envoi de message de sta- 5
tut sur l'état de la borne.
De façon caractéristique de l'invention on prévoit à l'intérieur du boîtier de la borne un circuit spécifique 20, ci-après désigné "module d'essai", capable de simuler la présence d'un objet portatif dans le champ de la bobine 12.
En d'autres termes, le module d'essai 20 aura un comportement (détection du champ émis par la borne et envoi d'une réponse) semblable — aux différences près que l'on indiquera plus bas — à celui d'un objet portatif 14 qui viendrait à entrer dans ce même espace environ- nant.
La borne sera de cette manière capable de contrôler de façon autonome sa capacité à dialoguer avec un objet portatif présenté dans son champ, en vérifiant ainsi l'influence de l'émission sur la réception et garantissant le bon fonctionnement de la borne. Très avantageusement, le circuit du module d'essai peut être struc- turellement semblable à celui d'un objet portatif standard tel que 14. Dans ce cas, on peut avantageusement prévoir un circuit téléalimenté par le champ magnétique généré par la borne, le module de test étant alors un circuit totalement isolé qui ne requiert donc pas de connexion avec l'électronique de l'antenne.
Du point de vue de l'échange des signaux, le module doit être au moins capable de communiquer de manière analogue aux objets portatifs du point de vue de la couche physique du protocole de communication ; éventuellement, il peut être en outre capable de générer, dans la modulation de charge, des signaux de forme programmable utiles à diverses mesures et essais en vue d'un réglage automatique optimal des paramètres de la borne (voir plus bas).
La figure 2 donne un exemple de synoptique d'un tel module d'essai 20, dont la structure est comparable à celle d'un objet portatif tel que 14.
Essentiellement, le module d'essai comporte une bobine d'induction 22 (destinée à coopérer avec la bobine 12 de la borne), un circuit modulateur/démodulateur 24, un circuit 26 d'émission et de génération des signaux et un circuit 28 de réception des commandes envoyées par la borne, propre à agir sur le circuit 26 pour émettre vers la borne un 6
message de réponse par modulation de charge du circuit accordé de la bobine 22. Dans la version téléalimentée, le module d'essai 20 comporte également un circuit de gestion de l'énergie 30 susceptible de produire une tension continue d'alimentation des différents composants du mo- dule, de manière à rendre celui-ci entièrement autonome.
En variante, on peut cependant prévoir une alimentation extérieure, par exemple une alimentation reliée à l'alimentation générale des circuits de la borne 10 (la liaison filaire, destinée à apporter l'énergie d'alimentation, étant alors la seule liaison galvanique entre le module d'essai et la borne associée).
On va maintenant expliciter l'interaction entre la borne 10 et son module d'essai associé 20.
De façon générale, dans un échange entre borne et objet portatif, la borne est maîtresse de la communication. Ceci signifie que, pour établir une communication avec une carte, la borne commence par émettre un message d'interrogation ou message d'appel, puis attend un court instant. Si un objet portatif reçoit ce message, il émet une réponse ; la borne reçoit cette réponse et poursuit alors le dialogue par l'envoi de commande vers l'objet portatif. Si, en revanche, la borne n'a pas reçu de réponse dans un délai imparti, elle réitère l'émission du message d'interrogation.
Ce processus est le même avec le module d'essai 20, c'est-à-dire que la borne est maîtresse de la communication et c'est elle qui initie le dialogue avec le module d'essai par émission d'un message d'interrogation. Pour empêcher que le message d'interrogation à destination du module d'essai ne soit capté par un objet portatif se trouvant dans la borne, ce message inclut par exemple un octet d'en-tête au début du protocole de communication indiquant s'il s'agit d'un message d'interrogation à destination d'un objet portatif normal ("condition de broad- cast") ou, au contraire, réservé au seul usage du module d'essai.
Si la borne reçoit bien une réponse du module d'essai, ceci signifie qu'elle est fonctionnelle, et le statut correspondant peut être envoyé au central de maintenance. Le statut peut être accompagné d'une signalisation "en service" indiquant à l'utilisateur qu'il a affaire à une borne effectivement fonctionnelle : une absence de réaction de la borne à une 7
présentation d'un objet portatif par l'utilisateur proviendrait alors très vraisemblablement d'un défaut de cet objet portatif (défaut technique, péremption, mauvaise présentation, etc.), non de la borne.
En revanche, l'absence de réponse reçue du module d'essai indique un défaut fonctionnel, ce qui doit entraîner la production immédiate d'un signal de téléalarme vers le site distant et la désactivation de la borne, accompagnée par exemple d'une signalisation "hors service".
La réponse que renvoie le module d'essai peut être toujours dans un même format et limitée à la communication des informations mini- maies nécessaires à la communication avec la borne et à la surveillance de la liaison. Toutefois, certains types de défaut risquent d'être mal captés dans ce cas, en particulier lorsque le test fonctionnel tourne en permanence (une dizaine de fois par seconde) sur le module d'essai en l'absence d'un objet portatif. Afin d'éviter tout inconvénient lié à l'identité permanente entre les
"simili-objets portatifs" successivement testés (même seulement plusieurs dizaines ou centaines de fois par jour), une RAM propre à la borne peut stocker temporairement les données contenues par les cartes des voyageurs successifs, le module d'essai assumant une configuration cal- quée sur le dernier objet portatif présenté afin de changer son identité. Ainsi, le module d'essai sera en mesure de simuler continûment, non pas un objet portatif de préférence déterminé une fois pour toutes, mais une succession d'"objets portatifs" correspondant aux voyageurs ou autres usagers s'étant successivement présentés devant le valideur. Par souci de discrétion, il ne sera recopié dans cette RAM (puis dans l'EEPROM de la carte à puce) aucune donnée "sensible", c'est-à-dire aucune donnée confidentielle ou personnelle.
Le module d'essai ne s'arrête en définitive que lors de la détection de présence d'un véritable objet portatif d'usager : - détection de présence, par un moyen quelconque, ou
- détection de collision.
Enfin, un voyant lumineux affiche en permanence la mention "En Service", cette indication signifiant très exactement que l'appareil était en ordre de marche moins d'une seconde auparavant : soit une probabi- lité très faible de défaillance technique lors du passage d'un usager. 8
Dans une forme de réalisation particulièrement avantageuse, non seulement le système de l'invention détecte le caractère fonctionnel ou non de la borne, mais il permet en outre l'adaptation des circuits d'émission/réception à l'environnement électromagnétique propre de la borne.
À cette fin, la borne 10 comporte un circuit 32 de réglage de divers paramètres tels que puissance d'émission du modulateur 16 et accord fin du circuit résonnant associé à la bobine 12.
Ce circuit 32 assure, en cas de réponse du module d'essai, une éva- luation qualitative du couplage inductif entre la bobine 12 de la borne et la bobine 22 du module d'essai 20, permettant ainsi de rechercher un couplage optimum en fonction de la situation particulière de la borne (on sait en particulier que les circuits à induction sont très sensibles aux masses métalliques environnantes), et un réajustement éventuel de ces réglages en cas de modification de l'environnement.
Pour rechercher ce couplage optimum, le module d'essai peut avantageusement inclure, dans son module de génération des signaux 26, des moyens pour faire varier le signal de réponse, par exemple la forme d'onde, le rapport cyclique d'un signal carré, etc., d'une manière utile aux mesures et aux tests. Le module d'essai peut également, par exemple, faire varier l'énergie qu'il absorbe, pour évaluer notamment la puissance d'émission nécessaire côté borne pour permettre un échange de données satisfaisant.
Les figures 3 et 4 sont des organigrammes explicitant de façon plus détaillée l'enchaînement des différentes étapes de test.
L'organigramme de la figure 3 illustre la détection du caractère fonctionnel ou non de la borne par le module d'essai.
Les étapes particulières de l'invention sont incorporées au processus classique, qui inclut l'émission d'un message d'interrogation à des- tination d'un objet portatif, ou "carte usager", éventuellement présent dans le champ d'action de la borne (étape 100).
Si un tel objet portatif est détecté, c'est-à-dire si la borne détecte une réponse en retour (étape 102), l'échange de données se poursuit avec l'objet portatif de manière à traiter les informations de la manière souhaitée (étape 104). 9
Les étapes particulières de l'invention sont mises en oeuvre dans le cas contraire, lorsqu'aucune réponse n'est détectée en provenance d'un objet portatif environnant.
Généralement, l'absence de réponse tient au fait qu'aucun objet portatif ne se trouve dans le champ d'action de la borne ; exceptionnellement, cette absence de réponse peut être toutefois due à une panne des circuits d'émission/réception de la borne.
Les étapes de test fonctionnel sont mises en oeuvre après écoulement d'une temporisation (étapes 106, 108), par exemple de l'ordre d'une minute.
La borne émet alors (étape 110) un message d'interrogation à destination du module d'essai, ce message d'interrogation incluant le protocole spécifique (octet d'en-tête particulier) permettant au module d'essai de reconnaître qu'il s'agit d'un message d'interrogation qui lui est destiné et d'empêcher la reconnaissance de ce message d'interrogation par des objets portatifs environnants.
Si le test est correct (étape 112), c'est-à-dire si la borne détecte bien une réponse en retour en provenance du module d'essai, l'organigramme retourne à son point de départ, le cas échéant en indiquant une "fin de panne" au cas où, à l'itération précédente, le test n'aurait pas été correct (étapes 114, 116).
Si, en revanche, le test n'est pas correct, c'est-à-dire si la borne ne reçoit pas de réponse ou une réponse non conforme (signal dégradé par exemple), une alarme "début de panne" est donnée. Si le test précédent n'était pas non plus correct, l'organigramme boucle sur les étapes 110 et 112 d'exécution de test et d'analyse des résultats du test, jusqu'à obtenir un résultat satisfaisant ; cette dernière boucle évite toute tentative d'émission d'un message d'interrogation ou de traitement d'un objet portatif tant qu'il n'aura pas été remédié à la panne. L'organigramme de la figure 4 illustre le réglage automatique et adaptatif du circuit modulateur/démodulateur 16 de la borne.
La borne adresse tout d'abord au module d'essai une commande de génération d'un premier signal de forme particulière, par exemple un signal carré de rapport cyclique donné (étape 200). Le circuit 32 de la borne évalue ensuite de façon qualitative le cou- 10 plage pour ce signal particulier (étape 202) et, si la mesure obtenue n'est pas considérée comme satisfaisante, modifie l'un des réglages du modulateur/démodulateur 16 de la borne et du circuit accordé associé à la bobine 12 (étape 204). p- Si toutes les possibilités de réglage ont été épuisées (étape 206), ceci signifie que, malgré tous les réglages possibles, il n'est pas possible d'obtenir un couplage satisfaisant, et le lecteur est alors considéré comme non fonctionnel (étape 208). Il est alors immédiatement désactivé et une information de statut correspondant est émise vers le site distant i n pour requérir une maintenance.
Dans le cas contraire, la borne réitère au module d'essai sa commande de génération du signal particulier choisi (étape 200), et le processus se poursuit ainsi jusqu'à obtention d'un couplage satisfaisant, c'est-à-dire d'une mesure considérée comme correcte à l'étape 202.
^5 Ce processus est répété pour les autres réglages possibles du modulateur/démodulateur, dans des étapes 210 à 216 homologues des étapes 200 à 206 décrites plus haut. Si ces différents réglages ont permis d'obtenir in fine une mesure correcte (étape 212), c'est que le couplage est satisfaisant et optimisé, et le lecteur est alors considéré comme
20 fonctionnel (étape 18).
25
30
35

Claims

11REVENDICATIONS
1. Un système d'échange de données sans contact, dans lequel une communication bidirectionnelle non galvanique est établie par couplage inductif entre une borne (10) formant terminal d'émission-réception de données et un ou plusieurs objets portatifs (14) présents dans le champ d'action de cette borne, système caractérisé en ce qu'il comprend, associé à la borne, un module d'essai (20) comportant un circuit apte à coopérer avec la borne par couplage inductif de manière à émuler une communication avec un objet portatif situé dans ledit champ d'action, et en ce que la borne comprend des moyens de test fonctionnel, aptes à discriminer une communication avec le module d'essai, à détecter une bonne communication ou une communication défectueuse avec le module d'essai et à produire un signal de défaut en cas de communication défectueuse.
2. Le système de la revendication 1, dans lequel, la communication étant établie par émission de messages d'interrogation par la borne, réponse des objets portatifs à ces messages d'interrogation, et réception de cette réponse par la borne, les moyens de test fonctionnel discriminent une réponse reçue en provenance du module d'essai, détectent la réponse ou la non-réponse correcte du module d'essai à un message d'interrogation et produisent le signal de défaut en cas de non-réponse.
3. Le système de la revendication 1, dans lequel, la borne comprenant des moyens de réglage d'au moins un paramètre propre à influer sur ledit couplage inductif, les moyens de test fonctionnel comprennent des moyens (32) de mesure aptes à évaluer qualitativement, en cas de réponse du module d'essai, le couplage entre la borne et le module d'essai, ainsi que des moyens (32) de commande des moyens de réglage, opérant en réaction à des indications données par les moyens de mesure.
4. Le système de la revendication 1, dans lequel le circuit du modu- 12
le d'essai est structurellement semblable au circuit correspondant d'un objet portatif.
5. Le système de la revendication 4, dans lequel le module d'essai est structurellement semblable à un objet portatif.
6. Le système de la revendication 4, dans lequel le circuit du module d'essai est un circuit téléalimenté par la borne.
7. Le système de la revendication 1, dans lequel les moyens de test fonctionnel sont activés de manière itérative.
8. Le système de la revendication 2, dans lequel les moyens de test fonctionnel sont inhibés en cas de détection d'une réponse d'un objet portatif à un message d'interrogation de la borne, ou en cas de détection de collision entre de telles réponses.
9. Le système de la revendication 2, dans lequel la discrimination opérée par les moyens de test fonctionnel est obtenue par émission d'un message d'interrogation propre par la borne, reconnaissable par le module d'essai et non par les objets portatifs.
10. Le système de la revendication 1, dans lequel le signal de défaut est un signal de téléalarme transmis à un site distant.
PCT/FR1999/000564 1998-03-18 1999-03-15 Systeme de communication sans contact au moyen d'un procede a induction entre une borne et des objets portatifs, comprenant des moyens de test fonctionnel de la borne WO1999048225A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019997010661A KR20010012700A (ko) 1998-03-18 1999-03-15 단말기와 휴대용 물체간의 유도 방법을 이용하며, 단말기기능 테스트 수단을 포함하는 무접점 통신 시스템
JP54663699A JP2001527679A (ja) 1998-03-18 1999-03-15 端末の動作をテストするための手段を含み、端末とポータブルオブジェクトと間の誘導方法による非接触通信のためのシステム
EP99909007A EP0983639A1 (fr) 1998-03-18 1999-03-15 Systeme de communication sans contact au moyen d'un procede a induction entre une borne et des objets portatifs, comprenant des moyens de test fonctionnel de la borne
AU28402/99A AU2840299A (en) 1998-03-18 1999-03-15 Contactless communication system using an induction method between a terminal and portable objects, comprising terminal functional testing means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9803321A FR2776444B1 (fr) 1998-03-18 1998-03-18 Systeme de communication sans contact au moyen d'un procede a induction entre une borne et des objets portatifs, comprenant des moyens de test fonctionnel de la borne
FR98/03321 1998-03-18

Publications (1)

Publication Number Publication Date
WO1999048225A1 true WO1999048225A1 (fr) 1999-09-23

Family

ID=9524192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000564 WO1999048225A1 (fr) 1998-03-18 1999-03-15 Systeme de communication sans contact au moyen d'un procede a induction entre une borne et des objets portatifs, comprenant des moyens de test fonctionnel de la borne

Country Status (6)

Country Link
EP (1) EP0983639A1 (fr)
JP (1) JP2001527679A (fr)
KR (1) KR20010012700A (fr)
AU (1) AU2840299A (fr)
FR (1) FR2776444B1 (fr)
WO (1) WO1999048225A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617979B2 (en) * 2005-11-03 2009-11-17 Ncr Corporation Method of determining failure of an RFID label reader
US8041030B2 (en) 2007-01-09 2011-10-18 Mastercard International Incorporated Techniques for evaluating live payment terminals in a payment system
CN104053621A (zh) * 2012-01-23 2014-09-17 通力股份公司 用于监视运输系统的运行状态的方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859559B1 (fr) * 2003-09-10 2005-12-09 Ascom Monetel Lecteur de carte sans contact
JP4633382B2 (ja) * 2004-05-10 2011-02-16 東芝テック株式会社 Rfタグ通信機能付き電子機器
CN102317950A (zh) * 2008-12-12 2012-01-11 西门子有限公司 用于检查移动应答机的读取的方法
JP2011087229A (ja) * 2009-10-19 2011-04-28 Panasonic Corp 近距離無線通信装置および近距離無線通信用の半導体集積回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471345A (en) * 1982-03-05 1984-09-11 Sensormatic Electronics Corporation Randomized tag to portal communication system
EP0565469A1 (fr) * 1992-04-08 1993-10-13 INNOVATRON INDUSTRIES, Société Anonyme Système d'échange de données sans contact entre un terminal et un ensemble portatif modulaire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471345A (en) * 1982-03-05 1984-09-11 Sensormatic Electronics Corporation Randomized tag to portal communication system
EP0565469A1 (fr) * 1992-04-08 1993-10-13 INNOVATRON INDUSTRIES, Société Anonyme Système d'échange de données sans contact entre un terminal et un ensemble portatif modulaire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617979B2 (en) * 2005-11-03 2009-11-17 Ncr Corporation Method of determining failure of an RFID label reader
US8041030B2 (en) 2007-01-09 2011-10-18 Mastercard International Incorporated Techniques for evaluating live payment terminals in a payment system
CN104053621A (zh) * 2012-01-23 2014-09-17 通力股份公司 用于监视运输系统的运行状态的方法和装置
US9701514B2 (en) 2012-01-23 2017-07-11 Kone Corporation Method and arrangement for monitoring the operating condition of a reading device in a transport system

Also Published As

Publication number Publication date
KR20010012700A (ko) 2001-02-26
FR2776444B1 (fr) 2000-05-26
EP0983639A1 (fr) 2000-03-08
AU2840299A (en) 1999-10-11
FR2776444A1 (fr) 1999-09-24
JP2001527679A (ja) 2001-12-25

Similar Documents

Publication Publication Date Title
EP0565469B1 (fr) Système d'échange de données sans contact entre un terminal et un ensemble portatif modulaire
FR2895822A1 (fr) Procede et dispositif de communication radiofrequence
EP1301898A1 (fr) Transpondeur passif a faible consommation
WO1999048225A1 (fr) Systeme de communication sans contact au moyen d'un procede a induction entre une borne et des objets portatifs, comprenant des moyens de test fonctionnel de la borne
FR2781947A1 (fr) Systeme de communication sans contact
EP3301608B1 (fr) Procédé de détection de la présence éventuelle d'un objet par un lecteur sans contact, et lecteur correspondant
FR2968804A1 (fr) Procede de gestion du dialogue entre un equipement et au moins un objet multi-applicatif tel qu'une carte a puce sans contact et objet correspondant
FR2834857A1 (fr) Transpondeur equipe d'un circuit central et d'au moins un circuit peripherique et procede d'echange de donnees entre lesdits circuits via une station en couplage inductif avec le transpondeur
EP2936379B1 (fr) Détection d'un dispositif transactionnel
EP0932051B1 (fr) Système de communication électronique entre une station de base et des transpondeurs
FR3011655A1 (fr) Procede de communication par un lecteur de radio-etiquettes passives fonctionnant en mode de retrodiffusion
EP1407426A1 (fr) Procede de deverrouillage "sans cle" d'une porte d'acces a un espace clos
EP1163625B1 (fr) Maintien d'un canal avec anticollision dans un systeme d'identification electronique
EP0881590A1 (fr) Protocole de communication pour carte à mémoire asynchrone
WO2020099747A1 (fr) Dispositif et procédé de détection d'une ouverture ou d'une tentative d'ouverture d'un récipient fermé
EP1066585B1 (fr) Procede d'ecriture simultanee d'un message commun dans des etiquettes electroniques sans contact
EP1459265B1 (fr) Systeme et procede de detection du passage d'un individu ou d'un objet par une entree-sortie a un espace delimite
EP1729241B1 (fr) Procédé et système de paramétrage d'une station de terrain dans un réseau de communication.
EP0826188B1 (fr) Dispositif de communication a distance et son procede pour le suivi de produits en mouvement
EP2881923B1 (fr) Système domotique universel
EP3945467B1 (fr) Transpondeur sans contact
WO2003107255A1 (fr) Dispositif de controle et / ou de surveillance utilisant une etiquette electronique, un lecteur et un encodeur d'etat
FR2815497A1 (fr) Procede et dispositif de communication des informations contenues dans un ou plusieurs codes-barres
FR2785700A1 (fr) Procede de gestion d'un circuit electronique
EP0524081B1 (fr) Système de communication entre un dispositif émetteur/récepteur interrogateur et un dispositif émetteur/récepteur répondeur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE HR HU ID IL IN IS JP KP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 28402/99

Country of ref document: AU

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 546636

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019997010661

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999909007

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999909007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09424137

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1019997010661

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999909007

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997010661

Country of ref document: KR