WO1999042869A1 - Low slope dispersion managed waveguide - Google Patents

Low slope dispersion managed waveguide Download PDF

Info

Publication number
WO1999042869A1
WO1999042869A1 PCT/US1999/003403 US9903403W WO9942869A1 WO 1999042869 A1 WO1999042869 A1 WO 1999042869A1 US 9903403 W US9903403 W US 9903403W WO 9942869 A1 WO9942869 A1 WO 9942869A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
dispersion
fiber
range
fiber component
Prior art date
Application number
PCT/US1999/003403
Other languages
French (fr)
Inventor
Yanming Liu
Original Assignee
Corning Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Incorporated filed Critical Corning Incorporated
Priority to EP99913812A priority Critical patent/EP1066540A4/en
Priority to AU31805/99A priority patent/AU750557B2/en
Priority to JP2000532749A priority patent/JP4208415B2/en
Priority to CA002318423A priority patent/CA2318423A1/en
Priority to BR9907943-7A priority patent/BR9907943A/en
Publication of WO1999042869A1 publication Critical patent/WO1999042869A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02233Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range having at least two dispersion zero wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02247Dispersion varying along the longitudinal direction, e.g. dispersion managed fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02252Negative dispersion fibres at 1550 nm
    • G02B6/02261Dispersion compensating fibres, i.e. for compensating positive dispersion of other fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02285Characterised by the polarisation mode dispersion [PMD] properties, e.g. for minimising PMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core

Definitions

  • the present invention is directed to a single mode optical waveguide fiber designed for long repeater spacing, high data rate telecommunication systems.
  • the single mode waveguide combines excellent bend resistance, low attenuation, low dispersion and low dispersion slope, features that are desired for long distance transmission applications.
  • the segment radius may be conveniently defined in a number of ways, as will be seen in the description of Fig. 1 below.
  • Figs. 1-3 from which Tables 1 & 2 are derived, the radii of the index profile segments are defined as follows, where the reference is to a chart of ⁇ % vs. waveguide radius:
  • the width, w, of a segment is taken to be the distance between the inner and outer radius of the segment. It is understood that the outer radius of a segment corresponds to the inner radius of the next segment.
  • ⁇ % 100 x (n-i 2 - n 2 )l2r ⁇ 2 , where ⁇ is the maximum refractive index of the index profile segment 1 , and n 2 is a reference refractive index which is taken to be, in this application, the refractive index of the clad layer.
  • refractive index profile or simply index profile is the relation between
  • ⁇ % refractive index and radius over a selected portion of the core.
  • index profiles include a step index, triangular, trapezoidal, and rounded step index, in which the rounding is typically due to dopant diffusion in regions of rapid refractive index change.
  • Total dispersion is defined as the algebraic sum of waveguide dispersion and material dispersion. Total dispersion is sometimes called chromatic dispersion in the art. The units of total dispersion are ps/nm-km.
  • the bend test used is 5 turns of the waveguide fiber around a 20 mm diameter mandrel, a more demanding test which is required for the more severe operating environment of the present waveguide fiber.
  • One aspect of the present invention relates to a single mode optical waveguide comprising a first fiber component segment having a positive dispersion and a positive dispersion slope, and a second fiber component segment which has a negative dispersion and a negative dispersion slope, wherein the waveguide alternates along its length between segments of the first fiber component and the second fiber component, and wherein the first fiber component segment has a length which is at least two times the length of the second fiber component segment.
  • the waveguide is optimized for the lower attenuation operating wavelength window around 1550 nm, i.e., in the window between about 1520 to 1625 nm.
  • the waveguide in accordance with the invention may be comprised of a unitary fiber having the various first and second segments therein, e.g., alternating sections of positive and negative dispersion and dispersion slope.
  • the waveguide may be comprised of a cable in which the various fiber component sections are connected along the length of the cable.
  • Another aspect of the present invention relates to a single mode optical waveguide which manages fiber chromatic dispersion by providing a small total dispersion and a low dispersion slope.
  • Preferred waveguides in accordance with the invention exhibit a dispersion over the range of 1520 to 1625 nm which at all times has a magnitude which is less than 2, and more preferably is less than 1 ps/nm 2 -km.
  • the total dispersion of the waveguide fiber is in the range of about -2.0 to +2.0, more preferably about -1.0 to +1.0, and most preferably about -0.5 to +0.5 ps/nm-km at 1550 nm.
  • the n, ⁇ j %, and the refractive index profiles of the various positive and negative dispersion segments are also selected to provide a total attenuation at 1550 nm no greater than 0.25 dB/km. 5
  • the waveguides in accordance with the invention are also compatible with optical amplifiers.
  • cut off wavelength of fiber in cabled form is less than 1520 nm.
  • An added benefit is a polarization mode dispersion less than about .5 ps/(km) 1/2 , more preferably less than .3 ps/(km) 1/2 and typically about 0J ps/(km) 1 2 .
  • Fig. 1 illustrates a negative dispersion fiber segment profile for use in accordance with the invention.
  • Fig. 2 illustrates an alternative negative dispersion fiber segment index profile in accordance with the invention.
  • Fig. 3 illustrates an alternative and preferred negative dispersion fiber segment profile.
  • Fig. 4 illustrates the dispersion characteristics of a alternating +D and -
  • Fig. 5 illustrates the dispersion vs. distance of a dispersion flattened and dispersion managed fiber in accordance with the invention.
  • Fig. 6 illustrates the dispersion vs. wavelength curve for a dispersion flattened and managed fiber in accordance with the present invention.
  • a low slope and dispersion managed fiber optical waveguide is accomplished by incorporating alternating segments of a first fiber component having a positive dispersion and positive dispersion slope, and a second fiber component having a negative dispersion and a negative dispersion slope, wherein the first fiber component has a length which is at least two times, more preferably at least three times and most preferably at least five times the length of the second fiber component.
  • the waveguides of the present invention may be in the form of a unitary fiber having alternating sections of positive and negative dispersion and dispersion slope.
  • a fiber could be manufactured, for example, by assembling alternating core tablets having desired index profiles within a tube or other support device. The alternating core tablets would create the desired alternating positive and negative dispersion characteristics.
  • the tube containing these alternating component tablets can then be overclad with a silica cladding layer, and the resultant preform consolidated and drawn into a continuous fiber which exhibits alternating sections of positive and negative dispersion and dispersion slope along its length.
  • Such manufacturing techniques are further disclosed, for example, in U.S. Patent Application Serial No.
  • the waveguide consists of a cabled waveguide.
  • the wvaeguide may consist of a first fiber component having positive dispersion and positive dispersion slope, having a length of at least 50 km, and more preferably at least 75 km in length, and the second fiber component (negative dispersion and negative dispersion slope) having a length of less than 20 km, but more preferably less than 15 km in length.
  • Such a cabled waveguide may be disposed between amplifiers in an optical fiber communication system.
  • the second fiber component can alternatively be placed in the amplifier side inside the amplifier or amplifier module itself.
  • the first fiber component i.e., that having positive dispersion and positive dispersion slope
  • SMF-28 has a total dispersion of 17 ps/nm.km, and a dispersion slope of 0.06 ps/nm 2 .km at 1550 nm.
  • a variety of fiber profiles can be employed to provide the second fiber component which has a negative dispersion and negative dispersion slope.
  • the negative component fiber segment has at three or four segments to the profile.
  • Fig. 1 illustrates one embodiment of such a preferred three segment profile for the negative dispersion, negative dispersion slope fiber segment component.
  • the profile is Fig. 1 consists of a first central major index profile 10 of outer radius p,, surrounded by a first annular segment 12 of outer radius r 2 , surrounded by second annular segment 14 of outer radius r 3 .
  • a variety of profile shapes can be employed, as illustrated, for example, by the dashed lines associated with possible profile shapes for the first central major index profile 10 in Fig. 1.
  • the novel single mode optical waveguide is characterized by its segmented core design that provides the unusual combination of properties set forth herein. These properties are achieved by selecting a proper refractive index profile shape of each of the segments and selecting the appropriate relative refractive index delta, ⁇ s %, and radial extent, ⁇ , of the segments.
  • the profile parameters are known to interact. For example, a center region ⁇ - profile having an ⁇ of about 1 , will have a radius different from a center region having a trapezoidal index to provide fibers having essentially identical properties.
  • the index profiles of the respective segments can be virtually any particular shape, including an ⁇ -profile, a step index profile, or a trapezoidal profile. Unless special steps are inserted in the process, the refractive index profiles will be rounded at points where the refractive index changes sharply. The rounding is due to diffusion of the dopant materials used to change the base glass refractive index. Thus any of these index profiles may be rounded at particular points. For example, a step index profile, having a positive ⁇ % will typically have rounded upper and lower corners.
  • the fiber may or may not include a central recessed index area, such as is commonly caused by migration of the germania dopant.
  • Fig. 2 illustrates such a four segment fiber core profile which is useful as a negative dispersion slope dispersion fiber segment in accordance with the invention.
  • the profile illustrated in Fig. 2 incorporates two index depressed regions 12 and 16.
  • any of the profiles disclosed herein may also include a centerline dip section, which is an area of depressed relative refractive index which is less than the peak delta of the first major core segment.
  • Such centerline dips are commonly caused by so called burn-out, or migration of dopant ions, which sometimes occurs during manufacture of optical fiber waveguides.
  • the waveguides in accordance with the invention preferably exhibit a dispersion over the range of 1520 to 1625 nm which at all times has a magnitude which is less than 2, and more preferably less than 1 ps/nm 2 -km.
  • the total dispersion of the waveguide fiber is in the range of about -2.0 to +2.0, more preferably about -1.0 to +1.0, and most preferably about -0.5 to +0.5 ps/nm-km at 1550 nm.
  • the ⁇ , ⁇ %, and the refractive index profiles of the various positive and negative dispersion segments are also selected to provide a total attenuation at 1550 nm no greater than 0.25 dB/km.
  • cut off wavelength of fiber in cabled form is less than 1520 nm.
  • An added benefit is a polarization mode dispersion less than about .5 ps/(km) 1/2 more preferably less than .3 ps/(km) .1/2
  • One particularly preferred dispersion managed waveguide of the present invention manages fiber chromatic dispersion by providing a negative total dispersion as well as a low dispersion slope.
  • the total dispersion of the waveguide fiber be negative, so that the linear dispersion cannot counteract the non-linear self phase modulation which occurs for high power signals.
  • the waveguides described herein are suitable for use in high power and long distance transmission applications, including conventional RZ (return to zero) or NRZ (non-return to zero), as well as soliton transmission applications.
  • the definition of high power and long distance is meaningful only in the context of a particular telecommunication system wherein a bit rate, a bit error rate, a multiplexing scheme, and perhaps optical amplifiers are specified. There are additional factors, known to those skilled in the art, which have impact upon the meaning of high power and long distance. However, for most purposes, high power is an optical power greater than about 10 mW per channel. In some applications, signal power levels of 1 mW or less are still sensitive to non-linear effects, so that A eff is still an important consideration in such lower power systems.
  • a long distance is one in which the distance between electronic regenerators can be in excess of 100 to 120 km.
  • the regenerators are to be distinguished from repeaters which make use of optical amplifiers. Repeater 11
  • spacing especially in high data density systems, can be less than half the regenerator spacing.
  • FIG. 3 A particularly preferred three segment refractive index profile for use as the negative dispersion, negative slope fiber segment is illustrated in Fig. 3. This particular profile exhibits a dispersion of -35.47 ps/nm.km and slope of - 0J018 ps/nm 2 . km at 1550 nm.
  • the cutoff wavelength is 1.18 micron and pin- array bend loss of 1.3 dB, MFD of 4.8 micron and Deff of 4.68 micron at 1550 nm.
  • Fig. 4 illustrates the dispersion characteristics of achieved when a positive dispersion fiber component, in this case SMF-28, is combined with the negative dispersion fiber component of the variety disclose in Fig. 3 variety having the following parameters:
  • Table III lists the resultant dispersion and dispersion slope properties, as well as the ratio of dispersion to dispersion slope which is achieved by this combination of alternating fiber segments.
  • FIG. 5 illustrates the axial design of the resultant waveguide fiber, in terms of dispersion over waveguide length (nm.km) for the resultant dispersion flattened, dispersion managed fiber.
  • Fig. 6 illustrates the resultant total dispersion characteristics of the dispersion flattened and managed fiber.
  • L p /L n is about 2:1 in this example.
  • the period L n +L p is approximately 3 km. As can be seen in Fig. 6., for this design example, total dispersion is much less than 1 ps/nm.km, and in fact is less than about 0.5 ps/nm.km, from 1520 to 1620 nm. This is consistent with the low loss window of single mode fibers. According to the loss spectrum of a conventional single mode fiber, the attenuation is less than .22 dB/km from

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

Disclosed is a single mode optical waveguide fiber having alternating segments of positive and negative dispersion and dispersion slope. The relative indexes, the refractive index profiles and the radii of the segments are chosen to provide low total dispersion and dispersion slope. One embodiment consists of a first central major index profile (10) of outer radius r1, surrounded by a first annular segment (12) of outer radius r2, surrounded by second annular segment (14) of outer radius r3. Preferred waveguides in accordance with the invention exhibit a dispersion over the range of 1520 to 1625 nm which at all times have a magnitude which is less than 2, and more preferably less than 1 ps/nm2-km. The total dispersion of the waveguide fiber is in the range of about -2.0 to +2.0 ps/nm-km at 1550 nm. The waveguide also features a low polarization mode dispersion.

Description

LOW SLOPE DISPERSION MANAGED WAVEGUIDE
Field of the Invention The present invention is directed to a single mode optical waveguide fiber designed for long repeater spacing, high data rate telecommunication systems. In particular, the single mode waveguide combines excellent bend resistance, low attenuation, low dispersion and low dispersion slope, features that are desired for long distance transmission applications.
Technical Background The requirement in the telecommunication industry for greater information capacity over long distances, without electronic signal regeneration, has led to a reevaluation of single mode fiber index profile design.
Recent developments in erbium-doped fiber amplifiers (EDFAs) and wavelength division multiplexing have enabled high-capacity lightwave systems. In order to achieve high capacity, channel bit rate and signal wavelength ranges can be increased. When bit rate is increased beyond 2.5 Gb/s, fiber dispersion has been a major degradation for long distance. On the othar hand, if the dispersion is too low, multi-channel interactions can cause 2
four-wave mixing and degrade system performance. In order to reduce both the dispersion and FWM degradations, dispersion management has been proposed and demonstrated. Dispersion management can be achieved by both cable management where +D and -D fibers are spliced alternatively and fiber management where core canes with +D and -D properties are combined to draw into one fiber.
Thus far, dispersion managed fibers using +D and -D fibers with positive dispersion slope have been proposed wherein the final fiber dispersion has a dispersion and slope similar to dispersion-shifted fiber, in other words, net zero dispersion is in the 1550 nm window and the total dispersion slope is positive. However, there is still a need for alternative designs of dispersion managed waveguides.
Definitions The following definitions are in accord with common usage in the art.
The index of refraction profile is defined in terms of the radii of segments of similar refractive indices. A particular segment has a first and a last refractive index point. The radius from the waveguide centerline to the location of this first refractive index point is the inner radius of the core region or segment. Likewise, the radius from the waveguide centerline to the location of the last refractive index point is the outer radius of the core segment.
The segment radius may be conveniently defined in a number of ways, as will be seen in the description of Fig. 1 below. In Figs. 1-3, from which Tables 1 & 2 are derived, the radii of the index profile segments are defined as follows, where the reference is to a chart of Δ % vs. waveguide radius:
* the outer radius of central major index profile, n , is measured from the axial centerline of the waveguide to the intersection of the extrapolated central index profile with the x axis, i.e., the Δ % = 0 point;
* the outer radius, r2, of the first annular segment is measured from the axial centerline of the waveguide to the intersection of the extrapolated or actual central index profile with the x axis, i.e., the Δ % = 0 point; 3
*the outer radius, r3, of the second annular segment is measured from the axial centerline of the waveguide to the intersection of the extrapolated central index profile with the x axis, i.e., the Δ % = 0 point;;
*the outer radius of any additional annular segments is measured analogously to the outer radii of the first and second annular segments; and,
*the radius of the final annular segment is measured from the waveguide centerline to the midpoint of the segment.
The width, w, of a segment is taken to be the distance between the inner and outer radius of the segment. It is understood that the outer radius of a segment corresponds to the inner radius of the next segment.
- The relative index, Δ, is defined by the equation,
Δ% = 100 x (n-i2 - n 2)l2r\ 2, where ^ is the maximum refractive index of the index profile segment 1 , and n2 is a reference refractive index which is taken to be, in this application, the refractive index of the clad layer. - The term refractive index profile or simply index profile is the relation between
Δ % or refractive index and radius over a selected portion of the core. -The term α-profile refers to a refractive index profile expressed in terms of Δ (b) %, where b is radius, which follows the equation, Δ(b)% = Δ(b0)(1 -flb-bo^b-i-bo)]0), where b0 is the radial point at which the index is a maximum and b-i is the point at which Δ(b)% is zero and b is in the range b,
< b < bf , where delta is defined above, b, is the initial point of the α-profile, bf is the final point of the α-profile, and α is an exponent which is a real number. Other index profiles include a step index, triangular, trapezoidal, and rounded step index, in which the rounding is typically due to dopant diffusion in regions of rapid refractive index change.
- Total dispersion is defined as the algebraic sum of waveguide dispersion and material dispersion. Total dispersion is sometimes called chromatic dispersion in the art. The units of total dispersion are ps/nm-km.
- The bend resistance of a waveguide fiber is expressed as induced attenuation under prescribed test conditions. Standard test conditions include
100 turns of waveguide fiber around a 75 mm diameter mandrel and 1 turn of waveguide fiber around a 32 mm diameter mandrel. In each test condition the 4 bend induced attenuation, usually in units of dB/(unit length), is measured. In the present application, the bend test used is 5 turns of the waveguide fiber around a 20 mm diameter mandrel, a more demanding test which is required for the more severe operating environment of the present waveguide fiber.
Summary of the Invention One aspect of the present invention relates to a single mode optical waveguide comprising a first fiber component segment having a positive dispersion and a positive dispersion slope, and a second fiber component segment which has a negative dispersion and a negative dispersion slope, wherein the waveguide alternates along its length between segments of the first fiber component and the second fiber component, and wherein the first fiber component segment has a length which is at least two times the length of the second fiber component segment. The waveguide is optimized for the lower attenuation operating wavelength window around 1550 nm, i.e., in the window between about 1520 to 1625 nm.
The waveguide in accordance with the invention may be comprised of a unitary fiber having the various first and second segments therein, e.g., alternating sections of positive and negative dispersion and dispersion slope. Alternatively, the waveguide may be comprised of a cable in which the various fiber component sections are connected along the length of the cable.
Another aspect of the present invention relates to a single mode optical waveguide which manages fiber chromatic dispersion by providing a small total dispersion and a low dispersion slope. Preferred waveguides in accordance with the invention exhibit a dispersion over the range of 1520 to 1625 nm which at all times has a magnitude which is less than 2, and more preferably is less than 1 ps/nm2-km. The total dispersion of the waveguide fiber is in the range of about -2.0 to +2.0, more preferably about -1.0 to +1.0, and most preferably about -0.5 to +0.5 ps/nm-km at 1550 nm. The n, Δj %, and the refractive index profiles of the various positive and negative dispersion segments are also selected to provide a total attenuation at 1550 nm no greater than 0.25 dB/km. 5
All of these properties are achieved while maintaining high strength, good fatigue resistance, and good bend resistance, i.e., an induced bend loss no greater than about 0.5 dB, for 1 turn about a 32 mm mandrel, and no greater than .05 dB for 100 turns around a 75 mm mandrel. The waveguides in accordance with the invention are also compatible with optical amplifiers.
Also, cut off wavelength of fiber in cabled form is less than 1520 nm. An added benefit is a polarization mode dispersion less than about .5 ps/(km)1/2, more preferably less than .3 ps/(km)1/2 and typically about 0J ps/(km)1 2.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operation of the invention.
Brief Description of the Drawings
Fig. 1 illustrates a negative dispersion fiber segment profile for use in accordance with the invention.
Fig. 2 illustrates an alternative negative dispersion fiber segment index profile in accordance with the invention.
Fig. 3 illustrates an alternative and preferred negative dispersion fiber segment profile. Fig. 4 illustrates the dispersion characteristics of a alternating +D and -
D segment fiber in accordance with the invention. 6
Fig. 5 illustrates the dispersion vs. distance of a dispersion flattened and dispersion managed fiber in accordance with the invention.
Fig. 6 illustrates the dispersion vs. wavelength curve for a dispersion flattened and managed fiber in accordance with the present invention.
Detailed Description of the Preferred Embodiments Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are described with assistance by the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In the present invention, a low slope and dispersion managed fiber optical waveguide is accomplished by incorporating alternating segments of a first fiber component having a positive dispersion and positive dispersion slope, and a second fiber component having a negative dispersion and a negative dispersion slope, wherein the first fiber component has a length which is at least two times, more preferably at least three times and most preferably at least five times the length of the second fiber component.
The waveguides of the present invention may be in the form of a unitary fiber having alternating sections of positive and negative dispersion and dispersion slope. Such a fiber could be manufactured, for example, by assembling alternating core tablets having desired index profiles within a tube or other support device. The alternating core tablets would create the desired alternating positive and negative dispersion characteristics. The tube containing these alternating component tablets can then be overclad with a silica cladding layer, and the resultant preform consolidated and drawn into a continuous fiber which exhibits alternating sections of positive and negative dispersion and dispersion slope along its length. Such manufacturing techniques are further disclosed, for example, in U.S. Patent Application Serial No. 08/844,997, filed April 23, 1997, the specification and drawings of which is incorporated herein by reference in its entirety. In an alternative embodiment, the waveguide consists of a cabled waveguide. For example, the wvaeguide may consist of a first fiber component having positive dispersion and positive dispersion slope, having a length of at least 50 km, and more preferably at least 75 km in length, and the second fiber component (negative dispersion and negative dispersion slope) having a length of less than 20 km, but more preferably less than 15 km in length. Such a cabled waveguide may be disposed between amplifiers in an optical fiber communication system. The second fiber component can alternatively be placed in the amplifier side inside the amplifier or amplifier module itself. The first fiber component, i.e., that having positive dispersion and positive dispersion slope, can be provided by utilizing conventional single mode fiber, such as SMF 28 which is available from Corning Incorporated. SMF-28 has a total dispersion of 17 ps/nm.km, and a dispersion slope of 0.06 ps/nm2.km at 1550 nm. A variety of fiber profiles can be employed to provide the second fiber component which has a negative dispersion and negative dispersion slope. In a preferred embodiment of the invention, the negative component fiber segment has at three or four segments to the profile.
Fig. 1 illustrates one embodiment of such a preferred three segment profile for the negative dispersion, negative dispersion slope fiber segment component. The profile is Fig. 1 consists of a first central major index profile 10 of outer radius p,, surrounded by a first annular segment 12 of outer radius r2, surrounded by second annular segment 14 of outer radius r3. A variety of profile shapes can be employed, as illustrated, for example, by the dashed lines associated with possible profile shapes for the first central major index profile 10 in Fig. 1.
The novel single mode optical waveguide is characterized by its segmented core design that provides the unusual combination of properties set forth herein. These properties are achieved by selecting a proper refractive index profile shape of each of the segments and selecting the appropriate relative refractive index delta, Δs %, and radial extent, π, of the segments. The profile parameters are known to interact. For example, a center region α- profile having an α of about 1 , will have a radius different from a center region having a trapezoidal index to provide fibers having essentially identical properties.
The index profiles of the respective segments can be virtually any particular shape, including an α-profile, a step index profile, or a trapezoidal profile. Unless special steps are inserted in the process, the refractive index profiles will be rounded at points where the refractive index changes sharply. The rounding is due to diffusion of the dopant materials used to change the base glass refractive index. Thus any of these index profiles may be rounded at particular points. For example, a step index profile, having a positive Δ% will typically have rounded upper and lower corners.
Set forth below in Table 1 are preferred parameters for radius vs. delta for a 3 segment profile which may be used to form a negative dispersion, negative dispersion slope fiber segment for use in the present invention. As can be seen in the table, the fiber may or may not include a central recessed index area, such as is commonly caused by migration of the germania dopant.
Table 1
Radius (micron) Delta (%) r. 1.25 - 5 0.5 - 2 r2 1.25 - 10 -0.5 - -0.1 r3 2.5 - 15 0.1 - 1.0
Figure imgf000010_0001
A core segment tablet of the negative dispersion fiber illustrated in Fig.
1 was combined with conventional single mode fiber (SMF28) having a positive dispersion and positive dispersion slope and drawn into a fiber. The fiber illustrated by solid line in Fig. 1 exhibits a negative dispersion, i.e., about -35 ps/nm.km and a dispersion slope of about .15 ps/nm2.km at 1550 nm. Thus, in this case, (DS F/SS F) = 17/0.06 = 280, whereas (Dn/Sn) = -35/.15 = -233.
Consequently, (Dp/Sp)/(Dn/Sn) = .83, which is quite close to 1 , as is desirable.
Fig. 2 illustrates such a four segment fiber core profile which is useful as a negative dispersion slope dispersion fiber segment in accordance with the invention. The profile illustrated in Fig. 2 incorporates two index depressed regions 12 and 16.
Set forth below in Table II are preferred parameters for radius vs. delta for various such four segment profiles which may be used to form the negative dispersion, negative dispersion slope fiber segment which may be used in the present invention.
Table
Radius (micron) Delta (%) r. 1.25 - 5 0.5 - 2 r2 1.25 - 10 -0.5 - -0.1 r3 2.5 - 15 0.1 - 1.0
5 - 25 -0.5 - 0
Figure imgf000011_0001
Any of the profiles disclosed herein may also include a centerline dip section, which is an area of depressed relative refractive index which is less than the peak delta of the first major core segment. Such centerline dips are commonly caused by so called burn-out, or migration of dopant ions, which sometimes occurs during manufacture of optical fiber waveguides. The waveguides in accordance with the invention preferably exhibit a dispersion over the range of 1520 to 1625 nm which at all times has a magnitude which is less than 2, and more preferably less than 1 ps/nm2-km. The total dispersion of the waveguide fiber is in the range of about -2.0 to +2.0, more preferably about -1.0 to +1.0, and most preferably about -0.5 to +0.5 ps/nm-km at 1550 nm. The π, Δι %, and the refractive index profiles of the various positive and negative dispersion segments are also selected to provide a total attenuation at 1550 nm no greater than 0.25 dB/km.
All of these properties are achieved while maintaining high strength, good fatigue resistance, and good bend resistance, i.e., an induced bend loss no greater than about 0.5 dB, for 1 turn about a 32 mm mandrel, and no greater than .05 dB for 100 turns around a 75 mm mandrel. The waveguides in accordance with the invention are also compatible with optical amplifiers. 10
Also, cut off wavelength of fiber in cabled form is less than 1520 nm. An added benefit is a polarization mode dispersion less than about .5 ps/(km) 1/2 more preferably less than .3 ps/(km) .1/2
One particularly preferred dispersion managed waveguide of the present invention manages fiber chromatic dispersion by providing a negative total dispersion as well as a low dispersion slope. In systems in which the suppression of potential soliton formation is important, it is desirable that the total dispersion of the waveguide fiber be negative, so that the linear dispersion cannot counteract the non-linear self phase modulation which occurs for high power signals.
To equalize fiber chromatic dispersion the following relation should preferably be satisfied as closely as possible:
DpLp + DnLn = 0, where D and L stand for dispersion and fiber length, the subscripts "p" and "n" stand for positive and negative dispersion fiber components. Furthermore, in order to equalize the dispersion slope, the following relation should preferably be satisfied as closely as possible:
(Dp/Sp)/(Dn/Sn) = 1 , where S is the dispersion slope.
The waveguides described herein are suitable for use in high power and long distance transmission applications, including conventional RZ (return to zero) or NRZ (non-return to zero), as well as soliton transmission applications. The definition of high power and long distance is meaningful only in the context of a particular telecommunication system wherein a bit rate, a bit error rate, a multiplexing scheme, and perhaps optical amplifiers are specified. There are additional factors, known to those skilled in the art, which have impact upon the meaning of high power and long distance. However, for most purposes, high power is an optical power greater than about 10 mW per channel. In some applications, signal power levels of 1 mW or less are still sensitive to non-linear effects, so that Aeff is still an important consideration in such lower power systems.
A long distance is one in which the distance between electronic regenerators can be in excess of 100 to 120 km. The regenerators are to be distinguished from repeaters which make use of optical amplifiers. Repeater 11
spacing, especially in high data density systems, can be less than half the regenerator spacing.
The invention will be further clarified by the following example which is intended to be exemplary of the invention.
EXAMPLE
A particularly preferred three segment refractive index profile for use as the negative dispersion, negative slope fiber segment is illustrated in Fig. 3. This particular profile exhibits a dispersion of -35.47 ps/nm.km and slope of - 0J018 ps/nm2. km at 1550 nm. The cutoff wavelength is 1.18 micron and pin- array bend loss of 1.3 dB, MFD of 4.8 micron and Deff of 4.68 micron at 1550 nm.
Fig. 4 illustrates the dispersion characteristics of achieved when a positive dispersion fiber component, in this case SMF-28, is combined with the negative dispersion fiber component of the variety disclose in Fig. 3 variety having the following parameters:
Delta (%) Radius (μm)
Core 2 2.2 (n)
First moat -0.4 5.76 (r2)
Ring 0.6 6.72 (r3)
Figure imgf000013_0001
Table III below lists the resultant dispersion and dispersion slope properties, as well as the ratio of dispersion to dispersion slope which is achieved by this combination of alternating fiber segments.
Table
+D Fiber -D Fiber
D (ps/nm.km) 17 -35
S (ps/nm2.km) 0.058 -0.1018
D/S (nm) 293 350
Figure imgf000013_0002
Fig. 5 illustrates the axial design of the resultant waveguide fiber, in terms of dispersion over waveguide length (nm.km) for the resultant dispersion flattened, dispersion managed fiber.
Fig. 6 illustrates the resultant total dispersion characteristics of the dispersion flattened and managed fiber. Lp/Ln is about 2:1 in this example.
The period Ln+Lp is approximately 3 km. As can be seen in Fig. 6., for this design example, total dispersion is much less than 1 ps/nm.km, and in fact is less than about 0.5 ps/nm.km, from 1520 to 1620 nm. This is consistent with the low loss window of single mode fibers. According to the loss spectrum of a conventional single mode fiber, the attenuation is less than .22 dB/km from
1520 to 1620 nm.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims

WHAT IS CLAIMED IS:
1. A single mode optical waveguide comprising: a first fiber component having positive dispersion and positive dispersion slope and a second fiber component having a negative dispersion and a negative dispersion slope.
2. The waveguide of claim 1 , wherein said first fiber component has a length which is at least two times the length of said second fiber component.
3. The waveguide of claim 1 , wherein said first fiber component has a length which is at least five times the length of said second fiber component.
4. The waveguide of claim 1 , wherein the first and second fiber components are selected so that said waveguide exhibits a dispersion over the range of 1520 to 1625 nm which at all times has a magnitude which is less than 2 ps/nm2-km.
5. The waveguide of claim 1 , wherein the first and second fiber components are selected so that said waveguide exhibits a dispersion over the range of 1520 to 1625 nm which at all times has a magnitude which is less than 1 ps/nm2-km.
6. The waveguide of claim 1 , wherein the first and second fiber components are selected so that said waveguide exhibits a total dispersion in the range of about -2.0 to +2.0 ps/nm-km at 1550 nm.
7. The waveguide of claim 1 , wherein the first and second fiber components are selected so that said waveguide exhibits a total dispersion in the range of about -2.0 to 0.0 ps/nm-km at 1550 nm.
8. The waveguide of claim 7, wherein said waveguide exhibits an induced bend loss no greater than about 0.5 dB, for 1 turn about a 32 mm mandrel, a cut off wavelength of fiber in cabled form is less than 1520 nm, and a polarization mode dispersion less than about .5 ps/(km)1/2
9. The waveguide of claim 1 , wherein said waveguide comprises a cabled waveguide, and said waveguide is disposed between amplifiers, and said first component is at least 50 km in length, and said second fiber component is less than 20 km in length.
10. The waveguide of claim 1 , wherein said waveguide comprises a cabled waveguide, and said waveguide is disposed between amplifiers, and said first component is at least 75 km in length, and said second fiber component is less than 15 km in length.
11. The waveguide of claim 1 , wherein said first fiber component comprises single mode fiber having a step index profile.
12. The single mode optical fiber of claim 11 , wherein said second fiber component comprises a core having at least three segments, wherein the first segment has an outer radius n in the range of about 1.25 to 5.0 μm a Δi % in the range of about 0.5 to 2.0 %, the second segment has an outer radius r2 in the range of about 1.25 to 10.0 μm and a Δ2 % in the range of about -0.5 to about -0J %, and the third second segment has an outer radius r3 in the range of about 2.5 to 15.0 μm and a Δ3 % in the range of about 0J to about 1.0 %.
13. The single mode optical fiber of claim 12, wherein said second fiber component further comprises a fourth segment having an outer radius r2 in the range of about 5.0 to 25.0 μm a Δ2 % in the range of about -0.5 to -0.05 %.
14. A single mode optical waveguide comprising: a first fiber component having positive dispersion and positive dispersion slope and a second fiber component having a negative dispersion and a negative dispersion slope, wherein said first fiber component has a length which is at least two times the length of said second fiber component, and the profiles of the first and second fiber components are selected so that said waveguide exhibits a dispersion over the range of 1520 to 1625 nm which at all times has a magnitude which is less than 2 ps/nm2-km.
15. The waveguide of claim 14, wherein said first fiber component has a length which is at least five times the length of said second fiber component.
16. The waveguide of claim 15, wherein the first and second fiber components are selected so that said waveguide exhibits a dispersion over the range of 1520 to 1625 nm which at all times has a magnitude which is less than 1 ps/nm2-km.
17. The waveguide of claim 14, wherein the first and second fiber components are selected so that said waveguide exhibits a total dispersion in the range of about -2.0 to +2.0 ps/nm-km at 1550 nm.
18. The waveguide of claim 17, wherein said first fiber component comprises single mode fiber having a step index profile, and said second fiber component comprises a core having at least three segments, wherein the first segment has an outer radius n in the range of about 1.25 to 5.0 μm a Δi % in the range of about 0.5 to 2.0 %, the second segment has an outer radius r2 in the range of about 1.25 to 10.0 μm and a Δ2 % in the range of about -0.5 to about -0.1
%, and the third second segment has an outer radius r3 in the range of about 2.5 to 15.0 μm and a Δ3 % in the range of about 0.1 to about 1.0 %.
19. The single mode optical fiber of claim 1 , wherein the second fiber component is retained within an optical amplifier.
PCT/US1999/003403 1998-02-23 1999-02-17 Low slope dispersion managed waveguide WO1999042869A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP99913812A EP1066540A4 (en) 1998-02-23 1999-02-17 Low slope dispersion managed waveguide
AU31805/99A AU750557B2 (en) 1998-02-23 1999-02-17 Low slope dispersion managed waveguide
JP2000532749A JP4208415B2 (en) 1998-02-23 1999-02-17 Low gradient dispersion management waveguide
CA002318423A CA2318423A1 (en) 1998-02-23 1999-02-17 Low slope dispersion managed waveguide
BR9907943-7A BR9907943A (en) 1998-02-23 1999-02-17 Waveguide checked for low tilt dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7575498P 1998-02-23 1998-02-23
US60/075,754 1998-02-23

Publications (1)

Publication Number Publication Date
WO1999042869A1 true WO1999042869A1 (en) 1999-08-26

Family

ID=22127778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/003403 WO1999042869A1 (en) 1998-02-23 1999-02-17 Low slope dispersion managed waveguide

Country Status (9)

Country Link
EP (1) EP1066540A4 (en)
JP (1) JP4208415B2 (en)
KR (1) KR100703246B1 (en)
CN (1) CN1120379C (en)
AU (1) AU750557B2 (en)
BR (1) BR9907943A (en)
CA (1) CA2318423A1 (en)
ID (1) ID27455A (en)
WO (1) WO1999042869A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081514A1 (en) * 1999-09-02 2001-03-07 Alcatel Optical fibre for compensating the chromatic dispersion of a positive chromatic dispersion optical fibre
DE10010783A1 (en) * 2000-03-04 2001-09-06 Deutsche Telekom Ag Single-mode optical fibre, has refractive index in second radial section that is less than that of outer section
US6301419B1 (en) 1998-12-03 2001-10-09 Sumitomo Electric Industries, Ltd. Dispersion-equalizing optical fiber and optical transmission line including the same
FR2815420A1 (en) * 2000-10-16 2002-04-19 Cit Alcatel Fibre optic mean/peak chromatic dispersion compensation having line fibre section and compensation section with specific compensation derived relationship chromatic dispersion/derivation over line fibre section/wavelength field.
FR2815418A1 (en) * 2000-10-16 2002-04-19 Cit Alcatel Optical fibre for chromatic dispersion compensation, uses rectangular profile step index with slice to provide negative chromatic dispersion
EP1202088A1 (en) * 2000-10-26 2002-05-02 Alcatel Dispersion compensating fiber for the compensation of an optical fiber transmission line with positive chromatical dispersion
WO2002054632A1 (en) * 2000-12-28 2002-07-11 Pirelli S.P.A. Dispersion-managed optical soliton transmission system
EP1249721A2 (en) * 2001-04-13 2002-10-16 The Furukawa Electric Co., Ltd. Dispersion management optical transmission system and optical transmission line
FR2828939A1 (en) * 2001-08-27 2003-02-28 Cit Alcatel OPTICAL FIBER FOR WAVELENGTH MULTIPLEXING TRANSMISSION SYSTEM
US6556758B2 (en) 1999-04-16 2003-04-29 Sumitomo Electric Industries, Ltd. Optical fiber and optical transmission line including the same
WO2003071325A1 (en) * 2002-02-15 2003-08-28 Corning Incorporated Low slope dispersion shifted optical fiber
US6618532B1 (en) 1999-09-17 2003-09-09 Sumitomo Electric Industries, Ltd. Optical transmission line
US6640038B2 (en) 2000-05-31 2003-10-28 Corning Incorporated Dispersion managed fibers having reduced sensitivity to manufacturing variabilities
JP2004500603A (en) * 2000-03-30 2004-01-08 コーニング・インコーポレーテッド Dispersion gradient compensated optical waveguide fiber
EP1382981A1 (en) * 2002-07-18 2004-01-21 Alcatel Dispersion managed optical fiber
US6768847B2 (en) 2002-03-15 2004-07-27 Fitel Usa Corp. Dispersion compensating module and fiber for control of residual dispersion
JP2004530345A (en) * 2001-03-30 2004-09-30 コーニング・インコーポレーテッド Optical transmission line and optical transmission system using the same
US7151880B2 (en) 2000-12-28 2006-12-19 Prysmian Cavi E Sistemi Energia S.R.L. Dispersion-managed optical soliton transmission system
EP1855130A1 (en) 2002-10-07 2007-11-14 Draka comteq B.V. Optical fibre with chromatic dispersion compensation.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408834B2 (en) * 2003-10-03 2014-02-05 ドラカ・コムテツク・ベー・ベー Chromatic dispersion compensating optical fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778128A (en) * 1996-02-16 1998-07-07 Corning Incorporated Symmetric, dispersion-managed fiber optic cable and system
US5781684A (en) * 1996-12-20 1998-07-14 Corning Incorporated Single mode optical waveguide having large effective area

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448674A (en) * 1992-11-18 1995-09-05 At&T Corp. Article comprising a dispersion-compensating optical waveguide
AU693329B2 (en) * 1995-04-13 1998-06-25 Corning Incorporated Dispersion managed optical waveguide
US5611016A (en) * 1996-06-07 1997-03-11 Lucent Technologies Inc. Dispersion-balanced optical cable
CA2221737A1 (en) * 1996-07-31 1998-01-31 Corning Incorporated Dispersion compensating single mode waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778128A (en) * 1996-02-16 1998-07-07 Corning Incorporated Symmetric, dispersion-managed fiber optic cable and system
US5781684A (en) * 1996-12-20 1998-07-14 Corning Incorporated Single mode optical waveguide having large effective area

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1066540A4 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301419B1 (en) 1998-12-03 2001-10-09 Sumitomo Electric Industries, Ltd. Dispersion-equalizing optical fiber and optical transmission line including the same
US6556755B2 (en) 1998-12-03 2003-04-29 Sumitomo Electric Industries, Ltd. Dispersion-equalizing optical fiber and optical transmission line including the same
US6556758B2 (en) 1999-04-16 2003-04-29 Sumitomo Electric Industries, Ltd. Optical fiber and optical transmission line including the same
US6510268B1 (en) 1999-09-02 2003-01-21 Alcatel Optical fiber for compensating the chromatic dispersion of an optical fiber having positive chromatic dispersion
WO2001016631A1 (en) * 1999-09-02 2001-03-08 Alcatel Optical fibre for compensating chromatic dispersion of an optical fibre with positive chromatic dispersion
FR2799006A1 (en) * 1999-09-02 2001-03-30 Cit Alcatel OPTICAL FIBER FOR ONLINE COMPENSATION OF THE CHROMATIC DISPERSION OF AN OPTICAL FIBER WITH POSITIVE CHROMATIC DISPERSION
EP1081514A1 (en) * 1999-09-02 2001-03-07 Alcatel Optical fibre for compensating the chromatic dispersion of a positive chromatic dispersion optical fibre
JP2003508801A (en) * 1999-09-02 2003-03-04 アルカテル Optical fiber for compensating chromatic dispersion of optical fiber having positive chromatic dispersion
US6618532B1 (en) 1999-09-17 2003-09-09 Sumitomo Electric Industries, Ltd. Optical transmission line
DE10010783A1 (en) * 2000-03-04 2001-09-06 Deutsche Telekom Ag Single-mode optical fibre, has refractive index in second radial section that is less than that of outer section
US6701052B2 (en) 2000-03-30 2004-03-02 Corning Incorporated Dispersion slope compensating optical waveguide fiber
US6829422B2 (en) 2000-03-30 2004-12-07 Corning Incorporated Dispersion slope compensating optical waveguide fiber
JP2004500603A (en) * 2000-03-30 2004-01-08 コーニング・インコーポレーテッド Dispersion gradient compensated optical waveguide fiber
US6640038B2 (en) 2000-05-31 2003-10-28 Corning Incorporated Dispersion managed fibers having reduced sensitivity to manufacturing variabilities
FR2815418A1 (en) * 2000-10-16 2002-04-19 Cit Alcatel Optical fibre for chromatic dispersion compensation, uses rectangular profile step index with slice to provide negative chromatic dispersion
EP1213595A3 (en) * 2000-10-16 2002-07-24 Alcatel Chromatic dispersion compensation in a fiber transmission system and compensation fiber
EP1217399A1 (en) * 2000-10-16 2002-06-26 Alcatel Optical fiber for chromatic dispersion compensation of a NZ-DSF-fiber with positive chromatic dispersion
FR2815420A1 (en) * 2000-10-16 2002-04-19 Cit Alcatel Fibre optic mean/peak chromatic dispersion compensation having line fibre section and compensation section with specific compensation derived relationship chromatic dispersion/derivation over line fibre section/wavelength field.
EP1213595A2 (en) * 2000-10-16 2002-06-12 Alcatel Chromatic dispersion compensation in a fiber transmission system and compensation fiber
US6668120B2 (en) 2000-10-16 2003-12-23 Alcatel Fiber for compensating the chromatic dispersion of an NZ-DSF having positive chromatic dispersion
FR2816065A1 (en) * 2000-10-26 2002-05-03 Cit Alcatel OPTICAL FIBER FOR ONLINE COMPENSATION OF THE CHROMATIC DISPERSION OF A POSITIVE CHROMATIC DISPERSION OPTICAL FIBER
EP1202088A1 (en) * 2000-10-26 2002-05-02 Alcatel Dispersion compensating fiber for the compensation of an optical fiber transmission line with positive chromatical dispersion
US6763168B2 (en) 2000-10-26 2004-07-13 Alcatel Optical fiber for in-line compensation of chromatic dispersion in an optical fiber with positive chromatic dispersion
WO2002054632A1 (en) * 2000-12-28 2002-07-11 Pirelli S.P.A. Dispersion-managed optical soliton transmission system
US7151880B2 (en) 2000-12-28 2006-12-19 Prysmian Cavi E Sistemi Energia S.R.L. Dispersion-managed optical soliton transmission system
JP2004530345A (en) * 2001-03-30 2004-09-30 コーニング・インコーポレーテッド Optical transmission line and optical transmission system using the same
EP1249721A3 (en) * 2001-04-13 2004-12-08 The Furukawa Electric Co., Ltd. Dispersion management optical transmission system and optical transmission line
EP1249721A2 (en) * 2001-04-13 2002-10-16 The Furukawa Electric Co., Ltd. Dispersion management optical transmission system and optical transmission line
EP1288685A1 (en) * 2001-08-27 2003-03-05 Alcatel Optical fibre for a wavelength division multiplexing transmission system
FR2828939A1 (en) * 2001-08-27 2003-02-28 Cit Alcatel OPTICAL FIBER FOR WAVELENGTH MULTIPLEXING TRANSMISSION SYSTEM
US6819850B2 (en) 2001-08-27 2004-11-16 Alcatel Optical fiber for a wavelength division multiplex transmission system
US7050687B2 (en) 2002-02-15 2006-05-23 Corning Incorporated Low slope dispersion shifted optical fiber
WO2003071325A1 (en) * 2002-02-15 2003-08-28 Corning Incorporated Low slope dispersion shifted optical fiber
US6768847B2 (en) 2002-03-15 2004-07-27 Fitel Usa Corp. Dispersion compensating module and fiber for control of residual dispersion
US6928222B2 (en) 2002-07-18 2005-08-09 Alcatel Dispersion managed optical fiber
FR2842610A1 (en) * 2002-07-18 2004-01-23 Cit Alcatel OPTICAL FIBER WITH DISPERSION MANAGEMENT
EP1382981A1 (en) * 2002-07-18 2004-01-21 Alcatel Dispersion managed optical fiber
EP1855130A1 (en) 2002-10-07 2007-11-14 Draka comteq B.V. Optical fibre with chromatic dispersion compensation.
EP1855130B1 (en) * 2002-10-07 2011-05-18 Draka Comteq B.V. Optical fibre with chromatic dispersion compensation.

Also Published As

Publication number Publication date
EP1066540A1 (en) 2001-01-10
CN1288523A (en) 2001-03-21
KR100703246B1 (en) 2007-04-03
JP4208415B2 (en) 2009-01-14
AU750557B2 (en) 2002-07-25
ID27455A (en) 2001-04-12
CA2318423A1 (en) 1999-08-26
BR9907943A (en) 2000-10-24
EP1066540A4 (en) 2005-05-18
CN1120379C (en) 2003-09-03
KR20010041230A (en) 2001-05-15
AU3180599A (en) 1999-09-06
JP2002504702A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
US6421490B1 (en) Low slope dispersion managed waveguide
KR100694365B1 (en) Positive dispersion low dispersion slope fiber
AU750557B2 (en) Low slope dispersion managed waveguide
JP3212851B2 (en) Single mode optical waveguide fiber
JP2004246375A6 (en) Positive dispersion low dispersion gradient fiber
US6961500B2 (en) Dispersion and slope compensating optical fiber and transmission link including same
JP2001527655A (en) Dispersion management optical fiber
JP5112582B2 (en) Fiber for chromatic dispersion compensation of NZ-DSF fiber with positive chromatic dispersion
US6343176B1 (en) Long haul single mode waveguide
US6888993B2 (en) Dispersion compensating optical fiber for SMF and transmission link including same
WO2007005332A2 (en) Non-zero dispersion shifted optical fiber
JP2004519701A (en) Optical fiber with large effective area, low dispersion and low dispersion slope
WO2000007048A1 (en) Long haul single mode waveguide
EP0984305A1 (en) Long haul single mode waveguide fiber
AU4703599A (en) Single mode optical waveguide
JPH11223741A (en) Distributed flat optical fiber
EP1259840A1 (en) Optical fiber for wdm transmission
MXPA00008215A (en) Low slope dispersion managed waveguide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802285.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 31805/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1999913812

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 532749

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2318423

Country of ref document: CA

Ref document number: 2318423

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/008215

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020007009320

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999913812

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007009320

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 31805/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007009320

Country of ref document: KR