WO1999047774A1 - Dispositif bidirectionnel de transfert d'energie et de donnees entre deux circuits sans connexion electrique - Google Patents

Dispositif bidirectionnel de transfert d'energie et de donnees entre deux circuits sans connexion electrique Download PDF

Info

Publication number
WO1999047774A1
WO1999047774A1 PCT/FR1999/000614 FR9900614W WO9947774A1 WO 1999047774 A1 WO1999047774 A1 WO 1999047774A1 FR 9900614 W FR9900614 W FR 9900614W WO 9947774 A1 WO9947774 A1 WO 9947774A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
transfer
circuits
demodulator
Prior art date
Application number
PCT/FR1999/000614
Other languages
English (en)
Inventor
Serge Cuenot
Original Assignee
Schlumberger Systemes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Systemes filed Critical Schlumberger Systemes
Priority to EP99909030A priority Critical patent/EP1064445A1/fr
Publication of WO1999047774A1 publication Critical patent/WO1999047774A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10336Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the near field type, inductive coil
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/29Individual registration on entry or exit involving the use of a pass the pass containing active electronic elements, e.g. smartcards
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00579Power supply for the keyless data carrier
    • G07C2009/00603Power supply for the keyless data carrier by power transmission from lock
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00634Power supply for the lock
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00753Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
    • G07C2009/00769Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means

Definitions

  • the present invention relates to a bidirectional device for transferring energy and data between two circuits without electrical connection.
  • the invention finds a particularly advantageous, but not exclusive, application in the field of security systems commonly designated by the name of "electronic lock".
  • access control devices of the electronic lock type, consisting of a first circuit capable of opening the lock of a communication door to a room to which access is controlled.
  • a second circuit the key itself, often in the form of a badge, allows its holder to order the opening of the lock provided that the first circuit recognizes it as being authorized to access said premises.
  • the exchange of information between the two circuits is generally carried out without electrical connection, in particular by electromagnetic coupling at relatively short distance.
  • the first circuit is powered by the mains or by battery, while the second circuit draws its power from the electromagnetic signal emitted by the first.
  • the second circuit extracts from the signal sent by the first circuit both the energy it needs to operate and the data forming part of the information to be exchanged.
  • these known devices have the disadvantage that, when the first circuit is not accessible by the very fact that it is in the room with controlled access, it is not possible to replace the source d energy in the event of failure, such as for machines powered by battery or solar panel, or electrically independent premises, etc. We understand 2 that in this situation the device can never function for lack of electrical energy and impossibility of remedying this gap.
  • the technical problem to be solved by the object of the present invention is to propose a bidirectional device for transferring energy and data between two circuits without electrical connection, device which could continue to be used even if the power supply of the circuit energy generator is no longer guaranteed, without possible replacement of the power source at the time of transfer.
  • each of said circuits comprises, in an identical manner:
  • an oscillator capable of generating an alternating signal of frequency f
  • microcontroller capable of generating a binary signal of transmission speed v, representative of the data to be transmitted to the other circuit
  • a logic circuit able to supply at least one transfer signal by superposition of the signals coming from the oscillator and the microcontroller
  • an interface circuit intended to transmit said transfer signal to the other circuit and to receive the transfer signal transmitted by the other circuit, said interface circuit comprising a rectifier circuit capable of rectifying the alternating signal of frequency f contained in the transfer signal transmitted by the other circuit,
  • a demodulator intended to receive the transfer signal transmitted by the other circuit in order to extract said binary signal therefrom and apply it to said microcontroller, and in that one of said circuits, called generator circuit, comprises a current supply source continuous connected to said interface circuit, the oscillator of said generator circuit being maintained in 3 operation during the transfer, while the oscillator of the other circuit, called the receiver circuit, is kept out of operation.
  • the bidirectional device operates with two structurally identical circuits which are distinguished only by the fact that one of them, the generator circuit, supplies its power to the other, namely the receiver circuit. .
  • the generator circuit supplies its power to the other, namely the receiver circuit.
  • the latter receives its energy from the power source of said generator circuit and the transfer of data from one circuit to the another can be established.
  • the device of the invention can continue to operate by means of an electronic key then provided with a power source.
  • the functions of the two circuits are reversed, the electronic key becoming the generator circuit and the circuit opening the lock becoming the receiver circuit, this until the power source of this latter circuit is replaced.
  • said interface circuit comprises a mid-point transformer, connected at at least one end to a terminal of an electronic switch controlled by the signal supplied by the logic circuit and of which another terminal is connected to said demodulator, as regards the generator circuit, while said demodulator is connected, as regards the receiver circuit, to a load in parallel with said electronic switch, said rectifier circuit comprising a diode arranged in parallel with said electronic switch, and in that said DC power supply source of said generator circuit is connected to the midpoint of said transformer, the DC power supply of the receiver circuit being available at the midpoint of the transformer.
  • each of the circuits can detect the presence of a power source in the other circuit
  • the invention provides that each circuit includes a second demodulator intended to detect a modulation at the frequency f on the circuit d interface, indicating the presence of a DC power source in the other circuit.
  • This particular arrangement has the advantage that, in the presence of a DC power source in each circuit, said device determines by software which of the two circuits will be generator circuit or receiver circuit during transfer.
  • FIG. 1a is a diagram of an energy generating circuit of the device of the invention, in a data transmission situation.
  • FIG. 1b is a diagram of an energy receiving circuit of the device of the invention, in a situation of reception of the data coming from the circuit of FIG. La.
  • FIG. 2a is a diagram of the circuit of FIG. 1b in a data transmission situation.
  • FIG. 2b is a diagram of the circuit of FIG. 1a in the situation of reception of the data coming from the circuit of FIG. 2a.
  • Figures la, lb, on the one hand, and 2a, 2b, on the other hand, show a bidirectional device for transferring energy and data between two circuits 100, 200 without electrical connection between them.
  • these two circuits are identical in the sense that they consist of the same elements arranged in the same way. The only difference lies in the fact that one of them, circuit 100, called generator circuit, includes a power source 101, here a battery, while the other, circuit 200, called receiver circuit, in is 5 lacking.
  • the generator circuit 100 will be installed inside the room to which we want to control access and may order the opening of a lock allowing access to said room as soon as said generator circuit 100 will have identified the electronic key which has been presented to it, which comprises the receiver circuit 200, as belonging to a person authorized to access the premises.
  • the two circuits 100, 200 must naturally exchange data, possibly in encrypted form, and for this, the receiver circuit 200 will be supplied with energy by the generator circuit 100 when the two circuits are put in communication.
  • each of the circuits 100, 200 includes an oscillator 110, 210 capable of generating an alternating signal s a of frequency f, for example equal to 200 kHz.
  • this alternating signal s a is supplied by the generator circuit 100 to the receiver circuit 200 so that after rectification it can supply said receiver circuit 200 with direct current. This is why, in operation of the device, the oscillator 110 of the generator circuit 100 is kept in operation during the transfer of energy and data, while the oscillator 210 of the receiver circuit 200 is kept inoperative.
  • the circuits 100, 200 comprise a microcontroller 120, 220 respectively, 6 one of whose functions is to generate a binary signal, s D , s'b respectively, representative of the data to be transmitted from one to the other of the circuits 100, 200.
  • This data can be, for example, a request d authentication of the generator circuit 100 to the receiver circuit 200 with sending of a random number and the response of the receiver circuit established by the microcontroller 220 in the form of an encrypted message by means of the random number received and an encryption algorithm, DES in particular, the microcontroller 120 of the generator circuit 100 being able to decrypt the message received and to authenticate the receiver circuit 200.
  • the microcontroller 120 emits a signal s c of the lock opening command in the case of the application of the device of the invention to electronic locks.
  • the transmission speed v of the binary signals can be, for example, 4800 baud.
  • Each of the circuits 100, 200 comprises a logic circuit 130, 230 intended to supply a transfer signal S, S 'when the corresponding circuit 100, 200 is in the data transmission situation.
  • the transfer signals S, S ' result from the superposition of the signals from the oscillators 110, 210 and the respective microcontrollers 120, 220.
  • the signal S supplied by the logic circuit 130 of the generator circuit 100 is a signal for transferring both energy and data which appears as an amplitude modulation of the binary signal Sb by the alternating signal s a .
  • the logic circuit 130 also delivers a signal S complementary to the signal S, this for reasons which will be explained later.
  • the signal S 'supplied by the logic circuit 230 of the receiver circuit 200 is purely a data transfer signal, it therefore exactly reproduces the binary signal s'b coming from the microcontroller 220, the oscillator 210 being off, the second signal supplied by logic circuit 230 being at level 0. 7
  • the circuits 100, 200 comprise an interface circuit, 140, 240 respectively, the function of which is to transmit the signals S, S 'of transfer from one to the other. circuits, each interface circuit comprising a rectifier circuit capable of rectifying the alternating signal of frequency f contained in the transfer signal transmitted by the other circuit.
  • this is the circuit 240 interface for rectifying the alternating signal s is present in the transfer S signal from the generator circuit 100 to provide to the receiver circuit 200 power supply necessary for its operation.
  • 140, 240 interface comprises a transformer 141, 241 at mid point, connected at its ends to two identical modules, this in order to respect the symmetry of the transformer, although this arrangement, however advantageous, is not compulsory.
  • Each of these modules includes an electronic switch 142, 142 'and 242, 242', here constituted by an MOS transistor, controlled by one of the two signals supplied by the logic circuit 130, 230, hence the need for said logic circuit to deliver two output signals.
  • diodes 144, 144 'and 244, 244' are arranged, which moreover may be the protection diodes of the MOS transistors.
  • each electronic switch 142, 142 ', 242, 242' and the associated diode form a rectifier circuit which in the case of the receiver circuit 200, is used to straighten the alternating signal s transmitted by the circuit 140 of interface of the generator circuit 100. It will be noted that a rectifier circuit being present at each end of the transformer 241, the rectification is full-wave.
  • the DC power supply to the receiver circuit 200 is available at the midpoint VP of the transformer 241.
  • the 8 source 101 of direct current supply of the generator circuit 100 is connected to the midpoint of the transformer 141.
  • the demodulator 150, 250 responsible for extracting the binary signal Sb, Sb- from the signal S, S 'of the transfer is connected either to an output terminal of an electronic switch 141 for the generator circuit 100, or to a load 243 in parallel with the electronic switch 242, the loads 145 and 246 being provided to transform into voltage signals the current signals supplied by the transformers 141, 241.
  • the connection of the demodulator 150, 250 to one or the other outputs is determined by an electronic switch 170, 270, controlled by the microcontroller 120, 220 after the generator or receiver character of the circuits 100, 200 has been established.
  • each circuit 100, 200 includes a second demodulator 160, 260 intended to detect a modulation at frequency f on the interface circuit 140, 240, indicating the presence of a source DC power supply in the other circuit.
  • This second demodulator 160, 260 operates in the same way as the demodulator 250 of the receiver circuit 200 and can be connected to one or the other of the end modules of the transformers 141, 241 at mid point.
  • the circuits 100 and 200 are first placed in a situation of energy and data transfer by electromagnetic coupling of the transformers 141, 241 of the interface circuits 140, 240, and the circuit 100 is put into operation.
  • the demodulator 160 having detected no modulation at the frequency f on the transformer 141, the circuit 100 knows that it will be the generator circuit during the entire transfer and, consequently, the oscillator 110 is put into operation by the microcontroller 120 and will not stop delivering the alternative signal s a 9 until the end of the transfer, just as the switch 170 will be kept in the position ensuring the connection between the demodulator 150 and the switch 142.
  • the signal s a is split into two complementary signals in phase opposition and superimposed by the logic circuit 130 on the binary signal s D to form the transfer signals S, S. These are applied to the switches 142, 142 'which become on or blocked depending on the logic state of the signals S, S. Due to the presence of the battery 101 in series with the switches, a current flows through the transformer 141, reproducing the transfer signals S, S. The current is transmitted by electromagnetic coupling to the transformer 241 of the circuit 200.
  • the rectifier circuits 242, 244 and 242 ', 244' of the interface circuit 240 double-wave rectify the alternating signal contained in the signals S, S received from circuit 140 interface so as to establish a positive polarization at the midpoint VP of the transformer 241. It will be noted in this regard the presence of a capacitor-reservoir 280 of high capacity, provided to ensure the continuity of the supply of the circuit 100 when the transfer signals S, S are at logic level 0, interrupting the transmission of the alternating signal s a .
  • the circuit 200 being supplied and the demodulator 260 having detected the presence of a modulation at the frequency f on the interface circuit 240, the circuit 200 knows that it will be receiving circuit during all the transfer and, consequently, the oscillator 210 will be kept out of operation until the transfer is completed, just as the switch 270 is controlled by the microcontroller 220 so as to link the demodulator 250 with the load 243.
  • the device of the invention operating in "half duplex", namely that a circuit 100, 200 can only receive or transmit data, the receiver circuit 200 (FIG. 1b) is maintained in the reception position 10 of data by application by the microcontroller 200, and this until the end of a first transfer of data originating from the generator circuit 100.
  • the transfer signal S is received on the demodulator 250 via the load 243 for extract the binary signal s D therefrom , which is applied to the microcontroller 220.
  • the microcontroller 220 formulates the response to be sent to the generator circuit 100 in the form of a binary signal s'b (FIG. 2a).
  • the variations of the current in the transformer 141 are therefore the image of the transfer signal S '. Since the switch 142 is modulated at the frequency f by the signal S, the signal received by demodulator 150 is the binary signal s' b modulated at the frequency f. After demodulation, the signal s'b is applied to the microcontroller 120.
  • the circuit 100 becomes a data transmitter (FIG. 1a) and the circuit 200 for receiving data (FIG. 1b). If it were found that the circuits 100, 200 were both provided initially with a DC power source, this situation would be revealed by the fact that when the device is put into operation, the two demodulators 160, 260 would detect a modulation on their interface circuit 140, 240. In this case, the The device determines by software which of the two circuits 100, 200 which will be the generator circuit or the receiver circuit during the transfer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Selective Calling Equipment (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Dispositif bidirectionnel de transfert d'énergie et de données entre deux circuits (100, 200). Selon l'invention, chacun desdits circuits comporte: un oscillateur (110, 210) apte à générer un signal alternatif (Sa); un microcontrôleur (120, 220) apte à générer un signal binaire (Sb, S'b) représentatif desdites données; un circuit logique (130, 230) apte à fournir un signal (S, S') de transfert par superposition des signaux alternatif et binaires; un circuit (140, 240) d'interface destiné à transmettre ledit signal (S, S') de transfert à l'autre circuit et à recevoir le signal de transfert transmis par l'autre circuit, ledit circuit d'interface comprenant un circuit redresseur du signal alternatif reçu; un démodulateur (150, 250) destiné à extraire ledit signal binaire (Sb, S'b) du signal de transfert (S, S'), et en ce qu'un (100) desdits circuits comporte une source (101) d'alimentation en courant continu connectée audit circuit d'interface. Application aux serrures électroniques.

Description

DISPOSITIF BIDIRECTIONNEL DE TRANSFERT D'ENERGIE ET DE DONNEES ENTRE DEUX CIRCUITS SANS CONNEXION ELECTRIQUE
La présente invention concerne un dispositif bidirectionnel de transfert d'énergie et de données entre deux circuits sans connexion électrique.
L'invention trouve une application particulièrement avantageuse, mais non exclusive, dans le domaine des systèmes de sécurité couramment désignés sous le nom de "serrure électronique". On connaît de l'état de la technique des dispositifs de contrôle d'accès, du type serrure électronique, constitués d'un premier circuit apte à ouvrir la serrure d'une porte de communication à un local dont l'accès est contrôlé. Un deuxième circuit, la clé proprement dite, se présentant souvent sous la forme d'un badge, permet à son détenteur de commander l'ouverture de la serrure à condition d'être reconnu par le premier circuit comme étant autorisé à accéder audit local. L'échange d'informations entre les deux circuits s'effectue généralement sans connexion électrique, notamment par couplage électromagnétique à relativement courte distance. De manière habituelle, le premier circuit est alimenté par le secteur ou par batterie, tandis que le second circuit tire son alimentation du signal électromagnétique émis par le premier. En d'autres termes, le second circuit extrait du signal envoyé par le premier circuit à la fois l'énergie qui lui est nécessaire pour fonctionner et les données faisant partie des informations à échanger. Cependant, dans certains cas, ces dispositifs connus présentent l'inconvénient que, lorsque le premier circuit n'est pas accessible du fait même qu'il se trouve dans le local à accès contrôlé, il n'est pas possible de remplacer la source d'énergie en cas de défaillance, comme par exemple pour des machines à alimentation par batterie ou panneau solaire, ou des locaux électriquement indépendants, etc.. On comprend 2 que dans cette situation le dispositif ne puisse jamais fonctionner faute d'énergie électrique et impossibilité de remédier à cette lacune.
Aussi, le problème technique à résoudre par l'objet de la présente invention est de proposer un dispositif bidirectionnel de transfert d'énergie et de données entre deux circuits sans connexion électrique, dispositif qui pourrait continuer à être utilisé même si l'alimentation du circuit générateur d'énergie n'est plus assurée, sans remplacement possible de la source d'alimentation au moment du transfert.
La solution au problème technique posé consiste, selon la présente invention, en ce que chacun desdits circuits comporte, de manière identique :
- un oscillateur apte à générer un signal alternatif de fréquence f,
- un microcontrôleur apte à générer un signal binaire de vitesse de transmission v, représentatif des données à transmettre à l'autre circuit,
- un circuit logique apte à fournir au moins un signal de transfert par superposition des signaux issus de l'oscillateur et du microcontrôleur,
- un circuit d'interface destiné à transmettre ledit signal de transfert à l'autre circuit et à recevoir le signal de transfert transmis par l'autre circuit, ledit circuit d'interface comprenant un circuit redresseur apte à redresser le signal alternatif de fréquence f contenu dans le signal de transfert transmis par l'autre circuit,
- un démodulateur destiné à recevoir le signal de transfert transmis par l'autre circuit pour en extraire ledit signal binaire et l'appliquer audit microcontrôleur, et en ce qu'un desdits circuits, dit circuit générateur, comporte une source d'alimentation en courant continu connectée audit circuit d'interface, l'oscillateur dudit circuit générateur étant maintenu en 3 fonctionnement pendant le transfert, tandis que l'oscillateur de l'autre circuit, dit circuit récepteur, est maintenu hors fonctionnement.
Ainsi, le dispositif bidirectionnel conforme à l'invention fonctionne avec deux circuits structurellement identiques qui ne se distinguent que par le fait que l'un d'entre eux, le circuit générateur, fournit son alimentation à l'autre, à savoir le circuit récepteur. En fonctionnement nominal, lorsque la clé électronique est couplée au circuit générateur par l'intermédiaire du circuit d'interface, celle-ci reçoit son énergie de la source d'alimentation dudit circuit générateur et le transfert des données d'un circuit à l'autre peut s'établir.
En cas de défaillance de la source d'alimentation du circuit générateur, le dispositif de l'invention peut continuer de fonctionner au moyen d'une clé électronique alors munie d'une source d'alimentation. Les fonctions des deux circuits s'inversent, la clé électronique devenant circuit générateur et le circuit ouvrant la serrure devenant circuit récepteur, ceci jusqu'au remplacement de la source d'alimentation de ce dernier circuit.
Selon un mode de réalisation particulier du dispositif bidirectionnel conforme à l'invention, ledit circuit d'interface comporte un transformateur à point milieu, connecté à au moins une extrémité à une borne d'un interrupteur électronique commandé par le signal fourni par le circuit logique et dont une autre borne est reliée audit démodulateur, s'agissant du circuit générateur, tandis que ledit démodulateur est relié, s'agissant du circuit récepteur, à une charge en parallèle avec ledit interrupteur électronique, ledit circuit redresseur comprenant une diode disposée en parallèle avec ledit interrupteur électronique, et en ce que ladite source d'alimentation en courant continu dudit circuit générateur est reliée au point milieu dudit transformateur, l'alimentation en courant continu du circuit récepteur étant disponible au point milieu du transformateur. 4 De manière à ce que chacun des circuits puisse détecter la présence d'une source d'alimentation dans l'autre circuit, l'invention prévoit que chaque circuit comporte un deuxième démodulateur destiné à détecter une modulation à la fréquence f sur le circuit d'interface, indiquant la présence d'une source d'alimentation en courant continu dans l'autre circuit.
Cette disposition particulière présente l'avantage que, en présence d'une source d'alimentation en courant continu dans chaque circuit, ledit dispositif détermine par logiciel celui des deux circuits qui sera circuit générateur ou circuit récepteur pendant le transfert.
La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
La figure la est un schéma d'un circuit générateur d'énergie du dispositif de l'invention, en situation d'émission de données.
La figure lb est un schéma d'un circuit récepteur d'énergie du dispositif de l'invention, en situation de réception des données provenant du circuit de la figure la.
La figure 2a est un schéma du circuit de la figure lb en situation d'émission de données.
La figure 2b est un schéma du circuit de la figure la en situation de réception des données provenant du circuit de la figure 2a.
Les figures la, lb, d'une part, et 2a, 2b, d'autre part, montrent un dispositif bidirectionnel de transfert d'énergie et de données entre deux circuits 100, 200 sans connexion électrique entre eux. Comme on peut le constater, ces deux circuits sont identiques en ce sens qu'ils sont constitués des mêmes éléments agencés de la même façon. La seule différence réside dans le fait que l'un d'entre eux, le circuit 100, appelé circuit générateur, comporte une source 101 d'alimentation, ici une batterie, alors que l'autre, le circuit 200, appelé circuit récepteur, en est 5 dépourvu. Bien entendu, même s'ils sont identiques, les éléments homologues de l'un et l'autre des circuits 100, 200 ne fonctionneront pas toujours de la même manière selon qu'il s'agit du circuit générateur 100 ou du circuit récepteur 200. Dans le contexte de l'application envisagée plus haut, le circuit générateur 100 sera installé à l'intérieur du local dont on veut contrôler l'accès et pourra commander l'ouverture d'une serrure permettant l'accès audit local dès lors que ledit circuit générateur 100 aura identifié la clé électronique qui lui aura été présentée, laquelle comporte le circuit récepteur 200, comme appartenant à une personne autorisée à accéder au local. A cet effet, les deux circuits 100, 200 doivent naturellement échanger des données, éventuellement sous forme cryptée, et pour cela, le circuit récepteur 200 sera alimenté en énergie par le circuit générateur 100 au moment où les deux circuits seront mis en communication.
La manière dont l'énergie et les données sont transférées au sein du dispositif bidirectionnel de l'invention va maintenant être expliquée en détail.
Comme on peut le voir sur les figures la à 2b, chacun des circuits 100, 200 comporte un oscillateur 110, 210 apte à générer un signal alternatif sa de fréquence f, par exemple égale à 200 kHz. En fait, ce signal alternatif sa est fourni par le circuit générateur 100 au circuit récepteur 200 de manière qu'après redressement il puisse alimenter ledit circuit récepteur 200 en courant continu. C'est pourquoi, en fonctionnement du dispositif, l'oscillateur 110 du circuit générateur 100 est maintenu en fonctionnement pendant le transfert d'énergie et de données, tandis que l'oscillateur 210 du circuit récepteur 200 est maintenu hors fonctionnement.
D'autre part, ainsi que l'indiquent les figures la à 2b, les circuits 100, 200 comprennent un microcontrôleur 120, 220 respectivement, 6 dont une des fonctions est de générer un signal binaire, sD , s'b respectivement, représentatif des données à transmettre de l'un à l'autre des circuits 100, 200. Ces données peuvent être, par exemple, une demande d'authentification du circuit générateur 100 vers le circuit récepteur 200 avec envoi d'un nombre aléatoire et la réponse du circuit récepteur établie par le microcontrôleur 220 sous forme d'un message crypté au moyen du nombre aléatoire reçu et d'un algorithme de cryptage, DES notamment, le microcontrôleur 120 du circuit générateur 100 étant apte à décrypter le message reçu et à authentifier le circuit récepteur 200. En cas d'authentification positive, le microcontrôleur 120 émet un signal sc de commande d'ouverture de serrure dans le cas de l'application du dispositif de l'invention aux serrures électroniques.
La vitesse v de transmission des signaux binaires peut être, par exemple, de 4800 bauds. Chacun des circuits 100, 200 comporte un circuit logique 130, 230 destiné à fournir un signal S, S' de transfert lorsque le circuit 100, 200 correspondant est en situation d'émission de données. D'une manière générale, les signaux S, S' de transfert résultent de la superposition des signaux issus des oscillateurs 1 10, 210 et des microcontrôleurs 120, 220 respectifs. Plus précisément, le signal S fourni par le circuit logique 130 du circuit générateur 100 est un signal de transfert à la fois d'énergie et de données qui apparaît comme une modulation d'amplitude du signal binaire Sb par le signal alternatif sa. On notera que le circuit logique 130 délivre également un signal S complémentaire du signal S, ceci pour des raisons qui seront expliquées plus loin. Le signal S' fourni par le circuit logique 230 du circuit récepteur 200 est purement un signal de transfert de données, il reproduit donc exactement le signal binaire s'b provenant du microcontrôleur 220, l'oscillateur 210 étant hors fonctionnement, le deuxième signal fourni par le circuit logique 230 étant au niveau 0. 7 Sur les figures la à 2b on peut voir que les circuits 100, 200 comprennent un circuit d'interface, 140, 240 respectivement, dont la fonction est de transmettre les signaux S, S' de transfert de l'un à l'autre des circuits, chaque circuit d'interface comportant un circuit redresseur apte à redresser le signal alternatif de fréquence f contenu dans le signal de transfert transmis par l'autre circuit. Dans le cas illustré sur les figures, c'est le circuit 240 d'interface qui permet de redresser le signal alternatif sa présent dans le signal S de transfert provenant du circuit générateur 100 afin de fournir au circuit récepteur 200 l'alimentation en courant continu nécessaire à son fonctionnement.
Selon le mode de réalisation des figures la à 2b, chaque circuit
140, 240 d'interface comporte un transformateur 141 , 241 à point milieu, connecté à ses extrémités à deux modules identiques, ceci afin de respecter la symétrie du transformateur, bien que cette disposition pourtant avantageuse n'ait pas de caractère obligatoire. Chacun de ces modules comprend un interrupteur électronique 142, 142' et 242, 242', ici constitué par un transistor MOS, commandé par un des deux signaux fournis par le circuit logique 130, 230, d'où la nécessité pour ledit circuit logique de délivrer deux signaux de sortie. En parallèle avec les interrupteurs électroniques, sont disposées des diodes 144, 144' et 244, 244', qui d'ailleurs pourront être les diodes de protection des transistors MOS. L'ensemble de chaque interrupteur électronique 142, 142', 242, 242' et de la diode associée forme un circuit redresseur qui, s'agissant du circuit récepteur 200, permet de redresser le signal alternatif sa transmis par le circuit 140 d'interface du circuit générateur 100. On remarquera qu'un circuit redresseur étant présent à chaque extrémité du transformateur 241, le redressement est double alternance. L'alimentation en courant continu du circuit récepteur 200 est disponible au point milieu VP du transformateur 241. De même, la 8 source 101 d'alimentation en courant continu du circuit générateur 100 est reliée au point milieu du transformateur 141.
Le démodulateur 150, 250, chargé d'extraire le signal binaire Sb, Sb- du signal S, S' du transfert est relié, soit à une borne de sortie d'un interrupteur électronique 141 pour le circuit générateur 100, soit à une charge 243 en parallèle avec l'interrupteur électronique 242, les charges 145 et 246 étant prévues pour transformer en signaux de tension les signaux de courant fournis par les transformateurs 141, 241. La connexion du démodulateur 150, 250 à l'une ou l'autre des sorties est déterminée par un commutateur électronique 170, 270, commandé par le microcontrôleur 120, 220 après que le caractère générateur ou récepteur des circuits 100, 200 ait été établi.
Enfin, on peut voir sur les figures la à 2b que chaque circuit 100, 200 comporte un deuxième démodulateur 160, 260 destiné à détecter une modulation à la fréquence f sur le circuit d'interface 140, 240, indiquant la présence d'une source d'alimentation en courant continu dans l'autre circuit. Ce deuxième démodulateur 160, 260 fonctionne de la même manière que le démodulateur 250 du circuit récepteur 200 et peut être connecté à l'un ou l'autre des modules d'extrémité des transformateurs 141 , 241 à point milieu.
Le fonctionnement du dispositif, objet de l'invention, est alors le suivant.
Les circuits 100 et 200 sont d'abord mis en situation de transfert d'énergie et de données par couplage électromagnétique des transformateurs 141, 241 des circuits 140, 240 d'interface, et le circuit 100 est mis en fonctionnement. Le démodulateur 160 n'ayant détecté aucune modulation à la fréquence f sur le transformateur 141 , le circuit 100 sait qu'il sera le circuit générateur pendant tout le transfert et, par conséquent, l'oscillateur 110 est mis en fonctionnement par le microcontrôleur 120 et ne cessera de délivrer le signal alternatif sa 9 jusqu'à la fin du transfert, de même que le commutateur 170 sera maintenu dans la position assurant la liaison entre le démodulateur 150 et l'interrupteur 142.
Le signal sa est dédoublé en deux signaux complémentaires en opposition de phase et superposés par le circuit logique 130 au signal binaire sD pour former les signaux S, S de transfert. Ceux-ci sont appliqués aux interrupteurs 142, 142' qui deviennent passants ou bloqués selon l'état logique des signaux S, S . Du fait de la présence de la batterie 101 en série avec les interrupteurs, un courant traverse le transformateur 141, reproduisant les signaux S, S de transfert. Le courant est transmis par couplage électromagnétique au transformateur 241 du circuit 200. Les circuits redresseurs 242, 244 et 242', 244' du circuit 240 d'interface redressent en double alternance le signal alternatif contenu dans les signaux S, S reçus du circuit 140 d'interface de manière à établir une polarisation positive au point milieu VP du transformateur 241. On notera à cet égard la présence d'un condensateur-réservoir 280 de forte capacité, prévu pour assurer la continuité de l'alimentation du circuit 100 lorsque les signaux S, S de transfert sont à un niveau logique 0, interrompant la transmission du signal alternatif sa.
Le circuit 200 étant alimenté et le démodulateur 260 ayant détecté la présence d'une modulation à la fréquence f sur le circuit 240 d'interface, le circuit 200 sait qu'il sera circuit récepteur pendant tout le transfert et, par conséquent, l'oscillateur 210 sera maintenu hors fonctionnement jusqu'à la fm du transfert, de même que le commutateur 270 est commandé par le microcontrôleur 220 de façon à mettre en liaison le démodulateur 250 avec la charge 243.
Le dispositif de l'invention fonctionnant en "half duplex" à savoir qu'un circuit 100, 200 ne peut que recevoir ou émettre des données, le circuit récepteur 200 (figure lb) est maintenu en position de réception 10 de données par application par le microcontrôleur 200, et ceci jusqu'à la fin d'un premier transfert de données provenant du circuit générateur 100. Le signal S de transfert est reçu sur le démodulateur 250 par l'intermédiaire de la charge 243 pour en extraire le signal binaire sD, lequel est appliqué au microcontrôleur 220.
A partir des données ainsi reçues, le microcontrôleur 220 formule la réponse à envoyer au circuit générateur 100 sous la forme d'un signal binaire s'b (figure 2a). Pendant le même temps, ledit circuit générateur 100 se place en position de réception de données par application par le microcontrôleur 120 d'un 0 logique au circuit 130 (figure 2b), lequel fournit en sortie aux interrupteurs 142, 142' les signaux S = sa et S = sa .
Le signal S' = s'b de transfert, non modulé à la fréquence f, est appliqué à l'interrupteur 242' qui, lorsqu'il devient passant, produit une surconsommation du transformateur 241 et une augmentation correspondante du courant dans le transformateur 141. Les variations du courant dans le transformateur 141 sont donc l'image du signal S' de transfert. Puisque l'interrupteur 142 est modulé à la fréquence f par le signal S , le signal reçu par démodulateur 150 est le signal binaire s'b modulé à la fréquence f. Après démodulation, le signal s'b est appliqué au microcontrôleur 120.
Puis, à nouveau, les rôles des deux circuits 100, 200 s'inversent, le circuit 100 devient émetteur de données (figure la) et le circuit 200 récepteur de données (figure lb). S'il se trouvait que les circuits 100, 200 étaient tous deux pourvus au départ d'une source d'alimentation en courant continu, cette situation se révélerait par le fait qu'à la mise en fonctionnement du dispositif, les deux démodulateurs 160, 260 détecteraient une modulation sur leur circuit 140, 240 d'interface. Dans ce cas, le 11 dispositif détermine par logiciel celui des deux circuits 100, 200 qui sera circuit générateur ou circuit récepteur pendant le transfert.

Claims

12
REVENDICATIONS
1 - Dispositif bidirectionnel de transfert d'énergie et de données entre deux circuits (100, 200) sans connexion électrique, caractérisé en ce que chacun desdits circuits comporte, de manière identique :
- un oscillateur (110, 210) apte à générer un signal alternatif (sa) de fréquence f,
- un microcontrôleur (120, 220) apte à générer un signal binaire (sb, s'b) de vitesse de transmission v, représentatif des données à transmettre à l'autre circuit,
- un circuit logique (130, 230) apte à fournir au moins un signal (S, S5) de transfert par superposition des signaux issus de l'oscillateur (110, 210) et du microcontrôleur (120, 220),
- un circuit (140, 240) d'interface destiné à transmettre ledit signal (S, 1) de transfert à l'autre circuit et à recevoir le signal de transfert transmis par l'autre circuit, ledit circuit d'interface comprenant un circuit redresseur apte à redresser le signal alternatif de fréquence f contenu dans le signal de transfert transmis par l'autre circuit,
- un démodulateur (150, 250) destiné à recevoir le signal (S, S de transfert transmis par l'autre circuit pour en extraire ledit signal binaire (sb, s'b) et l'appliquer audit microcontrôleur (120, 220), et en ce qu'un (100) desdits circuits, dit circuit générateur, comporte une source (101) d'alimentation en courant continu connectée audit circuit d'interface, l'oscillateur (110) dudit circuit générateur (100) étant maintenu en fonctionnement pendant le transfert, tandis que l'oscillateur (210) de l'autre (200) circuit, dit circuit récepteur, est maintenu hors fonctionnement.
2 - Dispositif selon la revendication 1, caractérisé en ce que ledit circuit (140, 240) d'interface comporte un transformateur (141, 241) à point milieu, connecté à au moins une extrémité à une borne d'un 13 interrupteur électronique (142, 142', 242, 242^, commandé par le signal fourni par le circuit logique (130, 230) et dont une autre borne est reliée audit démodulateur (150) s'agissant du circuit générateur (100), tandis que ledit démodulateur (250) est relié, s'agissant du circuit récepteur (200), à une charge (243) en parallèle avec ledit interrupteur électronique (242), ledit circuit redresseur comprenant une diode (244, 244 ^ disposée en parallèle avec ledit interrupteur électronique (242, 242^, et en ce que ladite source (101) d'alimentation en courant continu dudit circuit générateur (100) est reliée au point milieu dudit transformateur (141), l'alimentation en courant continu du circuit récepteur (200) étant disponible au point milieu (VP) du transformateur (241).
3 - Dispositif selon la revendication 2, caractérisé en ce que ledit interrupteur électronique (142, 142', 242, 242 ^ est constitué par un transistor MOS.
4 - Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que chaque circuit (100, 200) comporte un deuxième démodulateur (160, 260) destiné à détecter une modulation à la fréquence f sur le circuit (140, 240) d'interface, indiquant la présence d'une source d'alimentation en courant continu dans l'autre circuit.
5 - Dispositif selon la revendication 4, caractérisé en ce que, en présence d'une source d'alimentation en courant continu dans chaque circuit, ledit dispositif détermine par logiciel celui des deux circuits ( 100, 200) qui sera circuit générateur ou circuit récepteur pendant le transfert.
6 - Application du dispositif selon l'une quelconque des revendications 1 à 5 aux serrures électroniques.
PCT/FR1999/000614 1998-03-17 1999-03-17 Dispositif bidirectionnel de transfert d'energie et de donnees entre deux circuits sans connexion electrique WO1999047774A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99909030A EP1064445A1 (fr) 1998-03-17 1999-03-17 Dispositif bidirectionnel de transfert d'energie et de donnees entre deux circuits sans connexion electrique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9803262A FR2776412B1 (fr) 1998-03-17 1998-03-17 Dispositif bidirectionnel de transfert d'energie et de donnees entre deux circuits sans connexion electrique
FR98/03262 1998-03-17

Publications (1)

Publication Number Publication Date
WO1999047774A1 true WO1999047774A1 (fr) 1999-09-23

Family

ID=9524145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000614 WO1999047774A1 (fr) 1998-03-17 1999-03-17 Dispositif bidirectionnel de transfert d'energie et de donnees entre deux circuits sans connexion electrique

Country Status (3)

Country Link
EP (1) EP1064445A1 (fr)
FR (1) FR2776412B1 (fr)
WO (1) WO1999047774A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564689A2 (fr) * 2004-02-17 2005-08-17 Huf Hülsbeck & Fürst GmbH & Co. KG Procédé de commande de serrure comprenant un dispositif de secours pour déverrouiller et/ou verrouiller la serrure
US8884762B2 (en) 2005-12-23 2014-11-11 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US8994497B2 (en) 2012-05-21 2015-03-31 Invue Security Products Inc. Cabinet lock key with audio indicators
US10087659B2 (en) 2014-11-18 2018-10-02 Invue Security Products Inc. Key and security device
US11017656B2 (en) 2011-06-27 2021-05-25 Invue Security Products Inc. Programmable security system and method for protecting merchandise

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023695A1 (fr) * 1999-09-30 2001-04-05 Siemens Automotive Corporation Cle a emetteur electronique fournissant de l'energie de reserve a un systeme de verrouillage electronique
JP3875101B2 (ja) 1999-10-04 2007-01-31 シーメンス ヴィディーオー オートモーティヴ コーポレイション 機械式キーによらない車両制御システム及び方法
NL1022525C2 (nl) * 2003-01-30 2004-08-03 Integrated Residential Systems Inrichting en werkwijze voor het leveren van elektrische energie aan en voor het controleren van ten minste een vergrendel-onderdeel van een slot met behulp van inductieve koppeling.
WO2014150649A1 (fr) * 2013-03-22 2014-09-25 Utc Fire And Security Americas Corporation, Inc. Verrou électronique doté de sources d'énergie sélectionnables

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2184774A (en) * 1983-08-01 1987-07-01 Waitrose Ltd Keyhole-less electronic lock
EP0242578A2 (fr) * 1986-04-23 1987-10-28 BKS GmbH Procédé de transmission bidirectionnelle de données et application à un système de serrure
FR2677396A1 (fr) * 1991-06-10 1992-12-11 Ferco Int Usine Ferrures Serrure electronique interactive auto-secourue.
US5345231A (en) * 1990-08-23 1994-09-06 Mikron Gesellschaft Fur Integrierte Mikroelectronik Mbh Contactless inductive data-transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2184774A (en) * 1983-08-01 1987-07-01 Waitrose Ltd Keyhole-less electronic lock
EP0242578A2 (fr) * 1986-04-23 1987-10-28 BKS GmbH Procédé de transmission bidirectionnelle de données et application à un système de serrure
US5345231A (en) * 1990-08-23 1994-09-06 Mikron Gesellschaft Fur Integrierte Mikroelectronik Mbh Contactless inductive data-transmission system
FR2677396A1 (fr) * 1991-06-10 1992-12-11 Ferco Int Usine Ferrures Serrure electronique interactive auto-secourue.

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564689A2 (fr) * 2004-02-17 2005-08-17 Huf Hülsbeck & Fürst GmbH & Co. KG Procédé de commande de serrure comprenant un dispositif de secours pour déverrouiller et/ou verrouiller la serrure
EP1564689A3 (fr) * 2004-02-17 2006-04-26 Huf Hülsbeck & Fürst GmbH & Co. KG Procédé de commande de serrure comprenant un dispositif de secours pour déverrouiller et/ou verrouiller la serrure
US9659472B2 (en) 2005-12-23 2017-05-23 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US10403122B2 (en) 2005-12-23 2019-09-03 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US8884762B2 (en) 2005-12-23 2014-11-11 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US9135800B2 (en) 2005-12-23 2015-09-15 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US9171441B2 (en) 2005-12-23 2015-10-27 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US9269247B2 (en) 2005-12-23 2016-02-23 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US9396631B2 (en) 2005-12-23 2016-07-19 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US9478110B2 (en) 2005-12-23 2016-10-25 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US9501913B2 (en) 2005-12-23 2016-11-22 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US10013867B2 (en) 2005-12-23 2018-07-03 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US9858778B2 (en) 2005-12-23 2018-01-02 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US11721198B2 (en) 2005-12-23 2023-08-08 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US9576452B2 (en) 2005-12-23 2017-02-21 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US10062266B1 (en) 2005-12-23 2018-08-28 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US10600313B2 (en) 2005-12-23 2020-03-24 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US10297139B2 (en) 2005-12-23 2019-05-21 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US8890691B2 (en) 2005-12-23 2014-11-18 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US11017656B2 (en) 2011-06-27 2021-05-25 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US11763664B2 (en) 2011-06-27 2023-09-19 Invue Security Products Inc. Programmable security system and method for protecting merchandise
US8994497B2 (en) 2012-05-21 2015-03-31 Invue Security Products Inc. Cabinet lock key with audio indicators
US10087659B2 (en) 2014-11-18 2018-10-02 Invue Security Products Inc. Key and security device
US11015373B2 (en) 2014-11-18 2021-05-25 Invue Security Products Inc. Key and security device
US11391070B2 (en) 2014-11-18 2022-07-19 Invue Security Products Inc. Key and security device

Also Published As

Publication number Publication date
FR2776412B1 (fr) 2000-05-12
EP1064445A1 (fr) 2001-01-03
FR2776412A1 (fr) 1999-09-24

Similar Documents

Publication Publication Date Title
EP0520876B1 (fr) Procédé et système de communications d'information et commandes appliqués à un réseau domotique
EP0917684B1 (fr) Microcircuit a fonctionnement mixte, avec ou sans contact
CA2245912C (fr) Systeme d'echange de donnees par communication sans contact entre une borne et des objets portatifs telealimentes
EP1064445A1 (fr) Dispositif bidirectionnel de transfert d'energie et de donnees entre deux circuits sans connexion electrique
EP1884100A1 (fr) Procede de controle de la connexion d'un peripherique a un point d'acces, point d'acces et peripherique correspondants
FR3003536A1 (fr) Systeme automatique de stockage de cycles et batterie pour un tel systeme.
FR2542792A1 (fr) Ensemble de verrouillage a serrure et cle munies d'un organe de calcul
EP1104496B1 (fr) Dispositif de controle d'acces entre une clef et une serrure electroniques
EP2582113A1 (fr) Dispositif d'adaptation entre un lecteur sans contact et un dispositif radiofréquence
EP0356334B1 (fr) Système d'échange d'informations entre un objet portatif comme une clé, et un dispositif d'échange
FR2677396A1 (fr) Serrure electronique interactive auto-secourue.
EP1407426A1 (fr) Procede de deverrouillage "sans cle" d'une porte d'acces a un espace clos
EP0815527B1 (fr) Coupleur pour gerer une communication entre un support de donnees portable et un dispositif d'echange de donnees, et dispositif d'echange de donnees associe
EP1358748B1 (fr) Dispositif et procede d'appairage automatique securise des appareils d'un reseau radiofrequence
FR2768227A1 (fr) Dispositif de surveillance d'un appareil electrique, notamment d'une unite informatique d'un parc bureautique, et systeme de mise en oeuvre
FR2943468A1 (fr) Prise electrique et alimentation sans interruption equipee d'une telle prise
FR2731035A1 (fr) Ensemble constitue d'une serrure electrique de portiere avec fonction de secours electrique et de ses moyens de commande, et equipement comprenant plusieurs de ces ensembles
EP1759327A1 (fr) Procede de demodulation sans contact a phase synchrone, demodulateur et lecteur associes
FR3062634A1 (fr) Cycle pourvu d'un verrou antivol et systeme automatique de mise a disposition de cycles comportant de tels cycles
EP0547725A1 (fr) Agencement de commande à distance d'un dispositif actionneur à l'aide d'un appareil de télécommande
FR2711716A1 (fr) Dispositif de verrouillage électronique à clé.
WO2019166440A1 (fr) Procédé de transmission par un compteur électrique intelligent d'un message représentatif d'une détection d'une rupture d'une alimentation électrique
FR2670642A1 (fr) Systeme de transmission de donnees a alimentation des moyens d'emission d'un emetteur par un recepteur.
WO2017103530A1 (fr) Systeme de controle d'acces comprenant une poignee amovible connectee delivrant une source d'energie a un dispositif de verrouillage
EP1125804A1 (fr) Agencement de sécurité pour véhicule automobile équipe d'un système programme de contrôle et en particulier d'un système de contrôle dit "mains libres"

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999909030

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999909030

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999909030

Country of ref document: EP