WO1999034610A1 - Color difference hue control system - Google Patents

Color difference hue control system Download PDF

Info

Publication number
WO1999034610A1
WO1999034610A1 PCT/US1997/024211 US9724211W WO9934610A1 WO 1999034610 A1 WO1999034610 A1 WO 1999034610A1 US 9724211 W US9724211 W US 9724211W WO 9934610 A1 WO9934610 A1 WO 9934610A1
Authority
WO
WIPO (PCT)
Prior art keywords
color difference
multiplier
hue
input
hue shift
Prior art date
Application number
PCT/US1997/024211
Other languages
French (fr)
Inventor
Robert Dale Altmanshofer
William Adamson Lagoni
Original Assignee
Thomson Consumer Electronics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Consumer Electronics, Inc. filed Critical Thomson Consumer Electronics, Inc.
Priority to PCT/US1997/024211 priority Critical patent/WO1999034610A1/en
Priority to US09/582,381 priority patent/US6987583B1/en
Priority to AU56240/98A priority patent/AU5624098A/en
Publication of WO1999034610A1 publication Critical patent/WO1999034610A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/643Hue control means, e.g. flesh tone control

Definitions

  • the invention relates to control systems for controlling video signal characteristics.
  • the television viewer controls the hue of the color by phase shifting the subcarrier reference signals applied to chroma demodulators. This results in a rotation of the "phase plot" of the chroma signal with an attendant hue shift of the demodulated color difference signals.
  • Fig. 1 showing the results from rotation of a "phase plot" of a chroma signal with the attendant hue shift of the demodulated color difference signals in the context of a traditional NTSC color television receiver.
  • Several representative colors, namely, red, blue and green, are illustrated in a polar plot. It should be noted that the chroma amplitude represented by the length of the color vectors is substantially unaltered by the hue shift.
  • Eckenbrecht describes a color tint controller for a closed circuit video system which receives red and blue color difference signals and selectively changes the amplitude of those signals to adjust the color of a displayed image.
  • Other U.S. patents that may be relevant to the adjustment of hue and color saturation include U.S. Patent Nos. 4,528,586; 4,554,576 and 4,562,460. Controlling tint by processing color difference signals may cause a problem. Specifically, processing color difference signals for providing tint control over a wide range of hue shift angles may result in undesirable color amplitude variations.
  • the invention involves providing for selecting a particular hue characteristic within a range of selectable hue characteristics and processing color difference signals for controlling a hue characteristic and a saturation characteristic of a video signal so that the saturation characteristic has a substantially constant amplitude over the range of selectable hue characteristics.
  • color difference signals are modified as a function of each other and as a function of a hue shift angle ⁇ to produce modified color difference signals representing a color vector whose amplitude stays substantially constant over a relatively wide range of hue shift angles ⁇ .
  • a first color difference signal provides a first input to a first multiplier circuit and to a first input of a third multiplier circuit.
  • a second color difference signal provides a first input to a second multiplier circuit and to a first input of a fourth multiplier circuit.
  • a control signal generator produces a pair of control signals that are each sinusoidal functions of the hue (i.e., tint) shift angle ⁇ .
  • the first control signal is provided as a second input to each of the first and fourth multipliers.
  • the second control signal is provided as a second input to each of the second and third multipliers.
  • Outputs of the first and second multipliers provide a pair of positive inputs to a first adder circuit whose output produces a first modified color difference signal.
  • An output from the third multiplier provides a positive input to a second adder and the output from the fourth multiplier provides a negative input to the second adder.
  • the output of the second adder produces a second modified color difference signal.
  • the first and second modified color difference signals represent a color vector having substantially constant amplitude over a wide range of hue shift angles.
  • control signal generator includes a lookup table for providing values of the first and second control signals that are a sinusoidal function of the hue shift angle over a wide range of hue shift angles.
  • control signal generator provides a linear approximation of a sinusoidal function of the hue shift angle for generating the control signal values.
  • Fig. 1 is a diagram showing the results of the rotation of the phase plot of a modulated chroma signal and the attendant hue shift of the associated demodulated color difference signals in a video signal processing system;
  • Fig. 2 shows an embodiment of an analog or digital apparatus for modifying color difference signals in such a way that modified color difference signals produced at the output represent a color amplitude that remains relatively constant over a range of hue shift angles;
  • Fig. 3 is a diagram illustrating how the amplitudes of the color vectors remain relatively constant as the hue shift angle ⁇ varies;
  • Fig. 4 is a schematic illustration of a second embodiment of the invention
  • Fig. 5 is a schematic diagram of another embodiment of the invention
  • Fig. 6 is a diagram illustrating the manner in which the amplitude A of the color signal can be kept substantially constant over a wide range of hue shift angles.
  • Fig. 2 is a block diagram illustrating an embodiment of a tint control system which operates as shown by the vector plot of Fig. 3.
  • a color vector V can be defined as:
  • a phase shifted vector V having the same amplitude A can be defined as:
  • Equations [5] and [6] represent the [R-Y] and [B-Y] components of a rotated vector V in the color difference plane having the same amplitude A as the non-rotated vector V. Equations [5] and [6] show that it is possible to keep the amplitude of rotated vector V constant by multiplying (gain controlling) each of the [R-Y] and [B-Y] color difference components by a value that is a function of the hue shift angle ⁇ before combining the [R-Y] and [B-Y]
