WO1999042723A1 - Technologies on vertical axis windmill effectively utilizing wind force energy by rotating its blades - Google Patents

Technologies on vertical axis windmill effectively utilizing wind force energy by rotating its blades Download PDF

Info

Publication number
WO1999042723A1
WO1999042723A1 PCT/JP1999/000527 JP9900527W WO9942723A1 WO 1999042723 A1 WO1999042723 A1 WO 1999042723A1 JP 9900527 W JP9900527 W JP 9900527W WO 9942723 A1 WO9942723 A1 WO 9942723A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind direction
wind
blade
windmill
blades
Prior art date
Application number
PCT/JP1999/000527
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiko Yoshino
Original Assignee
Takahiko Yoshino
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takahiko Yoshino filed Critical Takahiko Yoshino
Priority to AU21873/99A priority Critical patent/AU2187399A/en
Publication of WO1999042723A1 publication Critical patent/WO1999042723A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • F03D3/068Cyclic movements mechanically controlled by the rotor structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention is a technique for making “vertical axis wind turbines that effectively use wind energy by rotating blades” more widely available. By using this technology, this windmill can be widely used for wind power generation. Background art
  • Wind turbines have evolved around horizontal axis wind turbines. Although wind turbines have entered the practical stage, this technology alone was not sufficient in terms of the diversity and adaptability of wind turbines in order to fully expand the use of natural energy.
  • the problem to be solved by the present invention is the technical element and safety of the applicant's Japanese patent application No. Hei 9-2099591, ⁇ Vertical axis wind turbine that effectively uses wind energy by rotating blades ''.
  • the aim is to establish the applicability and to apply this technology in earnest.
  • the position of the main bevel gear is separated from the wind turbine main shaft, and the top of the wind turbine main shaft is used.
  • the design of the main shaft of the wind turbine and the incorporation of a mechanism to respond to the wind direction of the blade to the blade support arm can be achieved.
  • the blade wind direction response mechanism can be simplified.
  • a simple way to control the rotation speed of the windmill is to stagger the initial settings of the windmill blades that generate the torque. If the displaced object is returned to its original state, the rotational state will return to its original state. By using this principle, the rotation of the windmill can be adjusted. Also, by making the blades free and parallel to the wind, the receiving pressure area can be minimized and rotation can be stopped.
  • the wind direction indicator tail When the wind direction indicator tail is attached to the main bevel gear, the wind direction is specified, and the bevel gear stops at that state. Therefore, the posture of each blade is set to the optimum state for generating the rotational force. This is the default setting for the blade. With this, the rotational force acts to start the windmill. During the rotation in the same wind direction, the optimal initial state of the blade is maintained.
  • the wind direction indicator tail specifies the new wind direction, so the main bevel gear rotates by that amount, and each blade rotates to correspond to the new wind direction.
  • the relationship between the new wind direction and the blade attitude is the same as the initial setting. Therefore, even if the wind direction changes, the rotation of the windmill is maintained as it is.
  • the main bevel gear rotates, it also has the effect of rotating the wind turbine rotor, but if the rotary inertia of the wind turbine rotor is made much larger than that of the blades, there is almost no effect on the rotation of the wind turbine. A change in wind direction appears only as a change in blade attitude.
  • the blades are symmetrical, lightweight, and rotate at half the speed of a windmill, so the torque required to rotate them is small.
  • This mechanism is designed to reduce the blade torque. Therefore, the blade wind direction response mechanism can transmit motion using small gears.
  • the main bevel gear is installed on the wind turbine main shaft, the gear cannot be downsized due to the restriction of the main shaft diameter. Therefore, if the main bevel gear is installed on the windmill main shaft, the restriction is eliminated and the size can be reduced. And the response performance of the wind turbine blades to the wind is also improved.
  • the separation of the main bevel gear from the wind turbine main shaft eliminates restrictions on the main shaft design and makes the design smoother.
  • each wind direction designation tail can specify the wind direction and control the attitude of the blade.
  • each wind direction designated tail is affected by windmill rotation. This is because wind generated in the circumferential direction of the windmill rotation speed is added. This is a crosswind that becomes maximum in the direction opposite to the direction of rotation at the windward and leeward sides of the windmill rotation surface, and becomes zero in the middle. This changes the inclination of the blade with respect to the wind, and corrects the attitude so that the pitch of the blade that cuts off the wind by cross flow is reduced. This acts to increase the rotation speed of the blade.
  • the rotation speed increases, the circumferential speed of the windmill exceeds the wind speed, and a reversal of the wind direction occurs where the wind flow and the circumferential speed of the windmill are parallel.
  • the tails now turn in the opposite direction, and as a result, the blades rotate 90 degrees, at which point the blades that were orthogonal to the wind flow become parallel. In this way, the windmill can rotate at a speed higher than the wind speed.
  • Each blade arranged on the circumference of the windmill continues to generate rotational force while maintaining the initial setting.
  • the optimal arrangement of the initial blade positions is performed based on the wind direction. If this setting standard deviates from the actual wind direction, the optimal posture of the blade against the wind deviates, so that the torque generated by the wind decreases and the rotation of the windmill decreases.
  • the speed of the wind turbine can be adjusted using this principle.
  • a simple way to shift the initial setting of the blade is to rotate the shaft of the main bevel gear linked to the already set blade below the shaft of the wind direction tail. This is a simple way to remove the optimal initial settings of the blade.
  • the mechanism of proper rotation of the shaft and its restoration is easy to configure and enables continuous wind turbine speed adjustment.
  • the rotation function of the windmill is generated because the attitude of the blade is constrained to a reference having a constant wind direction through a gear transmission mechanism. Therefore, if the gears are released, the control of the blades is lost and the function of continuously rotating the windmill is lost. If the unbound blades are parallel to the streamline of the wind, the wind pressure experienced by the windmill will be minimal. If the main bevel gear is removed from the engagement, all the blades will be released from the constraint with one touch. Also, this mechanism is convenient for releasing the blade once, adjusting the direction of each blade, setting the main bevel gear, and completing the blade setting.
  • FIG. 1 is a front view of a wind direction response mechanism.
  • FIG. 2 is a plan view of a wind direction response mechanism.
  • FIG. 3 is a front view of a blade axis side wind direction response mechanism.
  • FIG. 4 is a front view of a blade axis wind direction response mechanism.
  • FIG. 5 is a principle diagram of a speed adjusting mechanism.
  • Fig. 6 is a principle diagram of the blade free mechanism.
  • Support arm 8 Transmission shaft
  • Transmission bevel gear A 10. Transmission bevel gear B
  • the blades are set free, and the blades are optimally set based on the direction of the tail supporting the wind direction.
  • the wind direction indicator wing moves, specifies the wind direction, rotates in conjunction with the bevel gear, and the blade takes the optimal position to catch the wind.
  • the windmill starts and rotates.
  • the function of the blade to respond to the wind direction is very good. Even if the wind direction changes, the blades respond to the wind and the torque of the windmill continues smoothly and the rotation continues.
  • the miniaturized and built-in blade wind direction response mechanism makes it easy to manufacture windmills.
  • the miniaturized wind direction response mechanism improves the wind direction response performance of the wind turbine blades and improves the wind energy conversion efficiency of the wind turbine.
  • the wind direction response mechanism which is attached to each blade, is greatly reduced in size and simplicity, and the wind direction response is very good.
  • the ability of the blades to respond to the wind has expanded, and it has become possible to cope with high-speed rotation of the windmill. This also reduces the cost of manufacturing the windmill.
  • a large wind turbine for power generation is used to directly generate AC power and connect it to the grid current for transmission. If there is a possibility that the high-speed rotation may destroy the wind turbine, this mechanism can function as a reduction gear.
  • a multi-layer wind turbine was constructed by using pipes and the like to create a framework that houses the individual wind turbines and supports the wind turbine main shaft, and installs the wind turbines in the framework. The main shafts of overlapping wind turbines are connected and shared. The blade wind direction response mechanism is attached to each wind turbine, but if they are shared, the multiple wind turbines function like a single wind turbine. When such multi-layered and multi-layered wind turbines are juxtaposed, the wind turbine support structure and the wind turbine house are arranged so as to juxtapose the annual prevailing wind flow at the installation site.
  • this windmill is that even if the wind direction changes, the rotation plane of the windmill remains the same and the rotation continues, so that there is no energy loss.
  • the response to the wind direction is very high, it is light and has the characteristics of an omnidirectional wind turbine that can respond to any wind direction. This always changes the plane of rotation depending on the wind direction, losing energy each time This characteristic is not found in propeller type wind turbines. Therefore, this windmill can respond to winds with large changes, terrain and buildings, such as building winds. What makes this excellent characteristic is the blade wind direction response mechanism.
  • this mechanism is mounted on the upper part, compacted and built into the support arm.
  • this system which separates and separates this mechanism into each blade, achieves the goal that has been the ultimate goal of wind turbine development in that it has a large torque and starts at a low wind speed, and can respond to low to high speed rotation. are doing.
  • the provision of a mechanism to control the speed makes this vertical axis wind turbine a practical wind turbine with high applicability in all directions.
  • the shape and dynamics of the windmill which softens the rigidity of the windmill and makes it more intimate, are indispensable for the spread of the windmill in the future.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

Technologies which use a vertical axis windmill effectively utilizing wind force energy by rotating its blades as a convenient and highly efficient windmill with extensive scope of application, wherein the wind direction response mechanism of blades which does not need a wind direction follow-up by a windmill main body and is high in responsiveness is structured so that it converts a directional change of a wind direction supporting tail unit into the directional change of the blades. The mechanism is incorporated in a blade supporting arm to protect it and simplify the windmill and disposed distributedly to each blade for compactness, and windmill functions are expanded so that they can meet the requirements for increased revolution speed of the windmill. In addition, deviated optimum settings of blade directions provide those technologies which increase the performance and scope of application of the windmill such as a speed control method to reduce torque and a blade direction resetting method.

Description

明細書 羽根を自転させ風力エネルギーを有効利用する垂直軸風車に関する技術 技術分野  Technical description of a vertical axis wind turbine that makes use of wind energy by rotating blades
本発明は 「羽根を自転させて風のエネルギーを有効利用する垂直軸風車」 をよ り広く利用できるものにするための技術である。 この技術を使用することによつ て、 この風車は風力発電などに広く利用できる。 背景技術  The present invention is a technique for making “vertical axis wind turbines that effectively use wind energy by rotating blades” more widely available. By using this technology, this windmill can be widely used for wind power generation. Background art
風車は、 水平軸風車を中心に発展してきた。 風車は実用の段階に入ったが、 自 然エネルギー利用を本格的に拡大するためには、 この技術だけという状態では、 風車の多様性、 適応性という点で不十分であつた。  Wind turbines have evolved around horizontal axis wind turbines. Although wind turbines have entered the practical stage, this technology alone was not sufficient in terms of the diversity and adaptability of wind turbines in order to fully expand the use of natural energy.
本発明の課題は、 出願人本人の日本国出願の特願平 9一 2 0 9 5 9 1、 「羽根 を自転させて風のエネルギーを有効利用する垂直軸風車」 の技術的要素と安全性、 応用性を確立し、 この技術の本格的応用を図るものである。  The problem to be solved by the present invention is the technical element and safety of the applicant's Japanese patent application No. Hei 9-2099591, `` Vertical axis wind turbine that effectively uses wind energy by rotating blades ''. The aim is to establish the applicability and to apply this technology in earnest.
風向が変化する場合、 水平軸風車のように垂直軸風車の口一夕全体を風の方向 に向けるか、 羽根の向きだけを変えるかである。 この場合、 羽根の向きを変化さ せて、 風に適応させる。  When the wind direction changes, it is necessary to direct the entire mouth of the vertical axis windmill like the horizontal axis windmill to the wind direction or to change only the direction of the blade. In this case, the direction of the blade is changed to adapt to the wind.
また、 主傘歯車の設置位置を、 風車主軸と切り離して、 風車主軸頂部とし、 傘 歯車を主体とした羽根の風向応答機構を独立して考えることで、 傘歯車の小型化、 製作の簡略化を図ると同時に、 風車主軸の設計、 羽根支持腕への羽根の風向応答 機構の内蔵化などを図ることができる。  In addition, the position of the main bevel gear is separated from the wind turbine main shaft, and the top of the wind turbine main shaft is used. At the same time, the design of the main shaft of the wind turbine and the incorporation of a mechanism to respond to the wind direction of the blade to the blade support arm can be achieved.
また、 主傘歯車を 4個に分割し、 それぞれを、 各羽根の近くに持ってくると考 えることによって、 羽根風向応答機構の簡略化を図ることができる。  Also, by dividing the main bevel gear into four parts and bringing each part near each blade, the blade wind direction response mechanism can be simplified.
また、 風車の回転速度をコントロールする簡潔な方法は、 回転力を発生させる 風車の羽根の初期設定をずらすことである。 ずらしたものを元に戻せば回転状態 が元に戻るので、 この原理を利用すれば、 風車の回転を調整することができる。 また、 羽根をフリーにして風と平行にすることで、 受風圧面積を最少にし、 回 転を停止させることができる。 A simple way to control the rotation speed of the windmill is to stagger the initial settings of the windmill blades that generate the torque. If the displaced object is returned to its original state, the rotational state will return to its original state. By using this principle, the rotation of the windmill can be adjusted. Also, by making the blades free and parallel to the wind, the receiving pressure area can be minimized and rotation can be stopped.
また、 風車の出力を大きくする方法は風車を大型化することであるが、 他の一 つは風車を集合的に使用することである。 超大型風車には様々な制約があり、 そ のために建設コストも高くなる。 それを回避するために、 適切な規模の風車を一 定の空間に集合的に組み合わせて建設することで、 出力の大型化とコス卜の低減 を図る。 重転式垂直軸風車は、 複数の風車の組合せに適している。 発明の開示  One way to increase the output of the windmill is to increase the size of the windmill, while the other is to collectively use the windmills. There are various restrictions on ultra-large wind turbines, which increases construction costs. In order to avoid this, wind turbines of an appropriate size will be assembled in a certain space collectively to increase the output and reduce costs. Rotating vertical axis wind turbines are suitable for combinations of multiple wind turbines. Disclosure of the invention
主傘歯車に風向指示尾翼を取り付けると、 風向が指定され、 傘歯車はその状態 に静止する。 それで、 各羽根の姿勢を回転力発生の最適状態にセットする。 これ が羽根の初期設定である。 これで回転力が作用し風車が起動する。 同一風向の回 転中、 この羽根の最適初期状は維持される。  When the wind direction indicator tail is attached to the main bevel gear, the wind direction is specified, and the bevel gear stops at that state. Therefore, the posture of each blade is set to the optimum state for generating the rotational force. This is the default setting for the blade. With this, the rotational force acts to start the windmill. During the rotation in the same wind direction, the optimal initial state of the blade is maintained.
風の向きが変化すると、 風向指示尾翼が新たな風向を指定するので、 主傘歯車 がその分回転し、 各羽根を回転させて新たな風の向きに対応させる。 新たな風の 向きと羽根の姿勢の関係は初期設定と同じである。 したがって、 風向が変化して も風車の回転はそのまま維持される。 主傘歯車が回転した場合、 風車ロータを回 転させる作用も発生するが、 羽根に比べてはるかに風車ロータの回転慣性を大き く製作していれば、 ほとんど風車の回転への影響はない。 風向の変化は羽根姿勢 の変化としてだけ現れる。 羽根は、 対称形をしていて軽量かつ風車の 2分 1の低 速回転であるため、 回転させるために必要なトルクは小さい。 この機構では羽根 トルクが小さくなるように設計する。 それで、 羽根風向応答機構は小さい歯車を 使用して運動を伝達できるがが、 もし主傘歯車を風車主軸に設置すれば、 主軸直 径の制約のために、 歯車の小型化ができない。 それで、 主傘歯車を風車主軸の上 に乗せる形で設置すれば、 制約がなくなり小型にできる。 そして、 風に対する風 車の羽根の応答性能も向上する。 同時に、 主傘歯車を風車主軸から分離したこと で主軸設計の制約もなくなり設計がしゃすい。  When the wind direction changes, the wind direction indicator tail specifies the new wind direction, so the main bevel gear rotates by that amount, and each blade rotates to correspond to the new wind direction. The relationship between the new wind direction and the blade attitude is the same as the initial setting. Therefore, even if the wind direction changes, the rotation of the windmill is maintained as it is. When the main bevel gear rotates, it also has the effect of rotating the wind turbine rotor, but if the rotary inertia of the wind turbine rotor is made much larger than that of the blades, there is almost no effect on the rotation of the wind turbine. A change in wind direction appears only as a change in blade attitude. The blades are symmetrical, lightweight, and rotate at half the speed of a windmill, so the torque required to rotate them is small. This mechanism is designed to reduce the blade torque. Therefore, the blade wind direction response mechanism can transmit motion using small gears. However, if the main bevel gear is installed on the wind turbine main shaft, the gear cannot be downsized due to the restriction of the main shaft diameter. Therefore, if the main bevel gear is installed on the windmill main shaft, the restriction is eliminated and the size can be reduced. And the response performance of the wind turbine blades to the wind is also improved. At the same time, the separation of the main bevel gear from the wind turbine main shaft eliminates restrictions on the main shaft design and makes the design smoother.
また、 羽根の風向応答機構を羽根回転軸の上部に個別に設置し、 この機能を実 行させることができる。 この形でも、 各風向指定尾翼が風向を指定し羽根の姿勢 を制御することができる。 この場合、 各風向指定尾翼は風車回転の影響を受ける。 風車回転速度の円周方向に発生する風が加算されるためである。 これは、 風車回 転面で最風上と最風下で、 回転方向と反対方向に最大になり、 中間では 0になる 横風である。 これで、 羽根は風に対する傾斜が変化させ、 クロスフローで風を切 る羽根ピッチを小さくする形に姿勢を修正する。 これは羽根の回転速度を上げる ように作用する。 風速が強くなつて回転速度が上がり、 風車の円周速度が風速を 上回り、 風の流れと風車の回転周速とが平行する場所で、 風向の逆転が起こる。 これで、 尾翼が逆方向を向き、 その結果として、 羽根が 90度回転し、 この位置で、 風の流れに直交していた羽根が平行した状態になる。 こうして、 風車は風速以上 の高速回転が可能になる。 In addition, a blade wind direction response mechanism is installed separately above the blade rotation axis, and this function is implemented. Can be run. Also in this form, each wind direction designation tail can specify the wind direction and control the attitude of the blade. In this case, each wind direction designated tail is affected by windmill rotation. This is because wind generated in the circumferential direction of the windmill rotation speed is added. This is a crosswind that becomes maximum in the direction opposite to the direction of rotation at the windward and leeward sides of the windmill rotation surface, and becomes zero in the middle. This changes the inclination of the blade with respect to the wind, and corrects the attitude so that the pitch of the blade that cuts off the wind by cross flow is reduced. This acts to increase the rotation speed of the blade. As the wind speed increases, the rotation speed increases, the circumferential speed of the windmill exceeds the wind speed, and a reversal of the wind direction occurs where the wind flow and the circumferential speed of the windmill are parallel. The tails now turn in the opposite direction, and as a result, the blades rotate 90 degrees, at which point the blades that were orthogonal to the wind flow become parallel. In this way, the windmill can rotate at a speed higher than the wind speed.
風車の円周上に配列された各羽根は初期設定の状態を維持しながら回転力を発 生し続ける。 この初期の羽根姿勢の最適配列は風向を基準として行なわれる。 も し、 この設定基準が実際の風向からずれると、 羽根の風に対する最適姿勢がずれ るために、 風が作るトルクが減少して、 風車の回転が落ちる。 この原理を利用し て風車の速度調整が可能である。 羽根の初期設定をずらす簡潔な方法は、 風向指 定尾翼の軸下部で、 すでに設定されている羽根と連動した主傘歯車の軸を回転さ せることである。 この方法は、 羽根の最適な初期設定を外す簡潔な方法である。 軸の適度な回転とその復元という機構は構成しやすく、 連続的な風車の速度調整 を可能にする。  Each blade arranged on the circumference of the windmill continues to generate rotational force while maintaining the initial setting. The optimal arrangement of the initial blade positions is performed based on the wind direction. If this setting standard deviates from the actual wind direction, the optimal posture of the blade against the wind deviates, so that the torque generated by the wind decreases and the rotation of the windmill decreases. The speed of the wind turbine can be adjusted using this principle. A simple way to shift the initial setting of the blade is to rotate the shaft of the main bevel gear linked to the already set blade below the shaft of the wind direction tail. This is a simple way to remove the optimal initial settings of the blade. The mechanism of proper rotation of the shaft and its restoration is easy to configure and enables continuous wind turbine speed adjustment.
また、 風車の回転機能は、 歯車の伝達機構を通して風向という一定性をもった 基準に羽根の姿勢を拘束しているために発生している。 したがって、 歯車の拘束 を外せば、 羽根の制御が失われ、 連続して風車を回転させる機能は消失する。 拘 束を外された羽根が風の流線に平行になれば、 風車が受ける風圧が最少になる。 主傘歯車を嚙み合せから外せば、 ワンタッチで全羽根が拘束から解除される。 ま た、 この機構は、 いったん羽根を拘束から解除して、 各羽根向きを調整、 主傘歯 車をセット、 羽根の設定を済ませるのに便利である。  In addition, the rotation function of the windmill is generated because the attitude of the blade is constrained to a reference having a constant wind direction through a gear transmission mechanism. Therefore, if the gears are released, the control of the blades is lost and the function of continuously rotating the windmill is lost. If the unbound blades are parallel to the streamline of the wind, the wind pressure experienced by the windmill will be minimal. If the main bevel gear is removed from the engagement, all the blades will be released from the constraint with one touch. Also, this mechanism is convenient for releasing the blade once, adjusting the direction of each blade, setting the main bevel gear, and completing the blade setting.
風車の出力を増大させる場合、 風車を大型化するが、 適度な規模の複数の風車 を組合せることで、 コス ト低減を図って出力を大型化することができる。 特に、 この垂直軸風車の場合、 風車を重層的に構成しやすい。 風車の多重の支持構造の 枠組みの中に、 風車を設置しやすい。 各風車の回転軸を共通とし、 羽根回転軸を 共通にすれば、 この重ねた複数の風車は 1個の風車と見なすことができ、 風向応 答機構も共通化できる。 羽根回転軸を共通にしなければ、 別個の風車の積み重ね であり、 風向応答機構は個別に必要になる。 図面の簡単な説明 When increasing the output of a wind turbine, the size of the wind turbine is increased, but multiple By combining these, it is possible to reduce the cost and increase the output. In particular, in the case of this vertical axis wind turbine, it is easy to form a multi-layer wind turbine. It is easy to install a wind turbine within the framework of multiple support structures for the wind turbine. If the rotation axes of the wind turbines are shared and the blade rotation axes are shared, the multiple stacked wind turbines can be regarded as one wind turbine, and the wind direction response mechanism can be shared. Unless the blade rotation axis is common, separate wind turbines are stacked, and a separate wind direction response mechanism is required. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 風向応答機構正面図である。  FIG. 1 is a front view of a wind direction response mechanism.
第 2図は、 風向応答機構平面図である。  FIG. 2 is a plan view of a wind direction response mechanism.
第 3図は、 羽根軸側風向応答機構正面図である。  FIG. 3 is a front view of a blade axis side wind direction response mechanism.
第 4図は、 羽根軸上風向応答機構正面図である。  FIG. 4 is a front view of a blade axis wind direction response mechanism.
第 5図は、 速度調整機構原理図である。  FIG. 5 is a principle diagram of a speed adjusting mechanism.
第 6図は、 羽根フリー機構原理図である。  Fig. 6 is a principle diagram of the blade free mechanism.
1. 風向 2. 羽根 1. wind direction 2. feather
3. 風車主軸 4. 主傘歯車  3. Windmill main shaft 4. Main bevel gear
5. 風向指示尾翼 6. 羽根軸  5. Wind direction indicator tail 6. Blade axis
7. 支持腕 8. 伝達軸  7. Support arm 8. Transmission shaft
9. 伝達傘歯車 A 10. 伝達傘歯車 B  9. Transmission bevel gear A 10. Transmission bevel gear B
1 1. 羽根軸傘歯車 12. 風向応答機構  1 1. Bevel shaft bevel gear 12. Wind direction response mechanism
13. 羽根軸平歯車 14. 尾翼軸平歯車  13. Blade shaft spur gear 14. Tail shaft spur gear
15. 伝達平歯車 16. 尾翼軸  15. Transmission spur gear 16. Tail axle
17. 円筒 18. ガイ ド  17. Cylinder 18. Guide
19. 調整分銅 20. スプリング 発明を実施するための最良の形態 19. Adjustment weight 20. Spring BEST MODE FOR CARRYING OUT THE INVENTION
まず、 羽根をフリーにして、 風向支持尾翼の方向を基準に羽根の最適設定を済 ませる。 次に、 ある方向から風が吹いてくると、 風向指示翼が動いて、 その風向 を指定、 傘歯車と連動して回転、 羽根は風をとらえる最適の姿勢になる。 風車が 起動、 回転する。 風向に羽根が応答する働きは非常に良好である。 風向きが変化 しても、 羽根が風に応答して、 風車のトルクが滑らかに継続、 回転は持続する。 小型化、 内蔵化された羽根の風向応答機構は風車の製作を容易にする。 また、 小型化した風向応答機構は、 風車の羽根の風向応答性能を良くし、 風車の風エネ ルギー転換効率をアップしている。 各羽根に付属する形に分離された風向応答機 構は、 大幅に小型簡略化、 風向応答性を非常に良くしている。 機能を各羽根に個 別化した結果、 羽根の風に対する能力が拡大し、 風車の高速回転にも対応できる ようになった。 これはまた風車の製作コストを軽減している。  First, the blades are set free, and the blades are optimally set based on the direction of the tail supporting the wind direction. Next, when wind blows from a certain direction, the wind direction indicator wing moves, specifies the wind direction, rotates in conjunction with the bevel gear, and the blade takes the optimal position to catch the wind. The windmill starts and rotates. The function of the blade to respond to the wind direction is very good. Even if the wind direction changes, the blades respond to the wind and the torque of the windmill continues smoothly and the rotation continues. The miniaturized and built-in blade wind direction response mechanism makes it easy to manufacture windmills. In addition, the miniaturized wind direction response mechanism improves the wind direction response performance of the wind turbine blades and improves the wind energy conversion efficiency of the wind turbine. The wind direction response mechanism, which is attached to each blade, is greatly reduced in size and simplicity, and the wind direction response is very good. As a result of individualizing the functions for each blade, the ability of the blades to respond to the wind has expanded, and it has become possible to cope with high-speed rotation of the windmill. This also reduces the cost of manufacturing the windmill.
羽根の設定を最適設定から外して、 風車の回転速度を調整する方式により、 あ る風速以上の場合、 回転数を一定に保つ。 これで、 発電用大型風車として直接に 交流発電を行なって系統電流に接続送電する。 また、 高速回転が風車を破壊する 可能性がある場合には、 この機構を減速装置として機能させることができる。 また、 パイプ材などで、 個々の風車を収納し風車主軸を支持する枠組みを作り、 その枠組みの中に風車を設置することで、 多層風車を構成した。 重ねる風車の主 軸は連結し共通にする。 羽根風向応答機構は個々の風車に装着されるが、 これを 共通にする場合は多重風車は 1個の風車のように機能する。 このような多層、 多 重風車を並列する場合、 設置場所の年間の卓越風の流れを横断する形で並列する ように風車支持構造、 風車ハウスは構成されている。 産業上の利用可能性  By changing the blade setting from the optimal setting and adjusting the rotation speed of the wind turbine, the rotation speed is kept constant above a certain wind speed. As a result, a large wind turbine for power generation is used to directly generate AC power and connect it to the grid current for transmission. If there is a possibility that the high-speed rotation may destroy the wind turbine, this mechanism can function as a reduction gear. Also, a multi-layer wind turbine was constructed by using pipes and the like to create a framework that houses the individual wind turbines and supports the wind turbine main shaft, and installs the wind turbines in the framework. The main shafts of overlapping wind turbines are connected and shared. The blade wind direction response mechanism is attached to each wind turbine, but if they are shared, the multiple wind turbines function like a single wind turbine. When such multi-layered and multi-layered wind turbines are juxtaposed, the wind turbine support structure and the wind turbine house are arranged so as to juxtapose the annual prevailing wind flow at the installation site. Industrial applicability
この風車すぐれている点は、 風向が変化しても、 風車回転面が同一で回転はそ のまま継続することで、 エネルギーロスがないことである。 風向への応答性能は 非常に高く、 軽快であり、 どの風向にも対応する全方位形風車の性格を有してい る。 これは、 風向によって回転面を常に変更、 そのつどエネルギーを失っている プロペラ形風車に見られない特性である。 したがって、 この風車は変化の大きい 風、 地形や建物に影響される、 たとえば、 ビル風などにも対応できる。 この優れ た特性をつくっているのが、 羽根風向応答機構である。 The advantage of this windmill is that even if the wind direction changes, the rotation plane of the windmill remains the same and the rotation continues, so that there is no energy loss. The response to the wind direction is very high, it is light and has the characteristics of an omnidirectional wind turbine that can respond to any wind direction. This always changes the plane of rotation depending on the wind direction, losing energy each time This characteristic is not found in propeller type wind turbines. Therefore, this windmill can respond to winds with large changes, terrain and buildings, such as building winds. What makes this excellent characteristic is the blade wind direction response mechanism.
そして、 この性能をさらに高度化するのが、 この機構を上部に乗せ、 コンパク ト化し支持腕に内蔵したことである。 また、 この機構を各羽根に分離コンパクト 化した方式が、 トルクが大きく低風速で起動し、 低速から高速回転への対応を可 能した点で、 風車開発の最終目標とされてきたものを達成している。 さらに、 速 度を、 コントロールする機構を備えていることはこの垂直軸風車を、 あらゆる方 面での応用性の高い実用風車としている。 また、 風車の硬質性をやわらげ、 親し みのある形にしているこの風車の形状や動態は、 これからの風車の普及には欠か せないものである。  What further enhances this performance is that this mechanism is mounted on the upper part, compacted and built into the support arm. In addition, this system, which separates and separates this mechanism into each blade, achieves the goal that has been the ultimate goal of wind turbine development in that it has a large torque and starts at a low wind speed, and can respond to low to high speed rotation. are doing. In addition, the provision of a mechanism to control the speed makes this vertical axis wind turbine a practical wind turbine with high applicability in all directions. In addition, the shape and dynamics of the windmill, which softens the rigidity of the windmill and makes it more intimate, are indispensable for the spread of the windmill in the future.

Claims

請 求 の 範 囲 The scope of the claims
1 . 風向が変化する時、 羽根の方向のみを、 風向の変化した分だけ変えて対応さ せる羽根の風向応答機構。 これで風車は、 風車本体の風向追従回転を必要とせず、 全方位型になる。 風車夕ヮ一や風車主軸に固定しないで回転できる形にした主傘 歯車 (4 ) に風向指示尾翼 (5 ) を設置する。 風向が変化すると、 風向指示尾翼 の向きが変化、 主傘歯車が回転、 伝達、 羽根軸 (6 ) が回転する。 この時、 全羽 根は同一角だけ変化して、 新しい風向に対する羽根の状態は初期設定と同じ最適 条件を維持してトルクが継続する。 風向の変化に対する羽根の変化は角度で 2分 1であり、 主傘歯車と羽根軸の回転比で 2対 1で、 この機構の基本構造はそれを 満たすことができる。 羽根の風向応答機構の風に対する即応性は、 羽根の応答機 構の回転モ一メン卜を風車口一夕の回転モ一メントにくらべ十分に小さく設定す ることで実現する。 風向指示尾翼の回転を羽根に伝達する方式にプーリと夕イミ ングベルト使用しても同一の機能を得ることが可能である。 1. When the wind direction changes, the blade's wind direction response mechanism changes the direction of the blade only by the change in the wind direction. The windmill is now omnidirectional without the need for the wind turbine to follow the wind direction. A wind direction indicator tail (5) is installed on the main bevel gear (4), which can be rotated without being fixed to the wind turbine or the main shaft of the wind turbine. When the wind direction changes, the direction of the wind direction indicator tail changes, the main bevel gear rotates, the transmission, and the blade shaft (6) rotates. At this time, all the blades change by the same angle, and the state of the blades for the new wind direction maintains the same optimal conditions as the initial setting, and the torque continues. The change of the blade with respect to the change of the wind direction is 1/2 in angle, and the rotation ratio of the main bevel gear and the blade shaft is 2 to 1. The basic structure of this mechanism can satisfy it. The responsiveness of the wind direction response mechanism to the wind is realized by setting the rotation moment of the blade response mechanism sufficiently smaller than the rotation moment of the windmill mouth. The same function can be obtained even if a pulley and evening belt are used for transmitting the rotation of the wind direction indicator tail to the blade.
2 . 主傘歯車 (4 ) 、 あるいは主プーリを風車主軸 (3 ) と切り離し風車主軸頂 部に乗せる形にすれば、 全歯車、 あるいは主プーリなどを大幅に小型、 細身に構 成することができる。 この風向応答機構を、 風車主軸の上部、 および羽根支持腕 2. If the main bevel gear (4) or the main pulley is separated from the wind turbine main shaft (3) and put on the top of the wind turbine main shaft, all the gears or the main pulley can be made much smaller and thinner. it can. This wind direction response mechanism is connected to the upper part of the wind turbine spindle and the blade support arm.
( 7 ) を中空にしてその内部に収納設置する。 このように支持腕の内部に保護さ れ、 簡潔に構成された風向応答機構 (1図) 。 羽根を支持する腕を上、 下などに 複数とする場合、 上の腕に収納設置する。 羽根を支持する腕を一本とする場合、 その腕に収納設置することで、 風車はより簡潔な構造になる。 (7) Make hollow and store it inside. The simple structure of the wind direction response mechanism (Fig. 1) protected inside the support arm in this way. If there are multiple arms to support the wings, such as upper and lower arms, store them in the upper arm. If only one arm is used to support the blades, the windmill has a simpler structure by storing it on that arm.
3 . 風向指示尾翼 (5 ) を備えた中央の傘歯車 (4 ) や主プーリなどの機構を使 わずに、 個々の羽根回転軸の上端、 あるいは下端に独立に設置できる簡易、 小型 化された羽根の風向応答機構。 羽裉回転軸端か、 それに近い位置に、 風向指示尾 翼を、 その軸が羽根軸と平行になるか、 同一線上になるように設置する。 それぞ れは羽根軸側風向応答機構 (3図、 1 2 ) 、 羽根軸上風向応答機構 (4図、 1 2 ) である。 二つの軸、 羽根軸と風向指示尾翼軸は回転比が 1 : 2になるように歯車 などを使用して連結される。 3. Simple and compact, which can be installed independently at the upper or lower end of each blade rotating shaft without using mechanisms such as a central bevel gear (4) with a wind direction indicating tail (5) and a main pulley. The wind direction response mechanism of the wing. At or near the end of the blade rotation shaft, install a wind direction indicator tail so that its axis is parallel or co-linear with the blade axis. These are the blade axis side wind direction response mechanism (Fig. 3, 12) and the blade axis wind direction response mechanism (Fig. 4, 12). The two shafts, the blade shaft and the wind direction indicator tail shaft, are connected using gears or the like so that the rotation ratio becomes 1: 2.
4 . 風力エネルギーを動力に効率良く転換するために回転中に維持される羽根の 初期設定は、 風向指示尾翼の指定する方向を基準にして行なう。 この羽根の初 期設定の角を、 最適条件から外し、 羽根に与える風の抗カ、 揚力を減少させて、 風車の回転速度を落とし調整する機構 (5図) 。 この機構は、 風向指示尾翼軸の 先端部分 ( 1 6 ) を元の部分と切り離し、 その両端を円筒にはめ、 円筒を上下動 させ、 円筒面のガイ ド ( 1 8 ) となる溝に沿って、 元の部分に対し先端部分を必 要な角だけ回転させることで、 初期設定を適当な量ずらし、 接続する方法などを 使って構成される。 4. The initial setting of the blades maintained during rotation to efficiently convert wind energy to power is based on the direction specified by the wind direction indicator tail. The initial setting angle of the blades is removed from the optimal conditions, and the wind resistance applied to the blades and the lift are reduced, and the rotation speed of the windmill is reduced and adjusted (Fig. 5). This mechanism separates the tip (16) of the wind direction indicator tail shaft from the original part, fits both ends into a cylinder, moves the cylinder up and down, and moves along the groove that serves as a guide (18) on the cylinder surface. The initial part is shifted by an appropriate amount by rotating the tip part by the required angle with respect to the original part, and the connection method is used.
5 . 風向指定尾翼の軸 ( 1 6 ) に傘歯車 (4 ) などを使用して羽根の風向応答機 構を構成する場合、 風圧あるいは遠心力がある値を超えると傘歯車などを上方に 移動、 嚙み合せから離脱させることで、 風向応答機能を解除して羽根を自由にす る機構 (6図) 。 これは、 尾翼軸と羽根軸の連結を離脱、 自由にする機構である。 羽根を自由にして、 羽根の面を風の方向に平行にすると、 回転力が消失し風車の 回転を停止させ、 同時に、 風車に対する風圧が最少になる。 また、 羽根向きを初 期設定する場合、 羽根を自由にして、 尾翼を基準に羽根向きを選び、 主傘歯車を 再度結合させて設定すればよい。  5. When a bevel gear (4) is used for the tail shaft (16) of the wind direction designated tail fin, the bevel gear moves upward when the wind pressure or centrifugal force exceeds a certain value. A mechanism that releases the wind direction response function and releases the blades by releasing from the combination (Fig. 6). This is a mechanism that disconnects and frees the connection between the tail shaft and the blade shaft. When the blades are free and the plane of the blades is parallel to the direction of the wind, the rotational force disappears and the rotation of the windmill stops, and at the same time the wind pressure on the windmill is minimized. When the blade direction is initially set, the blades can be set freely by selecting the blade direction based on the tail, and then reconnecting the main bevel gear.
6 . 複数のこの垂直軸風車を利用する場合、 多数の重層、 並列した立体的な枠組 みの中に、 単位としての個々の風車を縦方向に風車主軸を直接連結するなどして 設置した多層風車。 また、 これらをさらに横方向に並列して構成した多重風車。 6. When multiple vertical axis wind turbines are used, multiple wind turbines as units are installed in a multi-layered, side-by-side, three-dimensional framework by directly connecting the wind turbine main shafts vertically. Windmill. In addition, a multiple wind turbine configured by further arranging these in parallel in the horizontal direction.
補正書の請求の範囲 Claims of amendment
[1 999年 6月 21日 (21. 06. 99) 国際事務局受理:出願当初の請求の範囲 2, 5及び 6は取り下げられた;他の請求の範囲は変更なし。 (2頁)] [1 June 21, 1999 (21.06.99) Accepted by the International Bureau: Claims 2, 5, and 6 originally filed have been withdrawn; other claims remain unchanged. (2 pages)]
1. 風向が変化する時、 羽根の方向のみを、 風向の変化した分だけ変えて対応さ せる羽根の風向応答機構。 これで風車は、 風車本体の風向追従回転を必要とせず、 全方位型になる。 風車タワーや風車主軸に固定しないで回転できる形にした主傘 歯車 (4) に風向指示尾翼 (5) を設置する。 風向が変化すると、 風向指示尾翼 の向きが変化、 主傘歯車が回転、 伝達、 羽根軸 (6) が回転する。 この時、 全羽 根は同一角だけ変化して、 新しい風向に対する羽根の状態は初期設定と同じ最適 条件を維持してトルクが継続する。 風向の変化に対する羽根の変化は角度で 2分 1であり、 主傘歯車と羽根軸の回転比で 2対 1で、 この機構の基本桷造はそれを 満たすことができる。 羽根の風向応答機構の風に対する即応性は、 羽根の応答機 構の回転モーメントを風車口一夕の回転モーメントにくらべ十分に小さく設定す ることで実現する。 風向指示尾翼の回転を羽根に伝達する方式にプーリと夕イミ ングベルト使用しても同一の機能を得ることが可能である。 1. A blade wind direction response mechanism that responds by changing only the direction of the blade when the wind direction changes. The windmill is now omnidirectional without the need for the wind turbine to follow the wind direction. The wind direction indicator tail (5) is installed on the main bevel gear (4), which can be rotated without being fixed to the wind turbine tower or wind turbine main shaft. When the wind direction changes, the direction of the wind direction indicator tail changes, the main bevel gear rotates, the transmission, and the blade shaft (6) rotates. At this time, all the blades change by the same angle, and the state of the blades for the new wind direction maintains the same optimal conditions as the initial setting, and the torque continues. The change of the blade with respect to the change of the wind direction is 1/2 in angle, and the rotation ratio of the main bevel gear and the blade shaft is 2 to 1. The basic structure of this mechanism can satisfy it. The responsiveness of the impeller response mechanism to the wind is realized by setting the rotational moment of the impeller response mechanism sufficiently smaller than the rotational moment of the windmill mouth. The same function can be obtained even if a pulley and evening belt are used for transmitting the rotation of the wind direction indicator tail to the blade.
2. (削除)  2. (Delete)
3. 風向指示尾翼 (5) を備えた中央の傘歯車 (4) や主プーリなどの機構を使 わずに、 個々の羽根回転軸の上端、 あるいは下端に独立に設置できる簡易、 小型 化された羽根の風向応答機構。 羽根回転軸端か、 それに近い位置に、 風向指示尾 翼を、 その軸が羽根軸と平行になるか、 同一線上になるように設置する。 それぞ れは羽根軸側風向応答機構 (3図、 12) 、 羽根軸上風向応答機構 (4図、 12) である。 二つの軸、 羽根軸と風向指示尾翼軸は回転比が 1 : 2になるように歯車 などを使用して連結される。  3. Simple and compact, which can be installed independently at the upper or lower end of each blade rotating shaft without using mechanisms such as a central bevel gear (4) equipped with a wind direction indicator tail (5) and a main pulley. The wind direction response mechanism of the wing. At or near the end of the blade rotation shaft, install a wind direction indicator tail so that its axis is parallel or co-linear with the blade axis. These are the blade axis side wind direction response mechanism (Fig. 3, 12) and the blade axis wind direction response mechanism (Fig. 4, 12). The two shafts, the blade shaft and the wind direction indicator tail shaft, are connected using gears or the like so that the rotation ratio becomes 1: 2.
4. 風力エネルギーを動力に効率良く転換するために回転中に維持される羽根の 初期設定は、 風向指示尾翼の指定する方向を基準にして行なう。 この羽根の初  4. The initial setting of the blades maintained during rotation to efficiently convert wind energy to power is based on the direction specified by the wind direction indicator tail. The first of these feathers
補正された用紙 (条約第 19条) 期設定の角を、 最適条件から外し、 羽根に与える風の抗カ、 揚力を減少させて、 風車の回転速度を落とし調整する機構 (5図) 。 この機構は、 風向指示尾翼軸の 先端部分 (16) を元の部分と切り離し、 その両端を円筒にはめ、 円筒を上下動 させ、 円筒面のガイド (18) となる溝に沿って、 元の部分に対し先端部分を必 要な角だけ回転させることで、 初期設定を適当な量ずらし、 接続する方法などを 使って構成される。 Amended paper (Article 19 of the Convention) A mechanism that removes the angle of the initial setting from the optimal conditions, reduces wind resistance and lift applied to the blades, and lowers and adjusts the rotation speed of the windmill (Fig. 5). This mechanism separates the tip (16) of the wind direction indicator tail shaft from the original part, fits both ends into a cylinder, moves the cylinder up and down, and moves the original along the groove that serves as a guide (18) on the cylinder surface. By rotating the tip part by the required angle with respect to the part, the initial setting is shifted by an appropriate amount and the connection method is used.
5. (削除)  5. (Delete)
6. (削除)  6. (Delete)
補正された用紙 (条約第 19条) Amended paper (Article 19 of the Convention)
PCT/JP1999/000527 1998-02-19 1999-02-08 Technologies on vertical axis windmill effectively utilizing wind force energy by rotating its blades WO1999042723A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU21873/99A AU2187399A (en) 1998-02-19 1999-02-08 Technologies on vertical axis windmill effectively utilizing wind force energy by rotating its blades

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/78256 1998-02-19
JP7825698A JPH11236870A (en) 1998-02-19 1998-02-19 Technique on vertical shaft windmill utilizing wind power energy effectively by rotation of blade

Publications (1)

Publication Number Publication Date
WO1999042723A1 true WO1999042723A1 (en) 1999-08-26

Family

ID=13656924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000527 WO1999042723A1 (en) 1998-02-19 1999-02-08 Technologies on vertical axis windmill effectively utilizing wind force energy by rotating its blades

Country Status (3)

Country Link
JP (1) JPH11236870A (en)
AU (1) AU2187399A (en)
WO (1) WO1999042723A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052149A1 (en) * 2000-12-27 2002-07-04 Gotapatent Ab Wind- or water-powered device used for generating electric energy, driving pumps or the like
GB2371094A (en) * 2000-12-07 2002-07-17 Josep Ramisa Navarro System for harnessing wind energy with self-protection
KR20030054437A (en) * 2001-12-24 2003-07-02 원인호 Collecting device by wind
GB2495745A (en) * 2011-10-19 2013-04-24 Christopher John Coxon Wind or tidal flow turbine
WO2021233197A1 (en) * 2020-05-21 2021-11-25 安徽康迪纳电力科技有限责任公司 Windmill

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020023795A (en) * 2001-12-19 2002-03-29 성태주 Rotation angle transfer mechanism of a blade using vertical axis wind power generator
KR20030052935A (en) * 2001-12-21 2003-06-27 원인호 Horizontal axis water-driven rotator
JP5135681B2 (en) * 2005-12-19 2013-02-06 ソニー株式会社 Fluid flow generator
JP2011027098A (en) * 2009-06-25 2011-02-10 Takayoshi Onodera Autorotation blade-type vertical axis wind turbine
CN105240205A (en) * 2015-09-10 2016-01-13 皖西学院 Horizontal and vertical wind energy conversion devices
PL425284A1 (en) * 2018-04-19 2019-10-21 Wera Bogdan Inbud Wind power station complex

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337256A (en) * 1976-09-18 1978-04-06 Moriyasu Nanba Wind mill for power
JPS5435544A (en) * 1977-08-23 1979-03-15 Takehiro Nishi Wind mill
JPS55104774U (en) * 1979-01-18 1980-07-22
JPH074343A (en) * 1993-06-15 1995-01-10 Yasuo Ueno Vertical shaft windmill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337256A (en) * 1976-09-18 1978-04-06 Moriyasu Nanba Wind mill for power
JPS5435544A (en) * 1977-08-23 1979-03-15 Takehiro Nishi Wind mill
JPS55104774U (en) * 1979-01-18 1980-07-22
JPH074343A (en) * 1993-06-15 1995-01-10 Yasuo Ueno Vertical shaft windmill

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2371094A (en) * 2000-12-07 2002-07-17 Josep Ramisa Navarro System for harnessing wind energy with self-protection
GB2371094B (en) * 2000-12-07 2005-07-20 Josep Ramisa Navarro System for harnessing wind energy
WO2002052149A1 (en) * 2000-12-27 2002-07-04 Gotapatent Ab Wind- or water-powered device used for generating electric energy, driving pumps or the like
KR20030054437A (en) * 2001-12-24 2003-07-02 원인호 Collecting device by wind
GB2495745A (en) * 2011-10-19 2013-04-24 Christopher John Coxon Wind or tidal flow turbine
WO2021233197A1 (en) * 2020-05-21 2021-11-25 安徽康迪纳电力科技有限责任公司 Windmill

Also Published As

Publication number Publication date
AU2187399A (en) 1999-09-06
JPH11236870A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
US5876181A (en) Multi-unit rotor blade system integrated wind turbine
CA2740120C (en) Wind powered apparatus having counter rotating blades
EP1861619B1 (en) Tension wheel in a rotor system for wind and water turbines
US9062655B2 (en) Wind turbine generators
US20030049128A1 (en) Wind turbine
WO1999042723A1 (en) Technologies on vertical axis windmill effectively utilizing wind force energy by rotating its blades
JP2005517123A (en) Wind power generator
US11053919B2 (en) Vertical axis wind turbine with wind vanes
US10218246B2 (en) Variable diameter and angle vertical axis turbine
CN101457736A (en) Composite rotor system of wind motor
EP2577054B1 (en) Wind turbine with a centrifugal force driven adjustable pitch angle and blades retained by cables
AU2008222708B2 (en) Hubless windmill
US20150354530A1 (en) Multiple airfoil wind turbine blade assembly
US6713893B2 (en) Efficient wind generator
US20100232960A1 (en) Variable geometry turbine
CN110770435A (en) Sail device
WO2011031380A1 (en) Dynamic cross-section fluid energy capture
JPS58128471A (en) Sideward-displacement type windmill device
CN104712495B (en) A kind of fan blade and its combination of wind-driven generator of mutually steady structure
GB2447913A (en) Lift and drag driven wind turbine
JP2001123933A (en) Multi-stage wind mill
RU2168652C2 (en) Wind-water wheel
KR20120028500A (en) Power generation system of vertical wind turbine with conning angle change
KR20020005550A (en) Savonius Rotor Blade with Air-foil type Muliti-Damper
JP2009197586A5 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN ID IN RU US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase