WO1999040125A1 - Procede de preparation de catalyseur de polymerisation d'olefine supporte - Google Patents

Procede de preparation de catalyseur de polymerisation d'olefine supporte Download PDF

Info

Publication number
WO1999040125A1
WO1999040125A1 PCT/CA1999/000028 CA9900028W WO9940125A1 WO 1999040125 A1 WO1999040125 A1 WO 1999040125A1 CA 9900028 W CA9900028 W CA 9900028W WO 9940125 A1 WO9940125 A1 WO 9940125A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
radicals
group
alkyl
unsubstituted
Prior art date
Application number
PCT/CA1999/000028
Other languages
English (en)
Inventor
Dusan Jeremic
Stephen John Brown
Ian Mckay
Original Assignee
Nova Chemicals (International) S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nova Chemicals (International) S.A. filed Critical Nova Chemicals (International) S.A.
Priority to AU20423/99A priority Critical patent/AU2042399A/en
Priority to EP99900844A priority patent/EP1053261A1/fr
Priority to JP2000530552A priority patent/JP2002502894A/ja
Publication of WO1999040125A1 publication Critical patent/WO1999040125A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • This invention relates to a process to prepare a supported catalyst which is highly active for ethylene polymerization.
  • the catalyst is particularly useful in slurry or gas phase polymerization processes.
  • the Stephan et al reference teaches the use of two different types of activators, namely methyl alumoxane ("MAO”) or triphenylcarbenium tetrakis (pentafluorophenyl) borate ("[Ph 3 C][B(C 6 F 5 ) ]”) and further teaches that the alumoxane (especially MAO) is highly preferred because of the excellent catalyst activity which MAO provides.
  • MAO methyl alumoxane
  • Hlatky and Turner made a very elegant invention relating to the use of "ionic activators" as co-catalysts for bis-cyclopentadienyl type metallocenes (as disclosed in United States Patents (“USP”) 5,153,157 and 5,198,401 ).
  • USP United States Patents
  • Hlatky et al subsequently discovered that this type of catalyst is useful in supported form, as disclosed in PCT patent application WO 91/09882.
  • the '9882 application teaches at examples 10-15 that the metal oxide support material may be pre-treated with an aluminum alkyl prior to the deposition of the catalyst/co-catalyst.
  • the invention provides a process for preparing a supported olefin polymerization catalyst consisting of: Step (1) reacting a particulate metal oxide support having surface hydroxyl groups with a reactive organometallic agent so as to eliminate substantially all of said surface hydroxyl groups; Step (2) depositing onto the reaction product from said step (1) a combination of:
  • the organometallic complex of this invention includes a cyclopentadienyl ligand.
  • cyclopentadienyl refers to a 5-member carbon ring having delocalized bonding within the ring and typically being bound to the group 4 metal (M) through covalent ⁇ 5 -bonds.
  • group 4 metal complexes of the present invention comprise a complex of the formula:
  • each L 1 is independently selected from the group consisting of a hydrogen atom, of a halogen atom, a C1-10 hydrocarbyl radical, a CM O alkoxy radical, a C5-10 aryl oxide radical, each of which said hydrocarbyl, alkoxy, and aryl oxide radicals may be unsubstituted by or further substituted by a halogen atom, a d- 8 alkyl radical, C ⁇ - 8 alkoxy radical, a C 6 - ⁇ o aryl or aryloxy radical, an amido radical which is unsubstituted or substituted by up to two d- 8 alkyl radicals; a phosphido radical which is unsubstituted or substituted by up to two C 1 - 8 alkyl radicals,
  • the Cp ligand in the group 4 metal complex is preferably unsubstituted.
  • preferred substituents include a fluorine atom, a chlorine atom, C ⁇ - 6 hydrocarbyl radical, or two hydrocarbyl radicals taken together may form a bridging ring, an amido radical which is unsubstituted or substituted by up to two C ⁇ - 4 alkyl radicals, a phosphido radical which is unsubstituted or substituted by up to two C ⁇ - 4 alkyl radicals, a silyl radical of the formula -Si-(R 2 ) 3 wherein each R 2 is independently selected from the group consisting of a hydrogen atom and a C 1 - 4 alkyl radical; a germanyl radical of the formula -Ge-(R 2 ) 3 wherein each R 2 is independently selected from the group consisting of a hydrogen atom and a C ⁇ - 4 alkyl radical.
  • the ligand is characterized by (a) having a nitrogen phosphorous double bond; (b) having only one substituent on the N atom (i.e. the P atom is the only substituent on the N atom); and (c) the presence of three substituents on the P atom.
  • Each R 1 is preferably selected from the group consisting of a hydrogen atom, a halide, preferably fluorine or chlorine atom, a C ⁇ - 4 alkyl radical, a C- t - 4 alkoxy radical, a silyl radical of the formula -Si-(R 2 ) 3 wherein each R 2 is independently selected from the group consisting of a hydrogen atom and a C 1 - 4 alkyl radical; and a germanyl radical of the formula -Ge-(R 2 ) 3 or an amido radical of the formula -N-(R 2 ) 2 wherein each R 2 is independently selected from the group consisting of a hydrogen atom and a C ⁇ - 4 alkyl radical. It is particularly preferred that each R 1 be a tertiary butyl radical.
  • the organometallic complex is "unbridged" (which is intended to convey a plain meaning, namely that the phosphinimine ligand is not bonded or bridged to the Cp ligand).
  • Each L 1 is a univalent ligand.
  • the primary performance criterion for each L 1 is that it doesn't interfere with the activity of the catalyst system.
  • any of the non-interfering univalent ligands which may be employed in analogous metallocene compounds (e.g. halides, especially chlorine, alkyls, alkoxy groups, amido groups, phosphido groups, etc.) may be used in this invention.
  • analogous metallocene compounds e.g. halides, especially chlorine, alkyls, alkoxy groups, amido groups, phosphido groups, etc.
  • each L 1 is independently selected from the group consisting of a hydrogen atom, a halogen, preferably fluorine or chlorine atom, a C 1 - 6 alkyl radical, a C ⁇ - 6 alkoxy radical, and a C ⁇ -io aryl oxide radical.
  • a halogen especially chlorine
  • the supported catalyst components of this invention are particularly suitable for use in a slurry polymerization process or a gas phase polymerization process.
  • a typical slurry polymerization process uses total reactor pressures of up to about 50 bars and reactor temperatures of up to about 200°C.
  • the process employs a liquid medium (e.g. an aromatic such as toluene or an alkane such as hexane, propane or isobutane) in which the polymerization takes place. This results in a suspension of solid polymer particles in the medium.
  • Loop reactors are widely used in slurry processes. Detailed descriptions of slurry polymerization processes are widely reported in the open and patent literature.
  • the gas phase process is preferably undertaken in a stirred bed reactor or a fluidized bed reactor.
  • Fluidized bed reactors are most preferred and are widely described in the literature. A concise description of the process follows.
  • a fluidized bed gas phase polymerization reactor employs a "bed" of polymer and catalyst which is fluidized by a flow of monomer which is at least partially gaseous. Heat is generated by the enthalpy of polymerization of the monomer flowing through the bed. Unreacted monomer exits the fluidized bed and is contacted with a cooling system to remove this heat. The cooled monomer is then recirculated through the polymerization zone, together with "make-up" monomer to replace that which was polymerized on the previous pass.
  • the "fluidized” nature of the polymerization bed helps to evenly distribute/mix the heat of reaction and thereby minimize the formation of localized temperature gradients (or "hot spots").
  • An alternative (and preferable) approach to high monomer flow is the use of an inert condensable fluid which will boil in the fluidized bed (when exposed to the enthalpy of polymerization), then exit the fluidized bed as a gas, then come into contact with a cooling element which condenses the inert fluid. The condensed, cooled fluid is then returned to the polymerization zone and the boiling/condensing cycle is repeated.
  • condensed mode operation is often referred to by those skilled in the art as "condensed mode operation" and is described in additional detail in USP 4,543,399 and USP 5,352,749.
  • alkanes such as butane, pentanes or hexanes
  • the amount of such condensed fluid should not exceed about 20 weight per cent of the gas phase.
  • Other reaction conditions for the polymerization of ethylene which are reported in the '399 reference are:
  • Preferred Polymerization Temperatures about 75°C to about 115°C (with the lower temperatures being preferred for lower melting copolymers - especially those having densities of less than 0.915 g/cc - and the higher temperatures being preferred for higher density copolymers and homopolymers); and Pressure: up to about 1000 psi (with a preferred range of from about 100 to 350 psi for olefin polymerization).
  • the '399 reference teaches that the fluidized bed process is well adapted for the preparation of polyethylene but further notes that other monomers may also be employed. The present invention is similar with respect to choice of monomers.
  • Preferred monomers include ethylene and C 3 - 12 alpha olefins which are unsubstituted or substituted by up to two C ⁇ - 6 alkyl radicals, C 8 - ⁇ 2 vinyl aromatic monomers which are unsubstituted or substituted by up to two substituents selected from the group consisting of C ⁇ - 4 alkyl radicals, C 4 - 12 straight chained or cyclic diolefins which are unsubstituted or substituted by a C-i- 4 alkyl radical.
  • alpha- olefins are one or more of propylene, 1 -butene, 1 -pentene, 1 -hexene, 1 - octene, and 1 -decene, styrene, alpha methyl styrene, p- t-butyl styrene, and the constrained-ring cyclic olefins such as cyclobutene, cyclopentene, dicyclopentadiene norbomene, alkyl-substituted norbornenes, alkenyl- substituted norbornenes and the like (e.g. 5-methylene-2-norbornene and 5-ethylidene-2-norbornene, bicyclo-(2,2,1)-hepta-2,5-diene).
  • the polyethylene polymers which may be prepared in accordance with the present invention typically comprise not less than 60, preferably not less than 70 weight % of ethylene and the balance one or more C 4 . 10 alpha olefins, preferably selected from the group consisting of 1 -butene, 1 - hexene and 1 -octene.
  • the polyethylene prepared in accordance with the present invention may be linear low density polyethylene having a density from about 0.910 to 0.935 g/cc or high density polyethylene having a density above 0.935 g/cc.
  • the present invention might also be useful to prepare polyethylene having a density below 0.910 g/cc - the so-called very low and ultra low density polyethylenes.
  • the present invention may also be used to prepare co- and ter- polymers of ethylene, propylene and optionally one or more diene monomers.
  • such polymers will contain about 50 to about 75 weight % ethylene, preferably about 50 to 60 weight % ethylene and correspondingly from 50 to 25 weight % of propylene.
  • a portion of the monomers, typically the propylene monomer, may be replaced by a conjugated diolefin.
  • the diolefin may be present in amounts up to 10 weight % of the polymer although typically is present in amounts from about 3 to 5 weight %.
  • the resulting polymer may have a composition comprising from 40 to 75 weight % of ethylene, from 50 to 15 weight % of propylene and up to 10 weight % of a diene monomer to provide 100 weight % of the polymer.
  • Preferred but not limiting examples of the dienes are dicyclopentadiene, 1 ,4-hexadiene, 5-methylene-2-norbomene, 5- 8
  • ethylidene-2-norbornene and 5-vinyl-2-norbomene Particularly preferred dienes are 5-ethylidene-2-norbornene and 1 ,4-hexadiene.
  • the present invention unequivocally requires the use of a metal oxide support.
  • An exemplary list of support materials include metal oxides such as silicas, alumina, silica-alumina, alumina-phosphate, titania and zirconia.
  • metal oxide support materials initially contain surface hydroxyl groups. Whilst not wishing to be bound by any particular theory, it has been postulated that reactions between the surface hydroxyl and the catalyst and/or ionic activator may "diminish or extinguish catalyst activity" (Ref. Hlatky and Upton, Polymer Preprints 1996, 37(1 ), 249). Thus, the process of the present invention requires a step in which these surface hydroxyls are treated with a "reactive organometallic agent" so as to substantially eliminate the surface hydroxyls. As used herein, the term “reactive organometallic agent” is meant to describe any organometallic which will react with the surface hydroxyls without producing a subsequent adverse affect upon the activity of the catalyst. Most metal alkyls should satisfy these criteria.
  • An exemplary list includes aluminum alkyls (particularly the inexpensive and commercially available aluminum alkyls such as triethylaluminum, triisobutyl aluminum and tri n-hexyl aluminum) and magnesium alkyls.
  • the preferred support material is silica. It will be recognized by those skilled in the art that silica may be characterized by such parameters as particle size, pore volume and initial silanol concentration. The pore size and silanol concentration may be altered by heat treatment or calcining prior to treatment with the reactive organometallic agent.
  • the preferred particle size, preferred pore volume and preferred residual silanol concentration may be influenced by reactor conditions.
  • Typical silicas are dry powders having a particle size of from 1 to 200 microns (with an average particle size of from 30 to 100 being especially suitable); pore size of from 50 to 500 Angstroms; and pore volumes of from 0.5 to 5.0 cubic centimeters per gram.
  • the use of commercially available silicas, such as those sold by W.R. Grace under the trademarks Davison 948 or Davison 955, are suitable.
  • the invention also requires an ionic activator.
  • the ionic activator is an activator capable of ionizing the group 4 metal complex and may be selected from the group consisting of:
  • C 1 - 4 alkyl radical or R 8 taken together with the nitrogen atom forms an anilium radical which is substituted by two C 1 - 4 alkyl radicals.
  • the activator capable of ionizing the group 4 metal complex abstract one or more L 1 ligands so as to ionize the group 4 metal center into a cation (but not to covalently bond with the group 4 metal) and to provide sufficient distance between the ionized group 4 metal and the ionizing 10
  • activator to permit a polymerizable olefin to enter the resulting active site.
  • the activator capable of ionizing the group 4 metal complex maintains the group 4 metal in a +1 valence state, while being sufficiently liable to permit its displacement by an olefin monomer during polymerization.
  • these activators are often referred to by those skilled in the art as substantially non-coordinating anions ("SNCA").
  • Examples of compounds capable of ionizing the group 4 metal complex include the following compounds: triethylammonium tetra(phenyl)boron, tripropylammonium tetra(phenyl)boron, tri(n-butyl)ammonium tetra(phenyl)boron, trimethylammonium tetra(p-tolyl)boron, trimethylammonium tetra(o-tolyl)boron, tributylammonium tetra(pentafluorophenyl)boron, tripropylammonium tetra (o,p-dimethylphenyl)boron, tributylammonium tetra(m,m-dimethylphenyl)boron, tributylammonium tetra(p-trifluoromethylphenyl)boron, tributylammonium tetra(pentafluorophenyl)boron, tri(n
  • tropillium phenyltris-pentafluorophenyl borate triphenylmethylium phenyl-trispentafluorophenyl borate
  • benzene (diazonium) phenyltrispentafluorophenyl borate tropillium tetrakis (2,3,5,6-tetrafluorophenyl) borate, triphenylmethylium tetrakis (2,3,5,6-tetrafluorophenyl) borate, benzene (diazonium) tetrakis (3,4,5-trifluorophenyl) borate, tropillium tetrakis (3,4,5-trifluorophenyl) borate, benzene (diazonium) tetrakis (3,4,5-trifluorophenyl) borate, tropillium tetrakis (1 ,2,2-trifluoroethenyl) borate, triphenylmethyl
  • N,N- dimethylaniliumtetrakispentafluorophenyl borate (“[Me 2 NHPh][B(C 6 F 5 ) 4 ]”); triphenylmethylium tetrakispentafluorophenyl borate (“[Ph3C][B(C 6 F 5 )4]”); and trispentafluorophenyl boron.
  • Catalysts prepared by the process of this invention are highly active in the polymerization of ethylene as illustrated in the accompanying examples.
  • High catalyst activity is desirable because it reduces the level of catalyst residue contained in the final product and because it reduces the concentration of transition metal in the polymerization reactor.
  • the low concentration of transition metal in the reactor also means that the polymerization process is highly sensitive to trace amounts of impurities. Accordingly, it is preferred to use poison scavengers in the polymerization process when using the catalysts of this invention.
  • the use of an organometallic scavenger especially an aluminum alkyl is especially preferred.
  • the catalyst is used in the preferred 12
  • the organometallic scavenger may also serve as an alkylating agent.
  • the metal oxide support must be initially treated with the reactive organometallic agent so as to eliminate substantially all of the surface hydroxyls on the support.
  • This initial pretreatment may be conveniently completed by adding a solution of the reactive organometallic agent to the metal oxide support followed by stirring for a sufficient amount of time to allow the organometallic agent to react with the hydroxyls. It will be apparent to those skilled in the art that this is a fairly trivial procedure. As a general guideline, a stirring time of 30 minutes to 10 hours will be sufficient.
  • the treated support may then be recovered from the slurry by conventional techniques (such as filtration or evaporation of solvent) followed by an optional wash of the treated support to remove any free or excess amount of the reactive organometallic agent.
  • the catalyst and ionic activator are then co-deposited on the treated support. Again, this is a trivial procedure for a skilled chemist.
  • a preferred method is to first prepare a solution of the catalyst and activator in a hydrocarbon solvent and to then add this solution to the treated support. This results in a slurry which is preferably stirred for from 30 minutes to 8 hours, followed by recovery of the supported catalyst by filtration and/or solvent evaporation.
  • the mole ratio of the ionic activator to the catalyst component is preferably from 0.5/1 to 2/1 ; most preferably 1/1 (with the basis being the moles of group 4 transition metal in the catalyst to moles of substantially non-coordinating anion provided by the ionic activator).
  • the catalysts produced by the process of this invention are highly active for ethylene polymerization. This is desirable because it effectively reduces the amount of support material contained in the polyethylene product. It will be appreciated by those skilled in the art that it is desirable for supported catalysts to produce at least 3 x 10 3 grams of polyethylene per gram of support material (otherwise, plastic film which is subsequently 13
  • the productivity of a supported catalyst may be influenced within a certain range by increasing or decreasing the amount of the transition metal catalyst on the support. For example, even if a transition metal catalyst has low activity, it may be possible to produce a commercially useful supported catalyst by increasing the level of transition metal on the support. However, there are limits to this approach due to problems which are associated with obtaining a satisfactory dispersion of the transition metal on the support. In particular, it is preferred to use a transition metal concentration of less than 5 millimoles per gram of support, especially less than 2, and most preferably less than 1.
  • the catalyst preparation methods described below employ typical techniques for the synthesis and handling of air-sensitive materials. Standard Schlenk and drybox techniques were used in the preparation of ligands, metal complexes, support substrates and supported catalyst systems. Solvents were purchased as anhydrous materials and further treated to remove oxygen and polar impurities by contact with a combination of activated alumina, molecular sieves and copper oxide on silica/alumina.
  • the internal reactor temperature is monitored by a thermocouple in the polymerization medium and can be controlled at the required set point to +/- 1.0°C.
  • the duration of the polymerization experiment was one hour. Following the completion of the polymerization experiment, the polymer was separated from the sodium chloride and the yield determined.
  • a commercially available silica support material (sold under the tradename "Davison 955" by W.R. Grace) was mixed with a 35 weight % solution of triisobutyl aluminum (“TIBAL”) in hexane.
  • TIBAL/silica weight ratio was about 2/1 which provided a large molar excess of the TIBAL to the hydroxyl groups on the silica.
  • the mixture was stirred overnight, followed by recovery of the TIBAL-treated support by filtration and final washing. Part 1.2
  • the above described 2.2 liter polymerization reactor was initially charged with a 160 g bed of sodium chloride (table salt, as a seed bed) and 0.5 ml of a 25 weight % solution of tri n-hexyl aluminum in hexane and 20 mg of the supported catalyst from Part 1.2 above. Polymerization was undertaken for 1 hour at 90°C and an ethylene pressure of 200 pounds per square inch gauge. 120 grams of polyethylene was produced, corresponding to a productivity of about 6 x 10 3 g of polyethylene per gram of catalyst per hour. This is substantially in excess of the 3 x 10 3 g of polyethylene per gram of catalyst which is desirable for high quality film resins. In addition, the very high activity corresponds to a residual titanium concentration in the polyethylene of less than 1 part per million by weight. Part 2.2
  • This invention is suitable for olefin polymerization, particularly the polymerization of ethylene.
  • the resulting ethylene polymers are suitable for a preparation of a wide variety of goods including, for example, molded goods and film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

L'invention concerne un catalyseur utile dans les polymérisation d'oléfine en phase gazeuse ou en suspension, et que l'on prépare en déposant une combinaison d'un complexe organométallique d'un métal de groupe 4 et un 'activateur ionique' sur un support à base d'oxyde métallique. Ledit complexe organométallique se caractérise en ce qu'il n'est pas ponté et en ce qu'il possède un ligand cyclopentadiénylique, un ligand de phosphinimine et un ligand activable. 'L'activateur ionique' (par exemple, triphénylcarbénium tétrakis(pentafluorophényl)bore) est déposé conjointement avec le complexe organométallique. Le support à base d'oxyde métallique est pré-traité à l'aide de, par exemple, un alkyle d'aluminium, en quantité au moins équivalente à la concentration molaire d'hydroxyles de surface sur le support. Le catalyseur de l'invention est hautement actif pour la polymérisation de l'éthylène.
PCT/CA1999/000028 1998-02-06 1999-01-18 Procede de preparation de catalyseur de polymerisation d'olefine supporte WO1999040125A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU20423/99A AU2042399A (en) 1998-02-06 1999-01-18 Process for preparing supported olefin polymerization catalyst
EP99900844A EP1053261A1 (fr) 1998-02-06 1999-01-18 Procede de preparation de catalyseur de polymerisation d'olefine supporte
JP2000530552A JP2002502894A (ja) 1998-02-06 1999-01-18 担体付オレフィン重合触媒の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002228923A CA2228923A1 (fr) 1998-02-06 1998-02-06 Procede de preparation de catalyseur sur support pour la polymerisation d'olefines
CA2,228,923 1998-02-06

Publications (1)

Publication Number Publication Date
WO1999040125A1 true WO1999040125A1 (fr) 1999-08-12

Family

ID=4162084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1999/000028 WO1999040125A1 (fr) 1998-02-06 1999-01-18 Procede de preparation de catalyseur de polymerisation d'olefine supporte

Country Status (5)

Country Link
EP (1) EP1053261A1 (fr)
JP (1) JP2002502894A (fr)
AU (1) AU2042399A (fr)
CA (1) CA2228923A1 (fr)
WO (1) WO1999040125A1 (fr)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005113622A1 (fr) 2004-04-15 2005-12-01 Exxonmobil Chemical Patents Inc. Systeme a catalyseurs et reacteurs multiples pour la polymerisation d'olefines et polymeres produits au moyen de ce systeme
WO2006054048A1 (fr) 2004-11-18 2006-05-26 Ineos Europe Limited Catalyseurs de polymerisation supportes
EP1669376A1 (fr) * 2004-12-07 2006-06-14 Nova Chemicals (International) S.A. Catalyseur double sur un support unique
EP1731536A1 (fr) 2005-06-09 2006-12-13 Innovene Manufacturing France SAS Catalyseurs de polymérisation supportés
EP1914252A1 (fr) 1999-12-16 2008-04-23 Univation Technologies, LLC Procédé de polymérisation
EP2465876A1 (fr) 2010-12-15 2012-06-20 INEOS Manufacturing Belgium NV Supports d'activation
WO2012098045A1 (fr) 2011-01-20 2012-07-26 Ineos Commercial Services Uk Limited Supports activateurs
WO2012136644A1 (fr) 2011-04-08 2012-10-11 Ineos Europe Ag Stratifié comprenant une couche de polyoléfine collée à une couche de base
WO2013087531A1 (fr) 2011-12-14 2013-06-20 Ineos Europe Ag Nouveaux polymères
WO2015088624A1 (fr) 2013-12-09 2015-06-18 Univation Technologies, Llc Alimentation d'additifs de polymérisation à des procédés de polymérisation
WO2015195189A1 (fr) 2014-06-16 2015-12-23 Univation Technologies, Llc Résines de polyéthylène
WO2016086039A1 (fr) 2014-11-25 2016-06-02 Univation Technologies, Llc Procédés de commande de l'indice de fluidité de la polyoléfine
WO2016094843A2 (fr) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Système de catalyseur de polymérisation d'oléfine comprenant un support à base d'organosilice mésoporeuse
WO2016171808A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Composition catalytique comprenant un support fluoré et procédés d'utilisation associés
WO2016172099A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Composition à base de polyéthylène
WO2016171807A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Composition catalyseur comprenant un support fluoré et ses procédés d'utilisation
WO2018034760A1 (fr) 2016-08-15 2018-02-22 Exxonmobil Chemical Patents Inc. Copolymères de propylène-alpha-oléfine et leurs procédés de fabrication
WO2018147968A1 (fr) 2017-02-13 2018-08-16 Univation Technologies, Llc Résines de polyéthylène bimodal
WO2018151903A1 (fr) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Systèmes catalytiques supportés et leurs procédés d'utilisation
WO2019027587A1 (fr) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. Compositions de polyéthylène et films préparés à partir de celles-ci
WO2019246069A1 (fr) 2018-06-19 2019-12-26 Exxonmobil Chemical Patents Inc. Compositions de polyéthylène et films préparés à partir de celles-ci
WO2020028059A1 (fr) 2018-07-31 2020-02-06 Dow Global Technologies Llc Formulations de polyéthylène pour des applications de moulage par soufflage de grandes pièces
WO2020167399A1 (fr) 2019-02-11 2020-08-20 Exxonmobil Chemical Patents Inc. Procédés de polymérisation biphasiques et polyoléfines à base d'éthylène obtenues par ces derniers
WO2021126443A2 (fr) 2019-12-17 2021-06-24 Exxonmobil Chemical Patents Inc. Procédé de polymérisation en solution pour fabriquer une ramification à longue chaîne de polyéthylène haute densité
WO2021242678A1 (fr) 2020-05-29 2021-12-02 Univation Technologies, Llc Polyéthylène bimodal à réacteur unique ayant un module amélioré pour des applications de tambour de moulage par extrusion-soufflage
WO2022031398A1 (fr) 2020-08-05 2022-02-10 Dow Global Technologies Llc Compositions thermoplastiques comprenant des polymères recyclés et articles fabriqués à partir de celles-ci
WO2022031397A1 (fr) 2020-08-05 2022-02-10 Dow Global Technologies Llc Compositions thermoplastiques comprenant un polyéthylène bimodal et articles fabriqués à partir de ces derniers
EP4212323A1 (fr) 2014-06-16 2023-07-19 Univation Technologies, LLC Méthode de fabrication d'un article moulé par soufflage

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE316984T1 (de) * 1999-09-27 2006-02-15 Dow Global Technologies Inc Expandierte anionen enthaltende geträgertes katalysatorsystem
JP2002179723A (ja) * 2000-12-08 2002-06-26 Asahi Kasei Corp オレフィン重合用触媒及び該触媒を用いるオレフィンの重合方法
US7321015B2 (en) * 2004-12-07 2008-01-22 Nova Chemicals (International) S.A. Adjusting polymer characteristics through process control
JP6990032B2 (ja) * 2017-03-28 2022-02-03 三井化学株式会社 オレフィン重合体の製造方法および遷移金属錯体の保存方法
WO2023120669A1 (fr) * 2021-12-23 2023-06-29 ポリプラスチックス株式会社 Copolymère de cyclooléfine, composition de résine et article en forme de film ou de feuille

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890581A1 (fr) * 1997-07-09 1999-01-13 Nova Chemicals (International) SA Catalyseurs phosphinimine-cyclopentadiényl sur support

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890581A1 (fr) * 1997-07-09 1999-01-13 Nova Chemicals (International) SA Catalyseurs phosphinimine-cyclopentadiényl sur support

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914252A1 (fr) 1999-12-16 2008-04-23 Univation Technologies, LLC Procédé de polymérisation
WO2005113622A1 (fr) 2004-04-15 2005-12-01 Exxonmobil Chemical Patents Inc. Systeme a catalyseurs et reacteurs multiples pour la polymerisation d'olefines et polymeres produits au moyen de ce systeme
WO2006054048A1 (fr) 2004-11-18 2006-05-26 Ineos Europe Limited Catalyseurs de polymerisation supportes
EP1669376A1 (fr) * 2004-12-07 2006-06-14 Nova Chemicals (International) S.A. Catalyseur double sur un support unique
EP1731536A1 (fr) 2005-06-09 2006-12-13 Innovene Manufacturing France SAS Catalyseurs de polymérisation supportés
EP2465876A1 (fr) 2010-12-15 2012-06-20 INEOS Manufacturing Belgium NV Supports d'activation
WO2012080314A2 (fr) 2010-12-15 2012-06-21 Ineos Europe Ag Supports d'activation
WO2012098045A1 (fr) 2011-01-20 2012-07-26 Ineos Commercial Services Uk Limited Supports activateurs
WO2012136644A1 (fr) 2011-04-08 2012-10-11 Ineos Europe Ag Stratifié comprenant une couche de polyoléfine collée à une couche de base
WO2013087531A1 (fr) 2011-12-14 2013-06-20 Ineos Europe Ag Nouveaux polymères
WO2015088624A1 (fr) 2013-12-09 2015-06-18 Univation Technologies, Llc Alimentation d'additifs de polymérisation à des procédés de polymérisation
US9809656B2 (en) 2013-12-09 2017-11-07 Univation Technologies, Llc Feeding polymerization additives to polymerization processes
WO2015195189A1 (fr) 2014-06-16 2015-12-23 Univation Technologies, Llc Résines de polyéthylène
EP4212323A1 (fr) 2014-06-16 2023-07-19 Univation Technologies, LLC Méthode de fabrication d'un article moulé par soufflage
WO2016086039A1 (fr) 2014-11-25 2016-06-02 Univation Technologies, Llc Procédés de commande de l'indice de fluidité de la polyoléfine
WO2016094843A2 (fr) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Système de catalyseur de polymérisation d'oléfine comprenant un support à base d'organosilice mésoporeuse
US10294312B2 (en) 2014-12-12 2019-05-21 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
WO2016171808A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Composition catalytique comprenant un support fluoré et procédés d'utilisation associés
WO2016172099A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Composition à base de polyéthylène
WO2016171807A1 (fr) 2015-04-20 2016-10-27 Exxonmobil Chemical Patents Inc. Composition catalyseur comprenant un support fluoré et ses procédés d'utilisation
WO2018034760A1 (fr) 2016-08-15 2018-02-22 Exxonmobil Chemical Patents Inc. Copolymères de propylène-alpha-oléfine et leurs procédés de fabrication
WO2018147968A1 (fr) 2017-02-13 2018-08-16 Univation Technologies, Llc Résines de polyéthylène bimodal
WO2018151903A1 (fr) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Systèmes catalytiques supportés et leurs procédés d'utilisation
WO2019027587A1 (fr) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. Compositions de polyéthylène et films préparés à partir de celles-ci
WO2019246069A1 (fr) 2018-06-19 2019-12-26 Exxonmobil Chemical Patents Inc. Compositions de polyéthylène et films préparés à partir de celles-ci
WO2020028059A1 (fr) 2018-07-31 2020-02-06 Dow Global Technologies Llc Formulations de polyéthylène pour des applications de moulage par soufflage de grandes pièces
WO2020167399A1 (fr) 2019-02-11 2020-08-20 Exxonmobil Chemical Patents Inc. Procédés de polymérisation biphasiques et polyoléfines à base d'éthylène obtenues par ces derniers
WO2021126443A2 (fr) 2019-12-17 2021-06-24 Exxonmobil Chemical Patents Inc. Procédé de polymérisation en solution pour fabriquer une ramification à longue chaîne de polyéthylène haute densité
WO2021242678A1 (fr) 2020-05-29 2021-12-02 Univation Technologies, Llc Polyéthylène bimodal à réacteur unique ayant un module amélioré pour des applications de tambour de moulage par extrusion-soufflage
WO2022031398A1 (fr) 2020-08-05 2022-02-10 Dow Global Technologies Llc Compositions thermoplastiques comprenant des polymères recyclés et articles fabriqués à partir de celles-ci
WO2022031397A1 (fr) 2020-08-05 2022-02-10 Dow Global Technologies Llc Compositions thermoplastiques comprenant un polyéthylène bimodal et articles fabriqués à partir de ces derniers

Also Published As

Publication number Publication date
CA2228923A1 (fr) 1999-08-06
AU2042399A (en) 1999-08-23
EP1053261A1 (fr) 2000-11-22
JP2002502894A (ja) 2002-01-29

Similar Documents

Publication Publication Date Title
WO1999040125A1 (fr) Procede de preparation de catalyseur de polymerisation d'olefine supporte
EP0890581B1 (fr) Catalyseurs phosphinimine-cyclopentadiényl sur support
US6486273B1 (en) Mixed phosphinimine catalyst
EP1098899B1 (fr) Catalyseur de bis-phosphinimine
EP1112278B1 (fr) Composant catalytique ayant au moins un ligand phosphinimine et un ligand heteroatomique
US6114481A (en) Catalyst having a ketimide ligand
EP1112276B1 (fr) Catalyseur au cyclopentadienyl/phosphinime avec un et un seul ligand activable
US6234950B1 (en) Nitrogen substituted phosphinimine ligand
US20030119661A1 (en) Supported phosphinimine polymerization catalyst
US6235671B1 (en) Heterogeneous metallocene catalyst
CA2254512C (fr) Processus de polymerisation en suspension utilisant un catalyseur non supporte a base de phosphinimine
CA2334049C (fr) Support de catalyseur, traite a l'acide halosulfonique, pour polymerisation d'olefines
US20020010078A1 (en) Process for preparing supported olefin polymerization catalyst
EP1472294B1 (fr) Support de catalyseur traite a l'acide halosulfonique pour polymerisation d'olefines
MXPA98005406A (en) Catalyzer of fosfinimina-ciclopentadienilo sport

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BG BR BY CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL JP KE KG KP KR KZ LK LT LV MX NO NZ PL PT RO RU SD SG SI SK TJ TM TR UA US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1999900844

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999900844

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999900844

Country of ref document: EP