  • multiplication or gain control factor in equations [5] and [6] is related to the hue shift angle ⁇ by a non-linear function, i.e., sinusoidally related to the hue shift angle . That is, the modified color difference signals [R-Y] and [B-Y] that represent the shifted vector V are combinations of the original color difference components [R-Y] and [B-Y] modified by sinusoidal functions of the hue shift angle.
  • a ROM lookup table can be used to implement the sinusoidal functions, i.e., provide sine and cosine values corresponding to each value of ⁇ .
  • Using precise sine and cosine values from a lookup table permits implementing the ideal relationships set forth in equations [5] and [6].
  • only a limited range hue shift angles ⁇ may be needed. If so, approximations for non-linear functions such as sine and cosine may be used. For example, it is possible to use the following linear approximations for sine and cosine:
  • Fig. 6 illustrates the result of comparing the embodiment of Fig 2 with the embodiment illustrated in Fig 5
  • the values for Ki and K2 are
  • K] and K.2 are determined empirically using an exemplary computer program written in QBASIC that is shown in Table 1.
  • An example of the optimization procedure performed by the program follows. Ki and K.2 in equations [7] and [8] are used in linear approximations of sine and cosine functions. As such, ⁇ in equations [7] and [8] is only a target for the tint shift. The actual resulting tint shift is given by equation [10].
  • K ⁇ and ⁇ .2 Solving for K ⁇ and ⁇ .2 involves first bounding Ki and K2 to some reasonable values.
  • certain boundary conditions and iteration step sizes are used, but other values for the boundary conditions and step sizes are possible.
  • the boundary values used for Ki are 0.5/45 to 0.8/45 and for K-2 are 0.1/45 to OJ/45.
  • the program steps the target tint range of ⁇ over a broad range of + 75° in 5° steps.
  • the program loops through possible combinations of K] and K2 finding the combination which gives the minimum amplitude change across a range which is less than or equal to the desired tint range value (see parameter "TintRangeDesired" in line 250 of the program in Table 1).
  • Fig. 4 illustrates an embodiment of a control system incorporating both color and tint functions.
  • Amplifiers Al and A2 are gain controlled differential output amplifiers having at least one current source output each.
  • Amplifiers Al and A2 accomplish the color control (gain) function and by virtue of the current mode outputs which allow summers SI and S2 to operate efficiently.
  • Amplifiers Al and A2 could alternatively be two-quadrant multipliers.
  • the differential outputs are necessary to provide one output as a color controlled input to the tint multiplier and the other as the output for summation of currents from the cross-coupled (tint) multipliers.
  • the multipliers Ml and M2 are preferably four quadrant devices having current mode outputs for accomplishing the required summations.
  • a first color difference signal [B-Y] is fed as a first input to multipliers Ml and M3.
  • a second color difference signal [R-Y] is fed as another first input to a second pair of multipliers M2 and M4.
  • a control signal generator produces a pair of outputs comprising sin ⁇ and cos ⁇ from the original hue shift angle ⁇ . Sin ⁇ provides a
  • multipliers Ml and M2 provide a first and second positive input, respectively, to adder Al which produces a first modified color difference signal [R-Y]'.
  • the output from multiplier M3 provides a first positive input to adder A2, whereas the output from multiplier M4 provides a second, negative input to adder AJ which produces, as a result, a second modified color difference signal [B-Y]'.
  • the modified color difference signals [R-Y]' and [B-Y]' replace the original color difference signals [R-Y] and [B-Y] in a video signal processing system to provide a tint controlled video signal.
  • the color chroma vector amplitude A remains at a substantially constant value over a wide range of hue shift angles ⁇
  • the control signal generator in Fig. 5 produces control signals representing hue shift values that can be controlled, e.g., by a user-controlled tint control.
  • Fig. 5 shows a microprocessor (uP) coupled to the control signal generator via a data bus such as the well-known IIC or I2C data bus.
  • the microprocessor receives and processes commands from a user-operated remote control.
  • the microprocessor in response to a user activation of a particular key of the remote control, the microprocessor will generate a graphics display signal that when coupled to a display device (not shown in Fig. 5) will produce, for example, a displayed menu (on-screen display or OSD) from which a user can select to control certain characteristics of the television system.
  • a displayed menu on-screen display or OSD
  • the user After selecting tint control from the OSD menu, the user operates one or more keys of the remote control to vary the tint setting.
  • the microprocessor detects the remote control signals indicating the tint modifications and generates the required control signals on the I2C bus to cause the control signal generator to generate control signals sin ⁇ and cos ⁇ that produce the desired tint modification.
  • the functions of the multipliers Ml - M4, summers SI and S2, adders Al and A2 and the control voltage generator can be realized using either analog or digital implementations.
  • the outputs for the control voltage generator can be generated from a ROM look-up table.
  • digital multipliers can be used to multiply the color difference signals by the control signal values and digital adders can be used to combine the multiplier outputs to produce digital modified color difference signal data streams. If the color difference signals are analog and analog multipliers and adders are used, the ROM output can be converted to an analog value using a digital to analog converter (DAC).
  • DAC digital to analog converter
  • analog control signal generator outputs can be generated from DACs having input registers into which digital values representing the desired hue angle are loaded by the microprocessor via the I2C bus, e.g., the DAC input registers may be memory mapped registers.
  • the DAC input registers may be memory mapped registers.
  • an implementation of a control signal generator that could provide approximations of the desired control signal values could be implemented using the non-linearity of transistor and diode junctions. Due to the relative complexity of the control function and the need for plural multipliers, it may be desirable to implement the described embodiments using one or more integrated circuits (IC).
  • IC integrated circuits

Abstract

A color television receiver system processes color difference signals for providing tint control while maintaining uniform color amplitude with respect to changes in hue shift angle. The color difference signals are modified as a function of each other and as a function of a hue shift angle to produce modified color difference signals. A color difference signal [B-Y] is supplied as a first input to multipliers M1 and M3. Another color difference signal [R-Y] is supplied as a first input to another pair of multipliers M2 and M4. A control signal generator produces output signals sin υ and cos υ where υ is the hue shift angle. The sin υ signal is supplied as a second input to multipliers M1 and M4 while the cos υ signal is supplied as a second input to multipliers M2 and M3. The outputs of M1 and M2 are added in an adder Al to produce a modified output [R-Y]'. Similarly, the output of multiplier M3 is provided as a positive input to adder A2 whereas the output of multiplier M4 is provided as a negative input to adder A2 to produce a modified color difference signal [B-Y]'. The modified color difference signals [R-Y]' and [B-Y]' represent a color vector having an amplitude A that remains substantially constant over a relatively wide range of hue shift angles υ.

Description

COLOR DIFFERENCE HUE CONTROL SYSTEM
FIELD OF THE INVENTION
The invention relates to control systems for controlling video signal characteristics.
BACKGROUND
In traditional NTSC color television receivers, the television viewer controls the hue of the color by phase shifting the subcarrier reference signals applied to chroma demodulators. This results in a rotation of the "phase plot" of the chroma signal with an attendant hue shift of the demodulated color difference signals. This is illustrated, for example, in Fig. 1 showing the results from rotation of a "phase plot" of a chroma signal with the attendant hue shift of the demodulated color difference signals in the context of a traditional NTSC color television receiver. Several representative colors, namely, red, blue and green, are illustrated in a polar plot. It should be noted that the chroma amplitude represented by the length of the color vectors is substantially unaltered by the hue shift. The foregoing worked well in the context of traditional NTSC color television receivers, but with advances towards IDTV, EDTV and HDTV as well as evolutions in PAL and SECAM towards customer controls like NTSC products, it becomes desirable to accomplish color (i.e. saturation) and tint (i.e., hue) controls on the base band color difference signals themselves. The prior art includes a number of efforts to adjust color hue and saturation in a variety of different contexts. One example is described in U.S. Patent 4,788,586 issued on November 29, 1988 to Robert R. Eckenbrecht and entitled "Controller for Adjusting Color Hue and Saturation of Images Generated from Signals in a Non-Broadcasting Video System." Eckenbrecht describes a color tint controller for a closed circuit video system which receives red and blue color difference signals and selectively changes the amplitude of those signals to adjust the color of a displayed image. Other U.S. patents that may be relevant to the adjustment of hue and color saturation include U.S. Patent Nos. 4,528,586; 4,554,576 and 4,562,460. Controlling tint by processing color difference signals may cause a problem. Specifically, processing color difference signals for providing tint control over a wide range of hue shift angles may result in undesirable color amplitude variations.
SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, the invention involves providing for selecting a particular hue characteristic within a range of selectable hue characteristics and processing color difference signals for controlling a hue characteristic and a saturation characteristic of a video signal so that the saturation characteristic has a substantially constant amplitude over the range of selectable hue characteristics.
In accordance with another aspect of the invention, color difference signals are modified as a function of each other and as a function of a hue shift angle θ to produce modified color difference signals representing a color vector whose amplitude stays substantially constant over a relatively wide range of hue shift angles θ.
In accordance with another aspect of the invention, a first color difference signal provides a first input to a first multiplier circuit and to a first input of a third multiplier circuit. A second color difference signal provides a first input to a second multiplier circuit and to a first input of a fourth multiplier circuit. A control signal generator produces a pair of control signals that are each sinusoidal functions of the hue (i.e., tint) shift angle θ. The first control signal is provided as a second input to each of the first and fourth multipliers. The second control signal is provided as a second input to each of the second and third multipliers. Outputs of the first and second multipliers provide a pair of positive inputs to a first adder circuit whose output produces a first modified color difference signal. An output from the third multiplier provides a positive input to a second adder and the output from the fourth multiplier provides a negative input to the second adder. The output of the second adder produces a second modified color difference signal. The first and second modified color difference signals represent a color vector having substantially constant amplitude over a wide range of hue shift angles.
In accordance with another aspect of the invention, the control signal generator includes a lookup table for providing values of the first and second control signals that are a sinusoidal function of the hue shift angle over a wide range of hue shift angles. j
In accordance with another aspect of the invention, the control signal generator provides a linear approximation of a sinusoidal function of the hue shift angle for generating the control signal values.
BRIEF DESCRIPTION OF THE DRAWING
The invention will be explained with reference to the drawing in which:
Fig. 1 is a diagram showing the results of the rotation of the phase plot of a modulated chroma signal and the attendant hue shift of the associated demodulated color difference signals in a video signal processing system;
Fig. 2 shows an embodiment of an analog or digital apparatus for modifying color difference signals in such a way that modified color difference signals produced at the output represent a color amplitude that remains relatively constant over a range of hue shift angles;
Fig. 3 is a diagram illustrating how the amplitudes of the color vectors remain relatively constant as the hue shift angle θ varies;
Fig. 4 is a schematic illustration of a second embodiment of the invention; Fig. 5 is a schematic diagram of another embodiment of the invention; and Fig. 6 is a diagram illustrating the manner in which the amplitude A of the color signal can be kept substantially constant over a wide range of hue shift angles.
DETAILED DESCRIPTION
During the course of this description, like designations or numbers will be used to identify like elements according to the different figures which illustrate the invention.
Fig. 2 is a block diagram illustrating an embodiment of a tint control system which operates as shown by the vector plot of Fig. 3.
The system shown in Figs. 2 and 3 are linear which result in vector summation of the [R-Y] and [B-Y] components. As a result, the amplitude of the resulting output vector, i.e., the color amplitude or saturation characteristic of the color vector, changes as a function of the hue control setting. For a 45° hue shift θ from nominal, the output amplitude increases approximately 40%. An embodiment providing compensation for this effect is illustrated in the block diagram of Fig. 5. Ideally, it is desirable for the output to remain of constant amplitude versus the hue control voltage. It has been discovered that it is possible to compensate for amplitude changes over a wide range of hue shift angles by controlling the color saturation by coupling the absolute value change of the hue control voltage from nominal into the color control. A detailed explanation of the compensation feature follows. A color vector V can be defined as:
V ≡ A /Θ
having an amplitude (color or saturation) A and a phase (or hue) angle θ. A phase shifted vector V having the same amplitude A can be defined as:
v' ≡ A /Θ + Θ'
where θ is the change in phase or hue which would result from a change of the hue control. In a color difference representation having an [R-Y], [B-Y] coordinate system (X and Y axes, respectively, in the color difference plane), the components of vectors V and V are then:
[R-Y] = A sin θ [1]
[B-Y] = A cos θ [2]
and
[R-Y]' = A sin (θ + θ') [3]
[B-Y]' = A cos (θ + θ'). [4]
The following identities:
sin (X + Y) = sin X cos Y + cos X sin Y; and
cos (X + Y) = cos X cos Y - sin X sin Y,
make it is possible to rewrite [3] and [4] using [1] and [2] as: [B-Y]' = cos Θ'[B-Y] - sin Θ'[R-Y] [5]
and
[R-Y]' = sin Θ'[B-Y] + cos Θ'[R-Y], [6]
Equations [5] and [6] represent the [R-Y] and [B-Y] components of a rotated vector V in the color difference plane having the same amplitude A as the non-rotated vector V. Equations [5] and [6] show that it is possible to keep the amplitude of rotated vector V constant by multiplying (gain controlling) each of the [R-Y] and [B-Y] color difference components by a value that is a function of the hue shift angle θ before combining the [R-Y] and [B-Y]
components to produce modified color difference components [R-Y] and [B-Y] . The
multiplication or gain control factor in equations [5] and [6] is related to the hue shift angle θ by a non-linear function, i.e., sinusoidally related to the hue shift angle . That is, the modified color difference signals [R-Y] and [B-Y] that represent the shifted vector V are combinations of the original color difference components [R-Y] and [B-Y] modified by sinusoidal functions of the hue shift angle.
As explained further below, in a digital implementation, a ROM lookup table can be used to implement the sinusoidal functions, i.e., provide sine and cosine values corresponding to each value of θ . Using precise sine and cosine values from a lookup table permits implementing the ideal relationships set forth in equations [5] and [6]. As a result, it is possible to maintain the amplitude of the rotated vector, i.e., the saturation characteristic, substantially constant over the full range of selectable hue shift values. Alternatively, only a limited range hue shift angles θ may be needed. If so, approximations for non-linear functions such as sine and cosine may be used. For example, it is possible to use the following linear approximations for sine and cosine:
cos θ' → 1- K2 |Θ'| and
sin θ' → Kiθ' where K\ and K2 are constants θ is now the target phase shift in degrees due to the use of the approximations
Using these approximations in equations [5] and [6] produces
[ B-Y ]' = (! - K2|θ'|) [B-Y] - K]Θ'[R-Y] [7]
and
[ R-Y ]' = Kιθ'[B-Y] + (1-K2|Θ'|)[R-Y] [8]
where [ R-Y ] and [ B-Y ] are approximations of modified color difference components that represent the ideally rotated vector V having the following amplitude and phase
Figure imgf000008_0001
and
Figure imgf000008_0002
If K.2 is equal to or approaches 0, it can be seen that the relationships in equations [7] and [8] become effectively the same as those implemented by the circuit of Fig. 2
Fig. 6 illustrates the result of comparing the embodiment of Fig 2 with the embodiment illustrated in Fig 5 For the embodiment in Fig 5, the values for Ki and K2 are
Ki = 0 78/45 and K-2 = 0 21/45
for θ in degrees As shown in Figure 6, the embodiment of Fig 2, where K] equals 0 77/45 and
K2 equals 0, produces a change of approximately 16% in the color amplitude vector when the range of hue shift angles is at + 30° The embodiment in Fig 5, however, where Ki equals 0 78/45 and K2 equals 0 21/45, produces an amplitude variation of 3 4% over the same ± 30° hue shift angle variation The values K] and K.2 are determined empirically using an exemplary computer program written in QBASIC that is shown in Table 1. An example of the optimization procedure performed by the program follows. Ki and K.2 in equations [7] and [8] are used in linear approximations of sine and cosine functions. As such, θ in equations [7] and [8] is only a target for the tint shift. The actual resulting tint shift is given by equation [10]. Solving for K\ and ¥.2 involves first bounding Ki and K2 to some reasonable values. In the program shown in Table 1 , certain boundary conditions and iteration step sizes are used, but other values for the boundary conditions and step sizes are possible. Specifically, in the program shown in Table 1, the boundary values used for Ki are 0.5/45 to 0.8/45 and for K-2 are 0.1/45 to OJ/45. The program steps the target tint range of θ over a broad range of + 75° in 5° steps. For each step, the program loops through possible combinations of K] and K2 finding the combination which gives the minimum amplitude change across a range which is less than or equal to the desired tint range value (see parameter "TintRangeDesired" in line 250 of the program in Table 1). The program outputs optimum values for K] and K-2. Fig. 4 illustrates an embodiment of a control system incorporating both color and tint functions. Amplifiers Al and A2 are gain controlled differential output amplifiers having at least one current source output each. Amplifiers Al and A2 accomplish the color control (gain) function and by virtue of the current mode outputs which allow summers SI and S2 to operate efficiently. Amplifiers Al and A2 could alternatively be two-quadrant multipliers. The differential outputs are necessary to provide one output as a color controlled input to the tint multiplier and the other as the output for summation of currents from the cross-coupled (tint) multipliers. The multipliers Ml and M2 are preferably four quadrant devices having current mode outputs for accomplishing the required summations.
In an embodiment shown in Fig. 5, a first color difference signal [B-Y] is fed as a first input to multipliers Ml and M3. A second color difference signal [R-Y] is fed as another first input to a second pair of multipliers M2 and M4. A control signal generator produces a pair of outputs comprising sin θ and cos θ from the original hue shift angle θ. Sin θ provides a
second input to multipliers to Ml and M4, whereas cos θ provides a second input to multipliers
M2 and M3. The outputs of multipliers Ml and M2 provide a first and second positive input, respectively, to adder Al which produces a first modified color difference signal [R-Y]'.
Similarly, the output from multiplier M3 provides a first positive input to adder A2, whereas the output from multiplier M4 provides a second, negative input to adder AJ which produces, as a result, a second modified color difference signal [B-Y]'. The modified color difference signals [R-Y]' and [B-Y]' replace the original color difference signals [R-Y] and [B-Y] in a video signal processing system to provide a tint controlled video signal. When employed in this fashion, the color chroma vector amplitude A remains at a substantially constant value over a wide range of hue shift angles θ
The control signal generator in Fig. 5 produces control signals representing hue shift values that can be controlled, e.g., by a user-controlled tint control. For example, Fig. 5 shows a microprocessor (uP) coupled to the control signal generator via a data bus such as the well-known IIC or I2C data bus. The microprocessor receives and processes commands from a user-operated remote control. In a typical television system, in response to a user activation of a particular key of the remote control, the microprocessor will generate a graphics display signal that when coupled to a display device (not shown in Fig. 5) will produce, for example, a displayed menu (on-screen display or OSD) from which a user can select to control certain characteristics of the television system. One such characteristic is tint. After selecting tint control from the OSD menu, the user operates one or more keys of the remote control to vary the tint setting. The microprocessor detects the remote control signals indicating the tint modifications and generates the required control signals on the I2C bus to cause the control signal generator to generate control signals sinθ and cosθ that produce the desired tint modification.
The functions of the multipliers Ml - M4, summers SI and S2, adders Al and A2 and the control voltage generator, can be realized using either analog or digital implementations. For example, in a digital implementation, the outputs for the control voltage generator can be generated from a ROM look-up table. In a fully digital system in which the color difference signals are digital data streams, digital multipliers can be used to multiply the color difference signals by the control signal values and digital adders can be used to combine the multiplier outputs to produce digital modified color difference signal data streams. If the color difference signals are analog and analog multipliers and adders are used, the ROM output can be converted to an analog value using a digital to analog converter (DAC). Alternatively, analog control signal generator outputs can be generated from DACs having input registers into which digital values representing the desired hue angle are loaded by the microprocessor via the I2C bus, e.g., the DAC input registers may be memory mapped registers. In an analog system, an implementation of a control signal generator that could provide approximations of the desired control signal values could be implemented using the non-linearity of transistor and diode junctions. Due to the relative complexity of the control function and the need for plural multipliers, it may be desirable to implement the described embodiments using one or more integrated circuits (IC).
While the invention has been described with reference to the embodiments described herein, it will be appreciated by those of ordinary skill in the art that modifications can be made to the structure and function of the invention without departing from the spirit and scope thereof.
Figure imgf000011_0001
T BL
Figure imgf000011_0002
/

Claims

1 Apparatus comprising control means for selecting a particular hue characteristic of a video image within a range of selectable hue characteristics, and a signal processor coupled to said control means for processing first and second color difference signals for controlling a hue characteristic and a saturation characteristic of a video image so that said saturation characteristic has a substantially constant magnitude over said range of selectable hue characteristics
2 The apparatus of claim 1 wherein the signal processor modifies the first and second color difference signals as a function of each other and as a function of a hue shift angle to produce modified first and second color shift difference signals representing a color vector whose amplitude stays substantially constant over a relatively wide range of hue shift angles.
3 The apparatus of claim 2 wherein the signal processor comprises a control signal generator for generating first and second control signals for controlling generation of said first and second modified color difference signals; each of said first and second control signals representing a non-linear function of the hue shift angle.
4 The apparatus of claim 3 wherein the signal processor comprises first, second, third, and fourth multipliers and first and second adders, the first color difference signal being provided to a first input of the first multiplier and to a first input of the third multiplier; the second color difference signal being provided to a first input of the second multiplier and to a first input of a fourth multiplier; the first control signal being provided to a second input of each of the first and fourth multipliers, the second control signal being provided to a second input of each of the second and third multipliers; an output of the first multiplier and an output of the second multiplier being coupled to respective inputs of a first adder for summing the outputs of the first and second multiplier for producing a first modified color difference signal; an output of the third multiplier and an output of the fourth multiplier being coupled to respective inputs of a second adder for subtracting the output of the fourth multiplier from the output of the third multiplier for producing a second modified color difference signal; the first and second modified color difference signals representing a color vector having substantially constant amplitude over a wide range of hue shift angles.
5. The apparatus of claim 3 wherein the control signal generator comprises a lookup table ROM for providing values of the first and second control signals representing the respective non-linear functions of the hue shift angle over a wide range of hue shift angles.
6. The apparatus of claim 3 wherein the control signal generator generates the first and second control signals in accordance with respective linear approximations of the respective non-linear functions of the hue shift angle.
7. The apparatus of claim 5 wherein the non-linear functions of hue shift angle represented by the first and second control signals are sine and cosine functions.
8. The apparatus of claim 6 wherein the non-linear functions of hue shift angle represented by the first and second control signals are sine and cosine functions.
PCT/US1997/024211 1997-12-29 1997-12-29 Color difference hue control system WO1999034610A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/US1997/024211 WO1999034610A1 (en) 1997-12-29 1997-12-29 Color difference hue control system
US09/582,381 US6987583B1 (en) 1997-12-29 1997-12-29 Color difference hue control system
AU56240/98A AU5624098A (en) 1997-12-29 1997-12-29 Color difference hue control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1997/024211 WO1999034610A1 (en) 1997-12-29 1997-12-29 Color difference hue control system

Publications (1)

Publication Number Publication Date
WO1999034610A1 true WO1999034610A1 (en) 1999-07-08

Family

ID=22262409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/024211 WO1999034610A1 (en) 1997-12-29 1997-12-29 Color difference hue control system

Country Status (2)

Country Link
AU (1) AU5624098A (en)
WO (1) WO1999034610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347654A2 (en) 2002-03-18 2003-09-24 Victor Company Of Japan, Limited Video correction apparatus and method, video correction program, and recording medium on which the program is recorded

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545113A1 (en) * 1984-12-20 1986-07-10 Canon K.K., Tokio/Tokyo COLOR ADJUSTMENT
EP0221254A2 (en) * 1985-08-02 1987-05-13 Hitachi, Ltd. Color tone adjusting device
DE3809967A1 (en) * 1987-03-24 1988-10-13 Olympus Optical Co COLOR ENHANCEMENT CIRCUIT

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545113A1 (en) * 1984-12-20 1986-07-10 Canon K.K., Tokio/Tokyo COLOR ADJUSTMENT
EP0221254A2 (en) * 1985-08-02 1987-05-13 Hitachi, Ltd. Color tone adjusting device
DE3809967A1 (en) * 1987-03-24 1988-10-13 Olympus Optical Co COLOR ENHANCEMENT CIRCUIT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347654A2 (en) 2002-03-18 2003-09-24 Victor Company Of Japan, Limited Video correction apparatus and method, video correction program, and recording medium on which the program is recorded
EP1347654A3 (en) * 2002-03-18 2004-11-24 Victor Company Of Japan, Limited Video correction apparatus and method, video correction program, and recording medium on which the program is recorded
US7123308B2 (en) 2002-03-18 2006-10-17 Victor Company Of Japan, Limited Video data correction capable of exactly correcting hue, chroma and/or luminance signal

Also Published As

Publication number Publication date
AU5624098A (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP3760815B2 (en) Video display device
US5289295A (en) Color adjustment apparatus
US4679072A (en) Color adjusting device
KR100802000B1 (en) Display method of plasma display
US7483082B2 (en) Method and system for automatic color hue and color saturation adjustment of a pixel from a video source
US4788586A (en) Controller for adjusting color hue and saturation of images generated from signals in a non-broadcasting video system
WO2002023917A1 (en) Tonality correcting circuit and hue correcting circuit
JP3456818B2 (en) Color correction device
US6177962B1 (en) Apparatus and method for preventing oversaturation of chrominance signals
US5087966A (en) Digital gamma correction
US4951127A (en) Digital color-signal-processing circuit that provides independent processing of hue and saturation components in a color television
KR100333333B1 (en) Color signal processing device of video signal processing system
JPH0654988B2 (en) Hue adjuster
US6987583B1 (en) Color difference hue control system
WO1999034610A1 (en) Color difference hue control system
JP2001128189A (en) Color correcting circuit
US5574513A (en) Color selection aperture correction circuit
EP1232653B1 (en) Method and apparatus for enhancing green contrast of a color video signal
JP3137704B2 (en) Color reproduction correction method, color reproduction correction circuit, and color display device using the same
US7046305B1 (en) Method and apparatus for enhancing green contrast of a color video signal
JP4257033B2 (en) Color signal matrix adjustment
EP0221254A2 (en) Color tone adjusting device
JPH01221091A (en) Digital hue adjusting circuit
JPH0488791A (en) Hue adjustment circuit
JPH0570988B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09582381

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA