WO1999038027A1 - Transmitter for ultrasonic wave emitter - Google Patents

Transmitter for ultrasonic wave emitter Download PDF

Info

Publication number
WO1999038027A1
WO1999038027A1 PCT/JP1998/000252 JP9800252W WO9938027A1 WO 1999038027 A1 WO1999038027 A1 WO 1999038027A1 JP 9800252 W JP9800252 W JP 9800252W WO 9938027 A1 WO9938027 A1 WO 9938027A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
transmitter
ultrasonic wave
ultrasonic
acoustic impedance
Prior art date
Application number
PCT/JP1998/000252
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeyasu Ishida
Original Assignee
Shigeyasu Ishida
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP35746096A priority Critical patent/JP3564613B2/en
Application filed by Shigeyasu Ishida filed Critical Shigeyasu Ishida
Priority to PCT/JP1998/000252 priority patent/WO1999038027A1/en
Publication of WO1999038027A1 publication Critical patent/WO1999038027A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • G10K11/006Transducer mounting in underwater equipment, e.g. sonobuoys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/96Sonar systems specially adapted for specific applications for locating fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/04Gramophone pick-ups using a stylus; Recorders using a stylus
    • H04R17/08Gramophone pick-ups using a stylus; Recorders using a stylus signals being recorded or played back by vibration of a stylus in two orthogonal directions simultaneously

Definitions

  • the present invention relates to a wave transmitting device that emits an ultrasonic pulse into a liquid such as seawater or underwater to detect sounding or detect a school of fish. More specifically, the present invention relates to a ceramic device using an electrostriction phenomenon called a piezoelectric element. This relates to a vibrator.
  • ultrasonic sounding devices used in seawater or underwater, fish finders, etc. require a transmission device to emit ultrasonic waves, and this transmission device has conventionally been barium titanate zirconate titanate. Ceramic oscillators made of lead or the like have been widely used.
  • the present invention relates to an ultrasonic wave emitting method for a wave transmitting device using the piezoelectric element.
  • the primary function as an ultrasonic wave transmitting device can be sufficiently performed.
  • the structure was almost completely satisfactory.
  • the styrofoam (4), air chamber (5), etc. are installed directly on the back of the ceramic vibrator (1) in order to prevent the emission of ultrasonic waves, the following problems can easily occur. I understand. In other words, in the structure shown above, the energy of ultrasonic waves emitted into the water is supposed to be largely emitted to the depth side and hardly emitted to the water surface side, so it seems that the purpose has been achieved for the time being.
  • the acoustic impedance on the diaphragm (2) side is relatively large, and the foam foam port (4) and the air chamber (5) on the opposing side are relatively large.
  • the acoustic impedance of the ceramic vibrator (1) is extremely small, so the load balance on both sides of the ceramic vibrator (1) is very poor and more ultrasonic waves should normally be emitted on the diaphragm (2) side. Since the sound emission energy is emitted in inverse proportion to the acoustic impedance, most of the sound energy is consumed on the styrofoam (4) or air chamber (5) side rather than on the diaphragm side. Diaphragm (2) side Hardly ever fired.
  • the weight of the vibrating plate (2) with respect to the vibrator (1) is more than that of the styrofoam (4) and the air chamber (5). Because it is much heavier, the easiness of vibration against mechanical vibration is also emitted more toward the styrene foam (4) side in view of the law of inertia.
  • the contents will be much easier to understand.
  • the acoustic circuit (A) of the transmitting device is replaced with an electrical equivalent circuit (B)
  • the content of the ceramic oscillator ( ⁇ is electrically battery) Or, it is a power source (a) and is a source of energy, whereas the diaphragm (2), styrofoam (4), air chamber (5), etc. are electrically connected to the volume resistivity.
  • (B), (c), and (d) are equivalent to loads connected in parallel with each other, and the acoustic energy emitted there is electrically consumed by the power. Is equivalent to
  • the electrical load impedances (b), (c), and (d) show that the load ( b) and the load (c) and (d) on the Styrofoam side are the same as being connected in parallel to the power supply (a), and the magnitude of the load impedance is the same as that of the diaphragm ( b)
  • the styrofoam side is much larger and higher than the (c) (d) side. The result is. In this case, most of the electric power is consumed on the styrofoam (c) (d) side in inverse proportion to the magnitude of the load.
  • the same concept as that of an electric circuit is applied to audio equipment, and even if an attempt is made to apply a large load to a device with a poor load balance, no load is applied to a target location and only useless power is consumed. It is consumed in the equipment. What can be considered is to improve the load balance so that the acoustic impedance of the ceramic vibrator (1) on the styrofoam (4) (5) side is greater than the acoustic impedance on the diaphragm (2) side. Specifically, connect a material with a large acoustic impedance specific to the material. If you can't do that, place the largest possible value for them there.
  • a substance (3) having a high acoustic impedance may be bonded between the surface of the vibrator (1) on the styrofoam side and the surface of the styrofoam (4).
  • the present invention has been developed from such a viewpoint.
  • the acoustic impedance of a diaphragm is quite large, and if the material exceeds that value, the material is considerably restricted. Furthermore, considering the conventional device, even if the acoustic impedance is not so large, even if it is at an intermediate stage between these and the conventional device, it may be sufficiently practical. Therefore, we decided to consider these intermediate stages. In other words, even if the object has the same acoustic impedance as the diaphragm, if the weight of the object provided there is made as heavy as possible and the weight on the diaphragm side is made as light as possible, on the diaphragm side by the law of inertia, Ultrasonic waves are emitted. This is a significant improvement in the apparent acoustic impedance, which is also a major improvement. Take one or both of the above measures It is understood that the efficiency of sound emission is greatly improved. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a central sectional view showing a basic structure of a wave transmitting device for an ultrasonic wave emitting device according to the present invention.
  • Fig. 2 shows the acoustic circuit diagram of the wave transmitting device used for the ultrasonic launch equipment and the equivalent electric circuit diagram.
  • FIG. 3 is a central cross-sectional structure diagram showing a typical example of a conventionally used transmitting device for an ultrasonic wave emitting device.
  • FIG. 1 is a first embodiment for effectively implementing the present invention, and is an embodiment of the invention which simultaneously satisfies claims 1 and 2.
  • Claims 1 and 2 are related to each other, and (1) is an ultrasonic emission source called a ceramic vibrator, which is generally a ceramic such as barium titanate or lead zirconate titanate. Ultrasonic waves are emitted using the principle of electrostriction in a disk-shaped element made of a material.
  • a disk-shaped vibrating plate (2) made of a nylon resin or an ABS resin is bonded to one side of the vibrator (1), that is, a deep side surface.
  • the reason for using nylon or ABS resin is that the specific gravity is almost the same as water and the acoustic impedance is also close to water, so it is considered that ultrasonic waves can be effectively emitted into water.
  • the material of this portion is not limited to this, and may be a plate material such as glass or stainless steel.
  • the structure up to this point is basically the same as the conventional one, but the diaphragm should be as light as possible if possible.
  • a stainless steel block (3) which is as heavy as possible and has a large acoustic impedance, is attached.
  • the material of the object to be bonded preferably has a large material-specific acoustic impedance, and the greater the material-specific acoustic impedance, the more difficult it is to transmit ultrasonic waves in this direction.
  • the shape of the back object (3) is not particularly specified, but generally the outer diameter is almost the same as the outer diameter of the vibrator (1) and the thickness is 1/4 ⁇ which does not disturb the waveform of the ultrasonic wave to be emitted. Let X ⁇ be normal.
  • the above is the basic structure of the ultrasonic wave transmitting device according to the present invention, which is different from the conventional transmitting device in that the vibrator (the acoustic impedance which did not exist conventionally on the back of ⁇ ) is heavy in weight.
  • the ultrasonic wave is emitted more toward the diaphragm (2) as described in the section of “Disclosure of the Invention.”
  • the ultrasonic wave is applied to the back surface of the vibrator (1).
  • the material of the object (3) to be combined is the same ceramic material as other vibrators and other metals that are not easily corroded by seawater, such as stainless steel lump and copper lump, etc. at present.
  • the ceramic material is the second largest acoustic impedance material after the metal, but the ceramic material does not need to be the same material as the vibrator, and has the same high density and texture as the vibrator. If it is a dense material, a general porcelain material may be used.
  • the material of the second embodiment has a large acoustic impedance inherent in the substance and satisfies the factors for obtaining a large acoustic impedance.
  • the invention of the second embodiment is exactly the same in appearance and the like as the first embodiment, but only The major difference from the first embodiment is that, as in the first embodiment, the weight of the object to be bonded to the back of the vibrator is ideally heavy and the acoustic impedance is large.
  • the lower limit of the body material is to be specified, and the lower limit is intended to be a material such as nylon or ABS resin that has the same or slightly higher acoustic impedance as the diaphragm (2) material.
  • plastic materials such as nylon and BS resin
  • admixtures obtained by mixing these plastic materials with quartz powder are also included.
  • Other materials include pottery, porcelain, glass, and depending on the method of use, in addition to these, for example, gypsum * cement etc.
  • the reason for the expansion is that plaster-cement can be freely molded in the future, and it is expected that a transmitter with a considerably higher degree of freedom will be manufactured in the future.
  • the present invention significantly improves the load balance of the acoustic impedance and increases the acoustic impedance on the styrene foam side as much as possible. Was completed.

Abstract

In order to measure the depth or detect a shoal of fish under the sea water or under the water, ultrasonic wave is conventionally used, and a ceramic vibrator which utilizes the principle of electrostriction is used as an ultrasonic wave emitter in many cases. An ultrasonic wave emitter which has a transmitter using the ceramic vibrator and which has an improved emission efficiency is provided. A conventional ultrasonic emitter such as a so-called sounder which measures the depth to the sea bottom, a fishfinder which detects a shoal of fish emits an ultrasonic wave in one direction in the water, and a pulse wave is used. Therefore, various difficulties in using it such as avoidance of reflected waves caused by the emission in directions other than the aimed direction, etc., and hence it is very difficult to manufacture a large output sounder and fishfinder at present. Acoustic analysis of the transmitter using a ceramic vibrator has been carried out and the results of experiments which are satisfactory to some extent have been obtained. Hence a transmitter with increased output is provided based on the results.

Description

明 細 書 超音波発射機器用送波装置 技術分野  Description Transmitter for ultrasonic launch equipment Technical field
この発明は海水あるいは水中など液体中に超音波のパルスを発射して測深あ るいは魚群の探知などをする送波装置に関するもので、 詳しくは圧電素子と呼 ばれる電歪現象を利用したセラミ ック振動子に関するものである。  The present invention relates to a wave transmitting device that emits an ultrasonic pulse into a liquid such as seawater or underwater to detect sounding or detect a school of fish. More specifically, the present invention relates to a ceramic device using an electrostriction phenomenon called a piezoelectric element. This relates to a vibrator.
すなわち海水中あるいは水中で使用される超音波測深器ある 、は魚群探知機 などは超音波を発射するための送波装置を必要とし、 この送波装置は従来から チタン酸バリウムゃチタン酸ジルコン酸鉛等からなるセラミ ック振動子が多く 使用されて来た。 本発明はこの圧電素子を使用した送波装置の超音波発射方法 に関するものである。 背景技術  That is, ultrasonic sounding devices used in seawater or underwater, fish finders, etc., require a transmission device to emit ultrasonic waves, and this transmission device has conventionally been barium titanate zirconate titanate. Ceramic oscillators made of lead or the like have been widely used. The present invention relates to an ultrasonic wave emitting method for a wave transmitting device using the piezoelectric element. Background art
従来から此れ等超音波発射用セラミ ック振動子の効率の良い使用方法につい ては未だ完全に研究し尽されたとは言い難い面が多く現在でも測深用あるいは 魚群探知用の送波装置は出力が小さく大きさの割には全体の重量も重く大きさ も大きい, そこで此の部分の改善を理論的に究明したものである。  It has not been possible to say that the efficient use of these ceramic oscillators for ultrasonic emission has been thoroughly studied in the past, and even today, transmitters for sounding or fish detection are still in use. Although the output is small and the size is large, the overall weight is heavy and the size is large. Therefore, the improvement of this part was theoretically investigated.
従来の此の種送波装置の構造を代表する一例を第 3図で説明すればセラミ ッ ク振動子(1 ) の水深側の表面には一般にナイ口ン等のプラスチック材からなる 振動板(2) が設けられ反対側の面には独立気泡を有する発泡スチロール(4) 等 のシートを振動子(1 ) の背面に直接貼り付け、 更にその奥部分には空気室(5) を設けてある。 これにより超音波は振動板(2) の側からより多く発射され反対 の発泡スチロール(4) の側からは殆んど発射されない。 その理由は発泡スチロ —ル(4) の側からも相当量の超音波が発射されるが、 発泡スチロールには無数 の独立気泡が存在するためその気泡により超音波は吸収されその後側にまでは 発射されない、 多少の漏洩があつたとしてもその後部には空気室(5) があるた めここで吸収され其の後ろ側にまでは発射されない。  A typical example of the structure of this type of conventional wave transmitting device will be described with reference to FIG. 3. If the surface of the ceramic vibrator (1) on the water depth side is generally made of a vibrating plate made of a plastic material such as nipple ( 2) is provided, and on the opposite side, a sheet such as Styrofoam (4) having closed cells is directly adhered to the back of the vibrator (1), and an air chamber (5) is provided at the back. . As a result, ultrasonic waves are emitted more from the side of the diaphragm (2) and hardly emitted from the opposite side of the polystyrene foam (4). The reason is that a considerable amount of ultrasonic waves are also emitted from the styrofoam (4) side, but since styrene foam has a myriad of closed cells, the ultrasonic waves are absorbed by these bubbles and fired to the rear side No, even if there is some leakage, it is absorbed here due to the air chamber (5) behind it and will not be fired to the rear.
以上の構造により超音波送波装置としての一応の機能は充分に果たすことが できたので従来は此れでほぼ完全に満足できる構造と考えていた。 しかし超音 波の発射を防止するため発泡スチロール(4)や空気室(5)などを直接セラミ ック 振動子(1 ) の背面に接して設けると以下に示すような問題点のあることが容易 に分かる。 すなわち上に示すような構造では超音波の水中に発射するエネルギ 一は一応水深側に多く発射され水面側には殆ど発射されないので目的は一応達 せられたかに見えるが然し此れを超音波の発射されるエネルギーの負荷バラン スの面から考えて見ると振動板(2) 側の音響ィンピ一ダンスは比較的に大きく これに対抗する発泡スチ口一ル(4)や空気室(5)側の音響ィンピ一ダンスは極端 に小さい此のためセラミ ック振動子(1 ) の両面の負荷のバランスは非常に悪く 本来なら振動板(2) の側でより多くの超音波が発射されるべきものが音響発射 エネルギーは音響インピーダンスの大きさに反比例して発射されるから振動板 側よりもむしろ発泡スチロール(4)や空気室(5)の側で殆どの音響エネルギーが 消費されてしまい目的とする振動板(2) 側には殆ど発射されない。 With the above structure, the primary function as an ultrasonic wave transmitting device can be sufficiently performed. Conventionally, it was thought that the structure was almost completely satisfactory. However, if the styrofoam (4), air chamber (5), etc. are installed directly on the back of the ceramic vibrator (1) in order to prevent the emission of ultrasonic waves, the following problems can easily occur. I understand. In other words, in the structure shown above, the energy of ultrasonic waves emitted into the water is supposed to be largely emitted to the depth side and hardly emitted to the water surface side, so it seems that the purpose has been achieved for the time being. Considering the load balance of the emitted energy, the acoustic impedance on the diaphragm (2) side is relatively large, and the foam foam port (4) and the air chamber (5) on the opposing side are relatively large. The acoustic impedance of the ceramic vibrator (1) is extremely small, so the load balance on both sides of the ceramic vibrator (1) is very poor and more ultrasonic waves should normally be emitted on the diaphragm (2) side. Since the sound emission energy is emitted in inverse proportion to the acoustic impedance, most of the sound energy is consumed on the styrofoam (4) or air chamber (5) side rather than on the diaphragm side. Diaphragm (2) side Hardly ever fired.
更にまた、 この部分を音響を発射する構造物として考えてみても振動子(1 ) に対して振動板(2) 側の重量は発泡スチロール(4) や空気室(5) 側の重量に比 ベてはるかに重いため機械的振動に対する振動の容易性は慣性の法則の面から も発泡スチロール(4) 側の方に多く発射されてしまう。  Furthermore, if this part is considered as a structure that emits sound, the weight of the vibrating plate (2) with respect to the vibrator (1) is more than that of the styrofoam (4) and the air chamber (5). Because it is much heavier, the easiness of vibration against mechanical vibration is also emitted more toward the styrene foam (4) side in view of the law of inertia.
以上のことを音響回路としてでは無く電気的等価回路に置き換えて考えて見 るとその内容はより一層解り易くなる。 そこでその内容を第 2図を使って説明 すれば送波装置の音響的回路( A )を電気的等価回路(B )に置き換えて見るとセ ラミ ック振動子(υ は電気的には電池または電源(a) に相当しエネルギーの発 生源である。 此れに対し振動板(2) や発泡スチロール(4) や空気室(5) 等はそ こに接続された電気的には体積固有抵抗の異なる電気的抵抗(b) (c) (d) に相 当しそれらは互いに並列に接続された負荷に相当する。 そしてそこに発射され る音響エネルギーは電気的にはそこで消費される消費電力に相当する。  If the above is replaced with an electrical equivalent circuit instead of an acoustic circuit, the contents will be much easier to understand. If the acoustic circuit (A) of the transmitting device is replaced with an electrical equivalent circuit (B), the content of the ceramic oscillator (υ is electrically battery) Or, it is a power source (a) and is a source of energy, whereas the diaphragm (2), styrofoam (4), air chamber (5), etc. are electrically connected to the volume resistivity. (B), (c), and (d) are equivalent to loads connected in parallel with each other, and the acoustic energy emitted there is electrically consumed by the power. Is equivalent to
かかる構成で電気回路を電源とそこに接続された負荷抵抗で示されるインピ —ダンスの関係で解析してみると電気的負荷インピーダンス(b) (c) (d) は振 動板側の負荷(b) と発泡スチロール側の負荷(c) (d) とが電源 (a) に対して互 いに並列に接続されていることと同様で、 しかもその負荷ィンピ一ダンスの大 きさは振動板(b) 側の方が発泡スチロール (c) (d) 側より遥かに大きく高い結 果となっている。 係る場合の電気的出力は何れの側で多く消費されるかと言え ば負荷の大きさに反比例して発泡スチロール(c) (d) 側で殆どのエネルギーが 消費される。 つまり音響出力のほとんどは発泡スチロール(c) (d) 側で消費さ れてしまう。 更にまた音響構造物の面からも振動板側より発泡スチロール側の 重量の方がはるかに小さく軽いのであるから振動板側にはますます超音波は発 射され難くなつていることは明らかである。 Analyzing the electrical circuit with such a configuration in terms of the impedance represented by the power supply and the load resistance connected to it, the electrical load impedances (b), (c), and (d) show that the load ( b) and the load (c) and (d) on the Styrofoam side are the same as being connected in parallel to the power supply (a), and the magnitude of the load impedance is the same as that of the diaphragm ( b) The styrofoam side is much larger and higher than the (c) (d) side. The result is. In this case, most of the electric power is consumed on the styrofoam (c) (d) side in inverse proportion to the magnitude of the load. In other words, most of the sound output is consumed on the styrofoam (c) and (d) sides. Further, from the viewpoint of the acoustic structure, it is clear that the weight of the styrofoam side is much smaller and lighter than that of the diaphragm side, so that it becomes more difficult to emit ultrasonic waves to the diaphragm side.
従って出願人はこの負荷のバランスの悪さや音響構造の悪さを改善すベく送 波装置の改善を試みたものである。 発明の開示  Therefore, the applicant has tried to improve the transmission device to improve the unbalance of the load and the acoustic structure. Disclosure of the invention
以上の説明からも解るように音響機器においても電気回路と同様の考え方が なりたち負荷バランスの悪い装置に幾ら大きな負荷をかけようとしても目的の 箇所に負荷はかからず無駄な電力のみがその機器の中で消費されてしまう。 そこで考えられることは負荷のバランスを良くすることでセラミ ック振動子 ( 1 ) の発泡スチロール(4) (5) 側の音響インピーダンスを振動板(2) 側の音響 インピーダンスより大きくすることである。 詳しくは物質固有の音響インピー ダンスの大きいものを其処に接続することである。 もしそれができないときは 其れらの値のできるだけ大きい値のものを其処に設けることである。 具体的に は発泡スチロール側の振動子(1 ) の面と発泡スチロール(4) の表面との間に音 響インピーダンスの大きい物質(3) を貼り合わせ固定すれば良い。 かかる観点 から本発明は発生した。  As can be understood from the above description, the same concept as that of an electric circuit is applied to audio equipment, and even if an attempt is made to apply a large load to a device with a poor load balance, no load is applied to a target location and only useless power is consumed. It is consumed in the equipment. What can be considered is to improve the load balance so that the acoustic impedance of the ceramic vibrator (1) on the styrofoam (4) (5) side is greater than the acoustic impedance on the diaphragm (2) side. Specifically, connect a material with a large acoustic impedance specific to the material. If you can't do that, place the largest possible value for them there. Specifically, a substance (3) having a high acoustic impedance may be bonded between the surface of the vibrator (1) on the styrofoam side and the surface of the styrofoam (4). The present invention has been developed from such a viewpoint.
しかし実際には振動板の音響インピーダンスはかなり大きい値で、それを更 に上回る物質となるとかなり物質が制限される。 更にまた従来の装置から考え ればそこまで音響インピーダンスを大きく しなくとも、 此れらと従来との中間 段階のものであっても充分実用になる場合がある。 そこで此れらの中間段階も 考えることとした。 すなわち振動板と同じ程度の音響インピーダンスの物体で あっても、 そこに設ける物体の重量を可能な限り重く し逆に振動板側の重量を できるだけ軽く構成すれば慣性の法則により振動板側により多くの超音波が発 射される。 これは見かけ上の音響ィンピ一ダンスが大きく変化するためで此れ でも大きな改善である。 そこで上にあげた対策の何れか或いは両方を実行すれ ば音響発射の効率は大いに向上することが理解される。 図面の簡単な説明 However, in practice, the acoustic impedance of a diaphragm is quite large, and if the material exceeds that value, the material is considerably restricted. Furthermore, considering the conventional device, even if the acoustic impedance is not so large, even if it is at an intermediate stage between these and the conventional device, it may be sufficiently practical. Therefore, we decided to consider these intermediate stages. In other words, even if the object has the same acoustic impedance as the diaphragm, if the weight of the object provided there is made as heavy as possible and the weight on the diaphragm side is made as light as possible, on the diaphragm side by the law of inertia, Ultrasonic waves are emitted. This is a significant improvement in the apparent acoustic impedance, which is also a major improvement. Take one or both of the above measures It is understood that the efficiency of sound emission is greatly improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明になる超音波発射機器用送波装置の基本的構造を示す中央断 面図である。 第 2図は超音波発射機器に使用される送波装置の音響的回路図と それに等価な電気回路図を示すものである。 第 3図は従来使用されている超音 波発射機器用送波装置の代表的例を示す中央断面構造図である。 発明を実施するための最良の形態  FIG. 1 is a central sectional view showing a basic structure of a wave transmitting device for an ultrasonic wave emitting device according to the present invention. Fig. 2 shows the acoustic circuit diagram of the wave transmitting device used for the ultrasonic launch equipment and the equivalent electric circuit diagram. FIG. 3 is a central cross-sectional structure diagram showing a typical example of a conventionally used transmitting device for an ultrasonic wave emitting device. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより具体的に説明するために、 添付図面に従って以下に説明する。 第 1図に示す実施例は本発明を有効に実施するための第一実施例で請求項 1 と請求項 2を同時に満足する発明の実施例である。 請求項 1と請求項 2は互い に関連があるためで図に示す(1 ) はセラミ ック振動子と呼ばれる超音波発射源 で一般的にはチタン酸バリゥムあるいはチタン酸ジルコン酸鉛などのセラミ ッ クからなる円盤状の素子で電歪の原理を利用して超音波を発射する。  The present invention will be described more specifically with reference to the accompanying drawings. The embodiment shown in FIG. 1 is a first embodiment for effectively implementing the present invention, and is an embodiment of the invention which simultaneously satisfies claims 1 and 2. Claims 1 and 2 are related to each other, and (1) is an ultrasonic emission source called a ceramic vibrator, which is generally a ceramic such as barium titanate or lead zirconate titanate. Ultrasonic waves are emitted using the principle of electrostriction in a disk-shaped element made of a material.
かかる振動子(1 ) の片面すなわち水深側面にはナイ口ン又は A B S樹脂など からなる円盤状の振動板(2) が貼り合わせてある。 材質をナイロンあるいは A B S樹脂としたのは比重がほぼ水に近く音響インピーダンスも水に近いので超 音波を有効に水中に発射できると考えるからである。 しかし此の部分の材料は 此れに限るものでは無くガラスあるいはステンレス等の板材であっても良い。 そして此処までの構造は基本的には従来のものと何ら変わらるところは無くた だ振動板については軽く出来れば出来るだけ軽い構造とした方がよい。  A disk-shaped vibrating plate (2) made of a nylon resin or an ABS resin is bonded to one side of the vibrator (1), that is, a deep side surface. The reason for using nylon or ABS resin is that the specific gravity is almost the same as water and the acoustic impedance is also close to water, so it is considered that ultrasonic waves can be effectively emitted into water. However, the material of this portion is not limited to this, and may be a plate material such as glass or stainless steel. The structure up to this point is basically the same as the conventional one, but the diaphragm should be as light as possible if possible.
次ぎに振動子(1 ) の振動板(2) 側と反対の背面側には従来とは異なり出来る だけ重量も重くかつ音響ィンピ一ダンスの大きいステンレス塊(3) 等を貼り合 わせる。 貼り合わせる物体の材質は物質固有の音響インピーダンスの大きいも のがよく物質固有の音響ィンピーダンスが大きければ大きい程この方向への超 音波は伝達し難くなるためである。 この場合背面物体(3) の形状はとくに規定 しないが一般的には外径は振動子(1 ) の外径とほぼ同じ外形とし厚さは発射す 超音波の波形を乱さない 1/4 λ X ηを常態とする。  Next, on the back side of the vibrator (1) opposite to the vibrating plate (2), a stainless steel block (3), which is as heavy as possible and has a large acoustic impedance, is attached. This is because the material of the object to be bonded preferably has a large material-specific acoustic impedance, and the greater the material-specific acoustic impedance, the more difficult it is to transmit ultrasonic waves in this direction. In this case, the shape of the back object (3) is not particularly specified, but generally the outer diameter is almost the same as the outer diameter of the vibrator (1) and the thickness is 1/4 λ which does not disturb the waveform of the ultrasonic wave to be emitted. Let X η be normal.
そしてその背面には従来のごとく独立気泡をもった発泡スチロール(4) 等のシ ―卜を貼り合わせる。 これ等の点は従来と同じで背面方向に発射された超音波 を完全に遮断するためである。 On the back surface, there is a foam of Styrofoam (4) with closed cells as before. -Paste the pieces. These points are the same as before, in order to completely block the ultrasonic waves emitted in the rear direction.
以上が本発明になる超音波発射用送波装置の基本構造で従来の送波装置と異 なる点は振動子( υ の背面に従来は存在しなかった音響インピーダンスの大き い重量的にも重い物体(3) を設けたことである。 此れにより「発明の開示」の項 で説明した通り超音波は振動板(2) 側により多く発射される。 また振動子(1 ) の背面に貼り合わされる物体(3) の材質は現在のところステンレス塊の他銅塊 等の海水により腐食され難い金属の他振動子等と同等のセラミ ック材である。 材質をセラミ ック材としたのはセラミ ック材料は金属の次に音響ィンピーダン スの大きな物質であるからである。 但しセラミ ックの材質は振動子と全く同じ 材質である必要は無く振動子と同様に密度が大きく組織が緻密の材料であれば 一般の磁器材料で良い。 かかる材料は一般に物質固有の音響ィンピ一ダンスが 大きく音響インピーダンスを大きくとるための要素を満足するからである。 第 2実施例の発明は外観などは第 1実施例と全く同一であるが、 ただ第 1実 施例と大きく異なる点は第 1実施例のごとく振動子の背面に貼り合わせる物体 の重量は重く音響ィンピ一ダンスの大きいものを理想とするカ^ しかし上記に 示す物体ほど音響ィンピ一ダンスが大きくなくとも現状の振動板(2) や海水等 より音響ィンピ一ダンスが若干でも大きければ発射される超音波は振動板側に より多く発射され性能的には改善となる。 そこで現在より性能が若千でも向上 すれば使用する超音波の周波数や測定の目的によっては充分実用になる場合が ある。 かかる場合の対応として振動子(1 ) の背面に貼り合わせる物体の材質の 下方の限界を規定しょうとするもので、 その下方の限界はナイロンあるいは A B S樹脂などの振動板(2) 材質と同じかそれより若干でも大きな音響インピー ダンスをもつ材料であれば目的は達成することとなる。 そこで以下にその材料 を列記すればナイロン · Α B S樹脂等のプラスチック材の他に更にこれらブラ スチック材と石英粉末などを混合した混和物も含まれる。 また此れら以外の物 質としては陶器 ·磁器 ·ガラスが含まれ、 更に利用の方法によっては此れらの他 に例えば石膏 *セメ ン卜等も含まれる。 請求する材質を石膏ゃセメン卜等にま で広げたのは石膏ゃセメン卜は形状の成型が自由なため将来的には従来よりか なり自由度の高 t、送波器の製作が期待できるためである。 産業上の利用の可能性 The above is the basic structure of the ultrasonic wave transmitting device according to the present invention, which is different from the conventional transmitting device in that the vibrator (the acoustic impedance which did not exist conventionally on the back of υ) is heavy in weight. Thus, the ultrasonic wave is emitted more toward the diaphragm (2) as described in the section of “Disclosure of the Invention.” Also, the ultrasonic wave is applied to the back surface of the vibrator (1). The material of the object (3) to be combined is the same ceramic material as other vibrators and other metals that are not easily corroded by seawater, such as stainless steel lump and copper lump, etc. at present. The reason is that the ceramic material is the second largest acoustic impedance material after the metal, but the ceramic material does not need to be the same material as the vibrator, and has the same high density and texture as the vibrator. If it is a dense material, a general porcelain material may be used. In general, the material of the second embodiment has a large acoustic impedance inherent in the substance and satisfies the factors for obtaining a large acoustic impedance.The invention of the second embodiment is exactly the same in appearance and the like as the first embodiment, but only The major difference from the first embodiment is that, as in the first embodiment, the weight of the object to be bonded to the back of the vibrator is ideally heavy and the acoustic impedance is large. Even if the dance is not large, if the acoustic impedance is slightly larger than the current diaphragm (2), seawater, etc., more ultrasonic waves will be emitted to the diaphragm side and the performance will be improved. If the performance is improved even if the performance is improved, it may be practically used depending on the frequency of the ultrasonic wave used and the purpose of the measurement. The lower limit of the body material is to be specified, and the lower limit is intended to be a material such as nylon or ABS resin that has the same or slightly higher acoustic impedance as the diaphragm (2) material. Therefore, when the materials are listed below, in addition to plastic materials such as nylon and BS resin, admixtures obtained by mixing these plastic materials with quartz powder are also included. Other materials include pottery, porcelain, glass, and depending on the method of use, in addition to these, for example, gypsum * cement etc. The reason for the expansion is that plaster-cement can be freely molded in the future, and it is expected that a transmitter with a considerably higher degree of freedom will be manufactured in the future. Industrial applicability
以上本発明は音響ィンピーダンスの負荷バランスを大幅に改善し、 発泡スチ ロール側の音響ィンピーダンスを可能な限り大きく増大させたことにあり、 こ れにより従来にない強力な超音波出力を望むことができた。  As described above, the present invention significantly improves the load balance of the acoustic impedance and increases the acoustic impedance on the styrene foam side as much as possible. Was completed.
このことは従来とかく深海や遠距離での物体の映像があいまいで判断しにく かった弊害が解消できる。 送波装置は従来に比較すれば若干重量的に重くなる 傾向にあるが水中で使用するものであるため、 その重量はあまり問題にはなら ない。 そのことよりも上で説明した通り音響インピーダンスを大幅に増大し負 荷のバランスを大きく改善したことに大きな意義がある。 以上  This solves the problem that the image of an object in the deep sea or at a long distance is difficult to determine because it is vague in the past. Transmitters tend to be slightly heavier than conventional transmitters, but since they are used in water, their weight does not matter much. As explained above, it is of great significance that the acoustic impedance is greatly increased and the load balance is greatly improved. that's all

Claims

請 求 の 範 囲 .海水中あるいは水中で使用される超音波発射装置のうちセラミ ック振動子を 使用する送波装置においてセラミ ック振動子の超音波を発射させようとする面 とは反対の面に少なくともセラミ ツク振動子の前面側の音響ィンピ一ダンスよ 大きい音響ィンピーダンスをもつ金属塊あるいはセラミ ック塊等のような物質 からなる物体を貼り合わせセラミ ック振動子の前面側の実際の音響インピーダ ンスより背面側の音響ィンピーダンスの方が遥かに大きくなるように構成たこ とを特徴とする超音波発射用送波装置。Scope of the request: Opposite to the surface of the ultrasonic transmitter used in seawater or underwater that transmits the ultrasonic wave of the ceramic oscillator in the transmitting device using the ceramic oscillator An object made of a substance such as a metal lump or a ceramic lump having a larger acoustic impedance than the acoustic impedance on the front side of the ceramic vibrator is bonded to at least the surface of the ceramic vibrator. A transmitting device for ultrasonic emission, characterized in that the acoustic impedance on the rear side is much larger than the actual acoustic impedance.
.海水中あるいは水中で使用される超音波発射装置のうちセラミ ック振動子を 使用する送波装置において超音波を発射させようとする面とは反対の面に金属 塊あるいはセラミ ック塊等の音響ィンピーダンスの大きい物体を貼り合わせる と同時に、 この超音波発射用送波装置の背面側に貼り合わせる金属塊あるいは セラミ ツク塊の重量の方が振動板側の重量よりも重量的に重く構成し物体の運 動法則すなわち慣性の法則上からも背面に貼合わせる物体の慣性モ一メ ン卜の の方が振動板側を構成する物体の慣性モ一メ ン卜より大きく構成したことを特 徴とす超音波発射用送波装置。  Metal or ceramic lumps on the surface of the ultrasonic transmitter used in seawater or water that is opposite to the surface on which the ultrasonic wave is to be emitted in the transmitter using a ceramic vibrator At the same time, the mass of the metal mass or ceramic mass attached to the back side of this ultrasonic transmitter is heavier than that of the diaphragm. From the viewpoint of the law of motion of the object, that is, the law of inertia, the inertia moment of the object attached to the back is larger than the inertia moment of the object constituting the diaphragm. Ultrasonic launching transmitter.
PCT/JP1998/000252 1996-12-06 1998-01-21 Transmitter for ultrasonic wave emitter WO1999038027A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35746096A JP3564613B2 (en) 1996-12-06 1996-12-06 Transmitter for ultrasonic equipment
PCT/JP1998/000252 WO1999038027A1 (en) 1996-12-06 1998-01-21 Transmitter for ultrasonic wave emitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35746096A JP3564613B2 (en) 1996-12-06 1996-12-06 Transmitter for ultrasonic equipment
PCT/JP1998/000252 WO1999038027A1 (en) 1996-12-06 1998-01-21 Transmitter for ultrasonic wave emitter

Publications (1)

Publication Number Publication Date
WO1999038027A1 true WO1999038027A1 (en) 1999-07-29

Family

ID=26439122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000252 WO1999038027A1 (en) 1996-12-06 1998-01-21 Transmitter for ultrasonic wave emitter

Country Status (2)

Country Link
JP (1) JP3564613B2 (en)
WO (1) WO1999038027A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538817B2 (en) * 2000-12-05 2004-06-14 樹靖 石田 Underwater transmitter / receiver capable of emitting multiple frequencies
GB201501923D0 (en) 2015-02-05 2015-03-25 Ionix Advanced Technologies Ltd Piezoelectric transducers
CN108267125B (en) * 2018-01-18 2020-05-08 河南城建学院 Simple high-precision detection device based on FPGA
US11841427B2 (en) * 2019-11-28 2023-12-12 Honda Electronics Co., Ltd. Ultrasonic-wave transmitter/receiver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296899A (en) * 1985-06-25 1986-12-27 Omron Tateisi Electronics Co Ultrasonic oscillator
JPS6489894A (en) * 1987-09-30 1989-04-05 Nec Corp Ultrasonic wave transmitter-receiver
JPH0467899U (en) * 1990-10-23 1992-06-16
JPH0511042A (en) * 1991-07-03 1993-01-19 Tokimec Inc Ultrasonic-wave probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296899A (en) * 1985-06-25 1986-12-27 Omron Tateisi Electronics Co Ultrasonic oscillator
JPS6489894A (en) * 1987-09-30 1989-04-05 Nec Corp Ultrasonic wave transmitter-receiver
JPH0467899U (en) * 1990-10-23 1992-06-16
JPH0511042A (en) * 1991-07-03 1993-01-19 Tokimec Inc Ultrasonic-wave probe

Also Published As

Publication number Publication date
JPH10174189A (en) 1998-06-26
JP3564613B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US9308554B2 (en) Ultrasonic/acoustic transducer
US4264788A (en) Damped ultrasonic detection unit
US4183007A (en) Ultrasonic transceiver
US6420816B2 (en) Method for exciting lamb waves in a plate, in particular a container wall, and an apparatus for carrying out the method and for receiving the excited lamb waves
JP2552347B2 (en) Electroacoustic transducer with cup-shaped metal body mounted in a fluid
WO1999038027A1 (en) Transmitter for ultrasonic wave emitter
Platte PVDF ultrasonic transducers
JP3062170B2 (en) Sound conversion device
US3019660A (en) Ultrasonic transducer
JP3324720B2 (en) Flow velocity measuring device
CN211042411U (en) Ultrasonic liquid level monitoring device for septic tank and septic tank
JPH04502543A (en) Wide beam emitting ultrasound transducer
WO2002047432A1 (en) Wave transmitter/receiver capable of emitting a plurality of frequencies
US3019661A (en) Ultrasonic transducer and impedance matching device therefor
US11598663B2 (en) Transducer for non-invasive measurement
JPH10271594A (en) Transmitter for ultrasonic wave emission
JP7029588B2 (en) Ultrasonic sensor
JP4942158B2 (en) Ship with underwater ultrasonic device and underwater ultrasonic device
JP2001166056A (en) Wave transmitting and receiving device for water ultrasonic wave using ringlike ceramic
JP2916197B2 (en) Backing material for high pressure
RU2168742C1 (en) Parametric active sonar with towed pumping transducer
JPS63195525A (en) Ultrasonic level gauge
JPH0617439Y2 (en) Ultrasonic Microphone
Sunthankar A vibrating-blade, end-fire ultrasonic radiator
RU2044411C1 (en) Hydroacoustic converter of beacon transponder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase