WO1999044281A1 - Method of driving ultrasonic motor - Google Patents

Method of driving ultrasonic motor Download PDF

Info

Publication number
WO1999044281A1
WO1999044281A1 PCT/JP1999/000888 JP9900888W WO9944281A1 WO 1999044281 A1 WO1999044281 A1 WO 1999044281A1 JP 9900888 W JP9900888 W JP 9900888W WO 9944281 A1 WO9944281 A1 WO 9944281A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
transformer
ultrasonic motor
vibrator
driving
Prior art date
Application number
PCT/JP1999/000888
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyo Wada
Original Assignee
Star Micronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Star Micronics Co., Ltd. filed Critical Star Micronics Co., Ltd.
Publication of WO1999044281A1 publication Critical patent/WO1999044281A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/145Large signal circuits, e.g. final stages
    • H02N2/147Multi-phase circuits

Definitions

  • the present invention relates to a method for driving an ultrasonic motor.
  • the conventional ultrasonic motor includes a stay (stator) composed of an elastic body and a piezoelectric element (vibrator) provided on the back surface of the elastic body, and a pressurizing arrangement opposed to the stay.
  • a rotor (movable element) made of an elastic body, a drive circuit that generates and outputs two-phase drive signals having different phases (for example, a sinusoidal voltage signal and a cos-wave voltage signal having a 90 ° phase difference), By supplying the two-phase drive signal to each of the two regions where the piezoelectric element is divided, the piezoelectric element is vibrated to generate a traveling wave on the surface of the stay. The rotor is driven to rotate by the traveling wave.
  • the voltage of the two-phase drive signal supplied to the piezoelectric element is increased to 5 to 24 V DC by the power amplifier in the drive circuit, but the drive signal is 15 V Since a voltage of 0 V to 300 V is required, a step-up transformer is required after the power amplifier in the drive circuit.
  • a configuration may be considered in which the drive signal of each phase is input to a single transformer to boost the voltage.However, since the drive signals of each phase interfere with each other in the single transformer, they are not suitable for actual use. Conventionally, transformers having the same drive signal transmission characteristics are provided for each phase. Disclosure of the invention
  • the conventional ultrasonic motor requires two transformers. Since the transformer is the most expensive in the drive system of the ultrasonic motor, there was a problem that the cost was increased.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a driving method of an ultrasonic motor that can drive an ultrasonic motor satisfactorily while reducing cost and size.
  • two-phase drive signals having different phases are supplied to a vibrator provided on the back surface of the elastic body to vibrate the vibrator, and the vibration is generated on the surface of the elastic body.
  • An ultrasonic motor drive method in which a mover is driven by a traveling wave, in which two-phase drive signals having different phases are applied to a common core constituting a closed magnetic circuit, and a primary and a secondary winding of each phase are provided. Are input to the respective primary windings of each phase of the single transformer wound, and are boosted to be supplied to the vibrator from the secondary windings of the respective phases.
  • a single transformer in which the primary and secondary windings of each phase are wound on a common core forming a closed magnetic circuit Since the drive signal of each phase is input to the primary winding, the drive signal of each phase interferes with each other in the single transformer.
  • the effect of this mutual interference is that even when the transformer output voltage supplied to the vibrator is at a slightly different level in each phase, a relationship having a predetermined phase difference is maintained, so that there is no problem in actual use. Without driving the ultrasonic motor. As a result, the number of the most expensive and large transformers in the drive system of the ultrasonic motor is reduced.
  • the step-up ratio by the winding in the single transformer is determined. It is preferable that the output voltages of the two-phase drive signals supplied to the vibrator be made substantially the same by making each phase different. In particular, the output voltages of the two-phase transformers supplied to the vibrator differ over a predetermined range, and If it is considered that this will adversely affect the operation, it is preferable to perform correction according to the ratio of the interference voltage in a single transformer as described above.
  • this input is used to invert the input phase of the drive signal to the primary winding of a single transformer.
  • a drive signal for the primary winding of a single transformer is a pulse wave signal, and a sinusoidal drive signal is applied to the vibrator by the resonance action of the capacitance of the vibrator and the inductance of the single transformer. Preferably, it is supplied.
  • a pulse wave signal supply circuit has a more practical configuration when configuring the circuit.
  • FIG. 1 is a configuration diagram showing an ultrasonic motor employing the ultrasonic motor driving method according to the present invention.
  • FIG. 2A and 2B are configuration diagrams showing a single transformer
  • FIG. 2A is a configuration diagram showing a two-phase drive three-leg transformer
  • FIG. 2B is a configuration diagram showing a two-phase drive two-leg transformer.
  • FIGS. 3A to 3D are explanatory diagrams showing connection polarities of two-phase windings in a single transformer, and FIGS. 3E to 3H correspond to FIGS. 3A to 3D, respectively. It is a transformer output voltage waveform diagram.
  • FIGS. 4A to 4D are explanatory diagrams of the internal operation of the transformer corresponding to FIGS. 3A to 3D, respectively, and FIGS. 4E to 4H are transformers respectively corresponding to FIGS. 4A to 4D.
  • FIG. 4 is a vector explanatory diagram of an output voltage.
  • FIGS. 5A to 5C are diagrams for explaining the connection polarity of windings in a one-phase transformer.
  • 5A is a configuration diagram showing a one-phase three-leg transformer
  • FIG. 5B is an explanatory diagram showing the addition polarity of the winding
  • FIG. 5C is an explanatory diagram showing the subtraction polarity of the winding.
  • FIGS. 6A to 6E are configuration diagrams showing a single transformer prepared for the experiment.
  • FIG. 7 is a table showing measured mutual inductances, coupling coefficients, and leakage ratios of the transformers in FIGS. 6A to 6E.
  • FIG. 8 is a diagram showing the relationship between the coupling coefficient and the leakage ratio obtained in FIG.
  • FIG. 9 is a chart showing measured values of the output voltages of the respective phases of the transformers shown in FIGS. 6A to 6E and calculating and calculating a ratio of a difference between the measured output voltages.
  • FIG. 10 is a diagram showing the relationship between the output voltage difference ratio and the leakage ratio obtained in FIG.
  • FIG. 11 is a configuration diagram showing a main part of a drive circuit to which a circuit for correcting in a direction to reduce the output voltage difference is added.
  • FIG. 12 is a configuration diagram illustrating a main part of a drive circuit including a circuit that corrects the output voltage difference in a direction to reduce the difference.
  • FIGS. 13A to 13P are timing charts for explaining the circuit operation of FIG.
  • FIG. 14 is a cross-sectional view showing the ultrasonic motor main body. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram showing an ultrasonic motor employing the ultrasonic motor driving method according to the present invention.
  • This ultrasonic motor includes an ultrasonic motor main body 1 composed of a mechanical drive mechanism and a drive circuit 2 for driving the ultrasonic motor main body 1.
  • the ultrasonic motor main body 1 penetrates the center of the fixing base 3 and is fixed to the fixing base 3
  • the rotating shaft 4 rotatably supported by the bearings 7 provided, the outer peripheral circular opening 6 press-fitted and fixed to the rotating shaft 4, and the outer rim fixed to the fixing base 3 facing the rotor 6 It has a circular stay 5 and.
  • the rotor 6 is rotated by a traveling wave traveling on the surface of the stator 5 (the upper surface in the figure) and traveling in the circumferential direction (details will be described later).
  • the stay 5 includes an annular vibrator 5 V made of a ceramic piezoelectric element, and an annular elastic body 5 e made of metal with the vibrator 5 V adhered to the outer periphery of the back surface. .
  • An inner peripheral portion 5i of the elastic body 5e is fixed to the fixing base 3 by, for example, screwing, and an annular intermediate portion 5m between the outer peripheral portion 5o and the inner peripheral portion 5i is thin.
  • the intermediate portion 5 m facilitates vibration of the outer peripheral portion 5 o and suppresses vibration transmission between the inner peripheral portion 5 i and the outer peripheral portion 5 o.
  • the rotor 6 is formed of an annular elastic body made of metal.
  • the inner peripheral portion 6i of the rotor 6 is press-fitted and fixed to the rotary shaft 4, and the rotor 6 has an annular thin intermediate portion 6m between the outer peripheral portion 6o and the inner peripheral portion 6i.
  • a flange portion 4f is provided on the upper portion of the rotary shaft 4, and a snap ring 9 such as a C-ring is mounted on a lower portion thereof.
  • a snap ring 9 is provided between the snap ring 9 and the bearing 7.
  • the compression spring 11 is inserted via the spacer 10. The rotating shaft 4 and the mouth 6 are constantly urged downward by the compression spring 11 and the flange portion 4f.
  • the mouth 6 has a narrow annular convex portion 6 p on a surface of the outer peripheral portion 6 o facing the outer peripheral portion 5 o of the stay 5.
  • An annular cushioning friction member 12 made of, for example, resin is interposed between the rotor side convex portion 6p and the outer peripheral portion 5o on the stay side, and the cushioning friction member 12 is brought into pressure contact with them.
  • the cushioning friction member 12 is fixed to one of the convex portion 6p and the outer peripheral portion 5o on the stay side with an adhesive or the like, for example. To generate a normal traveling wave in the stay side elastic body 5e, and to avoid direct contact between metals (convex part 6p and outer peripheral part 5o).
  • the cushioning friction member 12 may not be fixed to either the convex portion 6p or the outer peripheral portion 5o, but may be interposed between the convex portion 6p and the outer peripheral portion 5o.
  • the piezoelectric vibrator 5V has regions divided into a plurality in the circumferential direction, and has been subjected to polarization processing in advance so that the polarization directions in the thickness direction are opposite to each other in adjacent regions. As shown in Fig. 1, these areas are divided into two parts, the sin side electrode part SS and the cos side electrode part CC, and the feedback between the sin side electrode part SS and the cos side electrode part CC. Detection electrode section FB is provided.
  • the sine side electrode portion S S and the cos side electrode portion C C of the piezoelectric vibrator 5 V are connected to the drive circuit 2 as shown in FIG.
  • the drive circuit 2 applies a sinusoidal voltage signal (sinusoidal voltage signal; one drive signal) between the ground and the sinusoidal electrode SS of the piezoelectric vibrator 5 V, and connects the ground with the cos-side electrode CC.
  • a sinusoidal voltage signal cos-wave voltage signal; the other drive signal
  • a traveling wave traveling in the circumferential direction due to the synthetic wave is generated on the surface of the outer peripheral portion 5 o on the stay side, and the traveling wave is generated by the stator 5.
  • the configuration is such that the rotor 6 pressed against the rotor is driven to rotate.
  • the driving circuit 2 generates an sinusoidal voltage signal and outputs the sinusoidal voltage signal, and shifts the sinusoidal voltage signal output from the oscillator 20 by 90 ° in electrical angle. Then cos Characteristics that amplify each voltage signal (two-phase drive signal with a different 90 ° phase) output from the 90 ° phase shifter 21 and the oscillator 20 and the 90 ° phase shifter 21 1 output as a wave voltage signal.
  • the power amplifiers Amp 1 and Amp 2 which are equal to each other, and the respective voltage signals output from the power amplifiers Amp 1 and Amp 2 are input and boosted, and the boosted voltage signals are converted to the sine of the piezoelectric vibrator 5 V.
  • the drive circuit 2 also includes a switch SW1 connected between the outputs of the oscillator 20 and the 90 ° phase shifter 21 and the inputs of the amplifiers Amp1 and Amp2, and has a single connection with the output of the power amplifier Amp1. And a switch SW2 connected between the two terminals of the primary winding Cai corresponding to the sin-side electrode section SS of the transformer T.
  • the switch SW 1 converts the sinusoidal voltage signal from the oscillator 20 and the cosine wave voltage signal from the 90 ° phase shifter 21 to the power amplifiers Amp 1 and Amp 2 to supply the sinusoidal electrodes SS and cos
  • the phase relationship between the voltage signals supplied to the side electrode sections CC is exchanged with each other, and the rotation direction of the rotor 6 is reversed.
  • the switch SW2 inverts the voltage signal output from the power amplifier Amp 1 by 180 ° without changing the phases of the sin wave voltage signal and the cos wave voltage signal input to the power amplifiers Amp 1 and Amp 2.
  • the rotation direction of the rotor 6 is reversed by supplying the primary winding Cai corresponding to the sin-side electrode section SS of the single transformer T.
  • FIG. 2A and 2B show specific examples of the single transformer T.
  • FIG. 2A is a configuration diagram showing a two-phase drive three-leg transformer
  • FIG. 2B is a two-phase drive two-leg transformer.
  • This single transformer T is composed of a common core FC in which a vertically divided light core is connected via an insulating spacer Z, and an insulating switch in one of the outer iron parts (left side in the drawing) of the core FC. It is wound below the switch Z and connected to the switch SW2.
  • the next winding Cai, the secondary winding Cao wound above the insulating spacer Z on one of the outer iron parts and connected to the above-mentioned sin side electrode part SS, and the other (right side in the drawing) of the outer iron part The primary winding Cbi wound below the insulating spacer Z in the above and connected to the power amplifier Amp 2, and the c above wound above the insulating spacer Z in the other of the outer iron parts.
  • the gap d1 formed by the insulating spacer Z is used to control the magnetic flux of the transformer T, the amount of magnetic flux leakage that interferes with the windings of other phases (to be described in detail later), and the parameters for determining the inductance. It is evening.
  • FIGS. 4A to 4D are explanatory diagrams showing the connection polarities of the two-phase windings Cai, Cbi, Cao, and Cbo at the transformer T.
  • FIGS. 4A to 4D are FIGS. 3A to 3D.
  • 4E to 4H are vector explanatory diagrams of transformer output voltages respectively corresponding to FIGS. 4A to 4D.
  • the voltage signal input through the primary winding Cai wound on one of the outer iron parts is a in
  • the voltage signal output through the secondary winding Cao is a
  • the voltage signal input through the primary winding Cbi wound on the other side is b in
  • the voltage signal output through the secondary winding C bo is b
  • the voltage conversion signal is generated according to the input voltage signal a in according to the winding conversion ratio.
  • the conversion voltage signal to be generated is denoted by ao
  • the conversion voltage signal originally generated by the winding conversion ratio according to the input voltage signal bin is denoted by bo.
  • the magnetic flux that enters the b-side leg is a magnetic flux that is originally not desired to enter (a magnetic flux that interferes with the windings Cbi and Cbo).
  • the magnetic flux generated by the input voltage signal bin also enters the a-side leg.
  • a voltage component (a voltage component in which one drive signal of the two-phase drive signals interferes with the other drive signal in the transformer T) entering the other leg is defined as a leakage amount in the present embodiment. .
  • the phase of the input voltage signal ain at the b-side leg is 180 ° out of phase with the output voltage signal b, it interferes with the converted voltage signal bo as the leakage voltage signal a 'shown in Fig. 4A. I do.
  • the leakage of the input voltage signal bin at the a-side leg is in phase with the output voltage signal a, it interferes with the converted voltage signal ao as the leakage voltage signal b 'shown in FIG. 4A.
  • the electromotive forces a ', b, generated by the magnetic flux interference have a phase relationship of 90 ° with respect to the converted voltage signals ao, bo.
  • the output voltage signals a and b are a combination of the vectors shown in FIG. 4A, and the output voltage signal a is assumed to be output as ao + b ′ as shown in FIG. Is assumed to be output as bo—a '.
  • the polarity of the primary winding Cai supplying the input voltage signal ain is inverted by 180 ° and connected to the connection polarity state 1 shown in FIG. 3A, and in this state,
  • the input voltage signals ain and bin are applied, as shown in FIG. 4B, the converted voltage signal ao and the leakage voltage signal a are inverted by 180 ° with respect to FIG. 4A. Therefore, the output voltage signals a and b are a combination of the vectors shown in FIG. 4B, and the output voltage signal a is assumed to be output as ao ⁇ b ′ as shown in FIG. 4F. b is assumed to be output as bo + a '.
  • the polarity of the primary winding Cbi for supplying the input voltage signal bin is inverted by 180 ° and coupled to the connection polarity state 1 shown in Fig. 3A.
  • the converted voltage signal bo and the leakage voltage signal b ′ are 180 ° out of phase with respect to FIG. 4A.
  • the output voltage signals a and b are a combination of the vectors shown in FIG. 4C, and the output voltage signal a is assumed to be output as ao ⁇ b ′ as shown in FIG. 4G. Is assumed to be output as bo + a '.
  • the output voltage signals a and b are a combination of the vectors shown in FIG. 4D, and the output voltage signal a is assumed to be output as ao + b ′ as shown in FIG. 4H, and the output voltage signal b is , Bo—a 'are assumed to be output.
  • FIGS. 3E to 3H are transformer output voltage waveform diagrams measured under the connection polarities shown in FIGS. 3A to 3D, respectively.
  • a voltage signal (drive signal) of 32 kHz was used.
  • the voltage levels of the output voltage signals a and b are 4.8 V (p-p) and 3.6 V (p-p), respectively.
  • the voltage levels of the output voltage signals a and b are 3.6 V (p-p) and 4.8 V (p-p), respectively. Met.
  • the voltage levels of the output voltage signals a and b are 3.6 V (pp) and 4.8 V (pp), respectively, as shown in Fig. 3G. Was.
  • the amount of leakage is a voltage component that enters the other leg
  • the conversion voltage signal ao and the leakage voltage signal a, a ′ / ao are used as the leakage ratio (one drive signal of the two-phase drive signal is replaced by the other drive signal). (Interference voltage ratio).
  • the relationship between the leakage ratio and the transformer output voltage signals a and b will be described. Since the amount of leakage mentioned above is the degree of coupling between the windings that affects the other leg, it can be known from the inductances of the windings of the a leg and b leg and the mutual inductance of both. it can.
  • Transformer T shown in Fig. 6A is composed of three core FCs of the two-phase drive three-leg transformer shown in Fig. 2A and connected in the left-right direction as shown in Fig. 2A.
  • a primary winding Cai that supplies the signal a in and a secondary winding Cao that outputs the output voltage signal a are wound, and the primary leg that supplies the input voltage signal b in to the other leg connecting the cores FC.
  • a secondary winding Cbo for outputting the line Cbi and the output voltage signal b is wound.
  • the transformer shown in Figure 6B is the two-phase drive three-leg transformer shown in Figure 2A.
  • the transformer T shown in FIGS. 6C and 6D is a two-phase drive three-leg transformer shown in FIG.
  • the transformer T shown in FIG. 6E uses the two-phase drive bipod transformer c shown in FIG. 2B.
  • C The transformer T shown in FIGS. 6A to 6E is used.
  • d2 and the winding inductance L, the mutual inductance M, the coupling coefficient K, and the leakage ratio a '/ ao of the various transformers T were measured. The results shown from the middle to the bottom of Fig. 7 were obtained. .
  • the coupling coefficient 0.500
  • the leakage ratio 0.063
  • the coupling coefficient 0.666
  • the leakage ratio 0.109.
  • FIG. 8 shows the relationship between the obtained coupling coefficient and the leakage ratio as a diagram. As is evident from Fig. 8, there is a strong correlation between the coupling coefficient and the leakage ratio.
  • the inventor measured each phase output voltage a, b of each transformer T shown in FIGS. 6A to 6E. The calculated values of the measured output voltages a and b of each phase and the ratio of the difference between the measured output voltages a and b are shown for each transformer T in FIGS. 6A to 6E.
  • Fig. 10 shows the relationship between the output voltage difference ratio and the leakage ratio obtained in Fig. 9 as a diagram.
  • the output voltage difference ratios are 2.3%, 6.7%, and 11.9%, respectively.
  • the value is lower than 18% based on the above-described ultrasonic motor rotation test, there is no problem in driving the ultrasonic motor.
  • the most important factor in driving the ultrasonic motor is that the phase difference between the transformer output voltage signals supplied to the 3: 1 11-side electrode unit 3 3 and the cos-side electrode unit CC should not differ from 90 °. (Of course, the frequency is the same), and the ultrasonic motor can be driven even if the transformer output voltage is at a slightly different level in each phase.
  • the above-mentioned simple level is applied to the ultrasonic motor having such a required level (the phase difference of each phase is always 90 ° and the transformer output voltage may be slightly different in each phase).
  • This means that a single transformer configuration can be used effectively. For example, when the frequency, output level, and phase of both signals are constantly changing, such as a stereo audio signal, the above single transformer configuration can be used. Can not be adopted.
  • the drive system of the ultrasonic motor is the most expensive and the number of large transformers can be reduced from two to one without being hindered by the driving of the ultrasonic motor, Cost and size can be reduced. Accordingly, the degree of freedom in design can be improved, and the probability of failure can be reduced by reducing the number of parts.
  • the output voltage difference ratios are 19.7% and 25%, respectively.
  • the value is higher than the value of 18% based on the rotation experiment.
  • the transformer T shown in Fig. 6E there is a certain difference from 18%, and it is considered that when driving the ultrasonic motor, adverse effects such as a decrease in rotational torque may occur. It is preferable to make a correction that makes the two-phase output voltage signals a and b substantially the same as described below.
  • FIG. 2 is a configuration diagram showing a main part of FIG.
  • the drive circuit 25 is connected between type inputs TP 1 and TP 2 for changing the winding ratio of each phase of the transformer T, and between the primary winding Cai and the power amplifier Amp 1 described above.
  • a switch SW3 for reversing the rotation direction of the rotor 6 that supplies the voltage signal output from the rotor 6 to the primary winding Cai by inverting the phase by 180 °.
  • the drive circuit 25 also connects the input tap end of the primary winding Cai to one of the terminals of the primary winding Cai (upper terminal in the drawing) or one of the tap inputs TP1 in conjunction with the switch SW3.
  • the input tap end of the primary winding Cbi is connected to one of the terminals (the upper terminal in the figure) of the tap input TP2 or the secondary winding Cbi in conjunction with the switch SW4 and the switch SW3 for switching to And a switch SW5 for switching to one side.
  • the tap end positions due to the tap inputs TP1 and TP2 differ depending on the leakage ratio of the transformer T. Based on the relationship between the leakage ratio and the output voltage difference ratio shown in Fig. 10, the sin side electrode section SS and the cos side The drive signals a and b supplied to the electrode section CC are set so that the voltage levels are almost the same.
  • the operation of the driving circuit 25 configured as described above will be described.
  • the switches SW3, SW4, and SW5 are switched to the positions indicated by the solid lines in FIG. 11, and the input tap end of the primary winding Cai is switched to one terminal of the primary winding Cai.
  • the input end of the primary winding Cbi is switched to the input TP2. That is, the winding ratio of the windings Cai and Cao corresponding to the sin side electrode portion S S is reduced, and the winding ratio of the windings Cbi and Cbo corresponding to the cos side electrode portion C C is increased. As a result, the voltage levels of the drive signals a and b become almost the same.
  • the input tap end is switched to one terminal of the primary winding Cbi. That is, the winding ratio of the windings Cai and Cao corresponding to the sin-side electrode unit S S is increased, and the winding ratio of the windings Cbi and Cbo corresponding to the cos-side electrode unit C C is reduced. As a result, the voltage levels of the drive signals a and b are almost the same even during the reverse rotation.
  • the voltage levels of the drive signals a and b are made substantially the same according to the leakage ratio (output voltage difference ratio).
  • the transformer T shown in FIGS. 6D and 6E which can cause adverse effects such as a decrease in rotational torque when driving the ultrasonic motor, can be used with confidence.
  • FIG. 12 is a configuration diagram showing a main part of a drive circuit provided with a circuit for correcting the output voltage difference in a direction to reduce the difference
  • FIGS. 13A to 13P are timing diagrams for explaining the circuit operation of FIG. It is a chart.
  • the drive circuit 30 has FETs 40 to 43, 50 to 50 instead of a configuration in which the mechanical switch SW3 switches the rotation direction of the rotatable 6 described in FIG. A similar operation is obtained by switching using 53.
  • inputs al to a4 are pulse wave signal inputs on the primary winding Cai side
  • inputs b1 to b4 are pulse wave signal inputs on the primary winding Cbi side
  • inputs al to a4 and bl to b4 are shown in the figure. Is generated by a digital circuit omitting the symbol and is output at a predetermined timing.
  • Inputs a 1 and a 4 are push-pull inputs to FETs 40 and 43 that have a phase difference of 180 ° from each other, and correspond to the drive when the winding ratio of windings Cai and Cao is reduced.
  • Reference numeral 3 denotes a push-pull input having a phase difference of 180 ° with respect to FETs 41 and 42, which corresponds to a driving operation in which the winding ratio of the windings Cai and Cao is increased.
  • the input system on the b side has a 90 ° phase difference with respect to the input system on the a side
  • the input bl: b 4 is a push-pull input to FETs 50 and 53 having a phase difference of 180 ° from each other, and corresponds to a drive in which the winding ratio of windings Cbi and Cbo is reduced, while inputs b 2 and b 3 are mutually connected.
  • the input al and & 4 are activated, as shown in Fig. 13A and Fig. 13D. Therefore, the circuit that reduces the turns ratio operates, while the inputs a2 and a3 are As shown in 3B and Figure 13C, the FETs 41 and 42 are turned off at input 0, so the circuit that increases the turns ratio does not operate. Since the inputs al and a4 have a phase difference of 180 ° as shown in Figs. 13A and 13D, the push-pull addition is performed in the transformer T and the drive signal ( Output voltage signal) a is obtained.
  • the inputs al and a 4 are 25% pulse width inputs, but due to the resonance action of the capacitance of the piezoelectric vibrator 5 v and the inductance L of the transformer T, a sinusoidal wave is applied to the vibrator 5 V.
  • a practical drive signal a (similar to a sine wave) is supplied.
  • the inputs b 2 and b 3 operate as shown in FIGS. 13F and 13G, so that the circuit for increasing the winding ratio operates.
  • the FETs 50 and 53 are turned off at input 0, so the circuit for reducing the winding ratio does not operate.
  • the inputs b2 and b3 have a 180 ° phase difference, so they are push-pulled in the transformer T and supplied to the cos-side electrode CC side. b is obtained.
  • This drive signal b is a practical drive signal like a sine wave like the drive signal a.
  • this drive signal b has a phase difference of 90 ° with respect to the drive signal a because the inputs b 2 and 3 have a phase difference advanced by 90 ° with respect to the inputs & 1 and a4.
  • the winding ratio of the windings Cai and Cao corresponding to the SS side of the sin side electrode unit is reduced, and the winding ratio of Cbi and Cbo corresponding to the CC side of the cos side electrode unit CC is increased. Therefore, the voltage levels of the drive signals a and b are almost the same.
  • the drive signals a and b have a phase difference of 90 ° and the voltage levels are almost the same.
  • the inputs b 1 and b 4 operate as shown in FIGS. 13M and 13P, so that the circuit for reducing the winding ratio operates.
  • the inputs b 2 and b 3 As shown in Fig. 13N and Fig. 130, the FETs 51 and 52 are turned off at input 0, and the circuit for increasing the winding ratio does not operate.
  • the inputs bl and b4 have a phase difference of 180 ° as shown in Figs. Can be
  • the drive signal b has a phase difference of 90 ° with respect to the drive signal a because the inputs b 1 and b 4 have a phase difference of 90 ° with respect to the inputs a 2 and a 3.
  • the drive signals a and b are supplied without changing the 90 ° phase difference between the drive signals a and b according to the leakage ratio (output voltage difference ratio). Since the pressure levels are set to be almost the same, adverse effects such as a decrease in rotational torque may occur when driving the ultrasonic motor, and the transformer T shown in Figs. You can use it with your heart.
  • the present invention made by the present inventor has been specifically described based on the embodiment.
  • the present invention is not limited to the above embodiment, and it can be variously modified without departing from the gist thereof.
  • the phase difference between the two-phase drive signals is 90 °, but is not limited to 90 °.
  • a piezoelectric vibrator is also fixed to the back surface of the mouth, as described in, for example, Japanese Patent Application Laid-Open No.
  • a drive signal By applying a drive signal, a traveling wave traveling in the circumferential direction is generated on the rotor surface, and the rotor is rotationally driven by the traveling wave generated on the rotor surface and the traveling wave generated on the stay surface described above.
  • the present invention is also applicable to a type of ultrasonic camera.
  • the driving method of the ultrasonic motor according to the present invention comprises: a single transformer in which primary and secondary windings of each phase are wound on a common core forming a closed magnetic circuit;
  • drive signals for each phase are input. Therefore, in the single transformer, the drive signals of each phase interfere with each other, and the effect of the mutual interference is that the transformer output voltage of the secondary winding supplied to the oscillator is slightly different in each phase.
  • the relationship having a predetermined phase difference is maintained only by the level, so that the ultrasonic motor can be driven without any trouble in actual use.
  • ultrasound In the motor drive system the most expensive and large number of transformers can be reduced, and it is possible to drive the ultrasonic motor satisfactorily while reducing the cost and size.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

A single transformer (T) comprises a common core constituting a closed circuit, and primary and secondary windings (Cai, Cbi) and (Cao, Cbo) of the respective phases. Driving signals of the phases are inputted to the respective primary windings (Cai, Cbi). In the transformer (T), the signals interfere with each other, and the interference influences the transformer output voltage of the secondary windings (Cao, Cbo) supplied to an oscillator (5v). However, the influence is so small that the voltages of the respective phase are slightly different from each other, and the predetermined phase difference is maintained. Therefore, without causing any practical problem, the ultrasonic motor can be well driven, and the number of transformers, which are large and most expensive in the drive system of the ultrasonic motor, can be decreased, reducing the cost and size.

Description

明糸田書  Akitoda
超音波モータの駆動方法 技術分野 Ultrasonic motor driving method
本発明は、 超音波モータの駆動方法に関する。 背景技術  The present invention relates to a method for driving an ultrasonic motor. Background art
従来の超音波モー夕は、 弾性体及びこの弾性体の裏面に設けられた圧電素子 (振動子) より構成されるステ一夕 (固定子) と、 このステ一夕に対向し加圧配 置された弾性体から成るロータ (可動子) と、 位相の異なる 2相のドライブ信号 (例えば 9 0 ° 位相差を有する s i n波電圧信号、 c o s波電圧信号) を発生し て出力する駆動回路と、 を備えており、 上記 2相のドライブ信号を、 上記圧電素 子を区分した 2つの領域に各々供給することによって、 上記圧電素子を振動させ てステ一夕の表面に進行波を発生させ、 この進行波によりロータを回転駆動する ように構成されている。  The conventional ultrasonic motor includes a stay (stator) composed of an elastic body and a piezoelectric element (vibrator) provided on the back surface of the elastic body, and a pressurizing arrangement opposed to the stay. A rotor (movable element) made of an elastic body, a drive circuit that generates and outputs two-phase drive signals having different phases (for example, a sinusoidal voltage signal and a cos-wave voltage signal having a 90 ° phase difference), By supplying the two-phase drive signal to each of the two regions where the piezoelectric element is divided, the piezoelectric element is vibrated to generate a traveling wave on the surface of the stay. The rotor is driven to rotate by the traveling wave.
上記超音波モータでは、 圧電素子に供給される上記 2相のドライブ信号の電圧 を、 駆動回路内のパワーアンプにより、 D C 5 V〜2 4 Vまで上げてはいるが、 ドライブ信号としては 1 5 0 V〜3 0 0 Vの電圧が要求されるため、 駆動回路内 のパワーアンプの後段に、 昇圧用のトランスが必要となる。  In the above ultrasonic motor, the voltage of the two-phase drive signal supplied to the piezoelectric element is increased to 5 to 24 V DC by the power amplifier in the drive circuit, but the drive signal is 15 V Since a voltage of 0 V to 300 V is required, a step-up transformer is required after the power amplifier in the drive circuit.
この場合、 単一のトランスに各相のドライブ信号を入力して昇圧する構成が考 えられるが、 各相のドライブ信号が当該単一のトランスにおいて相互干渉するた め、 実際の使用には不適であるとして、 従来においては、 ドライブ信号伝達特性 が互いに等しいトランスを各相別に設けていた。 発明の開示  In this case, a configuration may be considered in which the drive signal of each phase is input to a single transformer to boost the voltage.However, since the drive signals of each phase interfere with each other in the single transformer, they are not suitable for actual use. Conventionally, transformers having the same drive signal transmission characteristics are provided for each phase. Disclosure of the invention
このように、 従来の超音波モータでは、 2個のトランスが必要となるが、 当該 トランスは、 超音波モータのドライブ系では最も高価なため、 高コスト化すると いった問題があった。 Thus, the conventional ultrasonic motor requires two transformers. Since the transformer is the most expensive in the drive system of the ultrasonic motor, there was a problem that the cost was increased.
また、 トランス自体が大きいため、 2個もトランスを用いていると、 小型化が 図れないといった問題もある。  Also, since the transformer itself is large, there is also a problem that miniaturization cannot be achieved if two transformers are used.
本発明は、 このような課題を解決するためになされたものであり、 低コスト化 及び小型化を図りつつ、 良好に超音波モータを駆動できる超音波モータの駆動方 法を提供することを目的とする。  The present invention has been made to solve such a problem, and an object of the present invention is to provide a driving method of an ultrasonic motor that can drive an ultrasonic motor satisfactorily while reducing cost and size. And
本発明の超音波モータの駆動方法は、 弾性体の裏面に設けた振動子に対し、 位 相の異なる 2相のドライブ信号を供給して振動子を振動させ、 弾性体の表面に発 生する進行波により可動子を駆動するようにした超音波モー夕の駆動方法であつ て、 位相の異なる 2相のドライブ信号を、 閉磁路を構成する共通のコアに各相の 一次、 二次巻線が巻回された単一のトランスの、 上記各相の一次巻線に各々入力 し、 昇圧して上記各相の二次巻線より振動子に供給することを特徴としている。 このような本発明に係る超音波モータの駆動方法によれば、 閉磁路を構成する 共通のコアに各相の一次、 二次卷線が巻回された単一のトランスの、 上記各相の 一次巻線に対して、 各相のドライブ信号が各々入力されるため、 当該単一のトラ ンスにおいては、 各相のドライブ信号が相互干渉する。 この相互干渉の影響は、 振動子に供給されるトランス出力電圧が各相で多少異なるレベルとなるだけで、 所定の位相差を有する関係は維持されるため、 実際の使用に際してはさして支障 を生じることなく、 超音波モータが駆動される。 その結果、 超音波モータのドラ ィブ系では最も高価であり且つ大きなトランスの個数が低減されることになる。 ここで、 上記単一のトランスにおいて位相の異なる 2相のドライブ信号のうち の一方のドライブ信号が他方のドライブ信号に干渉する電圧の割合に応じて、 単 一のトランスにおける巻線による昇圧比を各相で相異させ、 振動子に供給する 2 相のドライブ信号の出力電圧をほぼ同一とするのが好ましい。 特に、 振動子に供 給する 2相のトランス出力電圧が、 所定の範囲を超えて異なり超音波モー夕の駆 動に悪影響を与えると考えられる場合には、 上記のように、 単一のトランスにお ける干渉電圧の割合に応じた補正をするのが好ましい。 In the method of driving an ultrasonic motor according to the present invention, two-phase drive signals having different phases are supplied to a vibrator provided on the back surface of the elastic body to vibrate the vibrator, and the vibration is generated on the surface of the elastic body. An ultrasonic motor drive method in which a mover is driven by a traveling wave, in which two-phase drive signals having different phases are applied to a common core constituting a closed magnetic circuit, and a primary and a secondary winding of each phase are provided. Are input to the respective primary windings of each phase of the single transformer wound, and are boosted to be supplied to the vibrator from the secondary windings of the respective phases. According to such an ultrasonic motor driving method according to the present invention, a single transformer in which the primary and secondary windings of each phase are wound on a common core forming a closed magnetic circuit, Since the drive signal of each phase is input to the primary winding, the drive signal of each phase interferes with each other in the single transformer. The effect of this mutual interference is that even when the transformer output voltage supplied to the vibrator is at a slightly different level in each phase, a relationship having a predetermined phase difference is maintained, so that there is no problem in actual use. Without driving the ultrasonic motor. As a result, the number of the most expensive and large transformers in the drive system of the ultrasonic motor is reduced. Here, in accordance with the ratio of the voltage at which one of the two-phase drive signals having different phases in the single transformer interferes with the other drive signal, the step-up ratio by the winding in the single transformer is determined. It is preferable that the output voltages of the two-phase drive signals supplied to the vibrator be made substantially the same by making each phase different. In particular, the output voltages of the two-phase transformers supplied to the vibrator differ over a predetermined range, and If it is considered that this will adversely affect the operation, it is preferable to perform correction according to the ratio of the interference voltage in a single transformer as described above.
また、 超音波モータの駆動方向 (可動子が回転体の場合には回転方向) を反転 するために、 単一のトランスの一次巻線に対するドライブ信号の入力位相を反転 する場合には、 この入力位相の反転に応じて、 前述した各相で相異させた昇圧比 を互いに入れ替えて、 振動子に供給する 2相のドライブ信号の出力電圧をほぼ同 一とすることが必要となる。  Also, in order to invert the driving direction of the ultrasonic motor (rotation direction when the mover is a rotating body), this input is used to invert the input phase of the drive signal to the primary winding of a single transformer. In accordance with the inversion of the phases, it is necessary to interchange the boosting ratios that are different for each of the above-described phases so that the output voltages of the two-phase drive signals supplied to the vibrator are substantially the same.
また、 単一のトランスの一次巻線に対するドライブ信号をパルス波信号とし、 振動子の有するキャパシタンス及び単一のトランスの有するィンダクタンスによ る共振作用によって、 振動子に正弦波様のドライブ信号を供給するのが好ましい。 このようなパルス波信号の供給回路は、 回路を構成するにあたって、 より実用的 な構成である。 図面の簡単な説明  A drive signal for the primary winding of a single transformer is a pulse wave signal, and a sinusoidal drive signal is applied to the vibrator by the resonance action of the capacitance of the vibrator and the inductance of the single transformer. Preferably, it is supplied. Such a pulse wave signal supply circuit has a more practical configuration when configuring the circuit. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る超音波モータの駆動方法を採用した超音波モータを示す 構成図である。  FIG. 1 is a configuration diagram showing an ultrasonic motor employing the ultrasonic motor driving method according to the present invention.
図 2 A及び図 2 Bは、 単一のトランスを示す各構成図であり、 図 2 Aは 2相ド ライブ 3脚トランスを示す構成図、 図 2 Bは 2相ドライブ 2脚トランスを示す構 成図である。  2A and 2B are configuration diagrams showing a single transformer, FIG. 2A is a configuration diagram showing a two-phase drive three-leg transformer, and FIG. 2B is a configuration diagram showing a two-phase drive two-leg transformer. FIG.
図 3 A〜図 3 Dは、 単一のトランスでの 2相の卷線の結線極性を示す説明図で あり、 図 3 E〜図 3 Hは、 図 3 A〜図 3 Dに各々対応するトランス出力電圧波形 図である。  FIGS. 3A to 3D are explanatory diagrams showing connection polarities of two-phase windings in a single transformer, and FIGS. 3E to 3H correspond to FIGS. 3A to 3D, respectively. It is a transformer output voltage waveform diagram.
図 4 A〜図 4 Dは、 図 3 A〜図 3 Dに各々対応するトランス内作用説明図であ り、 図 4 E〜図 4 Hは、 図 4 A〜図 4 Dに各々対応するトランス出力電圧のべク トル説明図である。  FIGS. 4A to 4D are explanatory diagrams of the internal operation of the transformer corresponding to FIGS. 3A to 3D, respectively, and FIGS. 4E to 4H are transformers respectively corresponding to FIGS. 4A to 4D. FIG. 4 is a vector explanatory diagram of an output voltage.
図 5 A〜図 5 Cは、 1相トランスでの卷線の結線極性を説明するための図であ り、 図 5 Aは 1相 3脚トランスを示す構成図、 図 5 Bは巻線の加算極性を示す説 明図、 図 5 Cは巻線の減算極性を示す説明図である。 FIGS. 5A to 5C are diagrams for explaining the connection polarity of windings in a one-phase transformer. 5A is a configuration diagram showing a one-phase three-leg transformer, FIG. 5B is an explanatory diagram showing the addition polarity of the winding, and FIG. 5C is an explanatory diagram showing the subtraction polarity of the winding.
図 6 A〜図 6 Eは、 実験用に用意された単一のトランスを示す各構成図である。 図 7は、 図 6 A〜図 6 Eの各トランスの相互インダクタンス、 結合係数及び漏 洩比を実測して示す図表である。  6A to 6E are configuration diagrams showing a single transformer prepared for the experiment. FIG. 7 is a table showing measured mutual inductances, coupling coefficients, and leakage ratios of the transformers in FIGS. 6A to 6E.
図 8は、 図 7で得られた結合係数と漏洩比との関係を示す線図である。  FIG. 8 is a diagram showing the relationship between the coupling coefficient and the leakage ratio obtained in FIG.
図 9は、 図 6 A〜図 6 Eの各トランスの各相出力電圧を実測して示すと共に実 測された出力電圧の差の比率を算出して示す図表である。  FIG. 9 is a chart showing measured values of the output voltages of the respective phases of the transformers shown in FIGS. 6A to 6E and calculating and calculating a ratio of a difference between the measured output voltages.
図 1 0は、 図 9で得られた出力電圧差比率と漏洩比との関係を示す線図である。 図 1 1は、 出力電圧差を少なくする方向に補正する回路が付加された駆動回路 の要部を示す構成図である。  FIG. 10 is a diagram showing the relationship between the output voltage difference ratio and the leakage ratio obtained in FIG. FIG. 11 is a configuration diagram showing a main part of a drive circuit to which a circuit for correcting in a direction to reduce the output voltage difference is added.
図 1 2は、 出力電圧差を少なくする方向に補正する回路を備えた駆動回路の要 部を示す構成図である。  FIG. 12 is a configuration diagram illustrating a main part of a drive circuit including a circuit that corrects the output voltage difference in a direction to reduce the difference.
図 1 3 A〜図 1 3 Pは、 図 1 2の回路動作を説明するためのタイミングチヤ一 トである。  FIGS. 13A to 13P are timing charts for explaining the circuit operation of FIG.
図 1 4は、 超音波モ一夕本体を示す横断面図である。 発明を実施するための最良の形態  FIG. 14 is a cross-sectional view showing the ultrasonic motor main body. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る超音波モータの駆動方法の好適な実施形態について添付図 面を参照しながら説明する。 なお、 図面の説明において、 同一要素または同一機 能を有する要素には同一の符号を付し、 重複する説明は省略する。  Hereinafter, a preferred embodiment of a method for driving an ultrasonic motor according to the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements or elements having the same functions will be denoted by the same reference symbols, without redundant description.
図 1は、 本発明に係る超音波モータの駆動方法を採用した超音波モータを示す 構成図である。 この超音波モータは、 機械的駆動機構から成る超音波モータ本体 1及び超音波モータ本体 1の駆動を行う駆動回路 2から構成される。  FIG. 1 is a configuration diagram showing an ultrasonic motor employing the ultrasonic motor driving method according to the present invention. This ultrasonic motor includes an ultrasonic motor main body 1 composed of a mechanical drive mechanism and a drive circuit 2 for driving the ultrasonic motor main body 1.
先ず、 図 1 4を参照しながら、 超音波モータ本体 1の構成について説明する。 超音波モ一夕本体 1は、 固定用ベース 3中央部を貫通し、 固定用ベース 3に固定 された軸受 7により回転自在に支持された回転軸 4と、 この回転軸 4に圧入固定 された外縁円形の口一夕 6と、 このロータ 6に対向し上記固定用ベース 3に固定 された外縁円形のステ一夕 5と、 を備えている。 当該ロー夕 6は、 ステ一タ 5の 表面 (図示上面) に発生し円周方向に進行する進行波により回転する (詳しくは 後述)。 First, the configuration of the ultrasonic motor main body 1 will be described with reference to FIG. The ultrasonic motor main body 1 penetrates the center of the fixing base 3 and is fixed to the fixing base 3 The rotating shaft 4 rotatably supported by the bearings 7 provided, the outer peripheral circular opening 6 press-fitted and fixed to the rotating shaft 4, and the outer rim fixed to the fixing base 3 facing the rotor 6 It has a circular stay 5 and. The rotor 6 is rotated by a traveling wave traveling on the surface of the stator 5 (the upper surface in the figure) and traveling in the circumferential direction (details will be described later).
上記ステ一夕 5は、 セラミック圧電素子から成る円環状の振動子 5 Vと、 振動 子 5 Vが裏面外周部に貼着された金属から成る円環状の弾性体 5 eと、 を備えて いる。 この弾性体 5 eの内周部 5 iは、 例えばネジ留め等により固定用ベース 3 に固定され、 外周部 5 oと内周部 5 iとの間の円環状の中間部 5 mは肉薄であり、 この中間部 5 mが外周部 5 oの振動を容易にさせると共に、 内周部 5 iと外周部 5 oとの間の振動伝達を抑制している。  The stay 5 includes an annular vibrator 5 V made of a ceramic piezoelectric element, and an annular elastic body 5 e made of metal with the vibrator 5 V adhered to the outer periphery of the back surface. . An inner peripheral portion 5i of the elastic body 5e is fixed to the fixing base 3 by, for example, screwing, and an annular intermediate portion 5m between the outer peripheral portion 5o and the inner peripheral portion 5i is thin. In addition, the intermediate portion 5 m facilitates vibration of the outer peripheral portion 5 o and suppresses vibration transmission between the inner peripheral portion 5 i and the outer peripheral portion 5 o.
上記ロータ 6は、 金属から成る円環状の弾性体から構成される。 このロータ 6 の内周部 6 iは上記回転軸 4に圧入固定され、 当該ロータ 6は、 外周部 6 oと内 周部 6 iとの間に、 円環状の肉薄中間部 6 mを備える。  The rotor 6 is formed of an annular elastic body made of metal. The inner peripheral portion 6i of the rotor 6 is press-fitted and fixed to the rotary shaft 4, and the rotor 6 has an annular thin intermediate portion 6m between the outer peripheral portion 6o and the inner peripheral portion 6i.
上記回転軸 4の上部には、 フランジ部 4 fが設けられ、 さらに下部には、 例え ば Cリング等のスナヅプリング 9が取り付けられており、 このスナップリング 9 と上記軸受 7との間に、 スぺ一サ 1 0を介して圧縮バネ 1 1が介挿されている。 この圧縮バネ 1 1とフランジ部 4 f によって、 回転軸 4及び口一夕 6は常時下方 に付勢されている。  A flange portion 4f is provided on the upper portion of the rotary shaft 4, and a snap ring 9 such as a C-ring is mounted on a lower portion thereof. A snap ring 9 is provided between the snap ring 9 and the bearing 7. The compression spring 11 is inserted via the spacer 10. The rotating shaft 4 and the mouth 6 are constantly urged downward by the compression spring 11 and the flange portion 4f.
上記口一夕 6は、 外周部 6 oの上記ステ一夕 5の外周部 5 oに対向する面に、 幅狭円環状の凸部 6 pを有する。 弾性体 5 e、 6を全面接触させると、 励振側 (ステ一夕側) の振動が相手側 (ロータ側) に全部伝わって進行波が形成されな いが、 弾性体 6は凸部 6 pを有しており、 弾性体 5 eに進行波を形成することが できる。  The mouth 6 has a narrow annular convex portion 6 p on a surface of the outer peripheral portion 6 o facing the outer peripheral portion 5 o of the stay 5. When the elastic bodies 5e and 6 are brought into full contact, the vibration on the excitation side (stay side) is transmitted to the other side (rotor side) and no traveling wave is formed, but the elastic body 6 has convex sections 6p. And a traveling wave can be formed in the elastic body 5e.
ロータ側凸部 6 pとステ一夕側の外周部 5 oとの間には、 例えば樹脂等より成 る環状の緩衝摩擦部材 1 2が介在し、 緩衝摩擦部材 1 2はこれらと圧接状態にあ る。 すなわち、 ロータ側凸部 6 pは、 圧縮パネ 1 1の弾性力によって緩衝摩擦部 材 1 2を介してステ一夕側の外周部 5 oを押圧している。 この緩衝摩擦部材 1 2 は、 上記凸部 6 pまたはステ一夕側の外周部 5 oの何れか一方に、 例えば接着剤 等により固定されており、 ステ一夕側弾性体 5 e側の振動とロータ 6側の振動の 相互干渉を防止して正常な進行波をステ一夕側弾性体 5 eに発生させると共に、 金属同士 (凸部 6 pと外周部 5 o ) の直接接触を回避して異音の発生を防止し、 さらに圧接部の耐久性を向上させる。 なお、 緩衝摩擦部材 1 2は、 凸部 6 p、 外 周部 5 oの何れにも固定されずに、 凸部 6 p、 外周部 5 o間に介在している構成 でも良い。 An annular cushioning friction member 12 made of, for example, resin is interposed between the rotor side convex portion 6p and the outer peripheral portion 5o on the stay side, and the cushioning friction member 12 is brought into pressure contact with them. Ah You. That is, the rotor-side convex portion 6p presses the outer peripheral portion 5o on the stay side via the buffer friction member 12 by the elastic force of the compression panel 11. The cushioning friction member 12 is fixed to one of the convex portion 6p and the outer peripheral portion 5o on the stay side with an adhesive or the like, for example. To generate a normal traveling wave in the stay side elastic body 5e, and to avoid direct contact between metals (convex part 6p and outer peripheral part 5o). To prevent the generation of abnormal noise, and further improve the durability of the press contact part. The cushioning friction member 12 may not be fixed to either the convex portion 6p or the outer peripheral portion 5o, but may be interposed between the convex portion 6p and the outer peripheral portion 5o.
上記圧電振動子 5 Vは、 円周方向に複数に分割された領域を有すると共に、 各々隣り合う領域で厚み方向の分極方向が互いに逆向きとなるように予め分極処 理が施されている。 これらの領域は、 図 1に示すように、 s i n側電極部 S S及 び c o s側電極部 C Cの 2つに区分されていると共に、 s i n側電極部 S Sと c o s側電極部 C Cとの間にフィードバック用の検出電極部 F Bが設けられている。 上記圧電振動子 5 Vの s i n側電極部 S S及び c o s側電極部 C Cは、 図 1に 示すように、 駆動回路 2に接続されている。 この駆動回路 2は、 グランドと圧電 振動子 5 Vの s i n側電極部 S Sとの間に正弦波電圧信号 ( s i n波電圧信号; 一方のドライブ信号) を印加し、 グランドと c o s側電極部 C Cとの間にこれと 電気角で 9 0 ° の位相差を有する正弦波電圧信号 (c o s波電圧信号;他方のド ライブ信号) を同時に印加する。 これにより、 圧電振動子 5 Vが振動して、 ステ —夕側の外周部 5 oの表面に、 合成波による円周方向に進む進行波が発生し、 こ の進行波により、 ステ一タ 5に圧接されたロータ 6が回転駆動する構成になされ ている。  The piezoelectric vibrator 5V has regions divided into a plurality in the circumferential direction, and has been subjected to polarization processing in advance so that the polarization directions in the thickness direction are opposite to each other in adjacent regions. As shown in Fig. 1, these areas are divided into two parts, the sin side electrode part SS and the cos side electrode part CC, and the feedback between the sin side electrode part SS and the cos side electrode part CC. Detection electrode section FB is provided. The sine side electrode portion S S and the cos side electrode portion C C of the piezoelectric vibrator 5 V are connected to the drive circuit 2 as shown in FIG. The drive circuit 2 applies a sinusoidal voltage signal (sinusoidal voltage signal; one drive signal) between the ground and the sinusoidal electrode SS of the piezoelectric vibrator 5 V, and connects the ground with the cos-side electrode CC. During this time, a sinusoidal voltage signal (cos-wave voltage signal; the other drive signal) having a phase difference of 90 ° in electrical angle is applied simultaneously. As a result, the piezoelectric vibrator 5 V vibrates, and a traveling wave traveling in the circumferential direction due to the synthetic wave is generated on the surface of the outer peripheral portion 5 o on the stay side, and the traveling wave is generated by the stator 5. The configuration is such that the rotor 6 pressed against the rotor is driven to rotate.
次に、 上記駆動回路 2についてさらに詳しく説明する。 この駆動回路 2は、 図 1に示すように、 s i n波電圧信号を発生して出力する発振器 2 0と、 この発振 器 2 0から出力された s i n波電圧信号を電気角で 9 0 ° 位相シフトして c o s 波電圧信号として出力する 90° 位相シフタ一 21と、 発振器 20及び 90° 位 相シフタ一 2 1から出力された各電圧信号 (90° 位相の異なる 2相のドライブ 信号) を各々増幅する電気特性が互いに等しいパワーアンプ Amp 1, Amp 2 と、 パワーアンプ Amp 1, Amp 2から出力された各電圧信号を各々入力して 昇圧し、 この昇圧した各電圧信号を上記圧電振動子 5 Vの s in側電極部 SS及 び c o s側電極部 CCに各々供給する単一のトランス Tと、 を備えている。 この駆動回路 2はまた、 発振器 20及び 90° 位相シフター 21の出力とパヮ —アンプ Amp 1 , Amp 2の入力との間に接続されたスィヅチ SW1を備える と共に、 パワーアンプ Amp 1の出力と単一のトランス Tにおける s i n側電極 部 S Sに対応する一次巻線 Caiの両端子間との間に接続されたスィツチ SW2を 備えている。 Next, the drive circuit 2 will be described in more detail. As shown in FIG. 1, the driving circuit 2 generates an sinusoidal voltage signal and outputs the sinusoidal voltage signal, and shifts the sinusoidal voltage signal output from the oscillator 20 by 90 ° in electrical angle. Then cos Characteristics that amplify each voltage signal (two-phase drive signal with a different 90 ° phase) output from the 90 ° phase shifter 21 and the oscillator 20 and the 90 ° phase shifter 21 1 output as a wave voltage signal The power amplifiers Amp 1 and Amp 2, which are equal to each other, and the respective voltage signals output from the power amplifiers Amp 1 and Amp 2 are input and boosted, and the boosted voltage signals are converted to the sine of the piezoelectric vibrator 5 V. And a single transformer T that supplies each to the side electrode section SS and the cos side electrode section CC. The drive circuit 2 also includes a switch SW1 connected between the outputs of the oscillator 20 and the 90 ° phase shifter 21 and the inputs of the amplifiers Amp1 and Amp2, and has a single connection with the output of the power amplifier Amp1. And a switch SW2 connected between the two terminals of the primary winding Cai corresponding to the sin-side electrode section SS of the transformer T.
スィツチ SW 1は、 発振器 20からの s i n波電圧信号と 90° 位相シフタ一 21からの c o s波電圧信号を、 パワーアンプ Amp 1, Amp 2に転換供給す ることで、 s i n側電極部 S S及び c o s側電極部 CCに各々供給する電圧信号 の位相関係を互いに入れ替え、 ロー夕 6の回転方向を反転させる。  The switch SW 1 converts the sinusoidal voltage signal from the oscillator 20 and the cosine wave voltage signal from the 90 ° phase shifter 21 to the power amplifiers Amp 1 and Amp 2 to supply the sinusoidal electrodes SS and cos The phase relationship between the voltage signals supplied to the side electrode sections CC is exchanged with each other, and the rotation direction of the rotor 6 is reversed.
スィッチ SW2は、 パワーアンプ Amp 1 , Amp 2に入力される s i n波電 圧信号及び c o s波電圧信号の位相を入れ替えることなく、 パワーアンプ Amp 1から出力される電圧信号を、 180° 位相反転して単一のトランス Tにおける s i n側電極部 S Sに対応する一次巻線 Caiに供給することで、 ロータ 6の回転 方向を反転させる。  The switch SW2 inverts the voltage signal output from the power amplifier Amp 1 by 180 ° without changing the phases of the sin wave voltage signal and the cos wave voltage signal input to the power amplifiers Amp 1 and Amp 2. The rotation direction of the rotor 6 is reversed by supplying the primary winding Cai corresponding to the sin-side electrode section SS of the single transformer T.
上記単一のトランス Tの具体例を示したのが図 2 A及び図 2 Bであり、 図 2 A は、 2相ドライブ 3脚トランスを示す構成図、 図 2Bは、 2相ドライブ 2脚トラ ンスを示す構成図である。  2A and 2B show specific examples of the single transformer T. FIG. 2A is a configuration diagram showing a two-phase drive three-leg transformer, and FIG. 2B is a two-phase drive two-leg transformer. FIG.
この単一のトランス Tは、 上下に分割されたフヱライ トコァを絶縁スぺ一サ Z を介して連結した共通のコア FCと、 このコア FCの外鉄部の一方 (図示左側) における絶縁スぺ一サ Zより下方に巻回され上記スィツチ SW2に接続される一 次卷線 Caiと、 外鉄部の一方における絶縁スぺーサ Zより上方に巻回され上記 s i n側電極部 S Sに接続される二次巻線 Caoと、 外鉄部の他方 (図示右側) にお ける絶縁スぺ一サ Zより下方に巻回され上記パワーアンプ Am p 2に接続される 一次卷線 Cbiと、 外鉄部の他方における絶縁スぺ一サ Zより上方に卷回され上記 c 0 s側電極部 C Cに接続される二次巻線 Cboと、 から構成される。 上記絶縁ス ぺ一サ Zにより形成されるギヤヅプ d 1は、 トランス Tの磁束のコントロール、 他の相の巻線に干渉する磁束漏洩量 (詳しくは後述) 及びインダクタンスを決定 する上でのパラメ一夕である。 This single transformer T is composed of a common core FC in which a vertically divided light core is connected via an insulating spacer Z, and an insulating switch in one of the outer iron parts (left side in the drawing) of the core FC. It is wound below the switch Z and connected to the switch SW2. The next winding Cai, the secondary winding Cao wound above the insulating spacer Z on one of the outer iron parts and connected to the above-mentioned sin side electrode part SS, and the other (right side in the drawing) of the outer iron part The primary winding Cbi wound below the insulating spacer Z in the above and connected to the power amplifier Amp 2, and the c above wound above the insulating spacer Z in the other of the outer iron parts. And a secondary winding Cbo connected to the 0s side electrode section CC. The gap d1 formed by the insulating spacer Z is used to control the magnetic flux of the transformer T, the amount of magnetic flux leakage that interferes with the windings of other phases (to be described in detail later), and the parameters for determining the inductance. It is evening.
次に、 トランス Tの各相の出力電圧について説明する。 図 3 A〜図 3 Dは、 ト ランス Tでの 2相の巻線 Cai , Cbi, Cao, Cboの結線極性を示す説明図、 図 4 A〜図 4 Dは、 図 3 A〜図 3 Dに各々対応するトランス T内の作用説明図、 図 4 E〜図 4 Hは、 図 4 A〜図 4 Dに各々対応するトランス出力電圧のべクトル説明 図である。 説明の都合上、 上記外鉄部の一方に巻回された一次巻線 Caiを通して 入力される電圧信号を a in、 二次巻線 Caoを通して出力される電圧信号を a、 上 記外鉄部の他方に巻回された一次巻線 Cbiを通して入力される電圧信号を b in、 二次巻線 C boを介して出力される電圧信号を b、 入力電圧信号 a inに従って巻線 変換比により本来発生する変換電圧信号を ao、 入力電圧信号 b inに従って巻線 変換比により本来発生する変換電圧信号を b o、 として説明する。  Next, the output voltage of each phase of the transformer T will be described. 3A to 3D are explanatory diagrams showing the connection polarities of the two-phase windings Cai, Cbi, Cao, and Cbo at the transformer T. FIGS. 4A to 4D are FIGS. 3A to 3D. 4E to 4H are vector explanatory diagrams of transformer output voltages respectively corresponding to FIGS. 4A to 4D. For convenience of explanation, the voltage signal input through the primary winding Cai wound on one of the outer iron parts is a in, the voltage signal output through the secondary winding Cao is a, The voltage signal input through the primary winding Cbi wound on the other side is b in, the voltage signal output through the secondary winding C bo is b, and the voltage conversion signal is generated according to the input voltage signal a in according to the winding conversion ratio. The conversion voltage signal to be generated is denoted by ao, and the conversion voltage signal originally generated by the winding conversion ratio according to the input voltage signal bin is denoted by bo.
図 3 Aは、 スイッチ S W 1 , S W 2が図 1の実線の位置に切り替えられている もので、 この結線極性を状態 1とする。 この時、 巻線変換比により本来発生する 変換電圧信号 ao, b oは、 9 0 ° 位相差を有する出力電圧信号であるから、 図 4 Aに示すようなべクトル線図となる。  In FIG. 3A, the switches SW1 and SW2 are switched to the positions indicated by the solid lines in FIG. At this time, since the converted voltage signals ao and b0 originally generated by the winding conversion ratio are output voltage signals having a 90 ° phase difference, a vector diagram as shown in FIG. 4A is obtained.
上記図 3 Aに示した状態で、 9 0 ° 位相の異なる電圧信号 a in、 b inが、 一次 卷線 Cai, Cbiを通してトランス Tに各々入力されたとする。 ここで、 例えば、 図 2 Aに示したトランス Tを用いて説明すれば、 入力電圧信号 a inがー次卷線 C aiを通してトランス Tに入力されると、 この入力電圧信号 a inによって生じるコ ァ FC内の磁束は、 中央脚部及び巻線 Cbi, Cboが巻回されている脚部 (図示右 側の脚部;以後、 b側脚部と呼ぶ) を通して卷線 Cai, Caoが卷回されている脚 部 (図示左側の脚部;以後、 a側脚部と呼ぶ) に至るループ (閉磁路) を構成し、 二次巻線 Caoを通して電圧信号 aが s i n側電極部 S Sに出力される。 In the state shown in FIG. 3A, it is assumed that voltage signals a in and b in having phases different by 90 ° are input to the transformer T through the primary windings Cai and Cbi, respectively. Here, for example, using the transformer T shown in FIG. 2A, if the input voltage signal a in is input to the transformer T through the next winding C ai, the core generated by the input voltage signal a in The magnetic flux in the FC is wound by the windings Cai and Cao through the central leg and the leg on which the windings Cbi and Cbo are wound (the right leg in the figure; hereinafter called the b-side leg). A loop (closed magnetic path) leading to the leg (the left leg in the figure; hereafter referred to as the a-side leg) is formed, and the voltage signal a is output to the sin-side electrode SS through the secondary winding Cao. You.
上記入力電圧信号 ainにより発生する磁束のうち b側脚部に入る磁束は本来入 れたくない磁束 (巻線 Cbi, Cboに対して干渉する磁束) であり、 例えば中央脚 部の磁路抵抗を小さくすれば、 b側脚部に入る磁束は少なくなる。 また、 入力電 圧信号 b inにより発生する磁束も同様に a側脚部に混入する。 この他方側脚部に 入る電圧成分 (トランス Tにおいて、 2相のドライブ信号のうちの一方のドライ ブ信号が他方のドライブ信号に干渉する電圧成分) を、 本実施形態では、 漏洩量 と定義する。  Among the magnetic fluxes generated by the input voltage signal ain, the magnetic flux that enters the b-side leg is a magnetic flux that is originally not desired to enter (a magnetic flux that interferes with the windings Cbi and Cbo). The smaller the flux, the less magnetic flux enters the b-side leg. Also, the magnetic flux generated by the input voltage signal bin also enters the a-side leg. In the present embodiment, a voltage component (a voltage component in which one drive signal of the two-phase drive signals interferes with the other drive signal in the transformer T) entering the other leg is defined as a leakage amount in the present embodiment. .
ここで、 b側脚部での入力電圧信号 ainの漏洩量は、 出力電圧信号 bと 18 0° 位相が異なると仮定すると、 図 4 Aに示す漏洩電圧信号 a' として変換電圧 信号 boに干渉する。 同様に、 a側脚部での入力電圧信号 binの漏洩量は、 出力 電圧信号 aと同相と仮定すると、 図 4 Aに示す漏洩電圧信号 b' として変換電圧 信号 aoに干渉する。  Here, assuming that the phase of the input voltage signal ain at the b-side leg is 180 ° out of phase with the output voltage signal b, it interferes with the converted voltage signal bo as the leakage voltage signal a 'shown in Fig. 4A. I do. Similarly, assuming that the leakage of the input voltage signal bin at the a-side leg is in phase with the output voltage signal a, it interferes with the converted voltage signal ao as the leakage voltage signal b 'shown in FIG. 4A.
すなわち、 上記仮定を基にすると、 図 4 Aに示すように、 磁束干渉により生じ る起電力 a', b, は、 変換電圧信号 ao, boに対して、 90° 遅れの位相関係 にある。  That is, based on the above assumption, as shown in Fig. 4A, the electromotive forces a ', b, generated by the magnetic flux interference have a phase relationship of 90 ° with respect to the converted voltage signals ao, bo.
従って、 出力電圧信号 a, bは、 図 4 Aに示したベクトルの合成となり、 出力 電圧信号 aは、 図 4Eに示すように、 ao+b' として出力されると仮定され、 出力電圧信号 bは、 bo— a' として出力されると仮定される。  Therefore, the output voltage signals a and b are a combination of the vectors shown in FIG. 4A, and the output voltage signal a is assumed to be output as ao + b ′ as shown in FIG. Is assumed to be output as bo—a '.
次いで、 図 3 Bに示すように、 図 3 Aに示した結線極性状態 1に対して、 入力 電圧信号 ainを供給する一次卷線 Caiの極性を 180° 反転して結合し、 この状 態で、 入力電圧信号 ain, binを印加すると、 図 4Bに示すように、 変換電圧信 号 ao及び漏洩電圧信号 a, が、 図 4 Aに対して 180° 位相反転する。 従って、 出力電圧信号 a, bは、 図 4 Bに示したベクトルの合成となり、 出力 電圧信号 aは、 図 4 Fに示すように、 ao— b' として出力されると仮定され、 出力電圧信号 bは、 bo+a' として出力されると仮定される。 Next, as shown in FIG. 3B, the polarity of the primary winding Cai supplying the input voltage signal ain is inverted by 180 ° and connected to the connection polarity state 1 shown in FIG. 3A, and in this state, When the input voltage signals ain and bin are applied, as shown in FIG. 4B, the converted voltage signal ao and the leakage voltage signal a are inverted by 180 ° with respect to FIG. 4A. Therefore, the output voltage signals a and b are a combination of the vectors shown in FIG. 4B, and the output voltage signal a is assumed to be output as ao−b ′ as shown in FIG. 4F. b is assumed to be output as bo + a '.
次いで、 図 3 Cに示すように、 図 3 Aに示した結線極性状態 1に対して、 入力 電圧信号 binを供給する一次巻線 Cbiの極性を 180° 反転して結合し、 この状 態で、 入力電圧信号 ain, binを印加すると、 図 4 Cに示すように、 変換電圧信 号 bo及び漏洩電圧信号 b' が、 図 4Aに対して 180° 位相反転する。  Next, as shown in Fig. 3C, the polarity of the primary winding Cbi for supplying the input voltage signal bin is inverted by 180 ° and coupled to the connection polarity state 1 shown in Fig. 3A. When the input voltage signals ain and bin are applied, as shown in FIG. 4C, the converted voltage signal bo and the leakage voltage signal b ′ are 180 ° out of phase with respect to FIG. 4A.
従って、 出力電圧信号 a, bは、 図 4 Cに示したベクトルの合成となり、 出力 電圧信号 aは、 図 4Gに示すように、 ao— b' として出力されると仮定され、 出力電圧信号 bは、 bo+a' として出力されると仮定される。  Therefore, the output voltage signals a and b are a combination of the vectors shown in FIG. 4C, and the output voltage signal a is assumed to be output as ao−b ′ as shown in FIG. 4G. Is assumed to be output as bo + a '.
次いで、 図 3Dに示すように、 図 3 Aに示した結線極性状態 1に対して、 入力 電圧信号 a inを供給する一次巻線 C ai及び入力電圧信号 b inを供給する一次巻線 Cbiの両方の極性を 180° 反転して結合し、 この状態で、 入力電圧信号 ain, binを印加すると、 図 4 Dに示すように、 変換電圧信号 a o及び漏洩電圧信号 a'、 変換電圧信号 bo及び漏洩電圧信号 b, の両方が、 図 4 Aに対して 180° 位相反転する。  Next, as shown in FIG. 3D, for the connection polarity state 1 shown in FIG. 3A, the primary winding C ai supplying the input voltage signal a in and the primary winding C bi supplying the input voltage signal b in When both polarities are inverted by 180 ° and coupled, and the input voltage signals ain and bin are applied in this state, as shown in Fig. 4D, the converted voltage signal ao and the leakage voltage signal a ', the converted voltage signal bo and Both leakage voltage signals b and 180 are 180 ° out of phase with respect to Fig. 4A.
従って、 出力電圧信号 a, bは、 図 4Dに示したベクトルの合成となり、 出力 電圧信号 aは、 図 4Hに示すように、 ao+b' として出力されると仮定され、 出力電圧信号 bは、 bo— a' として出力されると仮定される。  Therefore, the output voltage signals a and b are a combination of the vectors shown in FIG. 4D, and the output voltage signal a is assumed to be output as ao + b ′ as shown in FIG. 4H, and the output voltage signal b is , Bo—a 'are assumed to be output.
本発明者は、 これを実験により確認した。 図 3E〜図 3Hは、 図 3 A〜図 3D に各々示した結線極性の下で、 実測したトランス出力電圧波形図である。 なお、 電圧信号 (ドライブ信号) としては、 32 kHzを用いた。  The inventor has confirmed this by an experiment. FIGS. 3E to 3H are transformer output voltage waveform diagrams measured under the connection polarities shown in FIGS. 3A to 3D, respectively. A voltage signal (drive signal) of 32 kHz was used.
図 3 Aに示す結線極性では、 図 3 Eに示すように、 出力電圧信号 a, bの電圧 レベルは、 各々 4. 8 V (p— p)、 3. 6 V (p— p) であった。  With the connection polarity shown in Fig. 3A, as shown in Fig. 3E, the voltage levels of the output voltage signals a and b are 4.8 V (p-p) and 3.6 V (p-p), respectively. Was.
また、 図 3 Bに示す結線極性では、 図 3 Fに示すように、 出力電圧信号 a, b の電圧レベルは、 各々 3. 6 V (p— p)、 4. 8 V (p— p) であった。 また、 図 3 Cに示す結線極性では、 図 3 Gに示すように、 出力電圧信号 a, b の電圧レベルは、 各々 3. 6 V (p— p)、 4. 8 V (p-p) であった。 In the connection polarity shown in Fig. 3B, as shown in Fig. 3F, the voltage levels of the output voltage signals a and b are 3.6 V (p-p) and 4.8 V (p-p), respectively. Met. With the connection polarity shown in Fig. 3C, the voltage levels of the output voltage signals a and b are 3.6 V (pp) and 4.8 V (pp), respectively, as shown in Fig. 3G. Was.
また、 図 3Dに示す結線極性では、 図 3Hに示すように、 出力電圧信号 a, b の電圧レベルは、 各々 4. 8 V (p— p)、 3. 6 V (p-p) であった。  In the connection polarity shown in Fig. 3D, as shown in Fig. 3H, the voltage levels of the output voltage signals a and b were 4.8 V (p-p) and 3.6 V (p-p), respectively.
このように、 出力電圧信号 a、 bの電圧レベルは多少異なるが、 出力電圧信号 a, bの位相関係は、 図 3 E〜図 3 Hに示すように、 90° より異ならないこと が確認された。  As described above, although the voltage levels of the output voltage signals a and b are slightly different, it has been confirmed that the phase relationship between the output voltage signals a and b does not differ from 90 ° as shown in FIGS. 3E to 3H. Was.
因みに、 図 4 E〜図 4 Hで説明したベクトル計算式においては、 ao=bo、 a' =b' の関係があるから、 例えば上記実験により求められた図 3 Eの電圧レ ベル a、 bを、 これに対応する図 4 Eで説明したベクトル計算式 a = ao+b'、 b = bo-a' に代入すると、 ao=bo=4. 2 V、 a, =b, = 0. 6 Vが得 られる。  Incidentally, in the vector calculation formulas described in FIGS. 4E to 4H, since there is a relationship of ao = bo and a ′ = b ′, for example, the voltage levels a and b in FIG. Is substituted into the corresponding vector equation a = ao + b ', b = bo-a' explained in Fig. 4E, ao = bo = 4.2 V, a, = b, = 0.6 V is obtained.
図 4Fでは、 a = ao— b'、 b = bo+ a' であるから、 上記得られた値を代 入すると、 a=3. 6V、 b = 4. 8Vとなり、 図 4 Fに対応する図 3 Fのレべ ルに一致することが確認された。  In Fig. 4F, a = ao-b ', b = bo + a', so substituting the values obtained above gives a = 3.6V, b = 4.8V, which corresponds to Fig. 4F. It was confirmed that it matched the level of 3F.
図 4Gでは、 a = ao— b'、 b = bo+a' であるから、 上記得られた値を代 入すると、 a=3. 6V、 b = 4. 8Vとなり、 図 4 Gに対応する図 3 Gのレべ ルに一致することが確認された。  In Fig. 4G, a = ao-b 'and b = bo + a'. Substituting the values obtained above gives a = 3.6V and b = 4.8V, which corresponds to Fig. 4G. It was confirmed that it matched the level in Fig. 3G.
図 4Hでは、 a = ao+b'、 b = bo- a' であるから、 上記得られた値を代 入すると、 a = 4. 8V、 b = 3. 6Vとなり、 図 4 Hに対応する図 3 Hのレべ ルに一致することが確認された。 このように、 図 4 E〜図 4Hを基にしたべクト ル計算の結果と図 3E〜図 3Hに示す実験結果とが一致するため、 前述した図 4 A〜図 4 Dでの仮定、 すなわち磁束干渉により生じる起電力 a ', b' は、 変換 電圧信号 ao, boに対して、 90° 遅れの位相関係にあるという仮定は正しいも のと考えられる。  In Fig. 4H, a = ao + b 'and b = bo-a'. Substituting the values obtained above gives a = 4.8V and b = 3.6V, which corresponds to Fig. 4H. It was confirmed that the level matched the level in Fig. 3H. Thus, since the results of the vector calculations based on FIGS. 4E to 4H agree with the experimental results shown in FIGS. 3E to 3H, the assumptions in FIGS. The assumption that the electromotive forces a 'and b' generated by the magnetic flux interference have a phase relationship of 90 ° with respect to the converted voltage signals ao and bo seems to be correct.
ところで、 前述したように、 漏洩量は、 他方側脚部に入る電圧成分であるから、 上記変換電圧信号 ao、 漏洩電圧信号 a, を用いた a ' / aoを、 本実施形態にお いては、 漏洩比 (2相のドライブ信号のうちの一方のドライブ信号が他方のドラ イブ信号に干渉する電圧の割合) と定義する。 By the way, as described above, the amount of leakage is a voltage component that enters the other leg, In the present embodiment, the conversion voltage signal ao and the leakage voltage signal a, a ′ / ao, are used as the leakage ratio (one drive signal of the two-phase drive signal is replaced by the other drive signal). (Interference voltage ratio).
次に、 この漏洩比とトランス出力電圧信号 a, bとの間の関係について説明す る。 前述した漏洩量は、 他方側脚部に影響する卷線間の結合の度合であるから、 a側脚部、 b側脚部の卷線の有するィンダクタンス及び両者の相互ィンダクタン スによって知ることができる。  Next, the relationship between the leakage ratio and the transformer output voltage signals a and b will be described. Since the amount of leakage mentioned above is the degree of coupling between the windings that affects the other leg, it can be known from the inductances of the windings of the a leg and b leg and the mutual inductance of both. it can.
例えば、 図 5 Aに示すような 1相ドライブ 3脚トランスにおいて、 a側脚部で の卷線インダクタンスを L 1、 b側脚部での巻線インダクタンスを L 2とし、 図 5 Bに示すように結線した加算極性の卷線ィンダクタンスを L a、 図 5 Cに示す ように結線した減算極性の卷線ィンダクタンスを L oとすると、 相互インダクタ ンス M、 結合係数 Kは、 以下の式 ( 1 )、 式 (2 ) で理論的に求められる。  For example, in a one-phase drive three-leg transformer as shown in Fig. 5A, the winding inductance at the a-side leg is L1, and the winding inductance at the b-side leg is L2, as shown in Fig. 5B. Assuming that La is the winding inductance of the addition polarity connected to R and L o is the winding inductance of the subtraction polarity connected as shown in Fig. 5C, the mutual inductance M and the coupling coefficient K are expressed by 1), can be theoretically obtained by equation (2).
,, La— Lo ...  ,, La— Lo ...
M = … )  M =…)
K ^ ^£= ...( 2) 本発明者は、 図 6 A〜図 6 Eに示す各種単一のトランス Tを用い、 実験により 各種トランス Tの相互インダクタンス1 、 結合係数 K、 漏洩比 a ' / aoを実測 した。 なお、 電圧信号 (ドライブ信号) としては、 5 0 k H zを用いた。 K ^ ^ £ = ... (2) The inventor conducted experiments using various single transformers T shown in FIGS. 6A to 6E, and conducted mutual inductance 1, coupling coefficient K, and leakage ratio of various transformers T. a '/ ao was measured. Here, 50 kHz was used as the voltage signal (drive signal).
図 6 Aに示すトランス Tは、 図 2 Aに示した 2相ドライブ 3脚トランスのコア F Cを 3個図示左右方向に連結したもので、 コア F C同士を連結する一方の脚部 に、 入力電圧信号 a inを供給する一次巻線 Cai及び出力電圧信号 aを出力する二 次卷線 Caoが巻回され、 コア F C同士を連結する他方の脚部に、 入力電圧信号 b inを供給する一次卷線 Cbi及び出力電圧信号 bを出力する二次巻線 Cboが卷回さ れている。  Transformer T shown in Fig. 6A is composed of three core FCs of the two-phase drive three-leg transformer shown in Fig. 2A and connected in the left-right direction as shown in Fig. 2A. A primary winding Cai that supplies the signal a in and a secondary winding Cao that outputs the output voltage signal a are wound, and the primary leg that supplies the input voltage signal b in to the other leg connecting the cores FC. A secondary winding Cbo for outputting the line Cbi and the output voltage signal b is wound.
図 6 Bに示すトランス は、 図 2 Aに示した 2相ドライブ 3脚トランスである c 図 6 C、 図 6Dに示すトランス Tは、 図 2 Αに示した 2相ドライブ 3脚トラン スの中央脚部のギヤップ d 1を大きくしてギヤップ d 2としたものである。 The transformer shown in Figure 6B is the two-phase drive three-leg transformer shown in Figure 2A. The transformer T shown in FIGS. 6C and 6D is a two-phase drive three-leg transformer shown in FIG.
図 6 Eに示すトランス Tは、 図 2 Bに示した 2相ドライブ 2脚トランスである c 上記図 6 A〜図 6 Eに示すトランス Tを用い、 図 7の上段から中段にかけて示 すギャップ d l , d 2、 卷線インダク夕ンス Lの条件で、 各種トランス Tの相互 インダクタンスM、 結合係数 K、 漏洩比 a' /aoを実測したところ、 図 7の中 段から下段にかけて示す結果を得た。 The transformer T shown in FIG. 6E uses the two-phase drive bipod transformer c shown in FIG. 2B. C The transformer T shown in FIGS. 6A to 6E is used. , d2, and the winding inductance L, the mutual inductance M, the coupling coefficient K, and the leakage ratio a '/ ao of the various transformers T were measured.The results shown from the middle to the bottom of Fig. 7 were obtained. .
すなわち、 図 6 Aに示すトランス Tでは、 結合係数 =0. 163、 漏洩比 =0. 012を、 図 6 Bに示すトランス Tでは、 結合係数 =0. 3 10、 漏洩比 = 0. 035を、 図 6 Cに示すトランス Tでは、 結合係数 = 0. 500、 漏洩比 =0. 063を、 図 6 Dに示すトランス Tでは、 結合係数 =0. 666、 漏洩比 = 0. 109を、 図 6 Eに示すトランス Tでは、 結合係数 =0. 737、 漏洩比 = 0. 143を、 各々得た。  That is, in the transformer T shown in FIG. 6A, the coupling coefficient = 0.163 and the leakage ratio = 0.012, and in the transformer T shown in FIG. 6B, the coupling coefficient = 0.310 and the leakage ratio = 0.035. In the transformer T shown in Fig. 6C, the coupling coefficient = 0.500, the leakage ratio = 0.063, and in the transformer T shown in Fig. 6D, the coupling coefficient = 0.666, the leakage ratio = 0.109. In the transformer T shown in 6E, a coupling coefficient = 0.737 and a leakage ratio = 0.143 were obtained, respectively.
上記得られた結合係数と漏洩比との関係を線図として示したのが図 8である。 図 8より明らかなように、 結合係数と漏洩比とは強い相関関係を有している。 次いで、 本発明者は、 図 6 A〜図 6 Eに示した各トランス Tの各相出力電圧 a, bを実測した。 この実測した各相出力電圧 a, b及びこの実測された出力電圧 a, bの差の比率を算出した値を、 図 6 A〜図 6 Eの各トランス Tに対応させて示し たのが図 9であり、 図 9で得られた出力電圧差比率と漏洩比との関係を線図とし て示したのが図 10である。  FIG. 8 shows the relationship between the obtained coupling coefficient and the leakage ratio as a diagram. As is evident from Fig. 8, there is a strong correlation between the coupling coefficient and the leakage ratio. Next, the inventor measured each phase output voltage a, b of each transformer T shown in FIGS. 6A to 6E. The calculated values of the measured output voltages a and b of each phase and the ratio of the difference between the measured output voltages a and b are shown for each transformer T in FIGS. 6A to 6E. Fig. 10 shows the relationship between the output voltage difference ratio and the leakage ratio obtained in Fig. 9 as a diagram.
図 9及び図 10より明らかなように、 漏洩比と出力電圧差比率との間には、 漏 洩比が増すと、 出力電圧差比率も増すという相関関係が得られた。 すなわち、 図 10に示すように、 漏洩比 =0. 1の場合には、 出力電圧差比率 = 18%となる c 勿論、 出力電圧信号 a, bの 90° 位相差には変化はない。  As is clear from FIGS. 9 and 10, a correlation was obtained between the leakage ratio and the output voltage difference ratio, as the leakage ratio increased, the output voltage difference ratio also increased. That is, as shown in FIG. 10, when the leakage ratio is 0.1, the output voltage difference ratio is 18%. C. Of course, there is no change in the 90 ° phase difference between the output voltage signals a and b.
この出力電圧差比率 = 18%という値は、 超音波モータを駆動する上で、 差し 支えない範囲であることを、 本発明者は、 超音波モータの回転実験により確認し た。 The present inventor confirmed that the value of the output voltage difference ratio = 18% was within a range that would be acceptable for driving the ultrasonic motor by performing a rotation experiment on the ultrasonic motor. Was.
また、 図 6 A〜図 6 Cのトランス Tを用いた場合には、 図 9に示すように、 出 力電圧差比率は各々、 2 . 3 %、 6 . 7 %、 1 1 . 9 %となり、 上記超音波モー 夕の回転実験に基づく 1 8 %という値より低い値であるから、 超音波モータを駆 動する上で、 全く差し支えない。  When the transformer T shown in FIGS. 6A to 6C is used, as shown in FIG. 9, the output voltage difference ratios are 2.3%, 6.7%, and 11.9%, respectively. However, since the value is lower than 18% based on the above-described ultrasonic motor rotation test, there is no problem in driving the ultrasonic motor.
これは、 超音波モータを駆動する上で最も重要なのは、 3 :1 11側電極部3 3及 び c o s側電極部 C Cに供給するトランス出力電圧信号の位相差を 9 0 ° より異 ならせない点であり (勿論周波数は同一)、 トランス出力電圧が各相で多少異な るレベルであっても超音波モータを駆動できるという点に起因している。 換言す れば、 このような要求レベル (各相の位相差は常に 9 0 ° 且つトランス出力電圧 は各相で多少異なっていても構わないというレベル) である超音波モー夕に対し て上記単一のトランス構成を有効に採用できる訳であり、 例えばステレオ ·ォ一 ディォ信号のように、 両信号の周波数、 出力レベル、 位相が常に変化する信号の 場合には、 上記単一のトランス構成を採用することはできない。  The most important factor in driving the ultrasonic motor is that the phase difference between the transformer output voltage signals supplied to the 3: 1 11-side electrode unit 3 3 and the cos-side electrode unit CC should not differ from 90 °. (Of course, the frequency is the same), and the ultrasonic motor can be driven even if the transformer output voltage is at a slightly different level in each phase. In other words, the above-mentioned simple level is applied to the ultrasonic motor having such a required level (the phase difference of each phase is always 90 ° and the transformer output voltage may be slightly different in each phase). This means that a single transformer configuration can be used effectively. For example, when the frequency, output level, and phase of both signals are constantly changing, such as a stereo audio signal, the above single transformer configuration can be used. Can not be adopted.
このように、 本実施形態においては、 超音波モータの駆動に差し支えることな く、 超音波モータのドライブ系では最も高価であり且つ大きなトランスの個数を 2個から 1個に低減できるため、 低コスト化及び小型化を図ることができる。 また、 これに伴い、 デザイン上の自由度を向上できると共に、 部品点数低減に より故障等の確率も低減できる。  As described above, in the present embodiment, since the drive system of the ultrasonic motor is the most expensive and the number of large transformers can be reduced from two to one without being hindered by the driving of the ultrasonic motor, Cost and size can be reduced. Accordingly, the degree of freedom in design can be improved, and the probability of failure can be reduced by reducing the number of parts.
一方、 図 6 D、 図 6 Eのトランス Tを用いた場合には、 図 9に示すように、 出 力電圧差比率は各々、 1 9 . 7 %、 2 5 %となり、 上記超音波モータの回転実験 に基づく 1 8 %という値より高い値となる。 特に、 図 6 Eのトランス Tを用いた 場合には、 1 8 %との差がある程度あり、 超音波モータを駆動する上で、 回転ト ルクが低下する等の悪影響が生じることが考えられるため、 以下に述べる 2相の 出力電圧信号 a , bをほぼ同一とする補正を行うのが、 好ましい。  On the other hand, when the transformer T shown in FIGS. 6D and 6E is used, as shown in FIG. 9, the output voltage difference ratios are 19.7% and 25%, respectively. The value is higher than the value of 18% based on the rotation experiment. In particular, when the transformer T shown in Fig. 6E is used, there is a certain difference from 18%, and it is considered that when driving the ultrasonic motor, adverse effects such as a decrease in rotational torque may occur. It is preferable to make a correction that makes the two-phase output voltage signals a and b substantially the same as described below.
図 1 1は、 出力電圧差を少なくする方向に補正する回路が付加された駆動回路 の要部を示す構成図である。 この駆動回路 25は、 トランス Tの各相の巻線比を 変更するタヅプ入力 TP 1, TP 2と、 一次巻線 Caiと前述したパワーアンプ A mp 1との間に接続され、 パワーアンプ Amp 1から出力された電圧信号を、 1 80° 位相反転して一次巻線 Caiに供給するロータ 6の回転方向を反転させるた めのスィッチ SW3と、 を備えている。 Figure 11 shows a drive circuit with a circuit to correct the output voltage difference FIG. 2 is a configuration diagram showing a main part of FIG. The drive circuit 25 is connected between type inputs TP 1 and TP 2 for changing the winding ratio of each phase of the transformer T, and between the primary winding Cai and the power amplifier Amp 1 described above. And a switch SW3 for reversing the rotation direction of the rotor 6 that supplies the voltage signal output from the rotor 6 to the primary winding Cai by inverting the phase by 180 °.
この駆動回路 25はまた、 スィヅチ SW3に連動して、 一次卷線 Caiでの入力 タップ端を、 一次巻線 Caiの一方の端子 (図示上側の端子) または上記タップ入 力 TP 1の何れか一方に切り替えるスィヅチ SW4と、 スィツチ SW 3に連動し て、 一次巻線 Cbiでの入力タヅプ端を、 上記タップ入力 TP 2または二次巻線 C biの一方の端子 (図示上側の端子) の何れか一方に切り替えるスィッチ SW5と、 を備えている。  The drive circuit 25 also connects the input tap end of the primary winding Cai to one of the terminals of the primary winding Cai (upper terminal in the drawing) or one of the tap inputs TP1 in conjunction with the switch SW3. The input tap end of the primary winding Cbi is connected to one of the terminals (the upper terminal in the figure) of the tap input TP2 or the secondary winding Cbi in conjunction with the switch SW4 and the switch SW3 for switching to And a switch SW5 for switching to one side.
上記タヅプ入力 TP 1, TP 2によるタップ端位置は、 トランス Tの漏洩比に より異なり、 図 10に示した漏洩比と出力電圧差比率との関係に基づいて、 s i n側電極部 S S及び c o s側電極部 C Cに供給するドライブ信号 a , bの電圧レ ベルがほぼ同一となるように設定される。  The tap end positions due to the tap inputs TP1 and TP2 differ depending on the leakage ratio of the transformer T. Based on the relationship between the leakage ratio and the output voltage difference ratio shown in Fig. 10, the sin side electrode section SS and the cos side The drive signals a and b supplied to the electrode section CC are set so that the voltage levels are almost the same.
なお、 図 1 1においては、 図 1で説明した発振器 20、 90° 位相シフタ一 2 1、 パワーアンプ Amp 1, Amp 2等が省略されている。  In FIG. 11, the oscillator 20, the 90 ° phase shifter 21 and the power amplifiers Amp 1 and Amp 2 described in FIG. 1 are omitted.
次に、 このように構成された駆動回路 25の動作について説明する。 ロータ 6 の正転時には、 スィッチ SW3, 4, 5が、 図 1 1に実線で示す位置に切り替え られ、 一次巻線 Caiでは入力タップ端が一次巻線 Caiの一方の端子に切り替えら れ、 また一次巻線 Cbiでは入力夕ップ端が夕ップ入力 TP 2に切り替えられる。 すなわち、 s i n側電極部 S Sに対応する卷線 Cai, Caoの巻線比が小さくされ、 c o s側電極部 C Cに対応する巻線 Cbi, Cboの巻線比が大きくされる。 これに より、 ドライブ信号 a, bの電圧レベルはほぼ同一となる。  Next, the operation of the driving circuit 25 configured as described above will be described. When the rotor 6 rotates forward, the switches SW3, SW4, and SW5 are switched to the positions indicated by the solid lines in FIG. 11, and the input tap end of the primary winding Cai is switched to one terminal of the primary winding Cai. The input end of the primary winding Cbi is switched to the input TP2. That is, the winding ratio of the windings Cai and Cao corresponding to the sin side electrode portion S S is reduced, and the winding ratio of the windings Cbi and Cbo corresponding to the cos side electrode portion C C is increased. As a result, the voltage levels of the drive signals a and b become almost the same.
また、 ロータ 6の逆転時には、 スイッチ SW3, 4, 5が、 図 1 1に点線で示 す位置に切り替えられ、 一次巻線 Caiでは入カタップ端が夕ップ入力 TP 1に切 P T/JP99/00888 When the rotor 6 rotates in the reverse direction, the switches SW3, SW4, and SW5 are switched to the positions indicated by the dotted lines in FIG. 11, and the input tap end of the primary winding Cai is switched to the evening tap input TP1. PT / JP99 / 00888
り替えられ、 また一次巻線 Cbiでは入力夕ップ端が一次巻線 Cbiの一方の端子に に切り替えられる。 すなわち、 s i n側電極部 S Sに対応する巻線 Cai, Caoの 巻線比が大きくされ、 c o s側電極部 C Cに対応する巻線 Cbi, Cboの巻線比が 小さくされる。 これにより、 逆転時でもドライブ信号 a, bの電圧レベルはほぼ 同一となる。 In the primary winding Cbi, the input tap end is switched to one terminal of the primary winding Cbi. That is, the winding ratio of the windings Cai and Cao corresponding to the sin-side electrode unit S S is increased, and the winding ratio of the windings Cbi and Cbo corresponding to the cos-side electrode unit C C is reduced. As a result, the voltage levels of the drive signals a and b are almost the same even during the reverse rotation.
このように、 図 1 1の補正回路が付加された駆動回路 25では、 漏洩比 (出力 電圧差比率) に応じて、 ドライブ信号 a, bの電圧レベルをほぽ同一となるよう にしているため、 超音波モータを駆動する上で回転トルクが低下する等の悪影響 が生じることが考えられる図 6 D、 図 6 Eに示したトランス Tでも安心して用い ることができる。  As described above, in the drive circuit 25 to which the correction circuit of FIG. 11 is added, the voltage levels of the drive signals a and b are made substantially the same according to the leakage ratio (output voltage difference ratio). However, the transformer T shown in FIGS. 6D and 6E, which can cause adverse effects such as a decrease in rotational torque when driving the ultrasonic motor, can be used with confidence.
図 12は、 出力電圧差を少なくする方向に補正する回路を備えた駆動回路の要 部を示す構成図、 図 13 A〜図 13 Pは、 図 12の回路動作を説明するための夕 ィミングチャートである。  FIG. 12 is a configuration diagram showing a main part of a drive circuit provided with a circuit for correcting the output voltage difference in a direction to reduce the difference, and FIGS. 13A to 13P are timing diagrams for explaining the circuit operation of FIG. It is a chart.
この駆動回路 30は、 図 1 1で説明した機械的スィヅチ SW3によりロー夕 6 の回転方向を切り替える構成、 機械的スィッチ SW4, 5により入力タップ端を 切り替える構成に代えて、 FET40〜43, 50〜 53を用いたスイッチング により、 同様な動作を得るものである。  The drive circuit 30 has FETs 40 to 43, 50 to 50 instead of a configuration in which the mechanical switch SW3 switches the rotation direction of the rotatable 6 described in FIG. A similar operation is obtained by switching using 53.
すなわち、 入力 a l〜a4は、 一次卷線 Cai側のパルス波信号入力、 入力 b 1 〜b4は、 一次巻線 Cbi側のパルス波信号入力であり、 入力 a l〜a4, b l〜 b4は、 図示を省略したデジタル回路により生成されて所定のタイミングで出力 される。 入力 a 1, a 4は、 互いに 180° の位相差を有し FET 40, 43に 対するプヅシュプル入力で、 卷線 Cai, Caoの卷線比を小さくするドライブ時に 対応し、 一方入力 a 2, a 3は、 互いに 180° の位相差を有し FE T 41 , 4 2に対するプッシュプル入力で、 巻線 Cai, Caoの卷線比を大きくするドライブ 時に対応する。  That is, inputs al to a4 are pulse wave signal inputs on the primary winding Cai side, inputs b1 to b4 are pulse wave signal inputs on the primary winding Cbi side, and inputs al to a4 and bl to b4 are shown in the figure. Is generated by a digital circuit omitting the symbol and is output at a predetermined timing. Inputs a 1 and a 4 are push-pull inputs to FETs 40 and 43 that have a phase difference of 180 ° from each other, and correspond to the drive when the winding ratio of windings Cai and Cao is reduced. Reference numeral 3 denotes a push-pull input having a phase difference of 180 ° with respect to FETs 41 and 42, which corresponds to a driving operation in which the winding ratio of the windings Cai and Cao is increased.
また、 b側の入力系は、 a側の入力系に対して 90° 位相差を有し、 入力 b l: b 4は、 互いに 180° の位相差を有し FET 50, 53に対するプッシュプル 入力で、 巻線 Cbi, Cboの巻線比を小さくするドライブ時に対応し、 一方入力 b 2, b 3は、 互いに 180° の位相差を有し FET 5 1 , 52に対するプッシュ プル入力で、 巻線 Cbi, Cboの卷線比を大きくするドライブ時に対応する。 The input system on the b side has a 90 ° phase difference with respect to the input system on the a side, and the input bl: b 4 is a push-pull input to FETs 50 and 53 having a phase difference of 180 ° from each other, and corresponds to a drive in which the winding ratio of windings Cbi and Cbo is reduced, while inputs b 2 and b 3 are mutually connected. Push-pull input to FETs 51 and 52 with a phase difference of 180 °, which is compatible with driving in which the winding ratio of windings Cbi and Cbo is increased.
口一夕 6の正転時には、 入力 a l, &4カ 図 13A、 図 13Dに示すように、 動作するため、 巻線比を小さくする回路が動作し、 一方入力 a 2, a 3は、 図 1 3 B、 図 13 Cに示すように、 入力 0で FET 41 , 42がオフするため、 巻線 比を大きくする回路は動作しない。 入力 a l, a 4には、 図 13A、 図 13Dに 示すように、 180° の位相差があるため、 トランス T内でプッシュプル加算さ れて、 s i n側電極部 S S側に供給するドライブ信号 (出力電圧信号) aが得ら れる。  When the mouth 6 is rotating forward, the input al and & 4 are activated, as shown in Fig. 13A and Fig. 13D. Therefore, the circuit that reduces the turns ratio operates, while the inputs a2 and a3 are As shown in 3B and Figure 13C, the FETs 41 and 42 are turned off at input 0, so the circuit that increases the turns ratio does not operate. Since the inputs al and a4 have a phase difference of 180 ° as shown in Figs. 13A and 13D, the push-pull addition is performed in the transformer T and the drive signal ( Output voltage signal) a is obtained.
ここで、 入力 a l , a 4は、 25 %のパルス幅入力であるが、 圧電振動子 5 v の有するキャパシタンス、 トランス Tの有するインダク夕ンス Lによる共振作用 によって、 振動子 5 Vには正弦波様の (正弦波に近い) 実用的なドライブ信号 a が供給される。  Here, the inputs al and a 4 are 25% pulse width inputs, but due to the resonance action of the capacitance of the piezoelectric vibrator 5 v and the inductance L of the transformer T, a sinusoidal wave is applied to the vibrator 5 V. A practical drive signal a (similar to a sine wave) is supplied.
また、 口一夕 6の正転時には、 入力 b 2, b 3が、 図 13 F、 図 13 Gに示す ように、 動作するため、 卷線比を大きくする回路が動作し、 一方入力 b l, b 4 は、 図 13E、 図 13 Hに示すように、 入力 0で FET 50, 53がオフするた め、 卷線比を小さくする回路は動作しない。 入力 b 2, b 3には、 図 13 F、 図 13Gに示すように、 180° の位相差があるため、 トランス T内でプッシュプ ル加算されて、 c o s側電極部 C C側に供給するドライブ信号 bが得られる。 こ のドライブ信号 bも、 ドライブ信号 aと同様に、 正弦波様の実用的なドライブ信 号である。  In addition, when the mouth 6 rotates in the normal direction, the inputs b 2 and b 3 operate as shown in FIGS. 13F and 13G, so that the circuit for increasing the winding ratio operates. In b4, as shown in Fig. 13E and Fig. 13H, the FETs 50 and 53 are turned off at input 0, so the circuit for reducing the winding ratio does not operate. As shown in Figures 13F and 13G, the inputs b2 and b3 have a 180 ° phase difference, so they are push-pulled in the transformer T and supplied to the cos-side electrode CC side. b is obtained. This drive signal b is a practical drive signal like a sine wave like the drive signal a.
また、 このドライブ信号 bは、 入力 b 2 , 3が入カ& 1, a 4に対して 9 0° 進んだ位相差を有しているため、 ドライブ信号 aに対して 90° の位相差を 有する。 また、 前述したように、 s i n側電極部 S S側に対応する巻線 Cai, Caoの巻 線比が小さくされていると共に、 c o s側電極部 C C側に対応する Cbi, Cboの 巻線比が大きくされているため、 ドライブ信号 a, bの電圧レベルはほぼ同一と なる。 Also, this drive signal b has a phase difference of 90 ° with respect to the drive signal a because the inputs b 2 and 3 have a phase difference advanced by 90 ° with respect to the inputs & 1 and a4. Have. In addition, as described above, the winding ratio of the windings Cai and Cao corresponding to the SS side of the sin side electrode unit is reduced, and the winding ratio of Cbi and Cbo corresponding to the CC side of the cos side electrode unit CC is increased. Therefore, the voltage levels of the drive signals a and b are almost the same.
すなわち、 ドライブ信号 a、 bは、 90° の位相差を有していると共に、 電圧 レベルはほぼ同一である。  That is, the drive signals a and b have a phase difference of 90 ° and the voltage levels are almost the same.
一方口一夕 6の逆転時には、 ロータ 6を逆転すべく、 入力 a 2, a 3が、 図 1 3 J、 図 13Kに示すように、 上記正転時の入力 a 1, a 4 (図 13 A、 図 13 D参照) に対して 180° 位相反転する。 一方、 入力 a 1, a 4は、 図 13 I、 図 13 Lに示すように、 入力 0で FET40, 43がオフするため、 卷線比を小 さくする回路は動作しない。 入力 a 2 , a 3には、 図 13 J、 図 13 Kに示すよ うに、 180° の位相差があるため、 トランス T内でプッシュブル加算されて、 s i n側電極部 S S側に供給するドライブ信号 aが得られる。  When the one-way mouth 6 reverses, the inputs a 2 and a 3 are input as shown in Figs. 13J and 13K in order to reverse the rotor 6 as shown in Figs. 13J and 13K. A, see Fig. 13D). On the other hand, for the inputs a 1 and a 4, as shown in FIGS. 13I and 13L, the FETs 40 and 43 are turned off at the input 0, so that the circuit for reducing the winding ratio does not operate. Inputs a 2 and a 3 have a 180 ° phase difference as shown in Figure 13J and Figure 13K. The signal a is obtained.
また、 ロータ 6の逆転時には、 入力 b 1, b 4が、 図 13M、 図 13 Pに示す ように、 動作するため、 卷線比を小さくする回路が動作し、 一方入力 b 2 , b 3 は、 図 13N、 図 130に示すように、 入力 0で FET 51, 52がオフするた め、 卷線比を大きくする回路は動作しない。 入力 b l , b4には、 図 13M、 図 13Pに示すように、 180° の位相差があるため、 トランス T内でプッシュプ ル加算されて、 c o s側電極部 C C側に供給するドライブ信号 bが得られる。 このドライブ信号 bは、 入力 b 1, b 4が入力 a 2, a 3に対して 90° 遅れ た位相差を有しているため、 ドライブ信号 aに対して 90° の位相差を有する。 また、 s i n側電極部 S S側に対応する巻線 Cai, Caoの巻線比が大きくされ ていると共に、 c o s側電極部 C C側に対応する Cbi, Cboの巻線比が小さくさ れているため、 ドライブ信号 a, bの電圧レベルはほぼ同一となる。  When the rotor 6 rotates in the reverse direction, the inputs b 1 and b 4 operate as shown in FIGS. 13M and 13P, so that the circuit for reducing the winding ratio operates. On the other hand, the inputs b 2 and b 3 As shown in Fig. 13N and Fig. 130, the FETs 51 and 52 are turned off at input 0, and the circuit for increasing the winding ratio does not operate. Since the inputs bl and b4 have a phase difference of 180 ° as shown in Figs. Can be The drive signal b has a phase difference of 90 ° with respect to the drive signal a because the inputs b 1 and b 4 have a phase difference of 90 ° with respect to the inputs a 2 and a 3. In addition, the winding ratio of windings Cai and Cao corresponding to the sin side electrode section SS side is increased, and the winding ratio of Cbi and Cbo corresponding to the cos side electrode section CC side is reduced. The voltage levels of the drive signals a and b are almost the same.
このように、 図 12の駆動回路 30でも、 漏洩比 (出力電圧差比率) に応じて、 ドライブ信号 a, bの 90° 位相差を変えることなく、 ドライブ信号 a, bの電 圧レベルをほぼ同一となるようにしているため、 超音波モータを駆動する上で回 転トルクが低下する等の悪影響が生じることが考えられる図 6 D、 図 6 Eに示し たトランス Tでも安心して用いることができる。 Thus, even in the drive circuit 30 in FIG. 12, the drive signals a and b are supplied without changing the 90 ° phase difference between the drive signals a and b according to the leakage ratio (output voltage difference ratio). Since the pressure levels are set to be almost the same, adverse effects such as a decrease in rotational torque may occur when driving the ultrasonic motor, and the transformer T shown in Figs. You can use it with your heart.
加えて、 図 1 1に示した駆動回路 2 5に比して、 機械的なスィッチを用いてい ないため、 回路を構成するにあたって、 より実用的である。  In addition, as compared to the drive circuit 25 shown in FIG. 11, a mechanical switch is not used, so that it is more practical in configuring a circuit.
以上、 本発明者によってなされた発明を実施形態に基づき具体的に説明したが、 本発明は上記実施形態に限定されるものではなく、 その要旨を逸脱しない範囲で 種々変更可能であるというのはいうまでもなく、 例えば、 上記実施形態において は、 2相のドライブ信号の位相差を 9 0 ° としているが、 9 0 ° に限定されるも のではない。  As described above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and it can be variously modified without departing from the gist thereof. Needless to say, for example, in the above-described embodiment, the phase difference between the two-phase drive signals is 90 °, but is not limited to 90 °.
また、 本発明は、 例えば特開平 2— 1 7 9 2 8 1号公報に記載されているよう な、 口一夕の裏面にも圧電振動子を固定し、 この圧電振動子にも 2相のドライブ 信号を印加することにより、 ロータ表面に円周方向に進む進行波を発生させ、 こ のロータ表面に発生した進行波と前述したステ一夕表面に発生した進行波により、 ロータを回転駆動するタイプの超音波モ一夕に対しても適用可能である。  Further, according to the present invention, a piezoelectric vibrator is also fixed to the back surface of the mouth, as described in, for example, Japanese Patent Application Laid-Open No. By applying a drive signal, a traveling wave traveling in the circumferential direction is generated on the rotor surface, and the rotor is rotationally driven by the traveling wave generated on the rotor surface and the traveling wave generated on the stay surface described above. The present invention is also applicable to a type of ultrasonic camera.
さらにまた、 本発明は、 リニヤ型の超音波モータに対しても同様に適用可能で あるというのはいうまでもない。 産業上の利用可能性  Furthermore, it goes without saying that the present invention is similarly applicable to a linear type ultrasonic motor. Industrial applicability
本発明による超音波モータの駆動方法は、 閉磁路を構成する共通のコアに各相の 一次、 二次巻線が巻回された単一の卜ランスの、 上記各相の一次巻線に対して、 各相のドライブ信号を各々入力するようにしている。 従って、 当該単一のトラン スにおいては、 各相のドライブ信号が相互干渉するが、 この相互干渉の影響は、 振動子に供給される二次巻線のトランス出力電圧が、 各相で多少異なるレベルと なるだけで、 所定の位相差を有する関係は維持されるため、 実際の使用に際して はさして支障を生じることなく、 超音波モータを駆動できる。 その結果、 超音波 モータのドライブ系では最も高価であり且つ大きなトランスの個数を低減でき、 低コスト化及び小型化を図りつつ、 良好に超音波モ一夕を駆動することが可能と なる。 The driving method of the ultrasonic motor according to the present invention comprises: a single transformer in which primary and secondary windings of each phase are wound on a common core forming a closed magnetic circuit; Thus, drive signals for each phase are input. Therefore, in the single transformer, the drive signals of each phase interfere with each other, and the effect of the mutual interference is that the transformer output voltage of the secondary winding supplied to the oscillator is slightly different in each phase. The relationship having a predetermined phase difference is maintained only by the level, so that the ultrasonic motor can be driven without any trouble in actual use. As a result, ultrasound In the motor drive system, the most expensive and large number of transformers can be reduced, and it is possible to drive the ultrasonic motor satisfactorily while reducing the cost and size.

Claims

言青求の範囲 Scope of word blue
1 . 弾性体の裏面に設けた振動子に対し、 位相の異なる 2相のドライブ 信号を供給して前記振動子を振動させ、 前記弾性体の表面に発生する進行波によ り可動子を駆動するようにした超音波モータの駆動方法であって、  1. Two-phase drive signals having different phases are supplied to the vibrator provided on the back surface of the elastic body to vibrate the vibrator, and the mover is driven by a traveling wave generated on the surface of the elastic body. A method of driving an ultrasonic motor,
前記位相の異なる 2相のドライブ信号を、 閉磁路を構成する共通のコアに各相 の一次、 二次巻線が巻回された単一のトランスの、 前記各相の一次巻線に各々入 力し、 昇圧して前記各相の二次巻線より前記振動子に供給することを特徴とする 超音波モ一夕の駆動方法。  The two-phase drive signals having different phases are input to the primary winding of each phase of a single transformer in which the primary and secondary windings of each phase are wound on a common core forming a closed magnetic circuit. A method for driving an ultrasonic motor, comprising: boosting the pressure and supplying the boosted voltage from the secondary windings of the respective phases to the vibrator.
2 . 前記単一のトランスにおいて前記位相の異なる 2相のドライブ信号 のうちの一方のドライブ信号が他方のドライブ信号に干渉する電圧の割合に応じ て、 前記単一のトランスにおける前記卷線による昇圧比を各相で相異させ、 前記 振動子に供給する 2相のドライブ信号の出力電圧をほぼ同一とすることを特徴と する請求項 1記載の超音波モータの駆動方法。  2. The step-up by the winding in the single transformer according to the ratio of the voltage at which one of the two-phase drive signals of the single transformer interferes with the other drive signal. 2. The ultrasonic motor driving method according to claim 1, wherein the ratio is made different for each phase, and output voltages of two-phase drive signals supplied to the vibrator are made substantially the same.
3 . 前記単一のトランスの一次卷線に対するドライブ信号の入力位相の 反転に応じて、 前記各相で相異させた昇圧比を互いに入れ替えて、 前記振動子に 供給する 2相のドライブ信号の出力電圧をほぼ同一とすることを特徴とする請求 項 2記載の超音波モータの駆動方法。  3. In accordance with the inversion of the input phase of the drive signal to the primary winding of the single transformer, the boost ratios that are different for each of the phases are exchanged with each other, and the two-phase drive signal supplied to the vibrator is changed. 3. The method for driving an ultrasonic motor according to claim 2, wherein the output voltages are substantially the same.
4. 前記単一のトランスの一次巻線に対する前記ドライブ信号をパルス 波信号とし、 前記振動子の有するキャパシタンス及び前記単一のトランスの有す るインダク夕ンスによる共振作用によって、 前記振動子に正弦波様のドライブ信 号を供給することを特徴とする請求項 1〜 3の何れか一項に記載の超音波モータ の駆動方法。  4. The drive signal for the primary winding of the single transformer is a pulse wave signal, and a sinusoidal wave is applied to the vibrator by the resonance action of the capacitance of the vibrator and the inductance of the single transformer. The method for driving an ultrasonic motor according to claim 1, wherein a driving signal having a wave shape is supplied.
PCT/JP1999/000888 1998-02-27 1999-02-25 Method of driving ultrasonic motor WO1999044281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4794198 1998-02-27
JP10/47941 1998-02-27

Publications (1)

Publication Number Publication Date
WO1999044281A1 true WO1999044281A1 (en) 1999-09-02

Family

ID=12789405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000888 WO1999044281A1 (en) 1998-02-27 1999-02-25 Method of driving ultrasonic motor

Country Status (1)

Country Link
WO (1) WO1999044281A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364315A (en) * 1986-09-05 1988-03-22 Mitsubishi Electric Corp Transfomer apparatus
JPS6447281A (en) * 1987-08-12 1989-02-21 Diesel Kiki Co Lock detector for ultrasonic motor actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364315A (en) * 1986-09-05 1988-03-22 Mitsubishi Electric Corp Transfomer apparatus
JPS6447281A (en) * 1987-08-12 1989-02-21 Diesel Kiki Co Lock detector for ultrasonic motor actuator

Similar Documents

Publication Publication Date Title
JP5343322B2 (en) Drive device for vibration actuator, lens barrel and camera
WO2003077410A1 (en) Rotation/movement converting actuator
WO1999044279A1 (en) Ultrasonic motor
US6724607B2 (en) Driving apparatus of vibration type actuator
JP4827441B2 (en) Vibration wave actuator
US5548176A (en) Ultrasonic motor and ultrasonic conveying device
WO1999044281A1 (en) Method of driving ultrasonic motor
JP4639692B2 (en) Non-contact power transmission device
JP5110750B2 (en) Drive circuit for vibration actuator
JPH0479779A (en) Driving circuit for ultrasonic motor
JPH05344765A (en) Piezoelectric motor and driving method therefor
JP4826222B2 (en) Drive circuit and imaging apparatus using the same
JP2002142475A (en) Drive circuit of vibration type actuator
JPH0799787A (en) Driving circuit for ultrasonic motor
JPH02311184A (en) Ultrasonic motor
JPH0795783A (en) Ultrasonic motor and its controlling method
JP2924455B2 (en) Driving method of ultrasonic motor
JPH05284764A (en) Ultrasonic actuator using piezoelectric transformer
JPS63193359A (en) Recording medium driving device
JPH0516277B2 (en)
JPH10155289A (en) Vibration equipment and vibration controller
JPH0229724A (en) Winding and rewinding device using ultrasonic motor for camera
JPH0710192B2 (en) Ultrasonic motor drive power supply
JP3533321B2 (en) Ultrasonic motor drive circuit
JP3432056B2 (en) Laminated piezoelectric element, method of manufacturing laminated piezoelectric element, vibration device using laminated piezoelectric element, and driving device using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase