WO1999033565A1 - Titanium oxide-based photocatalyst, process for preparing the same, and use thereof - Google Patents

Titanium oxide-based photocatalyst, process for preparing the same, and use thereof Download PDF

Info

Publication number
WO1999033565A1
WO1999033565A1 PCT/JP1998/002745 JP9802745W WO9933565A1 WO 1999033565 A1 WO1999033565 A1 WO 1999033565A1 JP 9802745 W JP9802745 W JP 9802745W WO 9933565 A1 WO9933565 A1 WO 9933565A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
titanium oxide
layer
silicon
compound
Prior art date
Application number
PCT/JP1998/002745
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Masaki
Masaru Takahashi
Tadashi Yao
Kenji Ikishima
Akito Sakoda
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to AU80366/98A priority Critical patent/AU8036698A/en
Publication of WO1999033565A1 publication Critical patent/WO1999033565A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties

Definitions

  • Titanium oxide-based photocatalyst method for producing and using the same
  • the present invention relates to a titanium oxide-based photocatalyst having an excellent photocatalytic action and capable of forming a photocatalyst layer having excellent properties on the surface of a substrate, and a material provided with the titanium oxide-based photocatalyst layer on the surface. And the methods of making and using them.
  • Titanium oxide is mainly used as a semiconductor for photocatalysts.
  • a semiconductor such as titanium oxide
  • the powder has been used in a state of being suspended in a solution.
  • a material such as metal or ceramics.
  • the photocatalyst when the photocatalyst is fixed to the surface of the base material in a thin film form, that is, when used as a material having a photocatalyst layer on the surface, the photocatalytic efficiency is increased because the actual reaction area of the photocatalyst is limited. In addition to the problem of not being able to do so, problems often arise that the workability, strength, and appearance of the material are not always sufficient. For example, even if the photocatalyst particles are applied to the surface of the material (substrate) as it is, the photocatalyst itself does not have a film-forming action to form a film, and the photocatalyst and the substrate are not fired after the application. The photocatalytic layer (coating) may be cracked or the coating may be separated due to the difference in the coefficient of thermal expansion of the coating. Therefore, it is not always easy to obtain a film with sufficiently satisfactory properties.
  • JP-A-7-171408 discloses a photocatalyst in which photocatalyst particles are adhered to a substrate via a hardly decomposable binder.
  • the technique shown here involves applying a coating containing photocatalyst particles and a hardly decomposable binder obtained by a known method to the surface of a substrate such as various products and solidifying it. By doing so, it is said that the surface of various products can be relatively easily made into a photocatalyst.
  • Japanese Patent Application Laid-Open No. Heisei 9-197385 discloses a method in which a support layer made of silica particles is provided on the surface of a substrate, and titania particles smaller than silica particles are provided on the surface of the support layer.
  • a support layer made of silica particles is provided on the surface of a substrate, and titania particles smaller than silica particles are provided on the surface of the support layer.
  • the density of silica particles constituting the carrier layer is increased on the substrate side (by disposing small-diameter silica particles), the adhesion between the substrate and the carrier layer is increased, and the photocatalytic layer is formed.
  • the silica particles on the side are coarsely dispersed (by disposing large silica particles) to adhere the titania particles firmly, and are applied to the light reflecting surface of lamps and lighting equipment. Examples have been disclosed.
  • Japanese Patent Application Laid-Open No. Hei 9-171801 discloses that a photocatalyst particle composite containing a gel of a metal oxide or metal hydroxide such as titanium oxide is provided on an adhesive layer in between to form a substrate. A fixing technique is disclosed.
  • the active point of the photocatalyst is determined by the binder and the adhesive layer added to fix the photocatalyst particles. And the photocatalytic activity is significantly reduced. Also, in the photocatalyst layer (film) fixed to the substrate, the photocatalyst particles are buried in a binder or the like or are supported with a weak bonding force, and that portion becomes a starting point and cracks in the film. And other problems.
  • the fixation of the photocatalyst to the surface of the substrate is the fixation to the surface of the molded article, and is applied after the photocatalyst layer is provided on the surface.
  • No material for processing and a method for producing the same are disclosed. This is because, when a photocatalyst layer is provided, the workability of the substrate becomes poor and processing becomes difficult, and when severe processing is performed, the photocatalyst layer separates and the product quality deteriorates, and the photocatalytic function deteriorates. This is because there is a problem.
  • a photocatalyst layer (film) is provided on the surface of a material used for building materials, home appliances, automobiles, etc.
  • the material is formed into these product shapes and painted, and then a chemical containing the photocatalyst is sprayed.
  • -Painting or brush painting is used.
  • spray coating and brush coating methods have large paint loss, resulting in reduced yield due to inadequate surface properties of the product, etc., resulting in a significant cost increase.
  • the object to be applied is a molded product, a large drying oven for applying and drying the chemical solution and a space therefor are required, so the photocatalyst layer (film) is used for building materials and home appliances. Only a few examples are provided on the surface of molded substrates for products and vehicles.
  • a painted metal plate pre-coated metal plate in which the final product color or intermediate color is painted on the surface of a metal base material using a continuous method such as ⁇ -coat Is used. Painted metal film coating The required performance (color, workability, weather resistance, corrosion resistance, concealment, lubricity, etc.) of the product is given to the product.
  • the final product can be obtained by assembling and assembling. In this way, the processing method using a painted metal plate as a material can omit or simplify the painting step after assembling, so that the productivity is high and the economy is excellent. For this reason, painted metal sheets are becoming the mainstream of materials for building materials and home appliances, and the development of painted metal sheets provided with a photocatalytic layer on the surface that can be applied to these uses is desired.
  • the present invention has an excellent photocatalytic action, and an oxidation capable of forming a photocatalytic layer (film) having excellent bondability with a base material and excellent in processability, strength and the like on the surface of a material (substrate).
  • the purpose of the present invention is to provide a titanium-based photocatalyst, a material having a titanium oxide-based photocatalyst layer having excellent film properties on its surface, and a method for producing and using the same. is there. Disclosure of the invention
  • the titanium oxide photocatalyst which combines a silicon compound with a photocatalyst consisting of a titanium oxide, has excellent photocatalytic activity and is fixed to a material (substrate) to form a photocatalyst layer (film). At this time, it has the characteristics that it has excellent bondability with the base material and has good film properties such as workability, strength, crack resistance, deterioration resistance, and appearance.
  • the gist of the present invention is to provide the following (1) a titanium oxide-based photocatalyst, (2) a material provided with a layer of the titanium oxide-based photocatalyst on the surface, and (3) production of the material described above. And (4) a method for producing the material using the compounding agent, and (5) a method for using the material.
  • a silicon-based compound and a photocatalyst basic body composed of a titanium-based oxide containing zirconium titanate and having an atomic% ratio of zirconium to titanium of not less than 0.001 and not more than 0.5.
  • Mainly titanium oxide photocatalyst Mainly titanium oxide photocatalyst.
  • the titanium-based oxide (photocatalyst particles) in the titanium-oxide-based photocatalyst containing the silicon-based compound is particularly referred to as a “photocatalyst basic body” to be distinguished from the silicon-based compound.
  • This titanium oxide-based photocatalyst is composed of at least one of a silicon-based compound, silica fine particles, a polysiloxane, a silicone-based resin, and a compound in which these are partially reacted. When it is, it shows particularly excellent performance.
  • a photocatalyst basic body and a silicon-based compound comprising a titanium-based oxide containing zirconium titanate and having an atomic percentage ratio of zirconium to titanium of not less than 0.001 and not more than 0.5.
  • the “substrate” refers to a material serving as a base before forming a photocatalyst layer by fixing a powdery photocatalyst in a thin film shape.
  • the silicon-based compound is at least one of silica fine particles, polysiloxane, a silicone-based resin and a compound in which these are partially reacted,
  • the titanium oxide photocatalyst formed on the surface shows particularly excellent performance.
  • the above-mentioned base material is a metal material or a coated metal plate having its surface coated, and a material having a barrier layer between the base material and a layer formed of a titanium oxide-based photocatalyst has an excellent photocatalytic function. It is a material having both good workability.
  • the moldability of the material is improved.
  • the barrier layer contains rutile-type and / or Brookite-type titanium oxide particles that have been subjected to a photocatalytic inactivation treatment, the weather resistance of the titanium oxide-based photocatalyst layer is reduced.
  • the bending workability of the barrier layer is improved, so that the formability of the material is further improved.
  • a photocatalyst basic body composed of a titanium-based oxide containing zirconium titanate and having an atomic% ratio of zirconium to titanium of not less than 0.001 and not more than 0.5 and a silicon-based compound as a main component Titanium oxide based photocatalyst And / or a binder containing an organic solvent.
  • the aforementioned silicon-based compound is a silica fine particle, polysiloxane, a silicone-based resin, and a compounding agent in which at least one of the compounds in which these are partially reacted is present. I like it.
  • a basic photocatalyst comprising a titanium-based oxide containing zirconium titanate and having an atomic% ratio of zirconium to titanium of not less than 0.001 and not more than 0.5.
  • a titanium oxide-based photocatalyst mainly composed of a body and a silicon-based compound, and a binder containing water, hydrogen, or an organic solvent, the layer formed of the titanium oxide-based photocatalyst is fired.
  • the silicon-based compound is a compound containing at least one of silica fine particles, poly-pi-xanine, silicone-based resin and a compound in which these are partially reacted,
  • the base material surface is coated with a chemical solution for forming a barrier layer, and then dried to form a barrier layer.
  • the surface of the barrier layer is coated with the chemical solution for forming the titanium oxide-based photocatalyst layer, and dried, the surface formed with the titanium oxide-based photocatalyst according to (1) is provided. Materials can be manufactured.
  • a photocatalyst comprising a titanium-based oxide containing zirconium titanate and having an atomic% ratio of zirconium to titanium of not less than 0.001 and not more than 0.5.
  • the silicon-based compound is at least one of silica fine particles, polysiloxane, silicone-based resin and a compound in which these are partially reacted
  • the silicon-based compound is formed on the surface of the base material. Titanium oxide based photocatalyst Show noh.
  • a material having a layer formed of a titanium oxide-based photocatalyst on the surface of a base material is a metal material or a coated metal plate having a surface coated thereon, and the base material and the titanium oxide-based photocatalyst are used as a base material.
  • a material having a barrier layer between the formed layers may be used.
  • FIG. 1 is a diagram showing preferable drying conditions after applying a chemical solution for forming a barrier layer or a chemical solution for forming a photocatalytic layer.
  • FIG. 2 shows the results of the weather resistance and bending workability tests performed in Example 6, showing the content of titanium oxide in the barrier layer after the photocatalytic deactivation treatment and the color difference before and after the weather resistance test. It is a figure which shows the relationship between a change and bending workability.
  • FIG. 3 is a diagram showing an appearance of a flat panel used in an outdoor exposure test performed in Example 9. BEST MODE FOR CARRYING OUT THE INVENTION
  • the titanium oxide photocatalyst of the present invention (hereinafter simply referred to as “the photocatalyst of the present invention” or
  • photocatalyst a material having a layer formed of the photocatalyst on the surface, and methods for producing and using them are described in detail below.
  • the photocatalyst of the present invention comprises a titanium-based oxide containing zirconium titanate and having an atomic percentage ratio of zirconium to titanium of 0.001 or more and 0.5 or less. It is a titanium oxide photocatalyst mainly composed of a photocatalyst basic body and a silicon compound. As described later, at least one kind of metal and / or metal compound such as V, Fe, and Zn, an aluminum compound, and an ultraviolet absorber May be included Because.
  • the photocatalyst of the present invention has the following structural characteristics (a) and the following operational characteristics (b). Therefore, excellent photocatalytic activity is obtained.
  • the photocatalyst of the present invention is mainly composed of a photocatalyst basic body composed of a titanium-based oxide containing zirconium titanate and a silicon-based compound.
  • the atomic percentage ratio of Zr to Ti ( ⁇ 1 ", hereinafter, the ratio of Zr and other metal elements to Ti means the atomic percentage ratio) is not less than 0.001 and 0.5. It is as follows.
  • the content of the silicon compound in the photocatalyst is preferably 5% by weight or more and 95% by weight or less.
  • the titanium oxide photocatalyst also includes at least one of V, Fe, Zn, Ru, Rh, Pt, Ag, Pd, and Cu.
  • a metal compound, an aluminum compound, an ultraviolet absorbent, or the like may be contained.
  • part of the zirconium titanate contained in the photocatalyst basic body is firmly bound to the titanium oxide particles via the Ti-0-Zr bond (in other words, the titanium oxide titanate).
  • the photocatalyst particles are completely integrated with titanium oxide and some particles of zirconium titanate. I have.
  • the electronic interaction is further strengthened through bonding, so that the efficiency of charge separation of the photocatalyst is further enhanced, and the photocatalytic performance is dramatically improved.
  • the photocatalyst of the present invention is composed mainly of the above-mentioned photocatalyst basic body and a silicon-based compound, and the titanium-based oxide and the silicon-based compound are in a state of being partially bonded by a reaction. .
  • there is a strong Z r — 0— S i A bond has occurred. This is had contact to Z r S i 0 4, known as the zircon, is easy in the same manner as Z r - ⁇ one S i bond is formed.
  • the particles of the photocatalyst basic body ie, the titanium-based oxide
  • the silicon-based compound via Zr-1-1Si bonds.
  • the photocatalyst basic body and the silicon-based compound are not in a state in which fine particles are simply mixed with each other, or in a state in which the photocatalyst basic body fine particles are buried in a film portion made of a silicon-based compound, but rather by a reaction. It is in the combined state.
  • titanium oxide photocatalyst is bonded to the silicon compound via Zr, in this titanium oxide photocatalyst, titanium oxide, which is the main photocatalytically active site, is directly formed into a film. Less contact with parts. Furthermore, the above-mentioned electronic interaction spreads throughout the network, and the efficiency of charge separation is increased, so that the photocatalytic activity is improved. Further, when the photocatalyst of the present invention is fixed to a substrate to form a photocatalyst layer (film), the photocatalyst has excellent binding properties to the substrate, and provides an interface between the basic photocatalyst (photocatalyst particles) and the silicon-based compound. The film is hardly cracked because it is strongly bonded, and the film properties such as workability, strength, crack resistance, deterioration resistance and appearance are good.
  • the silicon-based compound is at least one of silica fine particles, polysiloxane, a silicone-based resin, and a partially reacted compound thereof. Excellent in both photocatalytic activity and film properties.
  • a titanium-based oxide containing zirconium titanate at a predetermined ratio is used as the basic photocatalyst included in the photocatalyst of the present invention.
  • performance such as photocatalytic activity is inferior to this, titanium oxide, zinc oxide, tungsten oxide, zirconium oxide, iron oxide, bismuth oxide are used instead of this titanium oxide.
  • a known semiconductor photocatalyst such as They may be used in combination.
  • titanium oxide or the above-mentioned titanate oxide and at least one of these known semiconductor photocatalysts may be used in combination.
  • titanium oxide may be amorphous or crystalline. In the case of crystalline, it may be in the form of an anatase, a rutile, or a mixture thereof.
  • zirconium titanate may be amorphous or crystalline, but crystalline is preferred because higher photocatalytic activity can be obtained.
  • the relationship between Ti and Zr contained in the basic photocatalyst is based on the ratio of Zr present as zirconium titanate to Ti present as titanium oxide and zirconium titanate ( When expressed as ZrZTi), the value is preferably from 0.01 to 0.5. If it is less than 0.01, the amount of zirconium titanate is small, so that the electronic interaction with titanium oxide becomes weak, and high photocatalytic activity cannot be obtained. On the other hand, if it exceeds 0.5, it becomes difficult to produce titanium oxide and zirconium titanate which are effective as a photocatalyst depending on the preparation method. A more preferable range is from 0.01 to 0.3. When Zr / Ti is within this preferred range, a zirconium titanate is contained and a photocatalytic base having high photocatalytic activity can be obtained without using a specially prepared method. .
  • the basic photocatalyst constituting the photocatalyst of the present invention has V, Fe, Zn, Ru, Rh, Pt, Ag, Pd and the like inside and / or on the surface thereof. And at least one of Cu and Cu may be contained.
  • the inclusion of these components further enhances the photocatalytic performance, and also imparts the functions of the components themselves to the photocatalyst, for example, antibacterial properties for Zn, Ag, and Cu. be able to.
  • the metal compound include metal oxides, hydroxides, oxyhydroxides, nitrates, and halides.
  • This silicon-based compound reacts with the basic photocatalyst, and is strongly bonded to the basic photocatalyst by a ⁇ 1 "— 0—31 bond.
  • particles of the titanium-based oxide are formed.
  • the charge separation efficiency of titanium oxide and zirconium titanate is higher than when it is not bonded.
  • the formation of the Zr—0—Si bond can be confirmed by analysis methods such as IR (infrared spectroscopy) and NMR (nuclear magnetic resonance). it can.
  • silicon-based compound a polysiloxane, a silicone resin, a silica fine particle and a partially reacted product thereof are preferable.
  • Polysiloxanes are tetramers represented by R 2 n Si (OR 1 ) (where ⁇ is an integer from 0 to 3 and R 1 and R 2 are hydrocarbon groups). Reaction products obtained by hydrolysis from silicone alkoxides such as toxisilane, methyltriethoxysilane, and methyltriisopropoxysilane Things are preferred. These silicone alkoxides can be used as a raw material of a coating compounding agent as described later.
  • Silicone resin is derived from general-purpose resins such as acrylic resin, urethane resin, and epoxy resin by ester exchange reaction and hydrosilylation. Any resin can be used. Specifically, acrylic silicone resin, epoxy silicone resin and the like are preferable from the viewpoints of film forming properties and film strength when the photocatalyst of the present invention is fixed to a substrate. .
  • silica fine particles examples include colloidal silica, powdered silica, and fumed silica.
  • the particle diameter of the fine particles is preferably 30 nm or less. If the particle size exceeds 30 nm, the specific surface area becomes smaller, so that the area that reacts with the basic photocatalyst is small, the number of bonds with the basic photocatalyst is reduced, the activity is reduced, and the film is cracked. This is because film forming properties and film properties are deteriorated, such as the occurrence of cracks and a decrease in the gloss of the film itself. More preferred silica
  • the fine particles are colloidal silica having a particle size of 2 O nm or less.
  • the silicon-based compound constituting the photocatalyst of the present invention may contain two or more of the above-mentioned silicon-based compounds. In that case, it is preferable from the economical viewpoint to use relatively inexpensive fine particles such as a colloidal silica force together with polysiloxane or silicone resin.
  • the silicon-based compound is obtained by sintering silicon alkoxide, silicone resin, silica fine particles, etc. used as a raw material of a coating mixture for coating at a firing temperature during film formation.
  • the polymer is partially hydrolyzed or has not reacted with the basic photocatalyst, or the silicone resin etc. in the titanium oxide-based photocatalyst has a photocatalytic effect. There is no problem even if it is partially oxidized.
  • the content of these silicon compounds be 5% by weight or more and 95% by weight or less based on the weight of the photocatalyst. If the amount is less than 5% by weight, the film properties such as cracking of the film and poor bonding to the base material are poor, and if it exceeds 95% by weight, the photocatalytic performance is reduced. A more preferred range is from 20% by weight to 60% by weight.
  • the photocatalyst of the present invention may contain additives for various purposes.
  • aluminum compounds are effective in improving photocatalytic activity, film strength, and the like. Also, by adding an inexpensive aluminum compound, the cost of the material can be suppressed.
  • the aluminum compound alumina fine particles having a particle diameter of 100 nm or less, aluminum hydroxide, and the like are preferable.
  • the content of the aluminum compound is preferably from 0.005% by weight to 20% by weight based on the weight of the photocatalyst. If the content is less than 0.05% by weight, the effect of the addition is ineffective, and if the content exceeds 20% by weight, the film is cracked and the gloss is reduced. More preferably, it is at least 2% by weight and at most 10% by weight.
  • the material (substrate) for fixing the photocatalyst of the present invention and the photocatalyst layer (coating) may contain an ultraviolet absorber.
  • the ultraviolet absorbent include organic compounds such as triazole and inorganic compounds such as titanium oxide and zinc oxide. Surface treatment of titanium oxide, zinc oxide, etc.
  • the content of these ultraviolet absorbers is not particularly limited, but is preferably 30% or less based on the weight of the photocatalyst of the present invention. This is because if it exceeds 30%, film formation is hindered.
  • This material contains zirconium titanate described in (1) above and has a ratio of zirconium to titanium (Zr / Ti) of not less than 0.001 and not more than 0.5.
  • This material has a photocatalyst basic body composed of a tan-based oxide and a titanium oxide-based photocatalyst mainly composed of a silicon-based compound on its surface.
  • the photocatalyst constituting the photocatalyst layer is particularly useful when the silicon-based compound is at least one of silica fine particles, polysiloxane, silicone-based resin and a compound in which these have been partially reacted. Demonstrates excellent photocatalytic performance. Further, as described above, the photocatalyst layer (film) formed on the surface of the substrate according to the above (1) has excellent bondability with the substrate and has good film properties, so that the film is cracked. It is excellent in workability, strength and appearance.
  • the base material iron, ⁇ , nickel, zinc, manganese, aluminum, titanium, platinum, molybdenum, etc., or alloys containing these elements as main components, etc.
  • Metal materials, inorganic materials such as ceramics, ceramics, glass, and quartz, and organic materials such as resin, wood, and activated carbon are suitable. These materials (base materials) may be used alone or in combination of two or more.
  • the shape of the substrate is preferably determined according to the application. Plates such as thick plates and thin plates, spherical shapes such as beads, or multiple shapes such as those used as products The shape may be rough.
  • the surface properties of the material may be porous or dense.
  • the material provided with a photocatalyst layer on its surface according to the present invention is the above-mentioned metal material or a coated metal plate having its surface coated (hereinafter, this metal material and a coated metal plate are collectively referred to as a substrate).
  • a metal plate) and a barrier layer between the substrate and the layer formed by the photocatalyst, that is, a barrier on the surface (at least one side) of the substrate may be a material having a layer and further having the photocatalyst layer described in (1) above (hereinafter, this material is referred to as a “metal plate having a photocatalytic function”). This material has both excellent photocatalytic function and good processability.
  • a known coated metal plate can be used as the base material in addition to the above-described metal materials.
  • the metal material may have various types of plating applied to its surface.
  • the base material of the coated metal sheet is a cold-rolled steel sheet for various drawing processes, a high-tensile cold-rolled steel sheet, or Zn-plated and Zn-coated such cold-rolled steel sheets.
  • Various types of plating such as Zn alloy plating with Al, Fe, Mn, etc., A1 plating, A1 alloy plating with A1, Mn, Zn etc. Plates are commonly used.
  • the base material is not limited to the above-mentioned steel sheet or plated steel sheet, but may be any type of hot-rolled steel sheet, or a sheet subjected to the above-described various kinds of plating, or ferrite.
  • a variety of stainless steel pots, such as stainless steel and austenitic stainless steel, or various aluminum plates may be used.
  • the coating applied to the surface of the base metal may be acrylic, melamin, polyester, polyurethane, PVC, etc.
  • known organic resin-based paints can be used.
  • the thickness and color of the coating film are arbitrary, and the thickness is generally 3 to 100 m.
  • the coating film is damaged by the oxidizing action of holes generated by the photocatalytic reaction when the photocatalytic particles come into direct contact (hereinafter referred to as “the metal oxide”). Such damage is referred to as “choking”). Therefore, a substance capable of shielding the action of the photocatalyst is interposed between the coating of the coated metal plate and the layer of the photocatalyst of the present invention in the form of a thin film to prevent the coating from being choked by the photocatalysis.
  • the base material of the metal plate is a metal material having no coating film surface, for example, a stainless steel plate or the like
  • the metal surface may be fired, Corrosion may be caused by the acid contained in the coating solution, and metal atoms or ions may diffuse from the underlying metal plate into the photocatalytic layer, resulting in a significant decrease in photocatalytic activity. Therefore, in order to suppress a decrease in photocatalytic activity, a substance for preventing metal diffusion is interposed between the metal material and the photocatalyst layer in the form of a thin film, as in the case of a coated metal plate.
  • Such a thin film having a function of blocking the photocatalytic action or preventing diffusion of metal from the underlayer is referred to herein as a “barrier layer”.
  • an inorganic substance that is not decomposed even when in contact with the photocatalyst particles, or an inorganic-organic composite substance can be used.
  • the inorganic substance for example, silicon oxide, aluminum oxide, zirconium oxide, or the like can be used.
  • silicon which has been widely used as a material to coat titanium oxide particle surfaces, in order to suppress the photocatalytic choking of titanium oxide, a common white pigment Oxides (especially SiO 2 ) or aluminum oxides (especially A 1203) are preferred.
  • the above oxide particles preferably have a particle diameter of 0.01 to 1 m.
  • the particle size can be measured by a transmission electron microscope. If the particle size exceeds 1 (jm), the adhesion of the barrier layer to the coating film or the metal surface may be impaired. The smaller the particle diameter, the better, but less than 0.0111 Those that are not are not common because they are difficult to obtain by ordinary means.
  • These oxide particles are obtained by a known method.
  • the silicon oxide particles represented by Sio 2 can be obtained by a known sol-gel method or the like.
  • the inorganic-organic composite material include a silicone resin, a silane coupling agent, a fluorine resin, and a titanate coupling agent.
  • the above-mentioned inorganic substances or inorganic-organic composite substances can be used alone or in combination.
  • Its content (total content when used in combination) is preferably at least 20% by weight based on the weight of the barrier layer. If the content is less than 20% by weight, the adhesion to the coating film or metal surface may be insufficient.
  • the upper limit of the content because 1 0 0% by weight, even good force 5, 8 0 the strength of the coating film exceeds% by weight there is and this is insufficient, rather than the preferred Ri good is 8 0 by weight%.
  • a photocatalyst inactivation treatment is applied to the rear layer to improve the weather resistance of the coating film when used outdoors. It is preferable to contain rutile-type and / or wurtzite-type titanium oxide particles which have been subjected to the treatment.
  • the photocatalytic inactivation treatment is a treatment in which the surfaces of titanium oxide particles are coated with silica, alumina, zirconia, or the like. Since these titanium oxide particles absorb ultraviolet rays, the amount of ultraviolet rays reaching the coating film of the coated metal plate is reduced, and the deterioration of the resin is suppressed.
  • the barrier layer contains an appropriate amount of titanium oxide particles that have been subjected to a photocatalytic deactivation treatment
  • the bendability of the NORIA layer is improved. This is presumably because, when these particles are contained in an appropriate amount, the stress generated inside the barrier layer during processing is reduced.
  • excessive content may impair the workability of the barrier layer.
  • the content of the titanium oxide particles subjected to the photocatalytic inactivation treatment be set to 80% by weight or less with respect to the weight of the phosphor layer. When the content is in the range of 20 to 65% by weight, the balance between the weather resistance and the formability is good, and it is more preferable.
  • the layer was treated with an oxide such as silicon oxide which has a function of blocking the photocatalytic action or preventing diffusion of metal from the underlayer, and a photocatalytic inactivation treatment for improving weather resistance.
  • an oxide such as silicon oxide which has a function of blocking the photocatalytic action or preventing diffusion of metal from the underlayer
  • a photocatalytic inactivation treatment for improving weather resistance.
  • titanium oxide particles, etc. contains UV absorbers such as benzotriazole type, benzopentanone type, and anilide cyanoacrylate type for the purpose of improving weather resistance May be allowed.
  • the thickness of the rear layer is preferably set to 0.05 to 10 wm. If the thickness is less than 0.05 ⁇ m, the effects of suppressing choking and preventing metal diffusion are insufficient. If the thickness exceeds 10 m, the effect of suppressing choking and diffusion of metal saturates, so that increasing the thickness beyond 10 m is not economical. If the thickness of the photocatalyst layer described below is appropriate, the transparency of these layers can be maintained, so even if the barrier layer and the photocatalyst layer are provided on the metal plate, the color tone, gloss, etc. of the metal plate itself There is no loss of design.
  • Examples of the photocatalyst include a photocatalyst basic body composed of a titanium-based oxide containing zirconia titanate and a titanium oxide-based photocatalyst according to the above (1) mainly composed of a silicon-based compound. Used.
  • This photocatalyst has excellent photocatalytic activity, and also has a film property (bonding property to the base material, when fixed on the surface of a base material (in this case, a barrier layer)) to form a photocatalyst layer (film). In terms of workability and strength).
  • the size of the basic photocatalyst is preferably in the range of 0.05 to 1 m in terms of the average particle size determined by observation with a transmission electron microscope.
  • Particles with a particle size of less than 0.05 m are difficult to classify by ordinary means and are difficult to obtain.
  • the size of the crystallite constituting the basic photocatalyst is preferably from 5 to 50 nm.
  • the crystallite size is (10%) of the anatase crystal obtained by X-ray diffraction. 1) Calculated from the diffraction peak from the plane. If the crystallite size exceeds 50 nm, the photocatalytic activity decreases, which is not preferable. Since the smaller the crystallite size, the better the photocatalytic activity, it may be as small as possible, but those smaller than 5 nm cannot be obtained by ordinary means.
  • the thickness of the photocatalyst layer is preferably 0.1 to 10 wm. If the thickness is less than 0.1 m, the photocatalytic effect will be insufficient. More preferably, it is at least 0.3 m. When the thickness exceeds 10 m, the photocatalytic effect is saturated, and the workability of the photocatalytic layer is deteriorated. When severe processing is performed, the thickness is more preferably 5 m or less.
  • the content of the basic photocatalyst is preferably in the range of 10 to 90% by weight based on the weight of the photocatalyst layer. If the content is less than 10% by weight, the photocatalytic function may be insufficient.
  • the power at which the photocatalytic effect increases as the content of the basic photocatalyst increases is not preferred, because it exceeds 90% by weight because cracks and cracks increase on the film surface.
  • the photocatalyst layer may be made of a fluororesin, a colloidal alumina, a chromic acid, or a chromic acid to improve the strength and adhesion of the film. It may contain up to 90% by weight of oxalate, phosphoric acid, phosphate and the like based on the weight of the photocatalyst layer.
  • a peptizer anion such as ion nitrate and chloride ion
  • a photocatalyst layer forming chemical solution described later may remain in the photocatalyst layer.
  • the surface of the photocatalyst layer has high wettability, a high coefficient of friction with molds and the like, and high slip resistance when pressed by a tool. For this reason, there is no problem with relatively mild bending, etc., but if severe processing such as deep drawing is performed, molding defects such as cracks, mold galling, poor dimensional shape, etc. ⁇ Separation occurs.
  • the photocatalyst layer preferably contains an organic lubricant.
  • organic lubricants used include natural waxes, polyolefin waxes, oxidized polyolefin waxes, and modified polyolefin waxes. There are waxes, crystal mouth waxes, etc., and it is better to use one or a combination of two or more of these.
  • the above-mentioned wax particles are decomposed by photocatalysis after molding and are removed from the photocatalyst layer, so that the photocatalytic activity of the product is improved. It is not preferable to use a wax other than the above because the photocatalytic activity of the photocatalyst layer deteriorates.
  • the content of the organic lubricant is preferably 0.1% by weight or more based on the weight of the photocatalyst layer in order to obtain a lubricating effect at the time of molding.
  • the upper limit of the content of the organic lubricant is preferably set to 10% by weight based on the weight of the photocatalyst layer.
  • the amount of the organic lubricant is suitable for each drawing process, and is preferably as small as possible. Therefore, the amount is more preferably 5% by weight or less.
  • the organic lubricant is preferably a granular solid lubricant. If a particulate solid lubricant is used, the surface of the photocatalyst particles is not covered with the organic lubricant, so that the photocatalytic function of the photocatalyst particles can be sufficiently exhibited. Liquid lubricants are not preferred because they cover the surface of the photocatalyst particles.
  • the particle size of the organic lubricant is an average particle size measured by a laser diffraction method and is preferably not less than the thickness of the photocatalytic layer. If the average particle size is smaller than the thickness of the photocatalyst layer, the lubricating effect is insufficient. If the average particle size is excessively large, the organic lubricant drops off from the photocatalyst layer and adheres to the drawn surface to deteriorate the surface properties. For this reason, the average particle size is preferably set to 5 ⁇ m or less. More preferably, the thickness is not more than the thickness of the photocatalyst layer + 3 m.
  • the titanium oxide-based photocatalyst described in (1) above is usually used in a state of being fixed as a film on the surface of a material (substrate). In this case, this photocatalyst is included Since a coating compounding agent is used, the method for producing the photocatalyst will be described in the following description of the compounding agent.
  • This compounding agent contains a zirconium titanate photocatalyst consisting of a titanium-based oxide having a ratio of zirconium to titanium (ZrZTi) of not less than 0.001 and not more than 0.5. It is obtained by mixing and reacting a basic body, a silicon-based compound, water, and an organic solvent.
  • This compounding agent may be carried out as follows.
  • titanium compounds such as titanium alkoxide and titanium oxide fine particles and zirconium compounds such as zirconium alkoxide, zirconium oxide fine particles and zirconium salt are used as raw materials.
  • the ratio of zirconium to titanium (ZrZTi) is adjusted to be in the range of 0.01 to ⁇ .5 in a solvent such as alcohol or water or in air, and the reaction is carried out. Let it.
  • the precursor of the photocatalyst basic body obtained by this operation is dried at a temperature from room temperature to about 100, except for a solvent, if necessary. Thereafter, the obtained product is calcined at an arbitrary temperature of 100 ° C. to 900 ° C. in an air atmosphere, whereby a basic photocatalyst can be produced.
  • the precursor obtained as described above may be added to the precursor obtained above in water or in the air, or by an acid such as nitric acid or hydrochloric acid. After a secondary reaction such as hydrolysis is caused, it is preferable to remove the solvent and the like as necessary, dry, and then calcinate at a predetermined temperature.
  • a titanium compound and a zirconium compound are mixed, and if necessary, a reaction such as hydrolysis is caused to the obtained precursor, and then the reaction is performed at 80 ° C to 100 ° C.
  • the titanium-based oxide obtained in this manner is converted into water and organic or organic solvent.
  • a compounding agent for coating can be prepared.
  • an S mixture can be easily prepared by the following method.
  • a titanium compound and a zirconium compound are reacted in a solution while performing a treatment such as heating, if necessary, to obtain a titanium-based oxide mainly composed of titanium oxide and zirconium titanate.
  • Prepare a precursor Thereafter, the silicon-based compound is introduced into the solution without isolating the reaction product, and the precursor of the titanium-based oxide is reacted with the silicon-based compound to form a Zr-0-Si bond. It is generated separately, and additives are added as needed to make a mixture.
  • a method in which a titanium compound and a zirconium compound, or each of them is reacted with a silicon compound, and then the titanium compound and the zirconium compound are mixed and reacted to form a compounding agent. is also effective.
  • the compounding agent obtained as described above is applied to, for example, a material (substrate) and fired, so that the photocatalyst group body containing titanium oxide and zirconium titanate is a silicon-based compound.
  • a material having a titanium oxide-based photocatalyst layer firmly held on the film via a Zr10-Si bond is obtained.
  • the basic photocatalyst includes at least one metal and / or metal compound of V, Fe, Zn, Ru, Rh, Pt, Ag, Pd, and Cu. It may be contained (supported).
  • the photocatalyst basic body may be preliminarily supported by an impregnation method, a kneading method, or the like, or, when the carrier is a metal, the metal is added to the compounding agent after preparation.
  • a salt may be added, and the metal may be supported on the basic photocatalyst body by reduction or the like.
  • silicon-based compound it is preferable to use the above-mentioned polysilicon ⁇ siloxane, silicone resin, silica fine particles and the like. Silicon alkoxides may be used.
  • Silicon alcohol is a precursor of silicon compounds, R 2 n Si (OR
  • R 1 and R 2 mean a hydrocarbon group It is hydrolyzed by water in the air at the time of film formation or water contained in a solvent at the time of preparation of the compounding agent, or is thermally decomposed at the time of firing to produce polysiloxane.
  • the hydrocarbon group R 1 is preferably an alkyl group having 1 to 4 carbon atoms. When the value is 5 or more, it does not easily react with the basic photocatalyst or the precursor thereof, and is hardly hydrolyzed. Moreover, it is difficult to obtain.
  • the hydrocarbon group R 2 is not particularly limited. Not only unsubstituted hydrocarbon groups but also substituted ones in which hydrogen is substituted with halogen or the like can be used.
  • Silicon alkoxide may be used as it is as a raw material of the compounding agent, or it may be partially hydrolyzed using a pre-mixed acid or the like to form a polysiloxane, and then the raw material of the compounding agent may be used. It may be used as
  • the above-mentioned general-purpose resins such as the acrylic resin, the urethane resin, and the epoxy resin are subjected to an ester exchange reaction and a ⁇ -silyl conversion to form a silicone resin.
  • Resins into which corn is introduced At this time, the silicone content in the silicone resin is preferably set to 60% by weight or less.
  • Acrylic silicone resins and epoxy silicone resins are preferred in terms of film strength after film formation. These resins can be used either as emulsion-type resins or those dissolved in solvents.
  • a photo-curable silicone resin can also be used.
  • a titanium oxide-based photocatalyst layer coating
  • silica fine particles examples include the above-mentioned co-doped silica, powdered silica, and fumed silica.
  • the particle size of the silica fine particles is preferably 30 nm or less for the reasons described above.
  • a more preferred silica fine particle is a colloidal silica having a particle diameter of 20 nm or less.
  • the colloidal silica may be either a dispersion in water or a dispersion in an organic solvent such as alcohol. These colloidal silicas may be commercially available, which can be easily prepared from silicon alkoxides using an acid.
  • silicon-based compounds are used alone or in combination of two or more, mixed with a photocatalyst basic substance or a precursor thereof in a solvent such as water and / or an organic solvent, and reacted.
  • the properties of the constituents contained in the compounding agent such as silicone resin, It may be appropriately determined in consideration of the solubility of siloxane and the like, the hydrolysis of silicon alkoxide, the dispersibility of silica fine particles, and the like.
  • organic solvent examples include, for example, alcohols such as methanol, ethanol, lower aliphatic alcohols such as 2-propanol and n-butanol, and alcohols.
  • examples include glycols such as renglycol and diethyl glycol, and carbitols such as carbitol acetate, and it is possible to use one kind or two or more kinds of these. it can.
  • less polar Toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and the like can be used as suitable solvents.
  • the pH of the compounding agent is preferably 7 or less. If it exceeds 7, the dispersibility of the raw materials becomes extremely poor, and the preservability of the coating compounding agent becomes poor. More preferably, PH is 1 or more and 5 or less.
  • the pH can be appropriately adjusted with a basic reagent such as ammonia or an acidic reagent such as hydrochloric acid or nitric acid.
  • Additives can be added to the coating composition for various purposes.
  • a chelating agent is used to suppress hydrolysis of silicon alkoxide, which is rapidly hydrolyzed, or titanium alkoxide, zirconium alkoxide, etc. added as a raw material of the basic photocatalyst. It may be added.
  • a surfactant such as an organic or silicone surfactant may be used.
  • Leveling agents, defoamers, foam inhibitors, etc. can be added. In this case, the amount of addition depends on the type, but is preferably 0.5% by weight or less of the compounding agent. If added in excess of this, the film becomes cloudy and the photocatalytic performance decreases. A more desirable range is 0.05% by weight or less.
  • the material having a surface of the titanium oxide-based photocatalyst described in the above (1) on the surface can be produced by coating the surface of the substrate with the above-described compounding agent and then firing. . Prior to firing, drying may be performed if necessary.
  • the base material a material of the type and shape described above may be used.
  • a method such as coating or spraying.
  • Application methods include spin coating, dip coating, spray coating, knock coating, and roll coating. There is a method such as ringing, and any method may be used. A spraying method using a spray may be used.
  • the temperature for firing may be set in consideration of the deterioration temperature of the base material or the thermal decomposition temperature of the film constituent material.
  • the preferred temperature range is from 100 ° C to 300 ° C. If the firing temperature exceeds 300 ° C, the silicon-based compound having an organic moiety is decomposed, and the photocatalyst layer (coating) may turn yellow or crack.
  • the temperature is generally in the range of room temperature to 100 ° C, and it is preferable that the lower the temperature, the longer the drying time.
  • the thickness of the titanium oxide photocatalyst layer formed on the surface is preferably in the range of about 0.1 m to about 20 ⁇ m. If the thickness is less than 0.1 m, sufficient photocatalytic activity may not be obtained. On the other hand, if the film thickness exceeds 20 m, the light transmittance may decrease or the photocatalytic layer (film) may crack. By setting the film thickness in the above range, a titanium oxide-based photocatalyst layer exhibiting high photocatalytic activity and having good film properties with less film cracking and separation can be obtained.
  • a method for manufacturing the metal plate having the photocatalytic function will be described.
  • a barrier layer is formed. After coating the surface of the base material (metal plate) with a chemical, it is dried to form a barrier layer, and then the surface of the barrier layer is coated with a chemical that forms a titanium oxide-based photocatalyst layer, and then dried. do it.
  • a chemical solution for forming a barrier layer is applied to at least one side of the above-mentioned known base metal plate, and dried to form a barrier layer.
  • the titanium oxide-based photocatalyst described in (1) above or a chemical solution containing the photocatalyst and an organic lubricant is applied on the rear layer, and dried to form a photocatalyst layer.
  • the chemical solution that forms the barrier layer is an oxide that blocks the photocatalytic action described above or prevents the diffusion of metal from the ground, and a cross-linking agent, an antifoaming agent, and a leveling agent. And the like, and a suitable amount of these are dispersed in a solvent to obtain a coating composition.
  • Known silane coupling agents, melamin-isosilicate compounds, and the like can be used as the crosslinker.
  • Anti-foaming agents such as pull-nicked surfactants and polypropylene glycol, and leveling agents such as dimethylpolysiloxane and polyacrylic acid salt
  • solvent known solvents such as water, various alcohols, toluene, and xylene can be used.
  • titanium oxide particles or the like and the ultraviolet absorber that have been subjected to the above-described photocatalytic inactivation treatment are contained.
  • various commonly used coloring pigments, extenders, organic pigments and the like may be optionally added.
  • the chemical solution for forming the photocatalyst layer uses the above-mentioned titanium oxide-based photocatalyst, inorganic binder, and known coating additives such as the above-mentioned crosslinking agent, antifoaming agent, and leveling agent. Is dispersed in an appropriate amount in the above-mentioned known solvent to obtain a coating composition. When processability is required, the above-mentioned organic lubricant is further mixed to obtain a coating composition.
  • the film thickness at the time of coating is such that the film thickness after drying is 0.05 to 10 m for the barrier layer and 0.1 to 10 m for the photocatalytic layer.
  • Drying after the application of the barrier layer forming chemical is basically performed at a temperature and for a time at which the metal plate itself does not soften or deform and the barrier layer sufficiently exhibits its function. You only have to make a selection.
  • the drying temperature T, C) and the drying time t, (second) be within the ranges specified by the following formulas (1) and (2). This range corresponds to the range surrounded by the solid line in FIG.
  • Drying after applying the photocatalytic layer forming chemical solution should be performed so that the drying temperature T 2 (° C) and the drying time t 2 (second) fall within the ranges defined by the following formulas (3) and ( 2 ). .
  • This range corresponds to the range surrounded by the broken line in FIG.
  • the drying conditions after applying the barrier layer forming chemical solution and the photocatalytic layer forming chemical solution, respectively, are as follows. This is much easier.
  • the treatment may be performed in a temperature range of 100 to 500 ° C for 1 minute or more. However, if the temperature exceeds 300 ° C., the substrate may be oxidized or discolored. Therefore, the treatment time is preferably 5 minutes or less.
  • the photocatalyst layer After drying the photocatalyst layer, it is preferable to cool at a rate of 5 to 100 ° C / sec. If the cooling rate is less than 5 ° C / sec, it takes time to cool, and if the cooling rate exceeds 100 ° C Z seconds, cracks may occur in the film (photocatalyst layer).
  • Processes other than those described above may be performed by a known method.
  • a series of treatments such as application and drying of chemicals may be carried out in a notch type using a cutting plate, but using a 2-coil 2-bake continuous coil coating facility.
  • the material described in (2) above which is provided with the layer formed by the photocatalyst of the present invention described in (1) above, can be easily manufactured. Can be done.
  • a high photocatalytic activity is maintained even when the firing temperature range is wide from a low temperature range to a high temperature range, so that this photocatalytic layer can be formed on various substrate surfaces regardless of the material or the like. It is possible to produce a material that is not suitable.
  • a layer formed of the titanium oxide-based photocatalyst described in (1) above is provided on the surface.
  • the material described in (2) above exhibits a photocatalytic action by irradiating light of higher energy than the band gap of titanium oxide, and exhibits various harmful substances and adhering substances. It has an excellent effect on the treatment, ie, decomposition, removal, and detoxification. Therefore, the material provided with the layer formed of the titanium oxide-based photocatalyst on the surface allows the substance in the air or water or the substance adhering to the above-mentioned material surface under light irradiation. By performing the treatment, the photocatalytic action described above can be exerted.
  • treatment refers to a state in which a material having the above-described photocatalyst layer on its surface is placed in the air or water, and the surface of the material is exposed to light of the above energy. It is important to keep the
  • harmful substances are substances that are considered harmful to the human body.
  • N ⁇ x nitrogen oxide
  • SO x sulfur oxide
  • gases such as chlorofluorocarbon, ammonia, hydrogen sulfide, etc. contained in the atmosphere
  • aldehydes such as methanol, butanes, alcohols, BTX (benzene, toluene, xylene), phenols, etc., triphenyl methane, tricycloethyl
  • organic halogen compounds such as ren and fin
  • various pesticides such as herbicides, fungicides, insecticides, various biological oxygen-requiring substances such as proteins and amino acids, and surfactants
  • inorganic compounds such as cyanide compounds and sulfur compounds; various heavy metal ions; microorganisms such as bacteria, actinomycetes, fungi, and algae; and the above-mentioned substances contained in water.
  • substances that adhere directly to the surface of a material provided with a layer formed of a photocatalyst on the surface include substances such as Escherichia coli, staphylococci, green bacterium, and power bacteria. There are oil, cigarettes, fingerprints, rain streaks, and mud.
  • light having higher energy than the bandgap light including ultraviolet rays is preferred.
  • Specific light sources include sunlight, fluorescent lamps, black lights, mercury lamps, and xenon lamps. There are lights.
  • light containing near-ultraviolet light having a wavelength of 300 to 400 nm is preferable.
  • the irradiation amount and irradiation time of the light It is better to select the optimal conditions depending on the quality and quantity.
  • a material provided with the titanium oxide photocatalyst of the present invention on the surface and a material for comparison were manufactured, and the photocatalytic performance and the properties of the photocatalytic layer (film) on the material surface were investigated.
  • Table 1 shows the configuration of the photocatalyst layer in the present invention example (Test No. 1-2) and Comparative Example (Test No. 1-2).
  • Test material used in Test No.1-1 is as follows. First, a mixed solution obtained by adding 80 g of titanium isoproboxide to 16 m1 of iso- ⁇ -knol was added dropwise to 500 g of vigorously stirred distilled water. Then, 5 g of nitric acid (60%) was added, the mixture was stirred at 80 at 24 hours, and concentrated under vacuum to obtain a translucent titanium oxide sol (solid content: 15% by weight). .
  • test materials used in Test No.1-2 contain titanium oxide and titanium-based oxides mainly composed of zirconium titanate in the same manner as in Test No.1-1. Prepare a reaction solution, use this reaction solution and a solution obtained by adding a repelling agent to ethanol as a binder, and otherwise use the same method as in Test No. 1-1. A photocatalyst film is formed on a glass plate.
  • test No. 1 did not show any cracks in the film, and was excellent. Appearance.
  • the coating was cracked, and the coating was not sufficiently fixed to the base material.
  • test materials were subjected to a decomposition test of acetate aldehyde to evaluate photocatalytic performance, and a pencil hardness test specified in 15-0-3312 and a JIS- A film bending test specified in K-5400 was performed to evaluate the film properties.
  • the degradation test of acetate aldehyde was performed as follows.
  • Each test material was cut into 50 mm squares, placed in a quartz reaction cell, and closed. It was connected to a ring line (capacity: about 1.0 liter). Next, acetaldehyde (approximately 50 ppm) diluted with air is introduced into the system, and while circulating, a UV filter (Toshiba UV-3) is used with a 250 W high-pressure mercury lamp. Light irradiation was performed through 1). At this time, the UV intensity at 365 nm of the test material surface was 0.8 mW / cm 2 .
  • the concentration of acetoaldehyde was quantified using a gas chromatograph, and the decomposition rate constant of acetoaldehyde was determined. If the decomposition rate constant is 0.01 min- 'or more, it can be said that it has practical photocatalytic performance.
  • a titanium-based oxide mainly composed of titanium oxide and zirconium titanate was used as the photocatalyst basic body, and a silicon-based compound was used. Since a Si-0-Zr bond is formed between them, the efficiency of charge separation is improved within the network of the film, and the silicon compound is not directly in contact with the titanium oxide particles. As a result, the activity of the photocatalyst particles themselves is essentially enhanced. Although not shown here, the degree of reduction in photocatalytic activity was reduced compared to the case where only titanium oxide was used as the basic photocatalyst.
  • Example 2 Materials (7 types) with photocatalysts with varied Zr / Ti ratios in the basic photocatalyst body were manufactured, and their photocatalytic performance was evaluated.
  • the manufacturing method of the material (Test No. 2-5 or 2-11) is as follows.
  • the titanium oxide sol and the zirconium oxide sol prepared in Test No. 1-1 of Example 1 were mixed so that the Zr / Ti ratio was from 0 to 0.30.
  • the mixture was refluxed at 80 ° C for 5 'hours to obtain a reaction solution containing titanium oxide and a titanium-based oxide mainly composed of zirconium titanate (Test No. 2 -5 uses only titanium oxide sol).
  • a material was obtained in which a photocatalyst containing a titanium-based oxide mainly composed of titanium oxide and zirconium titanate as a basic photocatalyst was formed on a glass plate.
  • a decomposition test of acetate aldehyde was performed in the same manner as in Example 1.
  • Table 2 shows the test results.
  • titanium-based oxides mainly composed of titanium oxide and zirconium titanate as the basic photocatalyst allows the oxidation of titanium oxide.
  • a material having a photocatalytic layer with high photocatalytic performance on the surface was obtained as compared with the case where only the photocatalyst was used (Test No. 2-5).
  • Table 3 shows the materials with a photocatalyst layer on the surface used as test materials (Test No. 3-12 or 3-17).
  • the manufacturing method of the materials used in Test No. 3-12 is as follows.
  • This compounding agent was applied to a white painted steel sheet (length and width: 10 cm, thickness: lmm) using a bar coater (count: 10), and the temperature was previously set to 200 ° C.
  • the material was baked for one minute in an oven to obtain a material provided with a photocatalyst layer containing a titanium-based oxide mainly composed of titanium oxide and zirconium titanate on a coated steel sheet.
  • the manufacturing method of the materials used in Test No. 3-13 is as follows.
  • This mixture is spray-coated on stainless steel plate (400 mm x 600 mm, thickness lmm), dried at 60 ° C for 1 hour, and then dried at 180 ° C. Baking for 10 minutes, and titanic acid mainly composed of titanium oxide and zirconium titanate A material having a photocatalyst layer containing a nitride as a photocatalyst basic body on a stainless steel plate was obtained. The thickness of the photocatalyst layer (film) was about 1.8 m.
  • Test No. 3-14 The materials used in Test No. 3-14 were manufactured by the following method.
  • SEMICOSIL 936 UV photo-curable silicone resin
  • This compounding agent was applied to a quartz plate (5 cm square, lmm thick) by the dip coating method (pulling speed: 100 cm min), and then 100 ° C. After drying for 10 minutes, the resin is cured by irradiating it with ultraviolet light for 2 minutes, and a photocatalyst layer containing a titanium-based oxide mainly composed of titanium oxide and zirconium titanate as a photocatalyst basic body is formed. The material provided on the quartz plate was obtained.
  • Test Nos. 3-15 and 3-16 were manufactured by the following method. Add 21.3 g of the reaction solution containing titanium oxide and titanium oxide mainly composed of zirconium titanate prepared in Test No. 1-1 to silica sol (Nissan Chemical: trade name). 5.6 g, 2.3 g ethanol, and a very small amount of silicone-based leveling agent (about 0.04% by weight) ) Is added, and then aluminum sol (Nissan Chemical: trade name: Alumina 200, solid content: 10% by weight) 2. Add lg, adjust pH, and add at room temperature. The mixture was stirred for 10 minutes using an intact solution to obtain a K mixture.
  • titanium oxide and zirconium titanate were prepared in the same manner as in Example 1 except that the base material was a white painted steel plate (length: 10 cm, thickness: lmm).
  • a material (Test No. 3-15) was obtained in which a photocatalyst layer containing a titanium-based oxide as the main photocatalyst body on a coated steel plate was obtained.
  • the material used in Test No. 3-17 had a barrier layer between the base material and the photocatalyst layer.
  • the manufacturing method is as follows.
  • a chemical solution for forming a barrier layer was prepared by diluting a commercially available silica sol (Nissan Chemical: Snowtec 0) three times with ethanol. The solution was spin-coated (300 rpm) on the stainless steel plate used in Test No. 3-13 and heat-treated for 5 minutes in an electric furnace set to 250 ° C in advance. In this way, a barrier layer (thickness: 0.07 m) was formed. Next, a photocatalytic layer was formed on the barrier layer in the same manner as in Test No. 3-13.
  • test materials Visual inspection of the appearance of the film formed on the surface of the above 6 types of materials (test materials) revealed that the materials of Test Nos. 3-12 and 3-13 showed no cracks in the film. And had a good appearance. In the materials of Test Nos. 3 to 14, the film was slightly cloudy, but had no cracks and was firmly fixed to the base material.
  • test materials were subjected to a decomposition test of acetate aldehyde to evaluate the photocatalytic performance, and were subjected to the cross-cut tape method specified in JIS_K—540.
  • An adhesion test was performed to evaluate the film properties.
  • the decomposition test of acetate aldehyde was performed in the same manner as in Example 1. In the adhesion test, Kata Naif was used, the stitch interval was lmm, the number of stitches was 100, and the evaluation criteria specified in JIS-K-540 were used.
  • the adhesion of the photocatalyst layer (film) to the substrate was evaluated based on the above.
  • a commercially available white tile was applied by a dip coating method (pulling speed: 100 mmZ min.). Further, by firing at 250 ° C for 2 minutes, a photocatalyst layer including a photocatalyst basic body mainly composed of titanium oxide and zirconium titanate was provided on the tile. The material was obtained.
  • test material a decomposition test of salad oil was performed by the following method. For comparison, a similar test was performed using a white tile not coated with the binder.
  • a commercially available salad oil was attached to the surface of a test material (50 mm square) (adhesion amount: 0.1 mg Zcm 2 ) and irradiated with light from a 350 W high-pressure mercury lamp. Trial The UV intensity on the surface of the test material was 5.0 mW / cm 2 at 365 nm.
  • the weight of the test material was weighed at regular intervals using a precision balance, and the amount of reduction, that is, the amount of decomposition of salad oil was determined. As a result, the salad oil was completely decomposed and disappeared by irradiation for 15 hours. On the other hand, salad oil did not decrease at all under the same test conditions on the unprocessed tile used as a comparative material.
  • the titanium oxide-based photocatalyst of the present invention had an action of decomposing and removing adhering substances.
  • a material with a photocatalyst layer on the surface using a glass plate as a base material was manufactured, and an antibacterial activity against Escherichia coli (Escherichia coli W3110 strain) was investigated.
  • Materials used in Test No.2-9 was sterilized with 70% ethanolate Lumpur surface of (test material), E. coli 2. 5 xl 0 5 pieces Roh ml containing saline 0. 2 ml (E. coli number: the 5 x 1 0 4 pieces), was dropped on the surface of the test material divided into 0. 0 2 5 ml Dzu' 8 drops. Next, light irradiation was performed for 4 hours using a white fluorescent lamp while maintaining the relative humidity at 95% (illuminance: 30000 lux).
  • the bacterial solution on the test material was washed away with 9.8 ml of physiological saline, and the solution was diluted and spread on a standard agar medium, cultured at 35 ° C for 48 hours, and then grown.
  • the viable cell count was determined by counting Ronnie.
  • titanium oxide-based photocatalyst of the present invention has an excellent antibacterial action.
  • a metal plate (painted steel plate) having a photocatalytic function of the present invention was prepared, and weather resistance and bending workability were investigated (Test Nos. 6-1 to 6-7).
  • the method of manufacturing the coated steel sheet used in Test No. 6-1 is as follows.
  • This slurry was adjusted to pH10 using sodium hydroxide and subjected to hydrothermal treatment at 150 ° C for 3 hours with an autoclave. Then, the pH was adjusted to 7 by adding nitric acid having a concentration of 60%, and the mixture was filtered to obtain titanium oxide-based photocatalyst particles containing titanium oxide and zirconium titanate.
  • the particle size of the photocatalyst particles was 100 nm as an average particle size observed with a transmission electron microscope.
  • 100 g of an aqueous dispersion containing 15% by weight of the photocatalyst particles based on the dry solid content was added as a silicon-based compound to Nissan Kasaku Nissan Chemical Co., Ltd. 60 g of Techex L (solid content: 20% by weight) and an antifoaming agent were added to obtain a coating composition (hereinafter referred to as “catalyst zirconium titanate”). Paint containing paint).
  • the above coating A for barrier layer formation was applied on one side of a polyester-coated steel sheet whose base material was a hot-dip galvanized steel sheet with a thickness of 0.5 mm to a thickness of 2 ⁇ m after drying. After roll coating, dry at 240 ° C for 60 seconds and glue. Layer was formed. Then, the above-mentioned zirconium titanate-containing coating for a catalyst is ⁇ -coated so that the film thickness after drying becomes 1.5 ⁇ m, and the furnace is continuously heated at 180 ° for 50 seconds. Then, a photocatalyst layer containing titanium oxide and zirconium titanate as photocatalyst basic bodies and colloid silica as a silicon-based compound was formed.
  • the method for manufacturing the coated steel sheets used in Test Nos. 6-2 to 6-7 is as follows.
  • a photocatalytic layer with a dry film thickness of 1.5 m was applied using a paint containing zirconium titanate as a catalyst under the same conditions as in the method for producing the coated steel sheet in Test No.6-1 Was formed, and a coated steel sheet having a photocatalyst layer on the surface was produced.
  • the test No.6-1 or 6-7 coated steel sheet was subjected to a weather resistance test using Sansha Inezometer for 500 hours according to the method specified in JIS-K-172. Carried out. Thereafter, the color difference change ⁇ before and after the execution of the weather resistance test was measured according to the method specified in JIS—Z—8719. Further, the bending workability was evaluated according to the bending test method specified in JIS-G-3312.
  • T in the column of bending interval indicates the plate thickness.
  • those containing titanium oxide that had been subjected to a photocatalytic deactivation treatment in the ceramic layer exhibited excellent weather resistance.
  • the bending workability did not decrease, and the bending workability was improved when the titanium oxide was contained in an appropriate amount.
  • Example 6 After applying a coating-type chromate treatment to both sides of an aluminum plate having a thickness of 0.3 mm, a white acrylic coating film was formed. On one surface, the coating A for forming a coating layer used in Example 6 was roll-coated so that the film thickness after drying became 1.5 m, and then the coating was performed at 200 ° C. Dried for seconds. Next, similarly, the paint containing zirconium titanate for a catalyst used in Example 6 was roll-coated so that the film thickness after drying was 1.5 m, and then dried under various conditions. .
  • Table 5 shows the drying conditions and the evaluation results of the photocatalyst (film) adhesion and color difference.
  • Test Nos. 7-61 and 7-62 in Table 5 have too short drying time for painted aluminum plate, and test Nos. 7-63 and 7-6A have too low drying temperature. 6E is when the drying temperature is too high, and Test Nos. 7-6F and 7-6G are when the drying time is too long.
  • the adhesion or color difference of the photocatalyst layer (coating) when these drying conditions are not in the preferable range is not as good as when the drying is performed under the preferable conditions. I got it.
  • a 0.5 mm thick steel plate is coated on both sides with a Zn-Ni electric alloy containing 13 wt% Ni and the balance substantially consisting of Zn. After the roaming treatment, a white polyester-based coating film was formed. On one side, the coating A for forming a barrier layer used in Example 6 was roll-coated so that the film thickness after drying was 1 m, dried at 200 ° C for 40 seconds, and then dried. The catalyst-containing zirconium titanate-containing paint used in Example 6 was roll-coated so that the film thickness after drying was 1.5 m, dried under various conditions, and provided with a photocatalyst layer on the surface. A coated steel plate was obtained.
  • the adhesion of the photocatalyst layer (coating), the color difference ( ⁇ ) between the surface of the coated steel sheet provided with the photocatalyst layer on the surface and the surface of the coating pan plate as the base material, and the photocatalytic activity were investigated.
  • the adhesion and color difference were investigated in the same manner as in Example 7.
  • the photocatalytic activity was evaluated by performing an acetoaldehyde decomposition test and determining the time until the residual acetoaldehyde amount became 1 pPm or less.
  • the acetate decomposition test was performed by the following method. That is, the test specimens were individually placed in a transparent glass container having a volume of 5 liters, and acetaldehyde was added to a glass container so that the concentration became 50 ppm, and the wavelength was 365 nm. The amount of acetoaldehyde in the glass container was measured by gas chromatography while irradiating a black light having a light amount of 0.3 mW / cm 2 .
  • Table 6 shows the drying conditions, adhesion, color difference and the results of the acetate decomposition test.
  • the mark in the column for the decomposition test of acetate aldehyde indicates that the decomposition effect was insufficient. 6
  • the coating A for barrier layer formation used in Example 6 was applied to one side of the coated steel sheet so that the dry film thickness became 2 ⁇ m, and dried at 180 ° C for 40 seconds.
  • the paint containing zirconium titanate for a catalyst used in Example 6 was roll-coated so that the dry film thickness became 1.5 ⁇ m, dried at 200 for 50 seconds, and then cooled. After cooling at 40 ° CZ seconds, a coated steel sheet having a photocatalyst layer on the surface was obtained (the surface having the barrier layer and the photocatalyst layer is referred to as “octahedron”).
  • this coated steel sheet and a white painted steel sheet with only a barrier layer formed on one side under the same conditions (the surface with only this barrier layer is referred to as “side B”)
  • the test surface (surface A or B) was drawn into a wall panel with a depth of 30 mm, a width of 300 mm and a length of 700 mm, with the convex surface facing the convex surface. .
  • These panels were placed vertically with the test surface facing north and exposed outdoors for six months from July to December, after which changes in surface conditions were investigated.
  • a flat nonel having an A side and a flat nonel having a B side produced in the same manner as described in Example 9 were sealed in a draft, and the inside was sealed. After evacuating, tobacco smoke was introduced into the inside, and 1. S mg Zm 2 was applied to each test surface. These flat none Are placed on the outer wall of a three-story building in such a way that the sun shines on the test surface, and are exposed for 30 days between January and February, before the tabacony is attached, and The change in color difference immediately after the application of the cocoa and after 30 days of exposure after the application of the cocoa were investigated.
  • a panel with a tapaconi attached to the test surface (Side A and Side B) prepared under the same conditions as above was used for a panel with a wavelength of 365 nm and a light amount of 0.2 mWZ cm 2 . They were placed side by side in a room receiving ultraviolet light, and on day 50, the color difference between the two panels was compared. As a result, the surface A had the white color that had been recovered before it was attached; the surface B had no change in the adhesion state.
  • the titanium oxide photocatalyst of the present invention has an excellent photocatalytic action, has excellent bonding properties with a substrate on the surface of a material (substrate), and has good film properties such as processability, strength, and appearance. It is possible to form an excellent photocatalyst layer. Materials with a photocatalytic layer on the surface are extremely effective in decomposing and detoxifying harmful substances contained in the air and water, deodorizing in living spaces, and sterilizing (antibacterial). In particular, the layer formed with this photocatalyst is coated with a coated metal plate (pre-coated metal plate). The material provided on the surface has both excellent photocatalytic activity and good processability.
  • the photocatalyst and the material provided with the layer formed by the photocatalyst on the surface can be easily produced by the method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

A titanium oxide-based photocatalyst composed mainly of a photocatalyst base material and a silicon compound, the base material comprising zirconium titanate with an atomic percentage ratio of zirconium to titanium of 0.001 to 0.5. This photocatalyst can form, on the surface of a substrate of a metallic material, an inorganic material, an organic material or the like, a photocatalyst layer having good adhesion to the substrate and good film properties, such as good processability and strength. The photocatalyst can be prepared by coating the surface of a substrate with a composition comprising a base material for a photocatalyst, a silicon compound, and a solvent and baking the coating. A material carrying the photocatalyst thereon enables a harmful material in the atmosphere or in water, or a material deposited on the material to be decomposed, rendered harmless or removed under light irradiation.

Description

明 細 書 酸化チタ ン系光触媒とその製造方法および使用方法 技術分野  Description Titanium oxide-based photocatalyst, method for producing and using the same
本発明は、 優れた光触媒作用を有 し、 かつ基材の表面に優れた性状の 光触媒層を形成 し得る酸化チタ ン系光触媒、 およびこ の酸化チタ ン系光 触媒層を表面に備えた材料、 な らびにそれらの製造方法と使用方法に関 する。 背景技術  The present invention relates to a titanium oxide-based photocatalyst having an excellent photocatalytic action and capable of forming a photocatalyst layer having excellent properties on the surface of a substrate, and a material provided with the titanium oxide-based photocatalyst layer on the surface. And the methods of making and using them. Background art
半導体にそのバン ドギ ヤ ッ プ以上のエネルギーを持つ光を照射する と、 照射面に強い還元作用を有する電子と強い酸化作用を有する正孔が生 じ る。 こ のよ う な状態の半導体の表面に接触 した有機物等の物質は半導体 の持つ強い酸化還元作用を受けて分解される。  When a semiconductor is irradiated with light having energy equal to or greater than the band gap, electrons having a strong reducing action and holes having a strong oxidizing action are generated on the irradiated surface. Substances such as organic substances in contact with the surface of the semiconductor in such a state are decomposed by the strong oxidation-reduction effect of the semiconductor.
近年、 こ のよ う な半導体の光触媒作用が空気中および水中に含まれる 有害物質の分解や無害化、 生活空間等における防臭、 防汚 (固体表面の 汚れ防止) 、 殺菌等、 様々 な環境浄化技術に利用される よ う にな っ て き た。 光触媒用の半導体と しては、 主に酸化チタ ンが用い られている。 従来、 酸化チタ ン等の半導体を光触媒と して利用する場合には、 その 粉末を溶液に懸濁させた状態で使用 してきた。 しか し、 取り扱いの容易 さ、 幅広い応用性の観点からは、 光触媒を金属やセ ラ ミ ッ ク ス等の材料 (基材) の表面に薄膜状に固定した状態で使用する方が有利である。 しか しながら、 光触媒を基材に固定した状態では、 光触媒作用を発揮 する光触媒の表面積 (実反応面積) が制限され、 あま り大き く はできな いので、 十分な光触媒効率が得られないという問題があっ た。 こ の問題 を解決するためには、 光触媒の表面積が小さ く て も十分な光触媒効率が 得られるよ う に、 光触媒性能そのものを向上させる こ とが必要である。 一方、 光触媒を基材の表面に薄膜状に固定 した状態で、 すなわち表面 に光触媒層を備え る材料と して使用する に際しては、 光触媒の実反応面 積が制限されるため光触媒効率を大き く できないという 問題の他に、 材 料と しての加工性、 強度、 外観などが必ずし も十分ではないという問題 が生 じ る場合も多い。 例えば、 光触媒粒子をそのま ま材料 (基材) の表 面に塗布して も、 光触媒自身には皮膜を生成させる製膜作用がな く、 ま た、 塗布後の焼成時に、 光触媒と基材の熱膨張率の違い等に起因 して、 光触媒層 (皮膜) に割れが生じた り、 皮膜が剝離した りする こ と もある。 そのため、 十分に満足でき る性状の皮膜を得る こ とは必ずし も容易では ない。 In recent years, the photocatalytic action of such semiconductors has been used to decompose and detoxify harmful substances contained in air and water, deodorize in living spaces, antifouling (preventing contamination on solid surfaces), sterilization, and various other environmental purifications. It is being used for technology. Titanium oxide is mainly used as a semiconductor for photocatalysts. Conventionally, when a semiconductor such as titanium oxide is used as a photocatalyst, the powder has been used in a state of being suspended in a solution. However, from the viewpoint of ease of handling and wide applicability, it is more advantageous to use the photocatalyst in the state of being fixed in a thin film on the surface of a material (substrate) such as metal or ceramics. . However, when the photocatalyst is fixed to the substrate, the surface area (actual reaction area) of the photocatalyst that exerts the photocatalytic action is limited and cannot be made too large, so that sufficient photocatalytic efficiency cannot be obtained. There was a problem. In order to solve this problem, sufficient photocatalytic efficiency is required even if the surface area of the photocatalyst is small. It is necessary to improve the photocatalytic performance itself so that it can be obtained. On the other hand, when the photocatalyst is fixed to the surface of the base material in a thin film form, that is, when used as a material having a photocatalyst layer on the surface, the photocatalytic efficiency is increased because the actual reaction area of the photocatalyst is limited. In addition to the problem of not being able to do so, problems often arise that the workability, strength, and appearance of the material are not always sufficient. For example, even if the photocatalyst particles are applied to the surface of the material (substrate) as it is, the photocatalyst itself does not have a film-forming action to form a film, and the photocatalyst and the substrate are not fired after the application. The photocatalytic layer (coating) may be cracked or the coating may be separated due to the difference in the coefficient of thermal expansion of the coating. Therefore, it is not always easy to obtain a film with sufficiently satisfactory properties.
そ こで、 従来、 光触媒粒子を基材表面に固定するために様々 な方法が 行われてきた。  Therefore, various methods have conventionally been used to fix the photocatalyst particles to the surface of the base material.
例えば、 特開平 7— 1 7 1 4 0 8号公報には、 難分解性結着剤を介し て光触媒粒子を基体上に接着させた光触媒体が開示されている。 こ こ に 示された技術は、 公知の方法で得られる光触媒粒子と難分解性結着剤を 含有する塗料を各種製品などの基体表面に塗布して固化する ものであ り、 この技術を適用する こ と によ り、 各種製品の表面を比較的容易に光触媒 体とする こ とができ る と されている。  For example, JP-A-7-171408 discloses a photocatalyst in which photocatalyst particles are adhered to a substrate via a hardly decomposable binder. The technique shown here involves applying a coating containing photocatalyst particles and a hardly decomposable binder obtained by a known method to the surface of a substrate such as various products and solidifying it. By doing so, it is said that the surface of various products can be relatively easily made into a photocatalyst.
また、 特開平 9 一 1 7 3 8 6 5 号公報には、 基体の表面にシ リ カ粒子 からなる担持層を設け、 こ の担持層の表面にシ リ 力粒子よ り も小さなチ タニア粒子を設けた光触媒体が開示されている。 こ の技術は、 担持層を 構成する シ リ カ粒子の密度を基体側で大き く して (小径のシ リ カ粒子を 配して) 、 基体と担持層との密着力を高め、 光触媒層側のシ リ カ粒子は 粗に分散させて (径の大きいシ リ カ粒子を配 して) 、 チタニア粒子を強 固に接着させる ものであ り、 ラ ンプゃ照明器具の光反射面に適用 した例 が開示されている。 さ ら に、 特開平 9 一 1 7 1 8 0 1 号公報には、 酸化チタ ンなどの金属 酸化物あるいは金属水酸化物のゲルを含む光触媒粒子複合体を接着層を 間に設けて基体に固定する技術が開示されている。 Also, Japanese Patent Application Laid-Open No. Heisei 9-197385 discloses a method in which a support layer made of silica particles is provided on the surface of a substrate, and titania particles smaller than silica particles are provided on the surface of the support layer. Are disclosed. In this technology, the density of silica particles constituting the carrier layer is increased on the substrate side (by disposing small-diameter silica particles), the adhesion between the substrate and the carrier layer is increased, and the photocatalytic layer is formed. The silica particles on the side are coarsely dispersed (by disposing large silica particles) to adhere the titania particles firmly, and are applied to the light reflecting surface of lamps and lighting equipment. Examples have been disclosed. Further, Japanese Patent Application Laid-Open No. Hei 9-171801 discloses that a photocatalyst particle composite containing a gel of a metal oxide or metal hydroxide such as titanium oxide is provided on an adhesive layer in between to form a substrate. A fixing technique is disclosed.
しか しながら、 これらの技術では、 前述したよ う に光触媒の実反応面 積が小さいこ とに加え、 光触媒粒子を固定するために添加する結着剤や 接着層によ って光触媒の活性点が覆われ、 光触媒活性が著し く 低下する。 また、 基体に固定された光触媒層 (皮膜) 内においては光触媒粒子が結 着剤等の中に埋没しあるいは弱い結合力で担持された状態であるため、 その部分が起点となっ て皮膜に割れが発生するなどの問題があっ た。 また、 上記の例に示されている よ う に、 基体表面への光触媒の固定は、 成形された物品の表面への固定であ り、 表面に光触媒層を設けた後に加 ェされる よ う な加工用材料およびその製造方法は開示されていない。 こ れは、 光触媒層を設ける とその基体の加工性が乏し く なって加工し難く な り、 厳しい加工を施すと、 光触媒層が剝離 して製品品質を損ねた り、 光触媒機能が悪く なるなどの問題があるためである。  However, in these technologies, as described above, in addition to the fact that the actual reaction area of the photocatalyst is small, the active point of the photocatalyst is determined by the binder and the adhesive layer added to fix the photocatalyst particles. And the photocatalytic activity is significantly reduced. Also, in the photocatalyst layer (film) fixed to the substrate, the photocatalyst particles are buried in a binder or the like or are supported with a weak bonding force, and that portion becomes a starting point and cracks in the film. And other problems. Further, as shown in the above example, the fixation of the photocatalyst to the surface of the substrate is the fixation to the surface of the molded article, and is applied after the photocatalyst layer is provided on the surface. No material for processing and a method for producing the same are disclosed. This is because, when a photocatalyst layer is provided, the workability of the substrate becomes poor and processing becomes difficult, and when severe processing is performed, the photocatalyst layer separates and the product quality deteriorates, and the photocatalytic function deteriorates. This is because there is a problem.
そのため、 例えば、 建材、 家電製品、 自動車等に用いる素材の表面に 光触媒層 (皮膜) を設ける場合には、 素材を これらの製品形状に成形 し 塗装 した後に、 光触媒を含有する薬液をス プ レ ー塗装あるいは刷毛塗り 塗装する方法が採られる。 しか しなが ら、 ス プ レ ー塗装や刷毛塗り塗装 方法は塗料ロ スが大き く、 製品の表面性状の不備等によ る歩留低下をも たら し大幅なコ ス ト 高を招 く。 さ らに、 塗布対象物が成形品であるため、 薬液を塗布 した後乾燥するための大型の乾燥オーブンやそのためのスぺ ースが必要となるので、 光触媒層 (皮膜) が建材用、 家電製品用、 自動 車用の成形物基体表面に設けられている例はごく 一部に過ぎない。  Therefore, for example, when a photocatalyst layer (film) is provided on the surface of a material used for building materials, home appliances, automobiles, etc., the material is formed into these product shapes and painted, and then a chemical containing the photocatalyst is sprayed. -Painting or brush painting is used. However, spray coating and brush coating methods have large paint loss, resulting in reduced yield due to inadequate surface properties of the product, etc., resulting in a significant cost increase. . Furthermore, since the object to be applied is a molded product, a large drying oven for applying and drying the chemical solution and a space therefor are required, so the photocatalyst layer (film) is used for building materials and home appliances. Only a few examples are provided on the surface of molded substrates for products and vehicles.
現在、 建材や家電製品の加工用素材と して、 金属母材の表面に π—ル コー ト 等の連続方式で最終の製品色または中間色を塗装した塗装金属板 (プ レ コー ト金属板) が使用されている。 塗装金属板の塗膜には塗装製 品に必要と される性能 (塗膜の色、 加工性、 耐候性、 耐食性、 隠べい性、 潤滑性など) が付与されているので、 塗装金属板から所望の寸法に裁断 し、 成形加工し組み立てる こ とで最終製品を得る こ とができ る。 このよ う に、 塗装金属板を素材と して用いる加工方法は、 組み立て後の塗装ェ 程を省略または簡略化でき るので、 生産性が高く、 経済性に優れている。 このため、 塗装金属板が建材や家電製品用の素材の主流と な り つつあ り、 これらの用途に適用でき る光触媒層を表面に備えた塗装金属板の開発が 望まれている。 At present, as a material for processing building materials and home appliances, a painted metal plate (pre-coated metal plate) in which the final product color or intermediate color is painted on the surface of a metal base material using a continuous method such as π-coat Is used. Painted metal film coating The required performance (color, workability, weather resistance, corrosion resistance, concealment, lubricity, etc.) of the product is given to the product. The final product can be obtained by assembling and assembling. In this way, the processing method using a painted metal plate as a material can omit or simplify the painting step after assembling, so that the productivity is high and the economy is excellent. For this reason, painted metal sheets are becoming the mainstream of materials for building materials and home appliances, and the development of painted metal sheets provided with a photocatalytic layer on the surface that can be applied to these uses is desired.
本発明は、 優れた光触媒作用を有 し、 かつ材料 (基材) の表面に、 基 材と の結合性がよ く、 加工性、 強度等に優れた光触媒層 (皮膜) を形成 し得る酸化チタ ン系光触媒、 およびこ の皮膜性状に優れた酸化チタ ン系 光触媒層を表面に備えた材料、 な らびにそれらの製造方法と使用方法を 提供する こ と を 目的と してなされた ものである。 発明の開示  INDUSTRIAL APPLICABILITY The present invention has an excellent photocatalytic action, and an oxidation capable of forming a photocatalytic layer (film) having excellent bondability with a base material and excellent in processability, strength and the like on the surface of a material (substrate). The purpose of the present invention is to provide a titanium-based photocatalyst, a material having a titanium oxide-based photocatalyst layer having excellent film properties on its surface, and a method for producing and using the same. is there. Disclosure of the invention
チタ ン系酸化物か らなる光触媒に珪素化合物を組み合わせた酸化チタ ン系光触媒は、 優れた光触媒作用を有する と と もに、 材料 (基材) に固 定して光触媒層 (皮膜) と した と きに、 基材との結合性に優れ、 加工性、 強度、 耐割れ性、 耐劣化性、 外観等の皮膜性状が良好である という特徴 を有している。  The titanium oxide photocatalyst, which combines a silicon compound with a photocatalyst consisting of a titanium oxide, has excellent photocatalytic activity and is fixed to a material (substrate) to form a photocatalyst layer (film). At this time, it has the characteristics that it has excellent bondability with the base material and has good film properties such as workability, strength, crack resistance, deterioration resistance, and appearance.
本発明の要旨は、 下記 ( 1 ) の酸化チ タ ン系光触媒、 および ( 2 ) の 前記酸化チタ ン系光触媒の層を表面に備えた材料、 な らびに ( 3 ) の前 記材料の製造に用いる配合剤、 および ( 4 ) のこ の配合剤を用いる前記 材料の製造方法と、 ( 5 ) の こ の材料の使用方法にある。  The gist of the present invention is to provide the following (1) a titanium oxide-based photocatalyst, (2) a material provided with a layer of the titanium oxide-based photocatalyst on the surface, and (3) production of the material described above. And (4) a method for producing the material using the compounding agent, and (5) a method for using the material.
( 1 ) チタ ン酸ジルコニ ウムを含み、 チタ ンに対する ジルコニウムの原 子%比が 0 . 0 0 1 以上 0 . 5 以下であるチタ ン系酸化物からなる光触 媒基本体と珪素系化合物を主体とする酸化チタ ン系光触媒。 なお、 こ の珪素系化合物を含む酸化チタ ン系光触媒中のチタ ン系酸化 物 (光触媒粒子) を、 特に珪素系化合物と区別して 「光触媒基本体」 と いう。 (1) A silicon-based compound and a photocatalyst basic body composed of a titanium-based oxide containing zirconium titanate and having an atomic% ratio of zirconium to titanium of not less than 0.001 and not more than 0.5. Mainly titanium oxide photocatalyst. The titanium-based oxide (photocatalyst particles) in the titanium-oxide-based photocatalyst containing the silicon-based compound is particularly referred to as a “photocatalyst basic body” to be distinguished from the silicon-based compound.
こ の酸化チ タ ン系光触媒は、 珪素系化合物がシ リ カ微粒子、 ポ リ シ口 キサ ン、 シ リ コー ン系樹脂およびこれらが部分的に反応 した化合物のう ちの少な く と も一つである とき、 特に優れた性能を示す。  This titanium oxide-based photocatalyst is composed of at least one of a silicon-based compound, silica fine particles, a polysiloxane, a silicone-based resin, and a compound in which these are partially reacted. When it is, it shows particularly excellent performance.
( 2 ) チタ ン酸ジルコ ニウムを含み、 チタ ンに対する ジルコニウ ムの原 子%比が 0 . 0 0 1 以上 0 . 5 以下であるチタ ン系酸化物からなる光触 媒基本体と珪素系化合物を主体とする酸化チ タ ン系光触媒で形成された 層を基材表面に備えた材料。 なお、 「基材」 とは、 粉末状の光触媒を薄 膜状に固定 して光触媒層を形成させる前のベース にな る材料をいう。 前記の珪素系化合物が、 シ リ カ微粒子、 ポリ シ ロ キサ ン、 シ リ コ ー ン 系樹脂およびこれらが部分的に反応した化合物のう ちの少な く と も一つ である と き、 基材表面に形成された酸化チタ ン系光触媒は特に優れた性 能を示す。  (2) A photocatalyst basic body and a silicon-based compound comprising a titanium-based oxide containing zirconium titanate and having an atomic percentage ratio of zirconium to titanium of not less than 0.001 and not more than 0.5. A material with a layer made of a titanium oxide-based photocatalyst whose main component is on the surface of a substrate. The “substrate” refers to a material serving as a base before forming a photocatalyst layer by fixing a powdery photocatalyst in a thin film shape. When the silicon-based compound is at least one of silica fine particles, polysiloxane, a silicone-based resin and a compound in which these are partially reacted, The titanium oxide photocatalyst formed on the surface shows particularly excellent performance.
前記の基材が金属材料またはその表面に塗装を施 した塗装金属板で、 基材と酸化チタ ン系光触媒で形成された層の間にバ リ ァ層を備えた材料 は、 優れた光触媒機能と 良好な加工性とを兼ね備えた材料である。  The above-mentioned base material is a metal material or a coated metal plate having its surface coated, and a material having a barrier layer between the base material and a layer formed of a titanium oxide-based photocatalyst has an excellent photocatalytic function. It is a material having both good workability.
酸化チタ ン系光触媒層に有機潤滑剤が含まれていれば、 材料の成形加 ェ性が向上する。  If the titanium oxide-based photocatalyst layer contains an organic lubricant, the moldability of the material is improved.
また、 バ リ ァ層に光触媒不活性化処理が施されたルチル型およびノま たはブルッ カ イ ト 型の酸化チタ ン粒子が含まれていれば、 酸化チタ ン系 光触媒層の耐候性が向上する と と もに、 バリ ァ層の曲げ加工性が改善さ れるので、 材料の成形加工性がさ らに改善される。  In addition, if the barrier layer contains rutile-type and / or Brookite-type titanium oxide particles that have been subjected to a photocatalytic inactivation treatment, the weather resistance of the titanium oxide-based photocatalyst layer is reduced. In addition to the improvement, the bending workability of the barrier layer is improved, so that the formability of the material is further improved.
( 3 ) チタ ン酸ジルコニウムを含み、 チタ ンに対する ジルコニウムの原 子%比が 0 . 0 0 1 以上 0 . 5 以下であるチタ ン系酸化物からなる光触 媒基本体と珪素系化合物を主体とする酸化チタ ン系光触媒と、 水および /または有機溶剤を含む記合剤。 (3) A photocatalyst basic body composed of a titanium-based oxide containing zirconium titanate and having an atomic% ratio of zirconium to titanium of not less than 0.001 and not more than 0.5 and a silicon-based compound as a main component Titanium oxide based photocatalyst And / or a binder containing an organic solvent.
前記の珪素系化合物がシ リ カ微粒子、 ポ リ シ ロ キサ ン、 シ リ コ ー ン系 樹脂およびこれらが部分的に反応した化合物のう ちの少な く と も一つで ある配合剤がよ り好ま しい。  More preferably, the aforementioned silicon-based compound is a silica fine particle, polysiloxane, a silicone-based resin, and a compounding agent in which at least one of the compounds in which these are partially reacted is present. I like it.
( 4 ) チタ ン酸ジルコ ニ ウ ムを含み、 チ タ ン に対する ジルコ ニ ウ ムの原 子%比が 0 . 0 0 1 以上 0 . 5 以下であるチタ ン系酸化物からなる光触 媒基本体と珪素系化合物を主体とする酸化チタ ン系光触媒と、 水および ノまたは有機溶剤を含む記合剤で基材表面を被覆 した後、 焼成する酸化 チ タ ン系光触媒で形成された層を基材表面に備えた材料の製造方法。 前記の珪素系化合物がシ リ カ微粒子、 ポ リ シ πキサ ン、 シ リ コ ー ン系 樹脂およびこれらが部分的に反応 した化合物のう ちの少な く と も一つで ある配合剤を用いれば、 特に優れた性能を有する酸化チタ ン系光触媒層 を表面に備えた材料を製造する こ とができ る。  (4) A basic photocatalyst comprising a titanium-based oxide containing zirconium titanate and having an atomic% ratio of zirconium to titanium of not less than 0.001 and not more than 0.5. After coating the surface of the substrate with a titanium oxide-based photocatalyst mainly composed of a body and a silicon-based compound, and a binder containing water, hydrogen, or an organic solvent, the layer formed of the titanium oxide-based photocatalyst is fired. A method for producing a material provided on a substrate surface. When the silicon-based compound is a compound containing at least one of silica fine particles, poly-pi-xanine, silicone-based resin and a compound in which these are partially reacted, However, it is possible to produce a material having a titanium oxide-based photocatalyst layer having particularly excellent performance on the surface.
基材と して金属材料またはその表面に塗装を施 した塗装金属板を用い、 バ リ ァ層を形成する薬液で基材表面を被覆 した後、 乾燥 してバ リ ァ層と し、 次いで、 前記の酸化チタ ン系光触媒の層を形成する薬液でバ リ ア層 の表面を被覆した後、 乾燥すれば、 ( 1 ) に記載の酸化チタ ン系光触媒 で形成された層を表面に備えた材料を製造する こ とができる。  Using a metal material or a coated metal plate having its surface coated as a base material, the base material surface is coated with a chemical solution for forming a barrier layer, and then dried to form a barrier layer. After the surface of the barrier layer is coated with the chemical solution for forming the titanium oxide-based photocatalyst layer, and dried, the surface formed with the titanium oxide-based photocatalyst according to (1) is provided. Materials can be manufactured.
( 5 ) チタ ン酸ジルコ ニ ウ ムを含み、 チ タ ン に対する ジル コ ニ ウ ムの原 子%比が 0 . 0 0 1 以上 0 . 5 以下であるチタ ン系酸化物からなる光触 媒基本体と珪素系化合物を主体とする酸化チ タ ン系光触媒で形成された 層を基材表面に備えた材料によ り、 大気中も し く は水中の物質または前 記材料表面に付着した物質を光照射下で処理する酸化チタ ン系光触媒層 を表面に備えた材料の使用方法。  (5) A photocatalyst comprising a titanium-based oxide containing zirconium titanate and having an atomic% ratio of zirconium to titanium of not less than 0.001 and not more than 0.5. A substance consisting of a base and a layer made of a titanium oxide photocatalyst mainly composed of a silicon-based compound on the surface of a substrate, which adheres to a substance in the air or water or to the surface of the above-mentioned material. How to use a material with a titanium oxide photocatalyst layer on the surface that treats the substance under light irradiation.
前記の珪素系化合物が、 シ リ カ微粒子、 ポ リ シロキサ ン、 シ リ コー ン 系樹脂およびこれらが部分的に反応 した化合物のう ちの少な く と も一つ である とき、 基材表面に形成された酸化チタ ン系光触媒は特に優れた性 能を示す。 When the silicon-based compound is at least one of silica fine particles, polysiloxane, silicone-based resin and a compound in which these are partially reacted, the silicon-based compound is formed on the surface of the base material. Titanium oxide based photocatalyst Show noh.
また、 酸化チタ ン系光触媒で形成された層を基材表面に備えた材料が、 金属材料またはその表面に塗装を施 した塗装金属板を基材と し、 基材と 酸化チタ ン系光触媒で形成された層の間にバ リ ァ層を備え る材料であつ て も よい。 図面の簡単な説明  In addition, a material having a layer formed of a titanium oxide-based photocatalyst on the surface of a base material is a metal material or a coated metal plate having a surface coated thereon, and the base material and the titanium oxide-based photocatalyst are used as a base material. A material having a barrier layer between the formed layers may be used. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 バ リ ァ層形成薬液ま たは光触媒層形成薬液を塗布 した後の 好ま しい乾燥条件を示す図である。  FIG. 1 is a diagram showing preferable drying conditions after applying a chemical solution for forming a barrier layer or a chemical solution for forming a photocatalytic layer.
第 2 図は、 実施例 6で行っ た耐候性および曲げ加工性試験の結果で、 バリ ァ層中の光触媒不活性化処理を施 した酸化チタ ンの含有量と、 耐候 性試験実施前後の色差変化および曲げ加工性の関係を示す図である。 第 3 図は、 実施例 9で行った屋外暴露試験に用いたフ ラ ッ ト パネルの 外観を示す図である。 発明を実施するための最良の形態  Fig. 2 shows the results of the weather resistance and bending workability tests performed in Example 6, showing the content of titanium oxide in the barrier layer after the photocatalytic deactivation treatment and the color difference before and after the weather resistance test. It is a figure which shows the relationship between a change and bending workability. FIG. 3 is a diagram showing an appearance of a flat panel used in an outdoor exposure test performed in Example 9. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の酸化チタ ン系光触媒 (以下、 単に 「本発明の光触媒」 または The titanium oxide photocatalyst of the present invention (hereinafter simply referred to as “the photocatalyst of the present invention” or
「この光触媒」 と もいう) 、 およびこ の光触媒で形成された層を表面に 備えた材料、 な らびにそれらの製造方法と使用方法について、 以下に詳 細に説明する。 The “photocatalyst”, a material having a layer formed of the photocatalyst on the surface, and methods for producing and using them are described in detail below.
( 1 ) 酸化チタ ン系光触媒  (1) Titanium oxide photocatalyst
本発明の光触媒は、 前記のよ う に、 チタ ン酸ジルコ ニウムを含み、 チ タ ンに対する ジルコニウムの原子%比が 0 . 0 0 1 以上 0 . 5 以下であ るチタ ン系酸化物からなる光触媒基本体と珪素系化合物を主体とする酸 化チタ ン系光触媒である。 「主体と して」 という のは、 後述する よう に、 V、 F e、 Z n等のう ちの少な く と も一種の金属および/または金属化 合物や、 アルミ ニ ウム化合物、 紫外線吸収剤などが含まれる場合もある からである。 As described above, the photocatalyst of the present invention comprises a titanium-based oxide containing zirconium titanate and having an atomic percentage ratio of zirconium to titanium of 0.001 or more and 0.5 or less. It is a titanium oxide photocatalyst mainly composed of a photocatalyst basic body and a silicon compound. As described later, at least one kind of metal and / or metal compound such as V, Fe, and Zn, an aluminum compound, and an ultraviolet absorber May be included Because.
本発明の光触媒は、 下記 ( a ) の構成上の特徴および下記 ( b ) の作 用上の特徴を持っ ている。 したがっ て、 優れた光触媒活性が得られる。 ( a ) 本発明の光触媒は、 前記のよ う に、 チタ ン酸ジルコニ ウムを含む チタ ン系酸化物からなる光触媒基本体と珪素系化合物を主体と して構成 されている。 さ らに、 T i に対する Z rの原子%比 (∑ 1" 丁 し 以下、 T i に対する Z rその他の金属元素の比は原子%比を意味する) が 0. 0 0 1 以上 0. 5以下である。  The photocatalyst of the present invention has the following structural characteristics (a) and the following operational characteristics (b). Therefore, excellent photocatalytic activity is obtained. (a) As described above, the photocatalyst of the present invention is mainly composed of a photocatalyst basic body composed of a titanium-based oxide containing zirconium titanate and a silicon-based compound. In addition, the atomic percentage ratio of Zr to Ti (∑1 ", hereinafter, the ratio of Zr and other metal elements to Ti means the atomic percentage ratio) is not less than 0.001 and 0.5. It is as follows.
こ の光触媒中の珪素系化合物の含有量は、 好ま し く は 5重量%以上 9 5重量%以下である。 また、 酸化チタ ン系光触媒には、 さ らに V、 F e、 Z n、 R u、 R h、 P t、 A g、 P dおよび C uのう ちの少な く と も一 種の金属および または金属化合物や、 アル ミ ニ ウ ム化合物、 紫外線吸 収剤などが含まれていて も よい。  The content of the silicon compound in the photocatalyst is preferably 5% by weight or more and 95% by weight or less. The titanium oxide photocatalyst also includes at least one of V, Fe, Zn, Ru, Rh, Pt, Ag, Pd, and Cu. Alternatively, a metal compound, an aluminum compound, an ultraviolet absorbent, or the like may be contained.
( b ) 光触媒に光が照射される と、 電子と正孔が生成 (電荷分離) する。 その際、 二つの半導体 (酸化チ タ ンおよびチ タ ン酸ジルコ ニ ウ ム) の強 い電子的相互作用によ っ て電子と正孔の電荷分離の効率が高め られ、 そ の結果、 光触媒は高い光触媒作用を発揮する。  (b) When the photocatalyst is irradiated with light, electrons and holes are generated (charge separation). At that time, the strong electronic interaction between the two semiconductors (titanium oxide and zirconium titanate) enhances the efficiency of charge separation between electrons and holes, resulting in a photocatalyst. Exerts a high photocatalytic action.
すなわち、 光触媒基本体に含まれるチタ ン酸ジル コ ニ ウ ムの一部は酸 化チタ ン粒子に T i - 0 - Z r結合を介して強固に結合 しており (換言 すれば、 酸化チタ ン粒子のバイ ンダーの役目 をも果た しており) 、 光触 媒粒子は、 酸化チタ ン とチタ ン酸ジルコニ ウムのい く つかの粒子とが完 全に一体化 した状態とな っ ている。 そのため、 電子的相互作用は結合を 介してさ らに強められるので、 光触媒の電荷分離の効率は一層高 く な り、 光触媒性能は飛躍的に向上する。  That is, part of the zirconium titanate contained in the photocatalyst basic body is firmly bound to the titanium oxide particles via the Ti-0-Zr bond (in other words, the titanium oxide titanate). The photocatalyst particles are completely integrated with titanium oxide and some particles of zirconium titanate. I have. As a result, the electronic interaction is further strengthened through bonding, so that the efficiency of charge separation of the photocatalyst is further enhanced, and the photocatalytic performance is dramatically improved.
本発明の光触媒は、 上記の光触媒基本体と珪素系化合物を主体と して 構成されており、 チタ ン系酸化物と珪素系化合物とは、 反応によ り一部 が結合された状態にある。 つま り、 両者の間には強固な Z r — 0— S i 結合が生じている。 これは、 ジルコ ン と して知られる Z r S i 0 4 にお いて、 容易に Z r —〇一 S i 結合が形成されるのと同様である。 The photocatalyst of the present invention is composed mainly of the above-mentioned photocatalyst basic body and a silicon-based compound, and the titanium-based oxide and the silicon-based compound are in a state of being partially bonded by a reaction. . In other words, there is a strong Z r — 0— S i A bond has occurred. This is had contact to Z r S i 0 4, known as the zircon, is easy in the same manner as Z r -〇 one S i bond is formed.
したがっ て、 基材の表面に形成された酸化チタ ン系光触媒層 (皮膜) においては、 光触媒基本体すなわちチタ ン系酸化物の粒子が Z r 一 〇 一 S i 結合を介 して珪素系化合物と強固に結合 しており、 いわば珪素系化 合物を主体とする皮膜とチタ ン系酸化物粒子とが一体化 したネ ッ ト ヮー ク構造となっ ている。 すなわち、 光触媒基本体と珪素系化合物とは微粒 子同士が単に混合された状態、 あるいは光触媒基本体微粒子が珪素系化 合物からなる皮膜部分に埋没されている状態ではな く、 反応によ り結合 された状態とな っ ている。 つま り、 酸化チタ ン系光触媒は Z r を介して 珪素系化合物と結合 しているので、 こ の酸化チタ ン系光触媒において、 主な光触媒活性サイ ト である酸化チタ ンは直接には皮膜構成部分と接触 する こ とが少ない。 さ らに、 前述の電子的相互作用はネ ッ ト ワーク内す ベてに広が り、 電荷分離の効率が高 く なるので、 光触媒活性が向上する。 また、 本発明の光触媒は、 基材に固定して光触媒層 (皮膜) と したと きに、 基材との結合性に優れ、 光触媒基本体 (光触媒粒子) と珪素系化 合物との界面が強固に結合されているので皮膜割れが生 じに く く、 加工 性、 強度、 耐割れ性、 耐劣化性、 外観等の皮膜性状が良好である。  Therefore, in the titanium oxide-based photocatalyst layer (coating) formed on the surface of the substrate, the particles of the photocatalyst basic body, ie, the titanium-based oxide, are bonded to the silicon-based compound via Zr-1-1Si bonds. Thus, it has a network structure in which a film mainly composed of a silicon compound and titanium-based oxide particles are integrated. In other words, the photocatalyst basic body and the silicon-based compound are not in a state in which fine particles are simply mixed with each other, or in a state in which the photocatalyst basic body fine particles are buried in a film portion made of a silicon-based compound, but rather by a reaction. It is in the combined state. In other words, since the titanium oxide photocatalyst is bonded to the silicon compound via Zr, in this titanium oxide photocatalyst, titanium oxide, which is the main photocatalytically active site, is directly formed into a film. Less contact with parts. Furthermore, the above-mentioned electronic interaction spreads throughout the network, and the efficiency of charge separation is increased, so that the photocatalytic activity is improved. Further, when the photocatalyst of the present invention is fixed to a substrate to form a photocatalyst layer (film), the photocatalyst has excellent binding properties to the substrate, and provides an interface between the basic photocatalyst (photocatalyst particles) and the silicon-based compound. The film is hardly cracked because it is strongly bonded, and the film properties such as workability, strength, crack resistance, deterioration resistance and appearance are good.
こ の光触媒にあっ ては、 珪素系化合物が、 シ リ カ微粒子、 ポリ シロキ サン、 シ リ コー ン系樹脂およびこれらが部分的に反応 した化合物のう ち の少な く と も一つである と き、 光触媒活性、 皮膜性状のいずれにおいて も優れている。  In this photocatalyst, the silicon-based compound is at least one of silica fine particles, polysiloxane, a silicone-based resin, and a partially reacted compound thereof. Excellent in both photocatalytic activity and film properties.
本発明の光触媒に含まれる光触媒基本体と しては、 前述 したよ う に、 チ タ ン酸ジルコニ ウムを所定の割合で含むチタ ン系酸化物を用いる。 なお、 光触媒活性等の性能はこれよ り劣るが、 このチタ ン系酸化物に替えて、 酸化チタ ン、 酸化亜鉛、 酸化タ ン グス テ ン、 酸化ジル コ ニ ウム、 酸化鉄、 酸化ビス マ ス、 硫化力 ド ミ ゥムなどの公知の半導体光触媒を単独または 組み合わせて用いて も よい。 また、 酸化チタ ンまたは上記のチタ ン系酸 化物と これら公知の半導体光触媒のう ちの少な く と も一つを組み合わせ て用いて も よい。 As described above, a titanium-based oxide containing zirconium titanate at a predetermined ratio is used as the basic photocatalyst included in the photocatalyst of the present invention. Although performance such as photocatalytic activity is inferior to this, titanium oxide, zinc oxide, tungsten oxide, zirconium oxide, iron oxide, bismuth oxide are used instead of this titanium oxide. Or a known semiconductor photocatalyst such as They may be used in combination. Further, titanium oxide or the above-mentioned titanate oxide and at least one of these known semiconductor photocatalysts may be used in combination.
酸化チタ ン とチタ ン酸ジルコ ニウ ムを主体とする光触媒基本体におい て、 酸化チタ ンは非晶質でも結晶質であっ て もよい。 結晶質の場合はァ ナタ —ゼ型、 ルチル型、 あるいはそれらが混在したものであっ て も よい。 一方、 チタ ン酸ジルコ ニ ウ ムについては、 非晶質でも結晶質でも よいが、 結晶質の方が高い光触媒活性が得られるので好適である。  In the photocatalyst basic body mainly composed of titanium oxide and zirconium titanate, titanium oxide may be amorphous or crystalline. In the case of crystalline, it may be in the form of an anatase, a rutile, or a mixture thereof. On the other hand, zirconium titanate may be amorphous or crystalline, but crystalline is preferred because higher photocatalytic activity can be obtained.
こ の光触媒基本体に含まれる T i と Z r の関係は、 酸化チタ ンおよび チタ ン酸ジルコニ ウム と して存在する T i に対するチタ ン酸ジルコニ ゥ ムと して存在する Z r の比 ( Z r ZT i ) で表すと、 0. 0 0 1 以上 0. 5以下がよい。 0. 0 0 1 未満では、 チタ ン酸ジルコ ニ ウ ムの量が少な いため、 酸化チタ ン との電子的相互作用が弱 く な り、 高い光触媒活性が 得られない。 一方、 0. 5を超え る と、 調製法によ っ ては光触媒と して 有効な酸化チタ ンおよびチタ ン酸ジルコニ ウムが生成しに く く なる。 よ り好ま しい範囲は、 0. 0 1 以上 0. 3以下である。 Z rノ T i がこ の 好ま しい範囲内の場合には、 特別な条件の調製法を用いな く て も、 チタ ン酸ジルコニウムが含まれ、 高い光触媒活性を持つ光触媒基本体が得ら れる。  The relationship between Ti and Zr contained in the basic photocatalyst is based on the ratio of Zr present as zirconium titanate to Ti present as titanium oxide and zirconium titanate ( When expressed as ZrZTi), the value is preferably from 0.01 to 0.5. If it is less than 0.01, the amount of zirconium titanate is small, so that the electronic interaction with titanium oxide becomes weak, and high photocatalytic activity cannot be obtained. On the other hand, if it exceeds 0.5, it becomes difficult to produce titanium oxide and zirconium titanate which are effective as a photocatalyst depending on the preparation method. A more preferable range is from 0.01 to 0.3. When Zr / Ti is within this preferred range, a zirconium titanate is contained and a photocatalytic base having high photocatalytic activity can be obtained without using a specially prepared method. .
さ らに、 本発明の光触媒を構成する光触媒基本体には、 その内部およ び/または表面に、 V、 F e、 Z n、 R u、 R h、 P t、 A g、 P dお よび C uのう ちの少な く と も一種の金属および/または金属化合物を含 有させる こ と もできる。 これらの成分を含有させる こ と によ り光触媒性 能はさ らに高められ、 また、 光触媒に こ れ ら の成分自体の機能、 例えば Z n、 A g、 C uでは抗菌性、 を付与する こ とができ る。 なお、 金属化 合物と しては、 例えば金属の酸化物、 水酸化物、 ォキ シ水酸化物、 硝酸 塩、 ハロゲン塩などが挙げられる。 次に、 本発明の光触媒を構成する珪素系化合物について説明する。 この珪素系化合物は、 光触媒基本体と反応し、 ∑ 1" — 0— 3 1 結合に よ り光触媒基本体と強固に結合 している。 前述したよ う に、 チタ ン系酸 化物の粒子が Z r - 0 - S i 結合を介 して珪素系化合物と強固に結合 し ている と、 結合 していない場合に比べて酸化チタ ンおよびチタ ン酸ジル コニ ゥ ムの電荷分離効率がさ らに高め られ、 光触媒活性が向上する。 こ の Z r — 0— S i 結合の生成は、 I R (赤外線分光法) 、 NM R (核磁 気共鳴) 等の分析方法によ り確認する こ とができる。 Further, the basic photocatalyst constituting the photocatalyst of the present invention has V, Fe, Zn, Ru, Rh, Pt, Ag, Pd and the like inside and / or on the surface thereof. And at least one of Cu and Cu may be contained. The inclusion of these components further enhances the photocatalytic performance, and also imparts the functions of the components themselves to the photocatalyst, for example, antibacterial properties for Zn, Ag, and Cu. be able to. Examples of the metal compound include metal oxides, hydroxides, oxyhydroxides, nitrates, and halides. Next, the silicon-based compound constituting the photocatalyst of the present invention will be described. This silicon-based compound reacts with the basic photocatalyst, and is strongly bonded to the basic photocatalyst by a ∑1 "— 0—31 bond. As described above, particles of the titanium-based oxide are formed. When it is strongly bonded to the silicon-based compound via the Zr-0-Si bond, the charge separation efficiency of titanium oxide and zirconium titanate is higher than when it is not bonded. The formation of the Zr—0—Si bond can be confirmed by analysis methods such as IR (infrared spectroscopy) and NMR (nuclear magnetic resonance). it can.
珪素系化合物と しては、 ポ リ シ ロ キサン、 シ リ コーン樹脂、 シ リ カ微 粒子およびこれらが部分的に反応 した ものが好適である。  As the silicon-based compound, a polysiloxane, a silicone resin, a silica fine particle and a partially reacted product thereof are preferable.
ポ リ シ ロ キサ ン と しては、 R 2 nS i (O R 1 ) ( ηは 0〜 3の整 数、 R 1 および R2 は炭化水素基を意味する) で表されるテ ト ラエ ト キ シ シ ラ ン、 メ チル ト リ エ ト キシ シ ラ ン、 メ チル ト リ イ ソ プロ ポキ シ シ ラ ン等のシ リ コ ンアルコキシ ドか ら加水分解等によ り得られる反応生成物 が好ま しい。 これらのシ リ コ ンアルコキシ ドは、 後述する よう に、 コ ー テ ィ ング用配合剤の原料と して用いる こ とができ る。 Polysiloxanes are tetramers represented by R 2 n Si (OR 1 ) (where η is an integer from 0 to 3 and R 1 and R 2 are hydrocarbon groups). Reaction products obtained by hydrolysis from silicone alkoxides such as toxisilane, methyltriethoxysilane, and methyltriisopropoxysilane Things are preferred. These silicone alkoxides can be used as a raw material of a coating compounding agent as described later.
シ リ コ ー ン樹脂は、 ア ク リ ル樹脂、 ウ レ タ ン樹脂、 エポキ シ樹脂等の 汎用の樹脂にエス テル交換反応、 ヒ ドロ シ リ ル化等によ り シ リ コ ンを導 入 した樹脂であればよい。 具体的には、 ア ク リ ルシ リ コ ー ン樹脂ゃェポ キシシ リ コー ン樹脂等が、 本発明の光触媒を基材に固定する際の製膜性、 皮膜の強度等の面から好ま しい。  Silicone resin is derived from general-purpose resins such as acrylic resin, urethane resin, and epoxy resin by ester exchange reaction and hydrosilylation. Any resin can be used. Specifically, acrylic silicone resin, epoxy silicone resin and the like are preferable from the viewpoints of film forming properties and film strength when the photocatalyst of the present invention is fixed to a substrate. .
シ リ カ微粒子と しては、 コ ロイ ド状シ リ カ、 粉末シ リ カ、 フ ユ 一ム ド シ リ 力などが挙げられる。 シ リ 力微粒子の粒子径は 3 0 n m以下が好ま しい。 粒子径が 3 0 n mを超え る と、 比表面積が小さ く なるため光触媒 基本体と反応する面積が少な く 光触媒基本体との結合の数が減少 し、 活 性が低下した り、 皮膜に割れが生 じた り、 皮膜自体の光沢が減少するな ど、 製膜性および皮膜性状が悪く なるからである。 よ り好ま しいシ リ カ 微粒子は、 粒子径 2 O n m以下のコ ロ イ ド状シ リ カである。 Examples of the silica fine particles include colloidal silica, powdered silica, and fumed silica. The particle diameter of the fine particles is preferably 30 nm or less. If the particle size exceeds 30 nm, the specific surface area becomes smaller, so that the area that reacts with the basic photocatalyst is small, the number of bonds with the basic photocatalyst is reduced, the activity is reduced, and the film is cracked. This is because film forming properties and film properties are deteriorated, such as the occurrence of cracks and a decrease in the gloss of the film itself. More preferred silica The fine particles are colloidal silica having a particle size of 2 O nm or less.
本発明の光触媒を構成する珪素系化合物と しては、 上記の珪素系化合 物が二種以上含まれていて もよい。 その場合、 比較的安価なコ ロ イ ド状 シ リ 力等のシ リ 力微粒子をポリ シロキサン、 あるいはシ リ コー ン樹脂と 併用するのが経済性の面か ら好ま しい。 ま た、 珪素系化合物は、 コーテ ィ ング用記合剤の原料と して用いたシ リ コ ンアルコ キシ ドや、 シ リ コー ン樹脂、 シ リ カ微粒子等が、 製膜の際の焼成温度、 湿度等の条件によ つ て部分的に しか加水分解 していないか、 または光触媒基本体と反応して いない状態、 あるいは酸化チタ ン系光触媒内のシ リ コーン樹脂等が光触 媒作用によ っ て部分的に酸化された状態の ものでもあっ て も支障はない。  The silicon-based compound constituting the photocatalyst of the present invention may contain two or more of the above-mentioned silicon-based compounds. In that case, it is preferable from the economical viewpoint to use relatively inexpensive fine particles such as a colloidal silica force together with polysiloxane or silicone resin. In addition, the silicon-based compound is obtained by sintering silicon alkoxide, silicone resin, silica fine particles, etc. used as a raw material of a coating mixture for coating at a firing temperature during film formation. Depending on conditions such as humidity, humidity, etc., the polymer is partially hydrolyzed or has not reacted with the basic photocatalyst, or the silicone resin etc. in the titanium oxide-based photocatalyst has a photocatalytic effect. There is no problem even if it is partially oxidized.
これらの珪素系化合物の含有量は、 こ の光触媒の重量に対 して 5重量 %以上 9 5重量%以下が望ま しい。 5重量%未満では、 皮膜割れの発生、 基材との結合性不良など、 皮膜性状が悪く、 また、 9 5重量%を超える と光触媒性能が低下するからである。 よ り 好ま しい範囲は 2 0重量%以 上 6 0重量%以下である。  It is desirable that the content of these silicon compounds be 5% by weight or more and 95% by weight or less based on the weight of the photocatalyst. If the amount is less than 5% by weight, the film properties such as cracking of the film and poor bonding to the base material are poor, and if it exceeds 95% by weight, the photocatalytic performance is reduced. A more preferred range is from 20% by weight to 60% by weight.
さ らに、 本発明の光触媒には種々 の 目的で添加剤を共存させて も差し 支えない。  Further, the photocatalyst of the present invention may contain additives for various purposes.
例えば、 アルミ ニ ウ ム化合物は、 光触媒活性、 皮膜の強度等の向上に 有効である。 また、 安価なアル ミ ニウム化合物の添加によ り、 材料のコ ス ト を抑える こ と もできる。 アル ミ ニ ウム化合物と しては、 粒径が 1 0 0 n m以下のアルミ ナ微粒子、 水酸化アルミ ニゥムなどが好ま しい。 アルミ ニゥム化合物の含有量については、 この光触媒の重量に対して 0 . 0 0 5重量%以上 2 0重量%以下が好ま しい。 0 . 0 0 5重量%未 満では添加の効果がな く、 2 0重量%を超え る と皮膜割れ、 光沢の低下 などを引き起こすからである。 よ り好ま し く は、 2重量%以上 1 0重量 %以下である。  For example, aluminum compounds are effective in improving photocatalytic activity, film strength, and the like. Also, by adding an inexpensive aluminum compound, the cost of the material can be suppressed. As the aluminum compound, alumina fine particles having a particle diameter of 100 nm or less, aluminum hydroxide, and the like are preferable. The content of the aluminum compound is preferably from 0.005% by weight to 20% by weight based on the weight of the photocatalyst. If the content is less than 0.05% by weight, the effect of the addition is ineffective, and if the content exceeds 20% by weight, the film is cracked and the gloss is reduced. More preferably, it is at least 2% by weight and at most 10% by weight.
また、 本発明の光触媒を固定する材料 (基材) や光触媒層 (皮膜) 自 体の劣化を抑え る必要がある場合または光触媒の活性を抑える必要があ る場合には、 こ の光触媒に紫外線吸収剤を含ませて も よい。 紫外線吸収 剤と しては、 ト リ ァゾ一ル系等の有機系化合物、 酸化チタ ン、 酸化亜鉛 等の無機系化合物が挙げられる。 酸化チタ ンゃ酸化亜鉛などは表面処理Further, the material (substrate) for fixing the photocatalyst of the present invention and the photocatalyst layer (coating) When it is necessary to suppress the deterioration of the body or to suppress the activity of the photocatalyst, the photocatalyst may contain an ultraviolet absorber. Examples of the ultraviolet absorbent include organic compounds such as triazole and inorganic compounds such as titanium oxide and zinc oxide. Surface treatment of titanium oxide, zinc oxide, etc.
(光触媒不活性化処理) を施した ものが好ま しい。 (Photocatalytic deactivation treatment) is preferred.
これら紫外線吸収剤の含有量は特に限定されないが、 本発明の光触媒 の重量に対して 3 0 %以下が好ま しい。 3 0 %を超える と皮膜形成に支 障をきたすからである。  The content of these ultraviolet absorbers is not particularly limited, but is preferably 30% or less based on the weight of the photocatalyst of the present invention. This is because if it exceeds 30%, film formation is hindered.
( 2 ) 上記 ( 1 ) に記載の酸化チ タ ン系光触媒で形成された層を基材表 面に備えた材料  (2) A material having a layer formed of the titanium oxide-based photocatalyst described in (1) above on the surface of a base material
こ の材料は、 上記 ( 1 ) に記載の、 チタ ン酸ジルコニ ウムを含み、 ジ ルコ ニゥム とチタ ンの比 ( Z r / T i ) が 0 . 0 0 1 以上 0 . 5 以下で あるチ タ ン系酸化物からなる光触媒基本体と珪素系化合物を主体とする 酸化チタ ン系光触媒の層を表面に備えた材料である。  This material contains zirconium titanate described in (1) above and has a ratio of zirconium to titanium (Zr / Ti) of not less than 0.001 and not more than 0.5. This material has a photocatalyst basic body composed of a tan-based oxide and a titanium oxide-based photocatalyst mainly composed of a silicon-based compound on its surface.
光触媒層を構成する光触媒は、 珪素系化合物が、 シ リ カ微粒子、 ポ リ シロキサン、 シ リ コーン系樹脂およびこれらが部分的に反応した化合物 のう ちの少な く と も一つである と き特に優れた光触媒性能を発揮する。 また、 基材表面に形成された上記 ( 1 ) に記載の光触媒の層 (皮膜) は、 前述したよ う に、 基材との結合性に優れ、 皮膜性状が良好であるた め皮膜に割れが生 じに く く、 加工性、 強度、 外観等に優れている。  The photocatalyst constituting the photocatalyst layer is particularly useful when the silicon-based compound is at least one of silica fine particles, polysiloxane, silicone-based resin and a compound in which these have been partially reacted. Demonstrates excellent photocatalytic performance. Further, as described above, the photocatalyst layer (film) formed on the surface of the substrate according to the above (1) has excellent bondability with the substrate and has good film properties, so that the film is cracked. It is excellent in workability, strength and appearance.
基材と して は、 鉄、 ク π ム、 ニ ッ ケル、 亜鉛、 マ ン ガン、 アル ミ ニ ゥ ム、 チタ ン、 白金、 モ リ ブデン等、 またはそれらの元素を主成分とする 合金等の金属材料、 セ ラ ミ ッ ク、 陶磁器、 ガラ ス、 石英等の無機材料、 樹脂、 木材、 活性炭等の有機材料などが適 している。 これらの材料 (基 材) は、 単独で用いて も よ く、 二種以上を複合材と して用いて も よい。 基材の形状は、 用途等に応じて決めるのがよい。 厚板、 薄板などの板 状、 ビーズのよう な球状またはそのま ま製品と して使用される よ う な複 雑な形状であっ て も よい。 なお、 材料の表面性状は、 多孔質でも緻密質 でも よい。 As the base material, iron, π, nickel, zinc, manganese, aluminum, titanium, platinum, molybdenum, etc., or alloys containing these elements as main components, etc. Metal materials, inorganic materials such as ceramics, ceramics, glass, and quartz, and organic materials such as resin, wood, and activated carbon are suitable. These materials (base materials) may be used alone or in combination of two or more. The shape of the substrate is preferably determined according to the application. Plates such as thick plates and thin plates, spherical shapes such as beads, or multiple shapes such as those used as products The shape may be rough. The surface properties of the material may be porous or dense.
本発明の光触媒の層を表面に備えた材料は、 基材と して前記の金属材 料またはその表面に塗装を施した塗装金属板 (以下、 こ の金属材料と塗 装金属板を総称して、 単に 「金属板」 と記す) を用い、 基材と光触媒で 形成された層の間にバリ ア層を備え た材料、 すなわち、 基材の表面 (少 な く と も片面) にバリ ア層を有 し、 さ らにその上に上記 ( 1 ) に記載の 光触媒の層を備えた材料 (以下、 こ の材料を 「光触媒機能を有する金属 板」 と記す) であっ て も よい。 こ の材料は、 優れた光触媒機能と 良好な 加工性と を兼ね備えた材料である。  The material provided with a photocatalyst layer on its surface according to the present invention is the above-mentioned metal material or a coated metal plate having its surface coated (hereinafter, this metal material and a coated metal plate are collectively referred to as a substrate). A metal plate) and a barrier layer between the substrate and the layer formed by the photocatalyst, that is, a barrier on the surface (at least one side) of the substrate. It may be a material having a layer and further having the photocatalyst layer described in (1) above (hereinafter, this material is referred to as a “metal plate having a photocatalytic function”). This material has both excellent photocatalytic function and good processability.
以下に、 こ の光触媒機能を有する金属板について詳述する。  Hereinafter, the metal plate having the photocatalytic function will be described in detail.
金属板 :  Metal plate:
こ の光触媒機能を有する金属板において、 基材と しては、 前記の金属 材料の他、 公知の塗装金属板が使用できる。 金属材料は、 その表面に各 種のめっ きを施 したものであっ て も よい。 また、 塗装金属板の母材と し ては、 各種の絞り加工用の冷間圧延鋼板や高張力の冷間圧延鋼板、 また はこれらの冷間圧延鋼板に Z nめ っ き、 Z n と A l 、 F e、 M n等と の Z n系合金めつ き、 A 1 めっ き、 A 1 と M n、 Z n等との A 1 系合金め つ き等のめっ きを施した各種のめ っ き鍋板が一般的である。 しか し、 母 材は、 上述の鋼板やめつ き鋼板に限定されず、 各種の熱間圧延鋼板、 ま たはそれに上述したよ う な各種のめ っ きを施 したもの、 フ ェ ラ イ ト 系、 オーステナイ ト 系等各種のステ ン レス鍋板、 あるいは、 各種のアルミ 二 ゥム板などでも よい。  In the metal plate having the photocatalytic function, a known coated metal plate can be used as the base material in addition to the above-described metal materials. The metal material may have various types of plating applied to its surface. In addition, the base material of the coated metal sheet is a cold-rolled steel sheet for various drawing processes, a high-tensile cold-rolled steel sheet, or Zn-plated and Zn-coated such cold-rolled steel sheets. Various types of plating such as Zn alloy plating with Al, Fe, Mn, etc., A1 plating, A1 alloy plating with A1, Mn, Zn etc. Plates are commonly used. However, the base material is not limited to the above-mentioned steel sheet or plated steel sheet, but may be any type of hot-rolled steel sheet, or a sheet subjected to the above-described various kinds of plating, or ferrite. A variety of stainless steel pots, such as stainless steel and austenitic stainless steel, or various aluminum plates may be used.
金属板が塗装金属板の場合は、 母材の表面に施される塗装には、 ァク リ ル系、 メ ラ ミ ン系、 ポ リ エステル系、 ポ リ ウ レタ ン系、 塩ビ系、 その 他、 公知の有機樹脂系塗料を用いる こ とができる。 塗膜の厚さや色調は 任意である力 、 厚さは 3 〜 1 0 0 mのものが一般的である。 層 : If the metal plate is a painted metal plate, the coating applied to the surface of the base metal may be acrylic, melamin, polyester, polyurethane, PVC, etc. In addition, known organic resin-based paints can be used. The thickness and color of the coating film are arbitrary, and the thickness is generally 3 to 100 m. Layer:
光触媒機能を有する金属板の基材が塗装金属板の場合、 その塗膜は、 光触媒粒子が直接接触する と、 光触媒反応によ り生成する正孔の酸化作 用によ り損傷される (以下、 このよ う な損傷を 「チ ヨ 一キ ング」 と記す) 。 そこで、 塗装金属板の塗膜と本発明の光触媒の層との中間に光触媒作 用を遮蔽でき る物質を薄膜状に介在させて、 光触媒作用による塗膜のチ ヨ ーキ ングを防止する。  When the base material of a metal plate having a photocatalytic function is a coated metal plate, the coating film is damaged by the oxidizing action of holes generated by the photocatalytic reaction when the photocatalytic particles come into direct contact (hereinafter referred to as “the metal oxide”). Such damage is referred to as “choking”). Therefore, a substance capable of shielding the action of the photocatalyst is interposed between the coating of the coated metal plate and the layer of the photocatalyst of the present invention in the form of a thin film to prevent the coating from being choked by the photocatalysis.
また、 前記金属板の基材が塗膜面を もたない金属材料、 例えばス テ ン レ ス鋼板等の場合、 光触媒層が金属材料と直接接触する と、 金属表面が、 焼成時に、 あるいは光触媒の塗布液に含まれる酸によ って腐食 し、 下地 の金属板か ら金属原子あるいは金属ィ オ ンが光触媒層に拡散して、 光触 媒活性が著 し く 低下する こ とがある。 そこで、 光触媒活性の低下を抑え るために、 塗装金属板の場合と同様に、 金属材料と光触媒層の間に金属 の拡散を防ぐ物質を薄膜状に介在させる。  Further, when the base material of the metal plate is a metal material having no coating film surface, for example, a stainless steel plate or the like, if the photocatalyst layer comes into direct contact with the metal material, the metal surface may be fired, Corrosion may be caused by the acid contained in the coating solution, and metal atoms or ions may diffuse from the underlying metal plate into the photocatalytic layer, resulting in a significant decrease in photocatalytic activity. Therefore, in order to suppress a decrease in photocatalytic activity, a substance for preventing metal diffusion is interposed between the metal material and the photocatalyst layer in the form of a thin film, as in the case of a coated metal plate.
こ のよ う な光触媒作用を遮蔽 し、 あるいは下地からの金属の拡散を防 ぐ作用を有する薄膜を、 こ こでは 「バ リ ア層」 と称する。  Such a thin film having a function of blocking the photocatalytic action or preventing diffusion of metal from the underlayer is referred to herein as a “barrier layer”.
リ ア層と しては、 光触媒粒子に接して も分解されない無機物質、 ま たは無機有機複合物質が使用でき る。 無機物質と しては、 例えば、 珪素 酸化物、 アルミ ニウム酸化物、 ジルコニウ ム酸化物などを用いる こ とが でき る。 なかでも、 一般的な白色顔料である酸化チタ ンの光触媒作用に よるチ ョ ーキ ングを抑制するために、 酸化チタ ン粒子表面を被覆する材 料と して従来から広く 用い られている珪素酸化物 (特に、 S i 0 2 ) ま たはアル ミ ニ ウ ム酸化物 (特に、 A 1 2 0 3 ) が好適である。 As the rear layer, an inorganic substance that is not decomposed even when in contact with the photocatalyst particles, or an inorganic-organic composite substance can be used. As the inorganic substance, for example, silicon oxide, aluminum oxide, zirconium oxide, or the like can be used. Among them, silicon, which has been widely used as a material to coat titanium oxide particle surfaces, in order to suppress the photocatalytic choking of titanium oxide, a common white pigment Oxides (especially SiO 2 ) or aluminum oxides (especially A 1203) are preferred.
上記の酸化物の粒子は、 粒径が 0 . 0 1 〜 1 mのものが好ま しい。 粒径の測定は透過型電子顕微鏡によ り行う こ とができる。 粒径が 1 (j m を超え る と塗膜あるいは金属表面に対するバリ ア層の密着性が損なわれ る場合がある。 粒子の直径は小さいほど好ま しいが、 0 . 0 1 111に満 たないものは通常の手段では得に く いので一般的ではない。 これらの酸 化物粒子は公知の方法で得られる ものである。 例えば、 S i 0 2 で表さ れる珪素酸化物粒子は、 公知のゾルゲル法等によ り得る こ とができる。 無機有機複合物質と しては、 シ リ コ ン系樹脂、 シラ ン カ ッ プリ ング剤、 フ ッ素系樹脂、 チタ ネー ト 系カ ッ プリ ング剤などが挙げられる。 The above oxide particles preferably have a particle diameter of 0.01 to 1 m. The particle size can be measured by a transmission electron microscope. If the particle size exceeds 1 (jm), the adhesion of the barrier layer to the coating film or the metal surface may be impaired. The smaller the particle diameter, the better, but less than 0.0111 Those that are not are not common because they are difficult to obtain by ordinary means. These oxide particles are obtained by a known method. For example, the silicon oxide particles represented by Sio 2 can be obtained by a known sol-gel method or the like. Examples of the inorganic-organic composite material include a silicone resin, a silane coupling agent, a fluorine resin, and a titanate coupling agent.
上記の無機物質または無機有機複合物質は、 単独または複合 して用い る こ とができ る。 その含有量 (複合 して用いる場合は合計の含有量) は、 バリ ァ層の重量に対して 2 0重量%以上とするのがよい。 含有量が 2 0 重量%に満たない場合には塗膜あるいは金属表面との密着力が不足する こ とがある。 含有量の上限は、 1 0 0重量%でも よい力5、 8 0重量%を 超える と塗膜の強度が不足する こ とがあるので、 よ り好ま し く は 8 0重 量%である。 The above-mentioned inorganic substances or inorganic-organic composite substances can be used alone or in combination. Its content (total content when used in combination) is preferably at least 20% by weight based on the weight of the barrier layer. If the content is less than 20% by weight, the adhesion to the coating film or metal surface may be insufficient. The upper limit of the content, because 1 0 0% by weight, even good force 5, 8 0 the strength of the coating film exceeds% by weight there is and this is insufficient, rather than the preferred Ri good is 8 0 by weight%.
さ らに、 光触媒機能を有する金属板の基材が塗装金属板の場合、 屋外 での使用時における塗膜の耐候性を向上させるために、 ノく リ ア層に、 光 触媒不活性化処理を施 したルチル型および/またはブルツ カ イ ト型の酸 化チタ ン粒子を含有させるのがよい。 光触媒不活性化処理とは、 酸化チ タ ン粒子の表面をシ リ カ、 アル ミ ナ、 ジルコニァなどで被覆する処理で ある。 これらの酸化チタ ン粒子が紫外線を吸収するため、 塗装金属板の 塗膜に達する紫外線量が減少 して樹脂の劣化が抑制される。  Furthermore, when the base material of the metal plate having a photocatalytic function is a coated metal plate, a photocatalyst inactivation treatment is applied to the rear layer to improve the weather resistance of the coating film when used outdoors. It is preferable to contain rutile-type and / or wurtzite-type titanium oxide particles which have been subjected to the treatment. The photocatalytic inactivation treatment is a treatment in which the surfaces of titanium oxide particles are coated with silica, alumina, zirconia, or the like. Since these titanium oxide particles absorb ultraviolet rays, the amount of ultraviolet rays reaching the coating film of the coated metal plate is reduced, and the deterioration of the resin is suppressed.
また、 バ リ ァ層中に光触媒不活性化処理を施した酸化チタ ン粒子を適 量含有させる と、 ノ リ ア層の曲げ加工性が改善される。 これは、 これら の粒子を適量に含有させる と、 加工時にバリ ァ層の内部に生じる応力が 緩和されるためと推測される。 しか し、 過剰に含有させる とかえ つてバ リ ア層の加工性が損なわれる こ とがある。 こ のため、 上記の光触媒不活 性化処理を施 した酸化チタ ン粒子の含有量は、 ノ リ ァ層の重量に対して 8 0重量%以下とするのが好ま しい。 2 0 〜 6 5重量%の範囲とすれば、 耐候性と成形加工性とのバ ラ ン ス が良 く、 一層好ま しい。 層には、 上述の、 光触媒作用を遮蔽 し、 あるいは下地からの金 属の拡散を防ぐ作用を有する珪素酸化物等の酸化物、 耐候性を向上させ るための光触媒不活性化処理を施 した酸化チタ ン粒子等の他に、 耐候性 向上を 目的と して、 ベンゾ ト リ アゾール系、 ベンゾフ ヱ ノ ン系、 シ ユ ウ 酸ァニ リ ドシァノ アク リ レー ト 系等の紫外線吸収剤を含有させても よい。 In addition, when the barrier layer contains an appropriate amount of titanium oxide particles that have been subjected to a photocatalytic deactivation treatment, the bendability of the NORIA layer is improved. This is presumably because, when these particles are contained in an appropriate amount, the stress generated inside the barrier layer during processing is reduced. However, in some cases, excessive content may impair the workability of the barrier layer. For this reason, it is preferable that the content of the titanium oxide particles subjected to the photocatalytic inactivation treatment be set to 80% by weight or less with respect to the weight of the phosphor layer. When the content is in the range of 20 to 65% by weight, the balance between the weather resistance and the formability is good, and it is more preferable. The layer was treated with an oxide such as silicon oxide which has a function of blocking the photocatalytic action or preventing diffusion of metal from the underlayer, and a photocatalytic inactivation treatment for improving weather resistance. In addition to titanium oxide particles, etc., contains UV absorbers such as benzotriazole type, benzopentanone type, and anilide cyanoacrylate type for the purpose of improving weather resistance May be allowed.
リ ア層の厚さは 0. 0 5 〜 1 0 w mとするのがよい。 0. 0 5 μ m に満たない場合にはチ ョ ーキングを抑制 した り、 金属の拡散を防止した りする効果が不十分である。 1 0 〃 mを超え る とチ ョ ー キ ン グおよび金 属の拡散を抑制する効果が飽和するので、 1 0 " mを超えて厚く するの は経済性に欠ける。 なお、 バリ ア層と次に述べる光触媒層の厚さが適切 であれば、 これらの層の透明性が維持でき るので、 バ リ ア層と光触媒層 を金属板の上に設けて も金属板自体の色調、 光沢などの意匠性が失われ る こ とはない。  The thickness of the rear layer is preferably set to 0.05 to 10 wm. If the thickness is less than 0.05 μm, the effects of suppressing choking and preventing metal diffusion are insufficient. If the thickness exceeds 10 m, the effect of suppressing choking and diffusion of metal saturates, so that increasing the thickness beyond 10 m is not economical. If the thickness of the photocatalyst layer described below is appropriate, the transparency of these layers can be maintained, so even if the barrier layer and the photocatalyst layer are provided on the metal plate, the color tone, gloss, etc. of the metal plate itself There is no loss of design.
光触媒層 :  Photocatalyst layer:
光触媒と しては、 チタ ン酸ジ ル コ ニ ウ ムを含むチタ ン系酸化物からな る光触媒基本体と珪素系化合物を主体とする上記 ( 1 ) に記載の酸化チ タ ン系光触媒を用いる。 こ の光触媒は、 光触媒活性に優れる と と もに、 基材 (この場合は、 バ リ ア層) 表面に固定 して光触媒層 (皮膜) と した 場合の皮膜性状 (基材との結合性、 加工性、 強度等) において も優れて いる。  Examples of the photocatalyst include a photocatalyst basic body composed of a titanium-based oxide containing zirconia titanate and a titanium oxide-based photocatalyst according to the above (1) mainly composed of a silicon-based compound. Used. This photocatalyst has excellent photocatalytic activity, and also has a film property (bonding property to the base material, when fixed on the surface of a base material (in this case, a barrier layer)) to form a photocatalyst layer (film). In terms of workability and strength).
光触媒基本体 (光触媒粒子) の大き さは、 透過型電子顕微鏡によ る観 察で求められる平均粒径で 0. 0 5 〜 1 mの範囲が好ま しい。 光触媒 粒子は小さいほど触媒活性が良好であるので好ま し く、 粒径が 1 mを 超え る と光触媒活性が低下する。 粒径が 0. 0 5 mに満たないものは 通常の手段では分級が困難で得られに く い。  The size of the basic photocatalyst (photocatalyst particles) is preferably in the range of 0.05 to 1 m in terms of the average particle size determined by observation with a transmission electron microscope. The smaller the photocatalyst particles are, the better the catalytic activity is, which is preferable. Particles with a particle size of less than 0.05 m are difficult to classify by ordinary means and are difficult to obtain.
光触媒基本体を構成する結晶子サイ ズの大きさ は、 5 〜 5 0 n mが好 ま しい。 結晶子サイ ズは、 X線回折で得られるアナタ 一ゼ結晶の ( 1 0 1 ) 面からの回折ピーク から算出される。 結晶子サイ ズが 5 0 n mを超 える と光触媒活性が低下するので好ま し く ない。 結晶子サイ ズは小さい ほど光触媒活性がよいのでい く ら小さ く て も構わないが、 5 n mに満た ない ものは通常の手段では得られない。 The size of the crystallite constituting the basic photocatalyst is preferably from 5 to 50 nm. The crystallite size is (10%) of the anatase crystal obtained by X-ray diffraction. 1) Calculated from the diffraction peak from the plane. If the crystallite size exceeds 50 nm, the photocatalytic activity decreases, which is not preferable. Since the smaller the crystallite size, the better the photocatalytic activity, it may be as small as possible, but those smaller than 5 nm cannot be obtained by ordinary means.
光触媒層の厚さ は 0 . l 〜 1 0 w mが好ま しい。 厚さが 0 . 1 mに 満たない場合には光触媒効果が不足する。 さ らに好ま し く は 0 . 3 m 以上である。 厚さが 1 0 mを超え る と光触媒効果が飽和する う え光触 媒層の加工性が悪く なるので好ま し く ない。 厳しい加工が施される場合 には厚さ を 5 m以下とするのがさ ら に好ま しい。  The thickness of the photocatalyst layer is preferably 0.1 to 10 wm. If the thickness is less than 0.1 m, the photocatalytic effect will be insufficient. More preferably, it is at least 0.3 m. When the thickness exceeds 10 m, the photocatalytic effect is saturated, and the workability of the photocatalytic layer is deteriorated. When severe processing is performed, the thickness is more preferably 5 m or less.
光触媒基本体の含有量は、 光触媒層の重量に対して 1 0 〜 9 0重量% の範囲がよい。 1 0重量%に満たない場合には、 光触媒機能が不十分な 場合がある。 光触媒基本体の含有量が増すにつれて光触媒効果が大き く なる力 9 0重量%を超える と皮膜表面に亀裂や割れが増すので好ま し く ない。  The content of the basic photocatalyst is preferably in the range of 10 to 90% by weight based on the weight of the photocatalyst layer. If the content is less than 10% by weight, the photocatalytic function may be insufficient. The power at which the photocatalytic effect increases as the content of the basic photocatalyst increases is not preferred, because it exceeds 90% by weight because cracks and cracks increase on the film surface.
光触媒層には、 上記の酸化チ タ ン系光触媒以外に、 皮膜の強度や密着 性を向上させるために、 ふつ素系樹脂、 コ ロ イ ド状ア ル ミ ナ、 ク ロ ム酸、 ク ロ ム酸塩、 り ん酸、 り ん酸塩等を光触媒層の重量に対 して 9 0重量% まで含有させて も よい。 また、 後述する光触媒層形成薬液に不可避的に 含まれる解膠剤 (硝酸イ オ ン、 塩化物イ オ ン等の陰イ オ ン) が光触媒層 中に残留 していて も構わない。  In addition to the titanium oxide photocatalyst described above, the photocatalyst layer may be made of a fluororesin, a colloidal alumina, a chromic acid, or a chromic acid to improve the strength and adhesion of the film. It may contain up to 90% by weight of oxalate, phosphoric acid, phosphate and the like based on the weight of the photocatalyst layer. In addition, a peptizer (anion such as ion nitrate and chloride ion) inevitably contained in a photocatalyst layer forming chemical solution described later may remain in the photocatalyst layer.
光触媒層の表面は濡れ性が大き く、 かつ、 金型などに対する摩擦係数 が高く、 工具に押圧された場合の滑 り抵抗が高い。 こ のため、 比較的軽 度の曲げ加工等では問題が生じないが、 深絞り加工等の厳しい加工を施 すと、 割れ、 型か じ り、 寸法形状不良などの成形不良や、 光触媒層の剝 離などが生じる。  The surface of the photocatalyst layer has high wettability, a high coefficient of friction with molds and the like, and high slip resistance when pressed by a tool. For this reason, there is no problem with relatively mild bending, etc., but if severe processing such as deep drawing is performed, molding defects such as cracks, mold galling, poor dimensional shape, etc.離 Separation occurs.
光触媒機能を有する金属板を成形加工する際の成形不良を防止するた めに、 光触媒層には有機潤滑剤を含有させるのがよい。 光触媒層に含有 させる有機潤滑剤には、 天然ワ ッ ク ス、 ポ リ オ レ フ イ ン系ワ ッ ク ス、 酸 化ポ リ オ レ フ イ ン系ワ ッ ク ス、 変成ポ リ オ レ フ イ ン系ワ ッ ク ス、 マイ ク 口 ク リ ス タ リ ン系ワ ッ ク スなどがあ り、 これらの中の一種、 または二種 以上を組み合わせて用いるのがよい。 上記のワ ッ ク ス粒子は、 成形後光 触媒作用によ り分解され、 光触媒層から除去されるので、 製品の光触媒 活性が向上する。 上記以外のワ ッ ク ス を使用する と、 光触媒層の光触媒 活性が劣化するので好ま し く ない。 In order to prevent molding defects when molding a metal plate having a photocatalytic function, the photocatalyst layer preferably contains an organic lubricant. Included in photocatalyst layer Organic lubricants used include natural waxes, polyolefin waxes, oxidized polyolefin waxes, and modified polyolefin waxes. There are waxes, crystal mouth waxes, etc., and it is better to use one or a combination of two or more of these. The above-mentioned wax particles are decomposed by photocatalysis after molding and are removed from the photocatalyst layer, so that the photocatalytic activity of the product is improved. It is not preferable to use a wax other than the above because the photocatalytic activity of the photocatalyst layer deteriorates.
有機潤滑剤の含有量は、 成形加工時の潤滑効果を得るには、 光触媒層 の重量に対して 0 . 1 重量%以上含有させるのがよい。 しか し、 有機潤 滑剤の含有量が 1 0重量%を超え る と、 上述した光触媒作用によ る分解 の効率が著し く 低下する。 このため、 有機潤滑剤の含有量の上限は光触 媒層の重量に対して 1 0重量%とするのがよい。 有機潤滑剤の量は、 各 々 の絞り加工に適した量であっ て、 なるべ く 少ないこ とが望ま しいので、 よ り好ま し く は 5重量%以下である。  The content of the organic lubricant is preferably 0.1% by weight or more based on the weight of the photocatalyst layer in order to obtain a lubricating effect at the time of molding. However, when the content of the organic lubricant exceeds 10% by weight, the efficiency of the above-described photocatalytic decomposition is significantly reduced. Therefore, the upper limit of the content of the organic lubricant is preferably set to 10% by weight based on the weight of the photocatalyst layer. The amount of the organic lubricant is suitable for each drawing process, and is preferably as small as possible. Therefore, the amount is more preferably 5% by weight or less.
有機潤滑剤は、 粒状の固体潤滑剤が好ま しい。 粒状の固体潤滑剤を用 いれば、 光触媒粒子の表面が有機潤滑剤で被覆されないので、 光触媒粒 子の光触媒機能を十分に発揮させる こ とができる。 液状の潤滑剤は光触 媒粒子表面を被覆して し ま うので好ま し く ない。  The organic lubricant is preferably a granular solid lubricant. If a particulate solid lubricant is used, the surface of the photocatalyst particles is not covered with the organic lubricant, so that the photocatalytic function of the photocatalyst particles can be sufficiently exhibited. Liquid lubricants are not preferred because they cover the surface of the photocatalyst particles.
有機潤滑剤の粒径は、 レーザー回折法で測定される平均粒径で、 光触 媒層の厚さ以上とするのがよい。 平均粒径が光触媒層の厚さ よ り も小さ く なる と潤滑効果が不十分である。 平均粒径が過度に大き く なる と、 光 触媒層から有機潤滑剤が脱落し、 絞り加工後の表面に付着して表面性状 が損なわれる。 このため、 平均粒径は 5 〃 m以下とするのがよい。 さ ら に好ま し く は光触媒層の厚さ + 3 m以下とするのがよい。  The particle size of the organic lubricant is an average particle size measured by a laser diffraction method and is preferably not less than the thickness of the photocatalytic layer. If the average particle size is smaller than the thickness of the photocatalyst layer, the lubricating effect is insufficient. If the average particle size is excessively large, the organic lubricant drops off from the photocatalyst layer and adheres to the drawn surface to deteriorate the surface properties. For this reason, the average particle size is preferably set to 5 μm or less. More preferably, the thickness is not more than the thickness of the photocatalyst layer + 3 m.
( 3 ) 上記 ( 2 ) に記載の材料の製造に用いる配合剤  (3) A compounding agent used for manufacturing the material described in (2) above.
上記 ( 1 ) に記載の酸化チタ ン系光触媒は、 通常は材料 (基材) 表面 に皮膜と して固定された状態で使用される。 その際、 こ の光触媒を含む コ ーテ ィ ング用の配合剤が使用されるので、 この光触媒の製造方法につ いては、 以下に述べる配合剤についての説明の中で併せて説明する。 こ の配合剤は、 チタ ン酸ジルコニ ウムを含み、 チタ ンに対する ジルコ 二ゥ ムの比 ( Z r Z T i ) が 0 . 0 0 1 以上 0 . 5 以下であるチタ ン系 酸化物からなる光触媒基本体と、 珪素系化合物と、 水およびノまたは有 機溶剤と を混合 し、 反応させたものである。 The titanium oxide-based photocatalyst described in (1) above is usually used in a state of being fixed as a film on the surface of a material (substrate). In this case, this photocatalyst is included Since a coating compounding agent is used, the method for producing the photocatalyst will be described in the following description of the compounding agent. This compounding agent contains a zirconium titanate photocatalyst consisting of a titanium-based oxide having a ratio of zirconium to titanium (ZrZTi) of not less than 0.001 and not more than 0.5. It is obtained by mixing and reacting a basic body, a silicon-based compound, water, and an organic solvent.
こ の配合剤の調製は、 以下のよ う に して行えばよい。  The preparation of this compounding agent may be carried out as follows.
まず、 原料と してチタ ンアルコ キシ ド、 酸化チタ ン微粒子等のチタ ン 化合物と、 ジル コ ニ ウ ム アルコ キ シ ド、 酸化ジル コ ニ ウ ム微粒子、 ジル コニ ゥム塩等のジルコニ ウム化合物を用い、 チタ ンに対する ジルコニ ゥ ムの比 ( Z r Z T i ) を 0 . 0 0 1 以上◦. 5以下の範囲になる よう し、 アルコールや水などの溶媒中あるいは空気中で混合 し、 反応させる。 こ の操作によ っ て得られた光触媒基本体の前駆物質を、 必要に応じて溶媒 などを除き、 室温から 1 0 0で程度の温度で乾燥する。 その後、 得られ た生成物を大気雰囲気下で 1 0 0 °Cから 9 0 0 °Cまでの任意の温度で焼 成する こ と によ っ て、 光触媒基本体を製造する こ とができる。  First, titanium compounds such as titanium alkoxide and titanium oxide fine particles and zirconium compounds such as zirconium alkoxide, zirconium oxide fine particles and zirconium salt are used as raw materials. The ratio of zirconium to titanium (ZrZTi) is adjusted to be in the range of 0.01 to ◦.5 in a solvent such as alcohol or water or in air, and the reaction is carried out. Let it. The precursor of the photocatalyst basic body obtained by this operation is dried at a temperature from room temperature to about 100, except for a solvent, if necessary. Thereafter, the obtained product is calcined at an arbitrary temperature of 100 ° C. to 900 ° C. in an air atmosphere, whereby a basic photocatalyst can be produced.
よ り活性に富んだ光触媒基本体を得る には、 上記のよ う に して得られ た前駆物質に、 水中で、 または空気中の水分によ り、 または硝酸、 塩酸 等の酸によ り加水分解等の二次反応を起こ させた後、 必要に応 じて溶媒 などを除き、 乾燥 した後、 所定の温度で焼成するのがよい。  In order to obtain a more active photocatalyst basic substance, the precursor obtained as described above may be added to the precursor obtained above in water or in the air, or by an acid such as nitric acid or hydrochloric acid. After a secondary reaction such as hydrolysis is caused, it is preferable to remove the solvent and the like as necessary, dry, and then calcinate at a predetermined temperature.
こ のほか、 チタ ン化合物とジルコ ニ ウム化合物を混合 し、 得られた前 記の前駆物質に、 必要に応じて加水分解などの反応を起こ させた後、 8 0 °Cから 1 0 0 °C程度の温度範囲で 2時間以上、 よ り好ま し く は 1 0時 間以上加熱または加熱環流して、 必要に応 じて溶媒などを除き、 得られ た生成物を乾燥 した後焼成する方法によれば、 さ らに高活性なチタ ン系 酸化物からなる光触媒基本体を得る こ とができる。  In addition, a titanium compound and a zirconium compound are mixed, and if necessary, a reaction such as hydrolysis is caused to the obtained precursor, and then the reaction is performed at 80 ° C to 100 ° C. A method of heating or refluxing for 2 hours or more, more preferably for 10 hours or more in a temperature range of about C, removing the solvent, etc. as necessary, drying the obtained product, and firing it. According to this, a photocatalyst basic body composed of a titanium oxide having higher activity can be obtained.
このよう に して得られたチタ ン系酸化物を、 水およびノまたは有機溶 剤中で珪素系化合物と混合する こ と によ り コーテ ィ ング用の配合剤を調 製する こ とができる。 また、 以下の方法によ って、 簡便に S合剤とする こ とができ る。 The titanium-based oxide obtained in this manner is converted into water and organic or organic solvent. By mixing with the silicon compound in the agent, a compounding agent for coating can be prepared. In addition, an S mixture can be easily prepared by the following method.
まず、 チタ ン化合物と ジルコ ニ ウ ム化合物を溶液中で、 必要に応じて 加熱などの処理を行いつつ反応させ、 酸化チタ ン とチタ ン酸ジルコニ ゥ ムを主体とするチタ ン系酸化物の前駆物質を調製する。 その後、 反応生 成物を単離せずに続けてその溶液中に珪素系化合物を導入 し、 チタ ン系 酸化物の前駆物質と珪素系化合物を反応させて Z r - 0 - S i 結合を部 分的に生 じさせ、 必要に応じて添加剤などを加え 合剤とする。  First, a titanium compound and a zirconium compound are reacted in a solution while performing a treatment such as heating, if necessary, to obtain a titanium-based oxide mainly composed of titanium oxide and zirconium titanate. Prepare a precursor. Thereafter, the silicon-based compound is introduced into the solution without isolating the reaction product, and the precursor of the titanium-based oxide is reacted with the silicon-based compound to form a Zr-0-Si bond. It is generated separately, and additives are added as needed to make a mixture.
さ らに、 チタ ン化合物と ジルコ ニ ウ ム化合物のいずれか、 あるいはそ れそれと珪素系化合物を反応させた後、 そのチタ ン化合物と ジルコニゥ ム化合物を混合 し、 反応させて配合剤とする方法も有効である。  Furthermore, a method in which a titanium compound and a zirconium compound, or each of them is reacted with a silicon compound, and then the titanium compound and the zirconium compound are mixed and reacted to form a compounding agent. Is also effective.
上記のよ う に して得られた配合剤を、 例えば材料 (基材) に塗布 して 焼成する こ と によ り酸化チタ ン とチタ ン酸ジルコニ ウムを含む光触媒基 本体が珪素系化合物の皮膜に Z r 一 0— S i 結合を介 して強固に保持さ れた酸化チタ ン系光触媒の層を表面に備えた材料が得られる。  The compounding agent obtained as described above is applied to, for example, a material (substrate) and fired, so that the photocatalyst group body containing titanium oxide and zirconium titanate is a silicon-based compound. A material having a titanium oxide-based photocatalyst layer firmly held on the film via a Zr10-Si bond is obtained.
光触媒基本体には、 前記の V、 F e、 Z n、 R u、 R h、 P t、 A g、 P dおよび C u のう ちの少な く と も一種の金属および/または金属化合 物を含有 (担持) させて もよい。 その方法と しては、 含浸法、 混練法な どによ っ てあらか じめ光触媒基本体に担持させて も よい し、 坦持物が金 属の場合は、 調製後の配合剤にその金属塩を加え、 還元等によ っ て光触 媒基本体にその金属を坦持させて も よい。  The basic photocatalyst includes at least one metal and / or metal compound of V, Fe, Zn, Ru, Rh, Pt, Ag, Pd, and Cu. It may be contained (supported). As the method, the photocatalyst basic body may be preliminarily supported by an impregnation method, a kneading method, or the like, or, when the carrier is a metal, the metal is added to the compounding agent after preparation. A salt may be added, and the metal may be supported on the basic photocatalyst body by reduction or the like.
珪素系化合物と しては、 前述の、 ポ リ シ πキサ ン、 シ リ コー ン樹脂、 シ リ カ微粒子など用いるのが好適である。 シ リ コ ンアルコキシ ドを用い て もよい。  As the silicon-based compound, it is preferable to use the above-mentioned polysilicon π siloxane, silicone resin, silica fine particles and the like. Silicon alkoxides may be used.
シ リ コ ン アル コ キ シ ドは、 珪素化合物の前駆物質で、 R 2 n S i ( O R Silicon alcohol is a precursor of silicon compounds, R 2 n Si (OR
( η は 0 〜 3 の整数、 R 1 および R 2 は炭化水素基を意味する) で表され、 製膜時に空気中の水分または配合剤の調製の際に溶媒に含ま れる水等によ り加水分解するか、 焼成時に熱分解してポ リ シ ロ キサ ンを 生成させる。 (η is an integer from 0 to 3, R 1 and R 2 mean a hydrocarbon group) It is hydrolyzed by water in the air at the time of film formation or water contained in a solvent at the time of preparation of the compounding agent, or is thermally decomposed at the time of firing to produce polysiloxane.
上記のシ リ コ ンアルコキシ ドを表す式において、 炭化水素基 R 1 は、 炭素数が 1 から 4 のアルキル基が好ま しい。 5以上と なる と光触媒基本 体あるいはその前駆物質と反応を起こ しに く く、 また、 加水分解も しに く い。 さ らに、 入手も困難である。 一方、 炭化水素基 R 2 については特 に限定はない。 非置換の炭化水素基だけでな く、 水素がハロゲンなどで 置換された置換型のものも利用でき る。 In the above formula representing a silicon alkoxide, the hydrocarbon group R 1 is preferably an alkyl group having 1 to 4 carbon atoms. When the value is 5 or more, it does not easily react with the basic photocatalyst or the precursor thereof, and is hardly hydrolyzed. Moreover, it is difficult to obtain. On the other hand, the hydrocarbon group R 2 is not particularly limited. Not only unsubstituted hydrocarbon groups but also substituted ones in which hydrogen is substituted with halogen or the like can be used.
R 2 n S Ϊ ( O R ' ) 4 - π で表さ れる シ リ コ ンアル コ キ シ ドの具体例と しては、 η = 0 の場合のテ ト ラアルコキ シ シラ ンと して、 テ ト ラエ ト キ シ シ ラ ン、 テ ト ラ メ ト キ シ シラ ン等が、 η = 1 の場合のオルガ ノ ト リ ア ル コ キ シシ ラ ン と して、 メ チル ト リ メ ト キ シ シラ ン、 メ チノレ ト リ エ ト キ シ シ ラ ン、 メ チル ト リ イ ソ プ a ポキ シ シ ラ ン、 フ エ ニル ト リ メ ト キ シ シ ラ ン、 フ エ ニル ト リ エ ト キシシラ ン等があげられる。 また、 η = 2 の場 合のジオルガノ ジアルコ キシシラ ン と しては、 ジメ チルジメ ト キシシラ ン、 ジ メ チルジェ ト キ シ シ ラ ン、 ジ フ エ 二ルジメ ト キ シ シ ラ ン等があげ られ、 η = 3 の場合は ト リ オルガノ ジモ ノ アルコキシシラ ン と して、 ト リ メ チノレメ ト キ シ シ ラ ン、 ト リ メ チルエ ト キ シ シ ラ ン、 ト リ メ チノレイ ソ プロ キシ ド シ ラ ン等があげられる。 A specific example of a silicon alcohol represented by R 2 n S Ϊ (OR ') 4-π is a tetraalkoxysilane when η = 0. Laetoxysilane, tetramethylsilicone, etc. are used as organotrikoxysilanes when η = 1, and they are methyltrimethylsilyl. , Methyl triethoxy silane, methyl triisopropyl a phenyl silane, phenyl trimethoxy silane, phenyl triethoxy silane And the like. Examples of the diorganodialkoxysilane in the case of η = 2 include dimethyldimethoxysilane, dimethylethylethoxysilane, diphenyldimethoxysilane, and the like. When η = 3, triorganodimonoalkoxysilane is used as trimethinolemethoxysilane, trimethylethylethoxysilane, or trimethinoreisoproxysilane. And the like.
シ リ コ ンアルコ キシ ドは、 そのま ま配合剤の原料と して用いて も よい し、 あらか じめ酸などを用いて部分加水分解 しポリ シ ロ キサ ン と した後、 配合剤の原料と して用いて もよい。  Silicon alkoxide may be used as it is as a raw material of the compounding agent, or it may be partially hydrolyzed using a pre-mixed acid or the like to form a polysiloxane, and then the raw material of the compounding agent may be used. It may be used as
シ リ コー ン樹脂と しては、 前記のアク リ ル樹脂、 ウ レタ ン樹脂、 ェポ キシ樹脂等の汎用の樹脂にエス テル交換反応、 ヒ ド π シ リ ル化等によ り シ リ コ ンを導入 した樹脂が挙げられる。 このとき、 シ リ コ ーン樹脂中の シ リ コ ン含有量は 6 0重量%以下とする こ とが好ま しい。 具体的には、 ァク リ ルシ リ コー ン樹脂やエポキ シ シ リ コーン樹脂等が、 製膜後の皮膜 強度等の面から好ま しい。 これらの樹脂は、 エマルシ ヨ ン型のもの、 溶 剤に溶けた もののどち らでも使用する こ とができる。 As the silicone resin, the above-mentioned general-purpose resins such as the acrylic resin, the urethane resin, and the epoxy resin are subjected to an ester exchange reaction and a π-silyl conversion to form a silicone resin. Resins into which corn is introduced. At this time, the silicone content in the silicone resin is preferably set to 60% by weight or less. In particular, Acrylic silicone resins and epoxy silicone resins are preferred in terms of film strength after film formation. These resins can be used either as emulsion-type resins or those dissolved in solvents.
さ らに、 シ リ コー ン樹脂と して光硬化性のものも用いる こ とができ る。 光硬化性樹脂を利用する こ とによ り、 製造上熱をかけ られない場合、 あ るいは基材自体が熱に弱く 加熱できない場合でも基材の表面に酸化チタ ン系光触媒の層 (皮膜) を形成させる こ とができ る。  Further, a photo-curable silicone resin can also be used. By using a photocurable resin, a titanium oxide-based photocatalyst layer (coating) can be applied to the surface of the substrate even when heat cannot be applied during production or when the substrate itself cannot be heated due to heat. ) Can be formed.
シ リ カ微粒子と しては、 前記の コ D イ ド状シ リ カ、 粉末シ リ カ、 フ ユ —ム ドシ リ カ などが挙げられる。 シ リ カ微粒子の粒子径は、 前述した理 由で 3 0 n m以下が好ま しい。 よ り 好ま しいシ リ カ微粒子は、 粒子径 2 0 n m以下のコ ロ イ ド状シ リ カである。 コ ロ イ ド状シ リ カは、 水に分散 したもの、 アルコールなどの有機溶剤に分散したもののいずれでもよい。 これらのコ ロ イ ド状シ リ カ はシ リ コ ンアルコキシ ドから酸を用いて容易 に調製でき る力 市販のものを用いて も よい。  Examples of the silica fine particles include the above-mentioned co-doped silica, powdered silica, and fumed silica. The particle size of the silica fine particles is preferably 30 nm or less for the reasons described above. A more preferred silica fine particle is a colloidal silica having a particle diameter of 20 nm or less. The colloidal silica may be either a dispersion in water or a dispersion in an organic solvent such as alcohol. These colloidal silicas may be commercially available, which can be easily prepared from silicon alkoxides using an acid.
上記の珪素系化合物を、 単独でま たは二種以上組み合わせて、 水およ び/または有機溶剤等の溶媒中で光触媒基本体あるいはその前駆物質と 混合 し、 反応させる。  The above-mentioned silicon-based compounds are used alone or in combination of two or more, mixed with a photocatalyst basic substance or a precursor thereof in a solvent such as water and / or an organic solvent, and reacted.
配合剤の P H、 使用する溶媒の種類、 水と有機溶剤の両方を使用する 場合のそれらの比等については、 その配合剤に含まれる構成物質の性質、 例えばシ リ コ ー ン樹脂、 ポ リ シ ロ キサ ン等の溶解性、 シ リ コ ンアルコキ シ ドの加水分解性、 シ リ 力微粒子の分散性などを考慮 して適宜決めれば よい。  Regarding the PH of the compounding agent, the type of solvent used, and the ratio of both when using water and an organic solvent, the properties of the constituents contained in the compounding agent, such as silicone resin, It may be appropriately determined in consideration of the solubility of siloxane and the like, the hydrolysis of silicon alkoxide, the dispersibility of silica fine particles, and the like.
有機溶剤の種類と しては、 例えば、 アルコール溶剤と してはメ タ ノ ー ル、 エタ ノ ール、 2 —プロパノ ール、 n —ブタ ノ 一ル等の低級脂肪族ァ ルコール類、 エチ レ ングリ コール、 ジエチ レ ングリ コール等のグリ コー ル類、 酢酸カルビ ト ール等のカ ル ビ ト ール類などがあげられ、 これらの 1 種類も し く は 2種類以上を用いる こ とができる。 さ らに、 極性の少な い溶剤と して、 ト ルエ ン、 キシ レ ン、 酢酸ェチル、 酢酸プチル、 メ チル ェチルケ ト ン、 メ チルイ ソ ブチルケ ト ン等が使用でき る。 Examples of the organic solvent include, for example, alcohols such as methanol, ethanol, lower aliphatic alcohols such as 2-propanol and n-butanol, and alcohols. Examples include glycols such as renglycol and diethyl glycol, and carbitols such as carbitol acetate, and it is possible to use one kind or two or more kinds of these. it can. In addition, less polar Toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and the like can be used as suitable solvents.
溶媒と して水を有機溶剤と併用する場合は、 前記のアルコールなどの 親水性有機溶剤と併用する こ とが好ま しい。  When water is used in combination with an organic solvent as the solvent, it is preferable to use the water together with the above-mentioned hydrophilic organic solvent such as alcohol.
また、 水を溶媒またはその一部と して用いる場合の配合剤の P Hは、 7以下が好ま しい。 7 を超える と原料の分散性が極端に悪く な り、 コ 一 テ ィ ング用配合剤の保存性が悪く なるからである。 さ らに好ま し く は、 P Hが 1 以上 5 以下である。 配合剤の調製時に、 原料を混合 して この p H範囲から外れた場合は、 アンモニア等の塩基性試薬、 あるいは塩酸、 硝酸等の酸性試薬で適宜 P Hを調整する こ とが可能である。  Further, when water is used as a solvent or a part thereof, the pH of the compounding agent is preferably 7 or less. If it exceeds 7, the dispersibility of the raw materials becomes extremely poor, and the preservability of the coating compounding agent becomes poor. More preferably, PH is 1 or more and 5 or less. When the raw materials are mixed out of the pH range during the preparation of the compounding agent, the pH can be appropriately adjusted with a basic reagent such as ammonia or an acidic reagent such as hydrochloric acid or nitric acid.
こ の コ ーテ ィ ング用の配合剤には、 種々 の 目的で添加剤を加え る こ と も可能である。 例えば、 加水分解の速いシ リ コ ンアルコキシ ド、 あるい は光触媒基本体の原料と して加え られたチタ ンアルコキシ ド、 ジルコ二 ゥムアルコキシ ド等の加水分解を抑えるためにキ レー ト 化剤を添加 して も よい。  Additives can be added to the coating composition for various purposes. For example, a chelating agent is used to suppress hydrolysis of silicon alkoxide, which is rapidly hydrolyzed, or titanium alkoxide, zirconium alkoxide, etc. added as a raw material of the basic photocatalyst. It may be added.
また、 材料 (基材) との濡れ性等が悪く、 塗布等、 配合剤で材料表面 を被覆する こ とが困難な場合は、 有機系、 シ リ コ ー ン系等の界面活性剤、 例えば レべ リ ング剤、 消泡剤、 抑泡剤などを添加する こ とができ る。 こ の場合の添加量は、 その種類に も よ るが配合剤の 0 . 5重量%以下とす るのが好ま しい。 これを超えて添加する と、 皮膜が曇っ た り、 光触媒性 能が低下するからである。 よ り望ま しい範囲は、 0 . 0 5重量%以下で ある。  If the material (substrate) has poor wettability and it is difficult to coat the surface of the material with a compounding agent, such as by coating, a surfactant such as an organic or silicone surfactant may be used. Leveling agents, defoamers, foam inhibitors, etc. can be added. In this case, the amount of addition depends on the type, but is preferably 0.5% by weight or less of the compounding agent. If added in excess of this, the film becomes cloudy and the photocatalytic performance decreases. A more desirable range is 0.05% by weight or less.
また、 製膜後の皮膜と基材との密着性が悪い場合は、 ビニル ト リ エ ト キ シ シ ラ ン、 ァ 一 グ リ シ ドキ シ プロ ビル ト リ メ ト キ シ シ ラ ン等の シ ラ ン 系あるいはチタ ン系の力 ッ プリ ング剤を用いる と密着性が向上する。 し か し、 多量の力 ッ プリ ン グ剤を添加する と光触媒活性が低減するので、 その添加量は配合剤の 1 0重量%以下とするのが好ま しい。 ( 4 ) 上記 ( 2 ) に記載の材料の製造方法 If the adhesion between the film and the base material after film formation is poor, use vinyl triethoxysilane, agly-doxy pro-build trimethysilane, etc. Adhesion is improved by using a silane-based or titanium-based power-splitting agent. However, if a large amount of a force-removing agent is added, the photocatalytic activity is reduced. Therefore, the amount of addition is preferably set to 10% by weight or less of the compounding agent. (4) The method for producing the material described in (2) above
上記の ( 1 ) に記載の酸化チタ ン系光触媒の層を表面に備えた材料は、 上述した配合剤で基材表面を被覆 した後、 焼成する こ とによ り製造する こ とができ る。 焼成に先立ち、 必要に応じて乾燥 して も よい。 なお、 基 材と しては、 前述 した種類および形状の材料を用いればよい。  The material having a surface of the titanium oxide-based photocatalyst described in the above (1) on the surface can be produced by coating the surface of the substrate with the above-described compounding agent and then firing. . Prior to firing, drying may be performed if necessary. Note that as the base material, a material of the type and shape described above may be used.
配合剤で基材表面を被覆する には、 塗布、 吹き付け等の方法を用いる のが好適である。 塗布方法には、 ス ピン コー テ ィ ン グ、 ディ ッ プコ一テ イ ン グ、 ス プ レ ー コ ー テ ィ ン グ、 ノく一コ ー テ ィ ン グ、 ロ ー ル コ ー テ ィ ン グ等の方法がある力 、 どの方法を利用 して も よい。 スプ レーによ る吹き 付け方法を用いて も よい。  In order to coat the base material surface with the compounding agent, it is preferable to use a method such as coating or spraying. Application methods include spin coating, dip coating, spray coating, knock coating, and roll coating. There is a method such as ringing, and any method may be used. A spraying method using a spray may be used.
焼成する際の温度は、 基材の劣化温度あるいは皮膜構成材料の熱分解 温度などを考慮して設定すればよい。 好ま しい温度範囲は 1 0 0 °C以上 3 0 0 °C以下である。 焼成温度が 3 0 0 °Cを超え る と有機部位を もつ珪 素系化合物が分解し、 光触媒層 (皮膜) が黄変した り、 割れが生 じる こ とがあるからである。  The temperature for firing may be set in consideration of the deterioration temperature of the base material or the thermal decomposition temperature of the film constituent material. The preferred temperature range is from 100 ° C to 300 ° C. If the firing temperature exceeds 300 ° C, the silicon-based compound having an organic moiety is decomposed, and the photocatalyst layer (coating) may turn yellow or crack.
焼成に先立ち乾燥する場合は、 その温度は、 一般的に室温か ら 1 0 0 °Cまでの範囲と し、 低い温度の と きほど乾燥時間を長く するのが好ま し い。  When drying before firing, the temperature is generally in the range of room temperature to 100 ° C, and it is preferable that the lower the temperature, the longer the drying time.
表面に形成させる酸化チタ ン系光触媒層の膜厚は、 0 . 1 m以上 2 0 〃 m以下程度とするのが好ま しい。 膜厚が 0 . l 〃 m未満の場合には、 十分な光触媒活性が得られないこ とがある。 一方、 膜厚が 2 0 mを超 える と光透過性が低下した り、 光触媒層 (皮膜) に割れが生じた りする こ とがある。 上記の範囲の膜厚にする こ と によ り、 高い光触媒活性を示 し、 皮膜割れ、 剝離などの少ない良好な皮膜性状を有する酸化チタ ン系 光触媒層が得られる。  The thickness of the titanium oxide photocatalyst layer formed on the surface is preferably in the range of about 0.1 m to about 20 μm. If the thickness is less than 0.1 m, sufficient photocatalytic activity may not be obtained. On the other hand, if the film thickness exceeds 20 m, the light transmittance may decrease or the photocatalytic layer (film) may crack. By setting the film thickness in the above range, a titanium oxide-based photocatalyst layer exhibiting high photocatalytic activity and having good film properties with less film cracking and separation can be obtained.
次に、 上記の光触媒機能を有する金属板の製造方法について説明する。 この光触媒機能を有する金属板を製造する には、 バ リ ァ層を形成する 薬液で基材 (金属板) 表面を被覆 した後、 乾燥してバ リ ア層と し、 次い で、 酸化チタ ン系光触媒層を形成する薬液でバリ ァ層の表面を被覆した 後、 乾燥すればよい。 Next, a method for manufacturing the metal plate having the photocatalytic function will be described. To manufacture a metal plate having this photocatalytic function, a barrier layer is formed. After coating the surface of the base material (metal plate) with a chemical, it is dried to form a barrier layer, and then the surface of the barrier layer is coated with a chemical that forms a titanium oxide-based photocatalyst layer, and then dried. do it.
具体的には、 例えば、 上述の公知の基材金属板の少な く と も片面にバ リ ア層を形成する薬液を塗布し、 乾燥してバリ ア層を形成し、 さ らに こ のバ リ ア層の上に上記 ( 1 ) に記載の酸化チタ ン系光触媒、 またはこ の 光触媒と有機潤滑剤を含有する薬液を塗布 し、 乾燥 して光触媒層を形成 する。  Specifically, for example, a chemical solution for forming a barrier layer is applied to at least one side of the above-mentioned known base metal plate, and dried to form a barrier layer. The titanium oxide-based photocatalyst described in (1) above or a chemical solution containing the photocatalyst and an organic lubricant is applied on the rear layer, and dried to form a photocatalyst layer.
バ リ ア層を形成する薬液は、 前述の光触媒作用を遮蔽 し、 あるいは下 地か らの金属の拡散を防止するための酸化物等と、 架橋剤、 消泡剤、 レ ベ リ ン グ剤等の塗料用添加剤を用い、 これらを適量、 溶媒に分散させて 塗料組成物と した ものである。  The chemical solution that forms the barrier layer is an oxide that blocks the photocatalytic action described above or prevents the diffusion of metal from the ground, and a cross-linking agent, an antifoaming agent, and a leveling agent. And the like, and a suitable amount of these are dispersed in a solvent to obtain a coating composition.
架橘剤と しては公知のシラ ン カ ッ プリ ング剤、 メ ラ ミ ン · イ ソ シァネ ー ト 化合物などを用いる こ とができ る。 消泡剤と してはプル口ニ ッ ク系 界面活性剤、 ポ リ プロ ピ レ ングリ コール等、 また、 レべ リ ング剤と して はジメ チルポ リ シロキサン、 ポ リ アク リ ル酸塩等、 いずれも公知のもの を用いる こ とができ る。 溶剤と しては、 水、 各種のアルコール類、 ト ル ェ ン、 キシ レ ン等公知のものを用いる こ とができ る。 さ らに、 耐候性を 向上させる場合には、 前述の光触媒不活性化処理を施 した酸化チタ ン粒 子等や紫外線吸収剤を適量含有させる。 さ らに、 通常用いられる各種の 着色顔料、 体質顔料、 有機顔料等を任意に添加して も よい。  Known silane coupling agents, melamin-isosilicate compounds, and the like can be used as the crosslinker. Anti-foaming agents such as pull-nicked surfactants and polypropylene glycol, and leveling agents such as dimethylpolysiloxane and polyacrylic acid salt In each case, known ones can be used. As the solvent, known solvents such as water, various alcohols, toluene, and xylene can be used. Furthermore, in order to improve the weather resistance, an appropriate amount of titanium oxide particles or the like and the ultraviolet absorber that have been subjected to the above-described photocatalytic inactivation treatment are contained. Furthermore, various commonly used coloring pigments, extenders, organic pigments and the like may be optionally added.
光触媒層を形成する薬液は、 前述の酸化チタ ン系光触媒、 無機バイ ン ダ、 および、 上記の架橋剤、 消泡剤、 レべ リ ング剤等の公知の塗料用添 加剤を用い、 これらを適量、 上記の公知の溶媒に分散させて塗料組成物 と した ものである。 加工性が要求される場合には、 さ らに前述の有機潤 滑剤を混合 して塗料組成物とする。  The chemical solution for forming the photocatalyst layer uses the above-mentioned titanium oxide-based photocatalyst, inorganic binder, and known coating additives such as the above-mentioned crosslinking agent, antifoaming agent, and leveling agent. Is dispersed in an appropriate amount in the above-mentioned known solvent to obtain a coating composition. When processability is required, the above-mentioned organic lubricant is further mixed to obtain a coating composition.
バ リ ア層および光触媒層を形成する各薬液を金属板に塗布する には、 刷毛塗り、 スプ レー方式、 浸漬方式など、 公知の方法が適用できるが、 ロールコー ト 方式が、 塗装速度が速く、 塗料や製品歩留が良好で製品の 表面性状も優れるので好ま しい。 塗装時の膜厚は、 乾燥後の膜厚が、 バ リ ア曆では 0. 0 5〜 1 0 〃 m、 光触媒層では 0. 1 ~ 1 0 mとなる よ う に塗布する。 To apply the chemicals that form the barrier layer and photocatalyst layer to the metal plate, Known methods such as brush coating, spraying, and dipping can be applied, but the roll coating method is preferred because the coating speed is high, paint and product yield are good, and the surface properties of the product are excellent. The film thickness at the time of coating is such that the film thickness after drying is 0.05 to 10 m for the barrier layer and 0.1 to 10 m for the photocatalytic layer.
バリ ア層形成薬液を塗布 した後の乾燥は、 基本的には、 金属板自体が 軟化した り変形した りせず、 また、 バ リ ア層がその機能を十分に発揮す る温度および時間を選択して行えばよい。  Drying after the application of the barrier layer forming chemical is basically performed at a temperature and for a time at which the metal plate itself does not soften or deform and the barrier layer sufficiently exhibits its function. You only have to make a selection.
基材が塗装鋼板の場合は、 乾燥温度 T , C) と乾燥時間 t , (秒) が下記①式および②式で規定される範囲内に入る よ う に行う のがよい。 こ の範囲は、 第 1 図の実線で囲まれた範囲に相当する。  When the base material is a coated steel plate, it is preferable that the drying temperature T, C) and the drying time t, (second) be within the ranges specified by the following formulas (1) and (2). This range corresponds to the range surrounded by the solid line in FIG.
(- 0.75 t , + 145)≤ T , ≤ (- 0.75 t , + 315) ' ' ① (— 17.75 t , + 655)≤ T , ≤ (一 17.75 t , + 2185) · ' ② 乾燥温度と乾燥時間が、 第 1 図の実線で囲まれた範囲よ り も低温側ま たは短時間側である場合には、 塗膜が乾燥しに く く、 バ リ ア層に未乾燥 の溶剤が残存 し、 ノくリ ァ層の基材への密着性が好ま し く ないこ とがある。 一方、 乾燥温度と乾燥時間が、 第 1 図の実線で囲まれた範囲よ り も高温 側または長時間側である場合には、 塗膜が着色し基材塗装板の色調が変 化して塗装金属板の意匠性に問題が生 じる場合がある う え、 乾燥に時間 を要するので経済性に欠ける。  (-0.75 t, + 145) ≤ T, ≤ (-0.75 t, + 315) '' ① (-17.75 t, + 655) ≤ T, ≤ (one 17.75 t, + 2185) When the time is lower or shorter than the range surrounded by the solid line in Fig. 1, the coating film does not dry easily, and undried solvent remains in the barrier layer. However, the adhesion of the rear layer to the substrate may not be favorable. On the other hand, if the drying temperature and the drying time are higher or longer than the range surrounded by the solid line in Fig. 1, the coating will be colored and the color tone of the substrate coated plate will change, and the coating will be applied. The design of the metal plate may cause problems, and it takes time for drying, which is not economical.
光触媒層形成薬液を塗布 した後の乾燥は、 乾燥温度 T 2 (°C) と乾燥 時間 t 2 (秒) が下記③式および④式で規定される範囲内に入る よ う に 行う のがよい。 この範囲は、 第 1 図の破線で囲まれた範囲に相当する。 Drying after applying the photocatalytic layer forming chemical solution should be performed so that the drying temperature T 2 (° C) and the drying time t 2 (second) fall within the ranges defined by the following formulas (3) and ( 2 ). . This range corresponds to the range surrounded by the broken line in FIG.
(一 0.5 t 2 + 140)≤ T a ≤ (—0.5 t 2 + 290) - ' ③ (-8 t 2 + 440)≤ T 2 ≤ (—8 t 2 + 1040) · ' ④ 乾燥温度と乾燥時間が、 第 1 図の破線で囲まれた範囲よ り も低温側ま たは短時間側である場合には、 バ リ ァ層形成薬液を塗布 した場合と同様、 塗膜が乾燥しに く く、 光触媒層に未乾燥の溶剤が残存し、 光触媒層とバ リ ア層との密着性が好ま し く ないこ とがある。 一方、 乾燥温度と乾燥時 間が、 第 1 図の破線で囲まれた範囲よ り も高温側または長時間側である 場合には、 同 じ く、 塗膜が着色し基材塗装板の色調が変化 して塗装金属 板の意匠性に問題が生 じる場合があ り、 乾燥に時間を要する。 (One 0.5 t 2 + 140) ≤ T a ≤ (—0.5 t 2 + 290)-'③ (-8 t 2 + 440) ≤ T 2 ≤ (—8 t 2 + 1040) ·' ④ Drying temperature and drying When the time is lower or shorter than the range surrounded by the broken line in FIG. 1, the same as when the barrier layer forming chemical is applied, The coating film is difficult to dry, undried solvent remains in the photocatalyst layer, and the adhesion between the photocatalyst layer and the barrier layer may not be favorable. On the other hand, when the drying temperature and the drying time are higher or longer than the range surrounded by the broken line in FIG. 1, the coating film is similarly colored and the color of the base coated plate is changed. May change, causing a problem in the design of the painted metal plate, and it takes time to dry.
一方、 基材がス テ ン レ ス鋼板などの塗膜を有さない金属材料の場合は、 バリ ア層形成薬液および光触媒層形成薬液をそれぞれ塗布 した後の乾燥 条件は、 塗装鋼板の場合に比べてかな り緩和される。 ス テ ン レ ス鋼板の 場合は、 1 0 0〜 5 0 0 °Cの温度域で 1 分以上処理すればよい。 ただ し、 3 0 0 °Cを超え る温度では、 基材が酸化された り、 変色した りする こ と があるので、 処理時間は 5分以下とするのが好ま しい。  On the other hand, when the base material is a metal material having no coating film such as a stainless steel plate, the drying conditions after applying the barrier layer forming chemical solution and the photocatalytic layer forming chemical solution, respectively, are as follows. This is much easier. In the case of a stainless steel sheet, the treatment may be performed in a temperature range of 100 to 500 ° C for 1 minute or more. However, if the temperature exceeds 300 ° C., the substrate may be oxidized or discolored. Therefore, the treatment time is preferably 5 minutes or less.
光触媒層を乾燥 した後は、 5〜 1 0 0 °C /秒の速度で冷却するのが好 ま しい。 冷却速度が 5 °C /秒未満である と冷却に時間を要し、 冷却速度 が 1 0 0 °C Z秒を超え る と皮膜 (光触媒層) に亀裂ゃ剝離が生 じる場合 力 ある。  After drying the photocatalyst layer, it is preferable to cool at a rate of 5 to 100 ° C / sec. If the cooling rate is less than 5 ° C / sec, it takes time to cool, and if the cooling rate exceeds 100 ° C Z seconds, cracks may occur in the film (photocatalyst layer).
以上述べた以外の処理は公知の方法で行えばよい。 薬液の塗布、 乾燥 等の一連の処理は、 切 り板を用いてノくツ チ式に処理して も よいが、 2 コ 一ト 2 ベ一ク型の連続コ イ ル塗装設備を使用 し、 コ イ ル状の基材金属板 を用いて処理するのが品質と経済性に優れるので好ま しい。  Processes other than those described above may be performed by a known method. A series of treatments such as application and drying of chemicals may be carried out in a notch type using a cutting plate, but using a 2-coil 2-bake continuous coil coating facility. However, it is preferable to perform treatment using a coil-shaped base metal plate because of its excellent quality and economy.
上述 した ( 4 ) に記載の製造方法によ り、 上記 ( 1 ) に記載の本発明 の光触媒で形成された層を表面に備えた上記 ( 2 ) に記載の材料を容易 に製造する こ とができ る。  According to the manufacturing method described in (4), the material described in (2) above, which is provided with the layer formed by the photocatalyst of the present invention described in (1) above, can be easily manufactured. Can be done.
この方法によれば焼成温度範囲を低温度域から高温度域まで広く と つ て も高い光触媒活性が維持されるので、 材質等を問わず、 様々 な基材表 面にこの光触媒層を形成させた材料を製造する こ とが可能である。  According to this method, a high photocatalytic activity is maintained even when the firing temperature range is wide from a low temperature range to a high temperature range, so that this photocatalytic layer can be formed on various substrate surfaces regardless of the material or the like. It is possible to produce a material that is not suitable.
( 5 ) 使用方法  (5) How to use
上記 ( 1 ) に記載の酸化チ タ ン系光触媒で形成された層を表面に備え た上記 ( 2 ) に記載の材料は、 酸化チタ ンのバン ドギャ ッ プよ り 高いェ ネルギ一の光を照射する こ とによ っ て光触媒作用を発現し、 様々 な有害 物質、 付着物質などの処理、 すなわち分解、 除去、 無害化などに優れた 効果を発揮する。 したがっ て、 こ の酸化チ タ ン系光触媒で形成された層 を表面に備えた材料によ り、 大気中も し く は水中の物質または上記の材 料表面に付着 した物質を光照射下で処理する こ と によ っ て、 上記の光触 媒作用を発揮させる こ とができる。 なお、 こ こでいう 「処理」 と は、 上 記の光触媒の層を表面に備えた材料を大気中も し く は水中に配置 し、 そ の材料の表面に上記のエネルギーの光があたる状態に保持する こ と をい ラ。 A layer formed of the titanium oxide-based photocatalyst described in (1) above is provided on the surface. In addition, the material described in (2) above exhibits a photocatalytic action by irradiating light of higher energy than the band gap of titanium oxide, and exhibits various harmful substances and adhering substances. It has an excellent effect on the treatment, ie, decomposition, removal, and detoxification. Therefore, the material provided with the layer formed of the titanium oxide-based photocatalyst on the surface allows the substance in the air or water or the substance adhering to the above-mentioned material surface under light irradiation. By performing the treatment, the photocatalytic action described above can be exerted. The term “treatment” as used herein refers to a state in which a material having the above-described photocatalyst layer on its surface is placed in the air or water, and the surface of the material is exposed to light of the above energy. It is important to keep the
こ こで、 有害物質とは、 人体に有害と されている物質のこ とである。 具体的には、 N〇 x (窒素酸化物) 、 S O x (硫黄酸化物) 、 フ ロ ン、 ア ンモニ ア、 硫化水素などの大気中に含まれるガス、 アルデヒ ド類、 ァ ミ ン類、 メ ノレカ ブタ ン類、 アルコ ール類、 B T X (ベ ンゼン、 ト ルエ ン、 キシ レ ン) 、 フ ヱ ノ ール類等の有機化合物、 ト リ ハ π メ タ ン、 ト リ ク ロ 口 エチ レ ン、 フ □ ン等の有機ハ ロ ゲン化合物、 除草剤、 殺菌剤、 殺虫剤 等の種々 の農薬、 蛋白質やア ミ ノ酸等の種々 の生物学的酸素要求物質、 界面活性剤のほか、 シア ン化合物、 硫黄化合物等の無機化合物、 種々 の 重金属イ オ ン、 さ らには細菌、 放線菌、 菌類、 藻類等の微生物および上 記物質のう ち水中に含まれるものが挙げられる。  Here, harmful substances are substances that are considered harmful to the human body. Specifically, N〇 x (nitrogen oxide), SO x (sulfur oxide), gases such as chlorofluorocarbon, ammonia, hydrogen sulfide, etc. contained in the atmosphere, aldehydes, amines, Organic compounds such as methanol, butanes, alcohols, BTX (benzene, toluene, xylene), phenols, etc., triphenyl methane, tricycloethyl In addition to organic halogen compounds such as ren and fin, various pesticides such as herbicides, fungicides, insecticides, various biological oxygen-requiring substances such as proteins and amino acids, and surfactants And inorganic compounds such as cyanide compounds and sulfur compounds; various heavy metal ions; microorganisms such as bacteria, actinomycetes, fungi, and algae; and the above-mentioned substances contained in water.
また、 付着物質には、 光触媒で形成された層を表面に備えた材料の表 面に直接付着する ものが対象とな り、 大腸菌、 ブ ド ウ球菌、 緑濃菌、 力 ビ等の菌類、 油、 タバコ のャニ、 指紋、 雨筋、 泥などがある。  In addition, substances that adhere directly to the surface of a material provided with a layer formed of a photocatalyst on the surface include substances such as Escherichia coli, staphylococci, green bacterium, and power bacteria. There are oil, cigarettes, fingerprints, rain streaks, and mud.
バン ドギヤ ッ プよ り 高いエネルギーを持つ光と しては、 紫外線を含む 光が好ま し く、 具体的な光源には、 太陽光や、 蛍光灯、 ブラ ッ ク ライ ト, 水銀灯、 キセ ノ ン灯などがある。 特に、 波長が 3 0 0 〜 4 0 0 n mの近 紫外線を含む光が好ま しい。 光の照射量や照射時間などは、 処理対象物 質の量などに よ っ て最適な条件を選択するのがよい。 As light having higher energy than the bandgap, light including ultraviolet rays is preferred. Specific light sources include sunlight, fluorescent lamps, black lights, mercury lamps, and xenon lamps. There are lights. In particular, light containing near-ultraviolet light having a wavelength of 300 to 400 nm is preferable. The irradiation amount and irradiation time of the light It is better to select the optimal conditions depending on the quality and quantity.
(実施例 1 )  (Example 1)
本発明の酸化チタ ン系光触媒を表面に備えた材料および比較のための 材料を製造 し、 光触媒性能と材料表面の光触媒層 (皮膜) の性状の調査 を行っ た。  A material provided with the titanium oxide photocatalyst of the present invention on the surface and a material for comparison were manufactured, and the photocatalytic performance and the properties of the photocatalytic layer (film) on the material surface were investigated.
第' 1 表に本発明例 (試験 Νο.1- Π と比較例 (試験 No. 1-2) における光 触媒層の構成を示す。  Table 1 shows the configuration of the photocatalyst layer in the present invention example (Test No. 1-2) and Comparative Example (Test No. 1-2).
第 1 表  Table 1
Figure imgf000032_0001
Figure imgf000032_0001
(注) *印は皮膜形成が悪く測定できなかったことを示す。 試験 No.1-1で用いた材料 (試験材) の製造方法は次の とおり である。 まず、 チ タ ン イ ソ プロ ボキ シ.ド 8 0 g を 1 6 m 1 の イ ソ プ αノ ノ ール に加え た混合液を激 し く 攪拌している蒸留水 5 0 0 g に滴下 し、 その後 硝酸 ( 6 0 %) 5 g を加え、 8 0 でで 2 4 時間攪拌 し、 真空下で濃縮 し て、 半透明の酸化チ タ ン ゾルを得た (固形分 1 5重量%) 。  (Note) * indicates that measurement was not possible due to poor film formation. The manufacturing method of the material (test material) used in Test No.1-1 is as follows. First, a mixed solution obtained by adding 80 g of titanium isoproboxide to 16 m1 of iso-α-knol was added dropwise to 500 g of vigorously stirred distilled water. Then, 5 g of nitric acid (60%) was added, the mixture was stirred at 80 at 24 hours, and concentrated under vacuum to obtain a translucent titanium oxide sol (solid content: 15% by weight). .
次に、 テ フ ロ ン製内筒管 ( 1 0 0 m l ) にォキ シ塩化ジルコ ニ ウム 9 O g と蒸留水 2 3 m l (濃度 m o l ( リ ッ ト ル) ) を入れ、 1 0 分間攪拌 した後、 オー ト ク レープに仕込み、 静置条件下、 1 9 5 °Cで 4 日間加熱した。 得られた白濁液か ら未反応のォキ シ塩化ジル コ ニ ウ ムを 除き、 その後 p Hを 5付近に調整する こ と に よ っ て、 半透明の酸化ジル コニゥ ムゾルを得た (固形分 6重量% ) 。 こ の酸化ジル コ ニ ウ ム ゾル 3 0 g と先に調製 した酸化チタ ンゾル 6 5 g を混合 し、 8 0 °Cで 5時間環 流し、 酸化チタ ン とチタ ン酸ジ ル コ ニ ウ ムを主体とするチタ ン系酸化物 ( Z r /T i = 0. 1 2 ) を含む反応液を得た。 Next, 9 g of zirconium chloride and 23 ml of distilled water (concentration mol (liter)) were placed in a Teflon inner cylinder (100 ml) for 10 minutes. After stirring, the mixture was charged into an autoclave and heated at 195 ° C for 4 days under static conditions. Unreacted zirconium chloride oxychloride was removed from the obtained cloudy liquid, and then the pH was adjusted to around 5 to obtain a translucent zirconium oxide sol (solid Min 6% by weight). 30 g of this zirconium oxide sol and 65 g of the previously prepared titanium oxide sol were mixed, and the mixture was refluxed at 80 ° C for 5 hours to obtain titanium oxide and zirconia titanate. Titanium oxide mainly composed of A reaction solution containing (Zr / Ti = 0.12) was obtained.
続いて、 こ の反応液 2 1. 3 g と シ リ カ ゾル (日産化学製 : 商品名ス ノ 一テ ッ ク 〇、 固形分 2 0重量%) 5. 6 gに、 メ チル ト リ メ ト キシ シ ラ ン 0. 4 8 g、 エタ ノ ール 2. 3 gおよびシ リ コ ー ン系の レべ リ ン グ 剤極少量 (約 0. 0 4重量%) を添加 し、 室温下でペイ ン トシ エ一力一 を用いて 1 0分間攪拌した後、 コーテ ィ ン グに用いる記合剤と した。 こ の IB合剤をバー コ一夕一 (番手 1 0 ) を用いてガラス板 (縦横 1 0 c m、 厚さ l mm) に塗布 し、 あ らか じめ 2 5 0 °Cに設定したオーブン で 1 分間焼成し、 酸化チタ ンとチタ ン酸ジルコニウムを主体とするチタ ン系酸化物を光触媒基本体と して含む酸化チタ ン系光触媒をガラ ス板上 に備えた材料を得た。  Then, 21.3 g of this reaction solution and 5.6 g of silica sol (Nissan Chemical Co., Ltd., product name: Snowtec, solid content: 20% by weight) Add 0.48 g of toxic silane, 2.3 g of ethanol and a very small amount of silicone-based leveling agent (approximately 0.04% by weight), and add The mixture was stirred for 10 minutes using a paint shear and then used as a mixture for coating. This IB mixture was applied to a glass plate (length and width: 10 cm, thickness: lmm) using Barco Ichiyo (No. 10), and the oven was previously set to 250 ° C. For 1 minute to obtain a material provided on a glass plate with a titanium oxide-based photocatalyst containing a titanium oxide mainly composed of titanium oxide and zirconium titanate as a basic photocatalyst body.
試験 No.1-2で用いた材料 (試験材) は、 試験 No.1-1の場合と同様の方 法で酸化チタ ンとチタ ン酸ジルコニ ウムを主体とするチタ ン系酸化物を 含む反応液を調製 し、 こ の反応液と レペ リ ング剤をエタ ノ ールに加えた 液を記合剤と して用い、 それ以外は試験 No.1- 1の場合と同様の方法でガ ラ ス板上に光触媒の皮膜を形成させた ものである。  The materials (test materials) used in Test No.1-2 contain titanium oxide and titanium-based oxides mainly composed of zirconium titanate in the same manner as in Test No.1-1. Prepare a reaction solution, use this reaction solution and a solution obtained by adding a repelling agent to ethanol as a binder, and otherwise use the same method as in Test No. 1-1. A photocatalyst film is formed on a glass plate.
上記 2種類の試験材について、 その表面に形成された皮膜の外観を 目 視観察 したと こ ろ、 本発明例 (試験 No.卜 1) の材料では、 皮膜に割れ等 は認められず、 良好な外観を呈していた。 一方、 試験 No.1-2 (比較例) の材料では、 皮膜に亀裂が入っ てお り、 皮膜は基材に十分に固定されて いなかった。  Visual observation of the appearance of the film formed on the surface of the above two types of test materials showed that the material of the present invention example (test No. 1) did not show any cracks in the film, and was excellent. Appearance. On the other hand, in the materials of Test No. 1-2 (Comparative Example), the coating was cracked, and the coating was not sufficiently fixed to the base material.
次に、 これら 2種類の試験材について、 ァセ ト アルデヒ ドの分解試験 を行って光触媒性能を評価し、 また、 1 5— 0— 3 3 1 2に規定され た鉛筆硬度試験、 および J I S— K— 5 4 0 0に規定された加工曲げ試 験を行って皮膜性状を評価した。  Next, these two types of test materials were subjected to a decomposition test of acetate aldehyde to evaluate photocatalytic performance, and a pencil hardness test specified in 15-0-3312 and a JIS- A film bending test specified in K-5400 was performed to evaluate the film properties.
ァセ ト アルデヒ ドの分解試験は以下のよ う に して行っ た。  The degradation test of acetate aldehyde was performed as follows.
各試験材を 5 0 mm角に切り 出 して石英製の反応セルに入れ、 閉鎖循 環ラ イ ン (内容量約 1. 0 リ ッ ト ル) に接続した。 次いで、 空気で希釈 したァセ ト アルデヒ ド (約 5 0 p p m) を系内に導入 し、 循環させなが ら、 2 5 0 W高圧水銀灯によ り、 U Vフ ィ ルター (東芝製 UV— 3 1 ) を通して光照射を行っ た。 このと き試験材表面の 3 6 6 n mにおける紫 外線強度は 0. 8 mWノ c m2 であっ た。 Each test material was cut into 50 mm squares, placed in a quartz reaction cell, and closed. It was connected to a ring line (capacity: about 1.0 liter). Next, acetaldehyde (approximately 50 ppm) diluted with air is introduced into the system, and while circulating, a UV filter (Toshiba UV-3) is used with a 250 W high-pressure mercury lamp. Light irradiation was performed through 1). At this time, the UV intensity at 365 nm of the test material surface was 0.8 mW / cm 2 .
光照射を行いながら、 ァセ ト アルデヒ ドの濃度をガス ク ロマ ト グラフ を用いて定量 し、 ァセ ト アルデ ヒ ドの分解速度定数を求めた。 分解速度 定数が 0. 0 1 m i n— '以上であれば実用 し得る光触媒性能を有 してい る といえる。  While irradiating with light, the concentration of acetoaldehyde was quantified using a gas chromatograph, and the decomposition rate constant of acetoaldehyde was determined. If the decomposition rate constant is 0.01 min- 'or more, it can be said that it has practical photocatalytic performance.
光触媒性能および皮膜性状の調査結果を前記の第 1 表に併せて示す。 この結果に示される よ う に、 本発明の光触媒を表面に備えた材料 (試 験 No.1-1) は実用に耐え る光触媒性能を有 していた。 なお、 こ の材料の 光触媒性能は比較例である試験 No.1-2の材料の光触媒性能に比べて低か つたが、 こ れは、 光触媒が珪素系化合物を含む場合、 光触媒基本体の絶 対量が少ないこ と、 また、 珪素系化合物が含まれるため、 皮膜内にァセ ト アルデヒ ドが拡散しに く く な つ た こ と等による ものと考え られる。 しか し、 試験 No.1-1の場合は、 光触媒基本体と して酸化チタ ン とチタ ン酸ジルコ ニ ウムを主体とするチタ ン系酸化物を用いており、 珪素系化 合物との間に S i - 0 - Z r結合が形成されるため、 皮膜のネ ッ ト ヮー ク 内で電荷分離の効率が向上し、 また、 珪素系化合物が直接酸化チタ ン 粒子に接しに く い構造になっているため、 光触媒粒子自体の活性は本質 的には増進されている。 こ こ では表示したいないが、 光触媒基本体と し て酸化チタ ンのみを用いた場合に比べ光触媒活性の減少の度合いが軽減 された。  The results of the survey on photocatalytic performance and film properties are also shown in Table 1 above. As shown in the results, the material provided with the photocatalyst of the present invention on the surface (Test No. 1-1) had photocatalytic performance that could be put to practical use. Although the photocatalytic performance of this material was lower than the photocatalytic performance of the material in Test No. 1-2, which is a comparative example, this was the case when the photocatalyst contained a silicon-based compound. It is considered that this is due to the fact that the amount is small and that the silicon-based compound is contained, so that the acetyl aldehyde hardly diffuses into the film. However, in the case of Test No. 1-1, a titanium-based oxide mainly composed of titanium oxide and zirconium titanate was used as the photocatalyst basic body, and a silicon-based compound was used. Since a Si-0-Zr bond is formed between them, the efficiency of charge separation is improved within the network of the film, and the silicon compound is not directly in contact with the titanium oxide particles. As a result, the activity of the photocatalyst particles themselves is essentially enhanced. Although not shown here, the degree of reduction in photocatalytic activity was reduced compared to the case where only titanium oxide was used as the basic photocatalyst.
一方、 皮膜性状は、 試験 No.1-1 (本発明例) では試験 No.1-2に比べて 優れる こ とが確認された。  On the other hand, it was confirmed that the film properties in Test No. 1-1 (Example of the present invention) were superior to those in Test No. 1-2.
(実施例 2 ) 光触媒基本体に おけ る Z r /T i 比を変化させた光触媒を表面に備え た材料 ( 7種) を製造 し、 その光触媒性能を評価 し た。 (Example 2) Materials (7 types) with photocatalysts with varied Zr / Ti ratios in the basic photocatalyst body were manufactured, and their photocatalytic performance was evaluated.
材料 (試験 No.2- 5ない し 2-11) の製造方法は次の と お り であ る。  The manufacturing method of the material (Test No. 2-5 or 2-11) is as follows.
実施例 1 の試験 No .1 - 1で調製 し た酸化チ タ ンゾルおよ び酸化ジル コ 二 ゥ 厶 ゾルを Z rノ T i 比が 0か ら 0. 3 0に なる よ う に混合 し、 8 0 °C で 5'時間環流 して酸化チ タ ン と チ タ ン酸ジル コ ニ ウ ム を主体とするチタ ン系酸化物を含む反応液を得た (ただ し、 試験 No.2- 5は酸化チ タ ンゾル のみ使用) 。 続いて、 こ の反応液を、 実施例 1 で使用 した酸化チ タ ン と チタ ン酸ジル コ ニ ウ ム を主体とす る チ タ ン系酸化物 ( Z r / T i = 0. 1 2 ) を含む反応液の代わ り に用い、 メ チル ト リ メ ト キ シ シ ラ ン は添加 せず、 ま た、 焼成温度を 3 0 0 °Cと した以外は実施例 1 の場合 と 同様の 方法で酸化チ タ ン と チ タ ン酸ジル コ ニ ウ ム を主体と する チ タ ン系酸化物 を光触媒基本体と し て含む光触媒を ガラ ス板上に形成さ せた材料を得た, こ れ らの試験材について、 実施例 1 の場合と 同様の方法でァセ ト アル デヒ ドの分解試験行 っ た。  The titanium oxide sol and the zirconium oxide sol prepared in Test No. 1-1 of Example 1 were mixed so that the Zr / Ti ratio was from 0 to 0.30. The mixture was refluxed at 80 ° C for 5 'hours to obtain a reaction solution containing titanium oxide and a titanium-based oxide mainly composed of zirconium titanate (Test No. 2 -5 uses only titanium oxide sol). Subsequently, the reaction solution was mixed with the titanium oxide used in Example 1 and a titanium oxide mainly composed of zirconium titanate (Zr / Ti = 0.12). ), Except that methyltrimethoxysilane was not added and the sintering temperature was set to 300 ° C. By the method, a material was obtained in which a photocatalyst containing a titanium-based oxide mainly composed of titanium oxide and zirconium titanate as a basic photocatalyst was formed on a glass plate. For these test materials, a decomposition test of acetate aldehyde was performed in the same manner as in Example 1.
試験結果を第 2表に示す。 第 2 表  Table 2 shows the test results. Table 2
S 験 Zr/Ti 珪素系化合物 ァセトアルテ"ヒドの  S-test Zr / Ti silicon-based compound acetoarte
No. 分解速度定数  No. Decomposition rate constant
(min— ')  (min— ')
2 - 5 0 Si02 0.029 2-5 0 Si0 2 0.029
2 - 6 0.01 Si02 0.043 2-6 0.01 Si0 2 0.043
2 - 7 0.03 SiOa 0.058  2-7 0.03 SiOa 0.058
2 - 8 0.06 Si02 0.077 2-8 0.06 Si0 2 0.077
2 - 9 0.12 Si02 0.078 2-9 0.12 Si0 2 0.078
2-10 0.18 Si02 0.098 2-10 0.18 Si0 2 0.098
2-11 0.30 Si02 0.047 こ の結果か ら明 らかなよ う に、 光触媒基本体と して酸化チタ ン とチタ ン酸ジルコ ニ ウ ムを主体とするチタ ン系酸化物を用いる こ と に よ り、 酸 化チ タ ンのみを用いる場合 (試験 No.2-5) に比べ、 高い光触媒性能を有 する光触媒層を表面に備えた材料が得られた。 2-11 0.30 Si0 2 0.047 As is evident from these results, the use of titanium-based oxides mainly composed of titanium oxide and zirconium titanate as the basic photocatalyst allows the oxidation of titanium oxide. A material having a photocatalytic layer with high photocatalytic performance on the surface was obtained as compared with the case where only the photocatalyst was used (Test No. 2-5).
(実施例 3 )  (Example 3)
基材の種類および光触媒基本体への添加剤の種類を変えて本発明の光 触媒層を表面に備えた材料 ( 6種) を製造 し、 光触媒性能と光触媒層 (皮膜) の外観および基材への付着性の調査を行っ た。  By changing the type of the base material and the type of the additive to the basic photocatalyst, materials (six types) having the photocatalyst layer on the surface of the present invention were manufactured, and the photocatalytic performance and the appearance of the photocatalyst layer (film) and the base material A study was conducted on the adhesion to the surface.
第 3表に試験材と して用いた光触媒層を表面に備え た材料 (試験 No.3 - 12 ない し 3-17) を示す。  Table 3 shows the materials with a photocatalyst layer on the surface used as test materials (Test No. 3-12 or 3-17).
第 3 表  Table 3
Figure imgf000036_0001
試験 No.3-12 で使用 した材料の製造方法は次のとお り である。
Figure imgf000036_0001
The manufacturing method of the materials used in Test No. 3-12 is as follows.
まず、 チタ ンイ ソ プロ ボキシ ド 1 2 7. 8 g と ジル コ ニ ウムプロ ポキ シ ド ( 7 0 %含有 1 — プロノ ノ ール溶液) 2 6. 5 g を脱水エ タ ノ ール ( 1 6 g ) に加えた混合液を調製 した ( Z r ZT i = 0. 1 8 ) 。 次に. この混合液を室温下で 3 0分間攪拌 した後、 7 5 0 m 1 の蒸留水中に滴 下 した。 さ らに、 硝酸を 4. 3 m l 加え、 約 8 0 °Cで 2 0時間攪拌を続 けた後、 溶媒を真空下で除去し、 得られた反応生成物を 1 0 0 °Cで 5時 間乾燥した。 こ の反応生成物を、 6 0 0 °Cで 5時間焼成して酸化チタ ン とチタ ン酸ジル コ ニ ウ ムを主体とするチタ ン系酸化物からなる光触媒基 本体を得た。 First, 27.8 g of titanium isopropoxide and 26.5 g of zirconium propoxide (a 70% content 1-pronol solution) were mixed with dehydrated ethanol (16%). g) was prepared (ZrZTi = 0.18). next. The mixture was stirred at room temperature for 30 minutes, and then dropped into 750 ml of distilled water. Further, 4.3 ml of nitric acid was added, and the mixture was stirred at about 80 ° C for 20 hours, then the solvent was removed under vacuum, and the obtained reaction product was collected at 100 ° C for 5 hours. While drying. The reaction product was calcined at 600 ° C. for 5 hours to obtain a photocatalyst base body composed of a titanium-based oxide mainly composed of titanium oxide and zirconium titanate.
乳鉢でよ く 粉砕 した上記の光触媒基本体 2 0 g と、 コ ロイ ド状シ リ カ ゾル (日産化学製 : 商品名ス ノ ーテ ッ ク O L、 固形分 2 0重量%) 1 0 g、 ァ 一 グ リ シ ドキ シプロ ビル ト リ メ ト キ シ シラ ン (信越シ リ コ ー ン製 : 商品名 K B M 4 0 3 ) 1. 4 g、 エタ ノ ール 2. 5 gおよび水 1 0 g を混合 したのち、 酢酸を用いて p Hを 4. 5 と した。 さ らに、 ペイ ン ト コ ンディ シ ョ ナーで 1 時間よ く 混合 して、 コ 一テ ィ ン グに用いる記合剤 と した。  20 g of the above basic photocatalyst, which was well pulverized in a mortar, and 10 g of a colloidal silica sol (Nissan Chemical Co., Ltd., product name: Snowtec OL, solid content: 20% by weight),グ シ シ 4 4 4 4 4 4 4 4 4 製 4 1. 4 4 製 4 製 4 製 4 4 4 信 製 製 1. 4 1. 1.4 g, ethanol 2.5 g and water 10 g After mixing, the pH was adjusted to 4.5 with acetic acid. In addition, the mixture was mixed well with a paint conditioner for 1 hour to obtain a binder for use in coating.
こ の配合剤をバーコ一ター (番手 1 0 ) を用いて、 白色塗装鋼板 (縱 横 1 0 c m、 厚さ l mm) に塗布 し、 あ らか じめ 2 0 0 °Cに設定したォ 一ブンで 1 分間焼成し、 酸化チタ ン とチタ ン酸ジルコ ニ ウムを主体とす るチタ ン系酸化物を光触媒基本体と して含む光触媒層を塗装鋼板上に備 えた材料を得た。  This compounding agent was applied to a white painted steel sheet (length and width: 10 cm, thickness: lmm) using a bar coater (count: 10), and the temperature was previously set to 200 ° C. The material was baked for one minute in an oven to obtain a material provided with a photocatalyst layer containing a titanium-based oxide mainly composed of titanium oxide and zirconium titanate on a coated steel sheet.
試験 No .3- 13 で使用 した材料の製造方法は次のとお り である。  The manufacturing method of the materials used in Test No. 3-13 is as follows.
試験 No.1-1で調製した酸化チタ ン とチタ ン酸ジルコ ニ ウ ムを主体とす るチタ ン系酸化物を含む反応液に、 ィ ソ プロパノ ール中に分散させたシ リ カ微粒子 (固形分 1 0重量%) 1 0 g、 メ チル ト リ メ ト キ シ シ ラ ン 3. 5 gおよびアク リ ルシ リ コ ン (鐘淵化学製 : 商品名ゼムラ ッ ク) 2. 5 gを加え、 ペイ ン ト シ ェーカーでよ く 混合 して、 配合剤と した。  Silica fine particles dispersed in isopropanol in a reaction solution containing titanic oxide mainly composed of titanium oxide and zirconium titanate prepared in Test No. 1-1 (Solid content: 10% by weight) 10 g, methyl trimethoxysilane 3.5 g and acrylsilicon (Kanebuchi Chemical: trade name: Zemurac) 2.5 g Was added and mixed well with a paint shaker to obtain a compounding agent.
こ の記合剤を、 ス テ ン レ ス鋼板 ( 4 0 0 mm x 6 0 0 mm、 厚さ l m m ) にスプレー塗装し、 6 0 °Cで 1 時間乾燥 した後、 1 8 0 °Cで 1 0分 間焼成し、 酸化チタ ン とチタ ン酸ジル コ ニ ウ ムを主体とするチ タ ン系酸 化物を光触媒基本体と して含む光触媒層をス テ ン レ ス鋼板上に備えた材 枓を得た。 光触媒層 (皮膜) の厚さ は約 1. 8 mであっ た。 This mixture is spray-coated on stainless steel plate (400 mm x 600 mm, thickness lmm), dried at 60 ° C for 1 hour, and then dried at 180 ° C. Baking for 10 minutes, and titanic acid mainly composed of titanium oxide and zirconium titanate A material having a photocatalyst layer containing a nitride as a photocatalyst basic body on a stainless steel plate was obtained. The thickness of the photocatalyst layer (film) was about 1.8 m.
試験 No.3-14 で使用 した材料は次の方法によ り製造 した。  The materials used in Test No. 3-14 were manufactured by the following method.
試験 No.2-6 ( Z r /T i = 0. 0 1 ) で調製した光触媒基本体を含む 反応液 ( 2 0 g ) と、 イ ソ プロパノ ールに分散させたシ リ カ微粒子 (固 形分 1 0重量%) 1 0 g と、 光硬化性シ リ コ ー ン樹脂 (ヮ ッ 力 一社製 : 商品名 S E M I C O S I L 9 3 6 UV) 4. 0 g と、 水 1. 0 gを ト ル ェン 1 0. 0 gに入れ、 ペイ ン ト コ ンディ シ ョ ナーを用いて 1 0分間混 合 して S合剤を得た。  A reaction solution (20 g) containing the basic photocatalyst prepared in Test No. 2-6 (Zr / Ti = 0.01) and silica fine particles (solids) dispersed in isopropanol were used. 10 g of 10% by weight), 4.0 g of photo-curable silicone resin (SEMICOSIL 936 UV, manufactured by Pokki Co., Ltd.) and 1.0 g of water The mixture was added to 10.0 g of Rene and mixed for 10 minutes using a paint conditioner to obtain an S mixture.
こ の配合剤をデ ィ ッ プコーテ ィ ング法 (引 き上げ速度 : 1 0 0 c mノ m i n ) によ り石英板 ( 5 c m角、 厚さ l mm) に塗布 し、 次いで 1 0 0 °Cで 1 0分間乾燥した後、 紫外線を 2分間照射して樹脂を硬化させ、 酸化チタ ン とチタ ン酸ジルコニウムを主体とするチタ ン系酸化物を光触 媒基本体と して含む光触媒層を石英板上に備えた材料を得た。  This compounding agent was applied to a quartz plate (5 cm square, lmm thick) by the dip coating method (pulling speed: 100 cm min), and then 100 ° C. After drying for 10 minutes, the resin is cured by irradiating it with ultraviolet light for 2 minutes, and a photocatalyst layer containing a titanium-based oxide mainly composed of titanium oxide and zirconium titanate as a photocatalyst basic body is formed. The material provided on the quartz plate was obtained.
試験 No.3- 15 および 3- 16で使用 した材料は次の方法によ り製造した。 試験 No.1-1で調製 した酸化チタ ン とチタ ン酸ジルコニ ウムを主体とす るチタ ン系酸化物を含む反応液 2 1. 3 gに、 シ リ カ ゾル (日産化学製 : 商品名ス ノ ーテ ッ ク 〇、 固形分 2 0重量%) 5. 6 g、 エ タ ノ ール 2. 3 gおよびシ リ コーン系の レべ リ ング剤極少量 (約 0. 0 4重量% ) を 添加 した後、 さ らにアル ミ ナゾル (日産化学製 : 商品名アルミ ナ 2 0 0、 固形分 1 0重量%) 2. l gを添加 し、 p Hを調整した後、 室温下でぺ イ ン ト シ ヱ一力一を用いて 1 0分間攪拌し、 K合剤と した。  The materials used in Test Nos. 3-15 and 3-16 were manufactured by the following method. Add 21.3 g of the reaction solution containing titanium oxide and titanium oxide mainly composed of zirconium titanate prepared in Test No. 1-1 to silica sol (Nissan Chemical: trade name). 5.6 g, 2.3 g ethanol, and a very small amount of silicone-based leveling agent (about 0.04% by weight) ) Is added, and then aluminum sol (Nissan Chemical: trade name: Alumina 200, solid content: 10% by weight) 2. Add lg, adjust pH, and add at room temperature. The mixture was stirred for 10 minutes using an intact solution to obtain a K mixture.
こ の配合剤を用いて、 基材を白色塗装鋼板 (縦横 1 0 c m、 厚さ l m m) と した以外は実施例 1 の場合と同様の方法で酸化チタ ン とチタ ン酸 ジルコ ニ ウ ムを主体とするチタ ン系酸化物を光触媒基本体と して含む光 触媒層を塗装鋼板上に備えた材料 (試験 No.3-15 ) を得た。  Using this compounding agent, titanium oxide and zirconium titanate were prepared in the same manner as in Example 1 except that the base material was a white painted steel plate (length: 10 cm, thickness: lmm). A material (Test No. 3-15) was obtained in which a photocatalyst layer containing a titanium-based oxide as the main photocatalyst body on a coated steel plate was obtained.
また、 前記のアルミ ナゾルを添加せずに調製した配合剤を用いて同様 に光触媒層を塗装鋼板上に備えた材料 (試験 No.3-16 ) を得た。 In addition, the same procedure was performed using the compounding agent prepared without adding the above-mentioned alumina. Then, a material having a photocatalyst layer on a coated steel plate (Test No. 3-16) was obtained.
一方、 試験 No.3- 17 で使用 した材料は、 基材と光触媒の層の間にバ リ ァ層を備えた材料で、 その製造方法は次のとおり である。  On the other hand, the material used in Test No. 3-17 had a barrier layer between the base material and the photocatalyst layer. The manufacturing method is as follows.
まず、 市販のシ リ カ ゾル (日産化学製 : ス ノ ーテ ッ ク 0 ) をエタ ノ ー ルで 3倍に希釈する こ と に よ り バ リ ァ層形成用の薬液を調製し、 こ の薬 液を試験 No.3-13 で使用 したス テ ン レ ス鋼板上にス ピン コー ト ( 3 0 0 0 r p m) し、 予め 2 5 0 °Cに設定した電熱炉で 5 分間熱処理してバ リ ァ層 (厚さ : 0. 0 7 m) を形成させた。 次いで、 こ のバ リ ア層の上 に、 試験 No.3-13 の場合と同 じ方法で光触媒層を形成させた。  First, a chemical solution for forming a barrier layer was prepared by diluting a commercially available silica sol (Nissan Chemical: Snowtec 0) three times with ethanol. The solution was spin-coated (300 rpm) on the stainless steel plate used in Test No. 3-13 and heat-treated for 5 minutes in an electric furnace set to 250 ° C in advance. In this way, a barrier layer (thickness: 0.07 m) was formed. Next, a photocatalytic layer was formed on the barrier layer in the same manner as in Test No. 3-13.
上記 6種類の材料 .(試験材) について、 その表面に形成された皮膜の 外観を 目視観察 したと こ ろ、 試験 No.3- 12 および 3-13の材料では、 皮膜 には割れ等は認め られず、 良好な外観を呈していた。 また、 試験 No.3 - 1 4 の材料では、 皮膜がわずかに白濁 していたが、 割れなどはな く、 基材 に強固に固定化されていた。  Visual inspection of the appearance of the film formed on the surface of the above 6 types of materials (test materials) revealed that the materials of Test Nos. 3-12 and 3-13 showed no cracks in the film. And had a good appearance. In the materials of Test Nos. 3 to 14, the film was slightly cloudy, but had no cracks and was firmly fixed to the base material.
試験 No.3-15 および 3- 16の材料でも割れなどは確認されなかっ た。 な お、 色彩色差計を用いて皮膜を評価する と、 白さの 目安と して表される L値が、 試験 No.3-15 では 0. 5 2 で、 試験 No.3-16 では 1. 5 2であ り、 アルミ ナゾルの添加によ っ て材料の白色度が増 した こ とが確認され た。 また、 鉛筆硬度試験 ( J I S — G— 3 3 1 2 ) を行っ たと こ ろ、 試 験 No.3-15 の材料では 4 H、 試験 No.3-16 の材料では 3 H とな り、 アル ミ ナ添加によ り皮膜強度が高ま る こ とを確認した。  No cracks were observed in the materials of Test Nos. 3-15 and 3-16. When the film was evaluated using a colorimeter, the L value expressed as a measure of whiteness was 0.52 in Test No. 3-15 and 1 in Test No. 3-16. It was found that the whiteness of the material was increased by the addition of aluminasol. In addition, when the pencil hardness test (JIS-G-3331) was performed, the material of Test No. 3-15 was 4H, and the material of Test No. 3-16 was 3H. It was confirmed that the film strength was increased by the addition of mina.
また、 試験 No.3-17 の材料でも、 割れなどは認め られず、 良好な外観 を呈していた。  In addition, no cracks were observed in the material of Test No. 3-17, and the material had a good appearance.
次に、 これら 6種類の材料 (試験材) について、 ァセ ト アルデヒ ドの 分解試験を行っ て光触媒性能を評価し、 また、 J I S _ K— 5 4 0 0 に 規定された碁盤目 テープ法によ る付着性試験を行っ て皮膜性状を評価し た。 ァセ ト アルデヒ ドの分解試験は、 実施例 1 の場合と同様の方法で行つ た。 また、 付着性試験では、 カ ッ タ ーナ イ フ を用い、 ます 目間隔は l m m、 ます目の数は 1 0 0個と し、 J I S— K— 5 4 0 0に規定された評 価基準に基づいて光触媒層 (皮膜) の基材への付着性を評価した。 Next, these six types of materials (test materials) were subjected to a decomposition test of acetate aldehyde to evaluate the photocatalytic performance, and were subjected to the cross-cut tape method specified in JIS_K—540. An adhesion test was performed to evaluate the film properties. The decomposition test of acetate aldehyde was performed in the same manner as in Example 1. In the adhesion test, Kata Naif was used, the stitch interval was lmm, the number of stitches was 100, and the evaluation criteria specified in JIS-K-540 were used. The adhesion of the photocatalyst layer (film) to the substrate was evaluated based on the above.
試験結果を前記の第 3表に併せて示す。  The test results are shown in Table 3 above.
こ の結果か ら明らかなよ う に、 いずれの材料でも、 ァセ ト アルデヒ ド は効率的に分解された。 また、 付着性についてはきわめて良好な成績を 収めた。 特に、 基材と光触媒の層の間にバリ ア層を備えた材料 (試験 No. 3-17 ) では、 試験 No.3- 13 のバリ ア層のない材料に比べ、 光触媒性能の 向上が認め られた。 これは、 下地か らの金属あるいは金属イ オ ンの拡散 がバ リ ア層によ り遮断されたためと考え られる。 また、 試験 No.3-13 と 3-17で用いた材料を 1 ヶ 月間放置した後、 再度光触媒活性を測定したと こ ろ、 試験 No.3-17 の材料では活性は変わらなかっ た力 試験 No.3-13 の材料では活性は 3割ほど減少 した。  As is evident from these results, acetate aldehyde was decomposed efficiently in all materials. In addition, excellent results were obtained for adhesion. In particular, the material with a barrier layer between the substrate and the photocatalyst layer (Test No. 3-17) showed improved photocatalytic performance compared to the material without a barrier layer in Test No. 3-13. Was done. This is probably because the diffusion of metal or metal ions from the underlayer was blocked by the barrier layer. After leaving the materials used in Test Nos. 3-13 and 3-17 for one month, the photocatalytic activity was measured again.The force test showed that the activity of Test No. 3-17 did not change. The activity of the material of No.3-13 decreased by about 30%.
(実施例 4 )  (Example 4)
基材と して 白色タ イ ルを用いた光触媒を表面に備えた材料を製造し、 付着性物質に対する分解除去作用の調査を行っ た。  We manufactured a material with a photocatalyst on the surface using white tiles as the base material, and investigated its decomposition and removal effect on adherent substances.
実施例 3の試験 No.3- 16 で調製 した配合剤を用い、 デ ィ ッ プコ ーテ ィ ング法 (引き上げ速度 : l O O mmZ分) によ っ て市販の白色タ イ ルに 塗装 し、 さ らに 2 5 0 °Cで 2分間焼成する こ とによ り、 酸化チタ ンとチ タ ン酸ジルコ 二ゥムを主体とする光触媒基本体を含む光触媒層をタ ィ ル 上に備えた材料を得た。  Using the compounding agent prepared in Test No. 3-16 of Example 3, a commercially available white tile was applied by a dip coating method (pulling speed: 100 mmZ min.). Further, by firing at 250 ° C for 2 minutes, a photocatalyst layer including a photocatalyst basic body mainly composed of titanium oxide and zirconium titanate was provided on the tile. The material was obtained.
こ の材料 (試験材) を用いて、 次の方法によ り サラダオイ ルの分解試 験を行った。 なお、 比較のために、 記合剤を塗装 していない白色タ イ ル を用いて同様の試験を行っ た。  Using this material (test material), a decomposition test of salad oil was performed by the following method. For comparison, a similar test was performed using a white tile not coated with the binder.
市販のサラダオイ ルを試験材 ( 5 0 mm角) の表面に付着させ (付着 量 : 0. l m g Z c m2 ) 3 5 0 W高圧水銀灯によ り光照射した。 試 験材表面の紫外線強度は 3 6 6 n mにおいて 5. 0 m W/ c m 2 であつ た。 A commercially available salad oil was attached to the surface of a test material (50 mm square) (adhesion amount: 0.1 mg Zcm 2 ) and irradiated with light from a 350 W high-pressure mercury lamp. Trial The UV intensity on the surface of the test material was 5.0 mW / cm 2 at 365 nm.
一定時間毎に精密天秤を用いて試験材の重さを秤量し、 その減少量す なわちサ ラ ダオ イ ルの分解量を求めた。 その結果、 1 5時間の照射によ り サラダオイ ルは完全に分解、 消失 した。 一方、 比較材と して用いた未 加工のタ ィ ル上では同一の試験条件下ではサラダオイ ルは全 く 減少 して いなかった。  The weight of the test material was weighed at regular intervals using a precision balance, and the amount of reduction, that is, the amount of decomposition of salad oil was determined. As a result, the salad oil was completely decomposed and disappeared by irradiation for 15 hours. On the other hand, salad oil did not decrease at all under the same test conditions on the unprocessed tile used as a comparative material.
こ の結果から、 本発明の酸化チタ ン系光触媒は付着性物質に対する分 解除去作用を有する こ とが確認された。  From these results, it was confirmed that the titanium oxide-based photocatalyst of the present invention had an action of decomposing and removing adhering substances.
(実施例 5 )  (Example 5)
基材と してガラス板を用いた光触媒層を表面に備えた材料を製造し、 大腸菌 (Escherichia col i W3110株) に対する抗菌性の調査を行っ た。 試験 No.2-9で用いた材料 (試験材) の表面を 7 0 %エタ ノ ールで殺菌 した後、 大腸菌を 2. 5 x l 05 個ノ m l 含む生理食塩水 0. 2 m l (大腸菌数 : 5 x 1 04 個) を、 0. 0 2 5 m l づっ 8滴に分けて試験 材の表面に滴下した。 次いで、 相対湿度を 9 5 %に維持しながら 白色蛍 光灯を用いて 4時間光照射を行っ た (照度 : 3 0 0 0ルク ス) 。 A material with a photocatalyst layer on the surface using a glass plate as a base material was manufactured, and an antibacterial activity against Escherichia coli (Escherichia coli W3110 strain) was investigated. Materials used in Test No.2-9 was sterilized with 70% ethanolate Lumpur surface of (test material), E. coli 2. 5 xl 0 5 pieces Roh ml containing saline 0. 2 ml (E. coli number: the 5 x 1 0 4 pieces), was dropped on the surface of the test material divided into 0. 0 2 5 ml Dzu' 8 drops. Next, light irradiation was performed for 4 hours using a white fluorescent lamp while maintaining the relative humidity at 95% (illuminance: 30000 lux).
その後、 試験材の上の菌液を生理食塩水 9. 8 m l で洗い流 し、 その 液を標準寒天培地に希釈沫塗し、 3 5 °Cで 4 8時間培養 した後、 生育 し たコ ロニーを計数する こ と によ っ て生菌数を測定した。  After that, the bacterial solution on the test material was washed away with 9.8 ml of physiological saline, and the solution was diluted and spread on a standard agar medium, cultured at 35 ° C for 48 hours, and then grown. The viable cell count was determined by counting Ronnie.
その結果、 生存 していた大腸菌数は、 6. O x l O 3 個であ り、 大腸 菌の減少率は 8 8 %に達 していた。 As a result, surviving number of E. coli were in, 6. O xl O 3 Kodea is, the reduction rate of E. coli had reached the 8 8%.
なお、 比較のために、 上記試験の場合と同数の大腸菌 ( 5 x 1 04 個) を含む生理食塩水を、 ①光触媒を コーテ ィ ングしていないガラ ス板の表 面に滴下して 4時間光照射したもの、 および、 ②上記試験で用いた材料 (試験材) の表面に滴下 して 4時間暗所に置いたもの、 について上述の 方法で生菌数を測定した。 その結果、 生存 していた生菌数は、 ①の場合 は 4. 8 x l 04 個、 ②の場合は 4. 7 x l 04 個で、 生菌数の変化は ほとんど認められなかっ た。 For comparison, physiological saline containing case of the test the same number of E. coli (5 x 1 0 4 pieces), was added dropwise to the front surface of the glass plate that does not quotes I bridging the ① photocatalyst 4 The number of viable bacteria was measured by the above-described method for those irradiated with light for hours, and for (2) those that were dropped on the surface of the material (test material) used in the above test and kept in a dark place for 4 hours. As a result, the number of viable bacteria that survived Is 4. 8 xl 0 4 or, in the case of ② 4. 7 xl 0 in four, the change in the number of viable bacteria was hardly observed.
これらの結果から、 本発明の酸化チタ ン系光触媒は、 優れた抗菌作用 を持っ ている こ とが裏付け られた。  These results support that the titanium oxide-based photocatalyst of the present invention has an excellent antibacterial action.
(実施例 6 )  (Example 6)
本発明の光触媒機能を有する金属板 (塗装鋼板) を作製 し、 耐候性お よび曲げ加工性を調査した (試験 No.6-1ない し 6-7 ) 。  A metal plate (painted steel plate) having a photocatalytic function of the present invention was prepared, and weather resistance and bending workability were investigated (Test Nos. 6-1 to 6-7).
試験 No.6-1で使用 した塗装鋼板の製造方法は次のとお りである。  The method of manufacturing the coated steel sheet used in Test No. 6-1 is as follows.
チ ッ ソ (株) 製のテ ト ラ エ ト キ シ シ ラ ン 1 6 6. 4 g、 メ チル ト リ エ ト キ シ シ ラ ン 3 5. 6 g と、 エ タ ノ ール 1 3 8 g、 イ オ ン交換水 1 3 0 gからなる分散液を 5 0 °Cで 2時間攪拌 した後、 泡立ち防止剤、 レペ リ ング剤を加え塗料と した (以下、 「バリ ア層形成用塗料 A」 と記す) 。 一方、 結晶質のチタ ン酸ジルコ ニ ウム 1 0重量部と酸化チタ ン 9 0重 量部を混合 し、 大気中で 5 0 0 °Cで 2時間焼成した後粉砕し、 水に分散 させて固形分が 1 0重量%のス ラ リ を作製 した。 こ のス ラ リ を水酸化ナ ト リ ウ ム を用いて p H l 0に調整 し、 オー ト ク レープで 1 5 0 °Cで 3時 間水熱処理を施 した。 その後、 濃度 6 0 %の硝酸を加えて p H 7に調整 し、 ろ過 して酸化チ タ ン と チタ ン酸ジル コ ニ ウム を含有する酸化チタ ン 系光触媒粒子を得た。 こ の光触媒粒子の粒径は、 透過型電子顕微鏡で観 察される平均粒径で 1 0 0 n mであっ た。 こ の光触媒粒子を乾燥固形分 に対 して 1 5重量%含有する水分散液 1 0 0 gに、 珪素系化合物と して 日産化日産化学 (株) 製の コ ロ イ ダルシ リ カ ス ノ ーテ ッ ク ス〇 L (固形 分 2 0重量%) を 6 0 g加え、 さ ら に消泡剤を加えて塗料組成物を得た (以下、 「触媒用チ タ ン酸ジル コ ニ ウ ム含有塗料」 と記す) 。  16.4.4 g of tetraethoxysilane from Chisso Corporation, 35.6 g of methyltriethoxysilane, and 13% of ethanol A dispersion composed of 8 g and 130 g of ion-exchanged water was stirred at 50 ° C for 2 hours, and then an antifoaming agent and a repelling agent were added to form a paint (hereinafter referred to as “barrier layer formation”). Paint A)). On the other hand, 10 parts by weight of crystalline zirconium titanate and 90 parts by weight of titanium oxide are mixed, baked in the air at 500 ° C. for 2 hours, pulverized, and dispersed in water. A slurry having a solid content of 10% by weight was prepared. This slurry was adjusted to pH10 using sodium hydroxide and subjected to hydrothermal treatment at 150 ° C for 3 hours with an autoclave. Then, the pH was adjusted to 7 by adding nitric acid having a concentration of 60%, and the mixture was filtered to obtain titanium oxide-based photocatalyst particles containing titanium oxide and zirconium titanate. The particle size of the photocatalyst particles was 100 nm as an average particle size observed with a transmission electron microscope. 100 g of an aqueous dispersion containing 15% by weight of the photocatalyst particles based on the dry solid content was added as a silicon-based compound to Nissan Kasaku Nissan Chemical Co., Ltd. 60 g of Techex L (solid content: 20% by weight) and an antifoaming agent were added to obtain a coating composition (hereinafter referred to as “catalyst zirconium titanate”). Paint containing paint).
上記のバリ ア層形成用塗料 Aを、 板厚 0. 5 mmの溶融亜鉛めつ き鋼 板を母材とするポ リ エス テル系塗装鋼板の片面に、 乾燥後の膜厚が 2 u mと な る よ う にロ ールコ ー ト した後、 2 4 0 °Cで 6 0秒間乾燥 してノく リ ァ層を形成 した。 その上に、 上記の触媒用チタ ン酸ジルコニ ウム含有塗 料を、 乾燥後の膜厚が 1. 5 〃 mとなる よ う に π—ルコー ト し、 1 8 0 でで 5 0秒間連続炉で乾燥して光触媒基本体と しての酸化チタ ンおよび チタ ン酸ジルコニ ウム と、 珪素系化合物と してのコ ロ イ ド シ リ カ を含有 する光触媒層を形成 した。 The above coating A for barrier layer formation was applied on one side of a polyester-coated steel sheet whose base material was a hot-dip galvanized steel sheet with a thickness of 0.5 mm to a thickness of 2 μm after drying. After roll coating, dry at 240 ° C for 60 seconds and glue. Layer was formed. Then, the above-mentioned zirconium titanate-containing coating for a catalyst is π-coated so that the film thickness after drying becomes 1.5 μm, and the furnace is continuously heated at 180 ° for 50 seconds. Then, a photocatalyst layer containing titanium oxide and zirconium titanate as photocatalyst basic bodies and colloid silica as a silicon-based compound was formed.
試験 No.6-2ない し 6-7 で使用 した塗装鋼板の製造方法は次のとおり で ある。  The method for manufacturing the coated steel sheets used in Test Nos. 6-2 to 6-7 is as follows.
上記のバ リ ア層形成用塗料 A (固形分濃度 1 2重量%) 1 0 0 gに、 光触媒不活性化処理を施 したルチ ル型酸化チタ ン顔料と して石原産業 (株) 製の R— 8 3 0を 2〜 5 5 gの範囲で変更して加え、 それぞれべ ィ ン ト シ ヱ 一力 一で振と う した後、 試験 No.6-1の塗装鋼板の製造で使用 した ものと同 じ基材塗装板に乾燥膜厚が 2 mとなる よ う に塗布 し、 2 0 0 °Cで 4 5秒間乾燥した。 その上に、 試験 No.6-1の塗装鋼板の製造方 法と同 じ条件で、 触媒用チ タ ン酸ジル コ ニ ウ ム含有塗料を用いて、 乾燥 膜厚 1. 5 mの光触媒層を形成し、 光触媒層を表面に備えた塗装鋼板 を作製した。  100 g of the above-mentioned coating A for barrier layer formation (solids concentration: 12% by weight) was treated with a photocatalyst deactivating treatment as a rutile-type titanium oxide pigment manufactured by Ishihara Sangyo Co., Ltd. R-830 was changed in the range of 2 to 55 g, and each was shaken with a single bint sheet, and then used in the production of painted steel sheet in Test No. 6-1. It was applied to the same substrate-coated plate so that the dry film thickness became 2 m, and dried at 200 ° C for 45 seconds. On top of this, a photocatalytic layer with a dry film thickness of 1.5 m was applied using a paint containing zirconium titanate as a catalyst under the same conditions as in the method for producing the coated steel sheet in Test No.6-1 Was formed, and a coated steel sheet having a photocatalyst layer on the surface was produced.
上記の試験 No.6-1ない し 6- 7 の塗装鋼板について、 J I S — K一 7 1 0 2に規定される方法に従ってサンシ ャ イ ンゥェザォメ ータ によ る耐候 性試験を 5 0 0 0時間実施した。 その後、 J I S— Z — 8 7 1 9に規定 される方法に従っ て耐候性試験の実施の前後における色差変化 ΔΕを測 定した。 また、 J I S— G— 3 3 1 2 に規定される曲げ試験方法に従つ て曲げ加工性を評価した。  The test No.6-1 or 6-7 coated steel sheet was subjected to a weather resistance test using Sansha Inezometer for 500 hours according to the method specified in JIS-K-172. Carried out. Thereafter, the color difference change ΔΕ before and after the execution of the weather resistance test was measured according to the method specified in JIS—Z—8719. Further, the bending workability was evaluated according to the bending test method specified in JIS-G-3312.
これらの測定結果を第 4表および第 2図に示した。 第 4 表 The results of these measurements are shown in Table 4 and FIG. Table 4
Figure imgf000044_0001
Figure imgf000044_0001
(注) 曲げ間隔の欄の Tは板厚を表す。 第 4表および第 2 図に示 したよ う に、 ノく リ ァ層中に光触媒不活性化処 理を施 した酸化チタ ンを含有させた ものは優れた耐候性を示 した。 ま た、 バ リ ァ層中に光触媒不活性化処理を施 した酸化チタ ン を含有させて も曲 げ加工性が低下せず、 む し ろ適量含有させる と曲げ加工性が向上 した。 (実施例 7 )  (Note) T in the column of bending interval indicates the plate thickness. As shown in Table 4 and FIG. 2, those containing titanium oxide that had been subjected to a photocatalytic deactivation treatment in the ceramic layer exhibited excellent weather resistance. In addition, even if titanium oxide subjected to photocatalyst deactivation treatment was contained in the barrier layer, the bending workability did not decrease, and the bending workability was improved when the titanium oxide was contained in an appropriate amount. (Example 7)
厚さ 0 . 3 m mのアル ミ ニ ゥ ム板の両面に塗布型ク ロ メ 一 ト 処理を施 した後、 白色ア ク リ ル系塗膜を形成さ せた。 その片面に実施例 6 で用い たノく リ ァ層形成用塗料 Aを乾燥後の膜厚が 1 . 5 mと なる よ う に ロ ー ルコ ー ト した後、 2 0 0 °Cで 4 0秒間乾燥させた。 次いで、 同 じ く 実施 例 6 で使用 した触媒用チタ ン酸ジルコ ニウム含有塗料を乾燥後の膜厚が 1 . 5 mと なる よ う にロ ー ルコ ー ト した後、 種々 の条件で乾燥 した。 乾燥後のそれぞれの塗装アル ミ ニ ゥ ム板の光触媒層表面 1 O m m四方 に、 カ ッ タ ーナイ フで l m m間隔で切り 目 を入れて 1 0 0個に切り分け, その上に粘着テープを貼り 付けて引 き剝が し、 基板上に残存 した光触媒 層 (皮膜) の切 り 分け個数を数えて光触媒層 (皮膜) の密着性を評価 し た。 さ らに、 上記の光触媒層を表面に備えた塗装ア ル ミ ニ ウ ム板表面と 基材である塗装アル ミ ニ ウ ム板表面の色差 (ΔΕ ) を J I S - Z - 8 7 1 9 に規定される方法に従って測定 した。 After applying a coating-type chromate treatment to both sides of an aluminum plate having a thickness of 0.3 mm, a white acrylic coating film was formed. On one surface, the coating A for forming a coating layer used in Example 6 was roll-coated so that the film thickness after drying became 1.5 m, and then the coating was performed at 200 ° C. Dried for seconds. Next, similarly, the paint containing zirconium titanate for a catalyst used in Example 6 was roll-coated so that the film thickness after drying was 1.5 m, and then dried under various conditions. . Cut 1 mm on the photocatalyst layer surface of each coated aluminum plate after drying at lmm intervals with a cutter knife, cut into 100 pieces, and paste adhesive tape on it Then, the photocatalyst layer (film) remaining on the substrate was counted, and the adhesion of the photocatalyst layer (film) was evaluated by counting the number of pieces. Furthermore, the surface of the coated aluminum plate having the photocatalyst layer on the surface is The color difference (ΔΕ) of the surface of the coated aluminum plate as the base material was measured according to the method specified in JIS-Z-8719.
乾燥条件と、 光触媒 (皮膜) 密着性および色差の評価結果を第 5表に 示す。  Table 5 shows the drying conditions and the evaluation results of the photocatalyst (film) adhesion and color difference.
第 5 表  Table 5
Figure imgf000045_0001
第 5表の試験 No.7- 61 および 7- 62は塗装アルミ ニ ゥ ム板の乾燥時間が 短すぎ、 試験 No.7-63 および 7-6Aは乾燥温度が低すぎ、 試験 No.7- 6E は 乾燥温度が高すぎ、 試験 No.7- 6F および 7- 6Gは乾燥時間が長すぎた場合 である。 これらの乾燥条件が好ま しい範囲にない場合の光触媒層 (皮膜) の密着性または色差は、 好適な条件で乾燥された場合に較べて よ く なか つ た。
Figure imgf000045_0001
Test Nos. 7-61 and 7-62 in Table 5 have too short drying time for painted aluminum plate, and test Nos. 7-63 and 7-6A have too low drying temperature. 6E is when the drying temperature is too high, and Test Nos. 7-6F and 7-6G are when the drying time is too long. The adhesion or color difference of the photocatalyst layer (coating) when these drying conditions are not in the preferable range is not as good as when the drying is performed under the preferable conditions. I got it.
(実施例 8 )  (Example 8)
厚さ 0 . 5 m mの鋼板の両面に、 N i を 1 3重量%含有 し残部が実質 的に Z nからなる Z n— N i 電気合金めつ き を施 し、 さ らに塗布型ク ロ メ ー ト 処理を施 した後、 白色ポ リ エス テル系塗膜を形成させた。 その片 面に実施例 6 で用いたバ リ ァ層形成用塗料 Aを乾燥後の膜厚が 1 mと なる よ う にロールコー ト し、 2 0 0 °Cで 4 0秒間乾燥させた後、 実施例 6 で使用 した触媒用チタ ン酸ジルコ ニウム含有塗料を乾燥後の膜厚が 1 . 5 mとなる よ う にロールコー ト し、 種々 の条件で乾燥して、 光触媒層 を表面に備えた塗装鋼板を得た。  A 0.5 mm thick steel plate is coated on both sides with a Zn-Ni electric alloy containing 13 wt% Ni and the balance substantially consisting of Zn. After the roaming treatment, a white polyester-based coating film was formed. On one side, the coating A for forming a barrier layer used in Example 6 was roll-coated so that the film thickness after drying was 1 m, dried at 200 ° C for 40 seconds, and then dried. The catalyst-containing zirconium titanate-containing paint used in Example 6 was roll-coated so that the film thickness after drying was 1.5 m, dried under various conditions, and provided with a photocatalyst layer on the surface. A coated steel plate was obtained.
これらの塗装鋼板について、 光触媒層 (皮膜) の密着性、 光触媒層を 表面に備えた塗装鋼板表面と基材である塗装鍋板表面の色差 (Δ Ε ) お よび光触媒活性を調査した。  For these coated steel sheets, the adhesion of the photocatalyst layer (coating), the color difference (ΔΕ) between the surface of the coated steel sheet provided with the photocatalyst layer on the surface and the surface of the coating pan plate as the base material, and the photocatalytic activity were investigated.
密着性と色差は実施例 7 の場合と 同様の方法で調査した。 光触媒活性 は、 ァセ ト アルデ ヒ ド分解試験を行い、 残留ァセ ト アルデ ヒ ド量が 1 p P m以下になる までの時間を求めて評価した。 なお、 ァセ ト アルデヒ ド 分解試験は次の方法で行っ た。 すなわち、 試験片を、 容積 5 リ ッ ト ルの 透明なガラ ス容器にそれぞれ個別に入れ、 ガラス容器に濃度 5 0 p p m となる よ う にァセ ト アルデヒ ドを加え、 波長が 3 6 5 n m、 光量が 0 . 3 m W / c m 2 のブラ ッ ク ライ ト を照射しながらガラス容器の中のァセ ト アルデヒ ド量をガス ク ロ マ ト グラ フ ィ ーにて測定した。 The adhesion and color difference were investigated in the same manner as in Example 7. The photocatalytic activity was evaluated by performing an acetoaldehyde decomposition test and determining the time until the residual acetoaldehyde amount became 1 pPm or less. The acetate decomposition test was performed by the following method. That is, the test specimens were individually placed in a transparent glass container having a volume of 5 liters, and acetaldehyde was added to a glass container so that the concentration became 50 ppm, and the wavelength was 365 nm. The amount of acetoaldehyde in the glass container was measured by gas chromatography while irradiating a black light having a light amount of 0.3 mW / cm 2 .
乾燥条件、 密着性、 色差およびァセ ト アルデヒ ド分解試験結果を第 6 表に示す。 なお、 ァセ ト アルデヒ ド分解試験の欄の ·印は分解作用が不 十分であっ たこ と を表す。 6 表 Table 6 shows the drying conditions, adhesion, color difference and the results of the acetate decomposition test. The mark in the column for the decomposition test of acetate aldehyde indicates that the decomposition effect was insufficient. 6 Table
Figure imgf000047_0001
第 6表で、 試験 No.8-71 は塗装鋼板の乾燥時間が短かすぎ、 試験 No.8 -72 、 8- 76および 8- 7Gは乾燥温度が低すぎ、 試験 No.8-77 、 8- 7Cおよび 8- 7Hは乾燥温度が高すぎ、 8-7Kは乾燥時間が長すぎた場合である。 これ らの塗装鋼板の密着性、 色差または触媒活性は、 前述の好ま しい条件で 乾燥された場合に較べて よ く なかっ た。
Figure imgf000047_0001
In Table 6, in Test Nos. 8-71, the drying time of the coated steel sheet was too short, and in Test Nos. 8-72, 8-76 and 8-7G, the drying temperature was too low, and in Test Nos. 8-77, 8-7C and 8-7H are when the drying temperature is too high, and 8-7K when the drying time is too long. The adhesion, color difference or catalytic activity of these coated steel sheets were not as good as when they were dried under the favorable conditions described above.
(実施例 9 )  (Example 9)
厚さが 0. 4 mmの溶融亜鉛め つ き鋼板の両面に C r 換算で 5 0 m g / m 2 の塗布型ク ロ メ ー ト 処理を施 した後、 大日本イ ンキ (株) 製 P B — 1 1 Pで厚さ 5 i/ mのプライ マー層を設け、 その上層に同社製 S R F — 0 5で厚さ 1 5 " mの白色の ト ッ プコー ト 層を設け、 白色の塗装鋼板 を作製 した。 50 mg in terms of Cr on both sides of a hot-dip galvanized steel sheet with a thickness of 0.4 mm After facilities coating type click b menu over DOO processing / m 2, Dainippon Lee Nki Co. PB - a primer layer having a thickness of 5 i / m provided in 1 1 P, manufactured by the same company SRF thereon A white topcoat layer with a thickness of 15 "and a thickness of 15" m was provided to produce a white painted steel plate.
こ の塗装鋼板の片面に実施例 6 で用いたバ リ ア層形成用塗料 Aを乾燥 膜厚が 2 〃 mとなる よ う に塗布 し、 1 8 0 °Cで 4 0秒間乾燥 した後、 実 施例 6で使用 した触媒用チタ ン酸ジルコ ニ ウ ム含有塗料を乾燥膜厚が 1. 5 〃 mとなる よ う にロールコー ト し、 2 0 0でで 5 0秒間乾燥後、 冷却 速度 4 0 °CZ秒で冷却 して光触媒層を表面に備えた塗装鋼板を得た (こ のバ リ ア層と光触媒層を有する面を 「八面」 と記す) 。 こ の塗装鋼板と、 同 じ条件で片面にバリ ァ層のみを形成させた白色塗装鋼板 (こ のバリ ァ 層のみの面を 「 B面」 と記す) を、 ブラ ンキ ング後、 第 3図に示 したよ う に、 試験面 ( A面または B面をいう) を凸面側に した、 深さ 3 0 mm、 幅 3 0 0 mm、 長さ 7 0 0 mmの壁用パネルに絞り成形 した。 こ れらの パネルを、 試験面を北に向けて垂直に配置し、 7月 から 1 2 月 まで 6 ケ 月間屋外暴露 した後、 表面状況の変化を調査した。  The coating A for barrier layer formation used in Example 6 was applied to one side of the coated steel sheet so that the dry film thickness became 2 μm, and dried at 180 ° C for 40 seconds. The paint containing zirconium titanate for a catalyst used in Example 6 was roll-coated so that the dry film thickness became 1.5 μm, dried at 200 for 50 seconds, and then cooled. After cooling at 40 ° CZ seconds, a coated steel sheet having a photocatalyst layer on the surface was obtained (the surface having the barrier layer and the photocatalyst layer is referred to as “octahedron”). After blanking, this coated steel sheet and a white painted steel sheet with only a barrier layer formed on one side under the same conditions (the surface with only this barrier layer is referred to as “side B”) As shown in, the test surface (surface A or B) was drawn into a wall panel with a depth of 30 mm, a width of 300 mm and a length of 700 mm, with the convex surface facing the convex surface. . These panels were placed vertically with the test surface facing north and exposed outdoors for six months from July to December, after which changes in surface conditions were investigated.
6 ヶ 月経過後の試験面を観察 した と こ ろ、 A面では雨筋が見られず極 めて 良好な白色の表面であつたが、 B面には雨筋が多数見られた。 また、 パネルの 9 0度曲げ加工部の状態を観察したと こ ろ、 A面では汚れは見 られなかっ たが、 B面のパネル折曲げ部に、 ほこ り と砂が堆積していた。 ほこ り や砂は、 試験面に堆積した有機物などをつなぎに して堆積 したも のと推測される。  When the test surface was observed six months later, it was found that the surface A had a very good white surface with no rain streaks, but the surface B had many rain streaks. Also, when the state of the 90-degree bent portion of the panel was observed, no dirt was observed on the A side, but dust and sand were deposited on the panel bent portion on the B side. It is presumed that dust and sand were deposited by linking organic substances that had accumulated on the test surface.
(実施例 1 0 )  (Example 10)
実施例 9 に記載した方法と同様の方法で作製した A面を有する フ ラ ッ ト ノ ネルと同 じ く B面を有するフ ラ ッ ト ノ ネルとを ドラ フ ト 中に封入 し、 内部を真空状態に した後、 タバコ の煙を内部に導入 し、 それぞれの試験 面に タ ノくコ ャニ を 1. S m g Zm 2 付着させた。 これ らの フ ラ ッ ト ノ ネ ルを 3 階建て ビルの外壁に試験面に太陽光線が射 しつける よ う に並べて 設置 し、 1 1 月 〜 1 2 月 の間で 3 0 日間暴露 し、 タ バコ ャニ付着前と、 タ バコ ャニを付着させた直後およびタ バコ ャニを付着させた後 3 0 日間 暴露 した後における色差の変化を調査 した。 A flat nonel having an A side and a flat nonel having a B side produced in the same manner as described in Example 9 were sealed in a draft, and the inside was sealed. After evacuating, tobacco smoke was introduced into the inside, and 1. S mg Zm 2 was applied to each test surface. These flat none Are placed on the outer wall of a three-story building in such a way that the sun shines on the test surface, and are exposed for 30 days between January and February, before the tabacony is attached, and The change in color difference immediately after the application of the cocoa and after 30 days of exposure after the application of the cocoa were investigated.
こ の調査結果を第 7表に示した。  Table 7 shows the results of this survey.
第 7 表  Table 7
Figure imgf000049_0001
Figure imgf000049_0001
第 7表に示 したよ う に、 ノくリ ア層と光触媒層を有する A面では 1 ヶ 月 間の屋外暴露でタバコ ャ二の除去が顕著.で、 タバコャニ付着前の良好な 白色が回復 した。 これに対 して、 ノく リ ア層のみの B面では、 タ ノくコ ャニ によ る色調不良の回復が見られなかっ た。  As shown in Table 7, removal of tobacco was remarkable after one month of outdoor exposure on side A, which has a coating layer and a photocatalyst layer, and the good white color before the attachment of tobacco was recovered. did. On the other hand, on the B-side surface of the rear layer only, no recovery from poor color tone due to the rear cover was observed.
ま た、 上記と同様の条件で作製 した試験面 (A面および B面) にタ パ コ ャニを付着させたパネルを、 波長が 3 6 5 n mで光量が 0 . 2 m W Z c m 2 の紫外線を受ける室内に並べて設置 し、 5 0 日 目 に両パネル間の 色差を比較 した。 その結果、 A面ではタ ノくコ ャニ付着前の白色が回復 し ていた力;、 B面ではタ ノくコ ャニ付着状況に変化はなか っ た。 産業上の利用可能性 Also, a panel with a tapaconi attached to the test surface (Side A and Side B) prepared under the same conditions as above was used for a panel with a wavelength of 365 nm and a light amount of 0.2 mWZ cm 2 . They were placed side by side in a room receiving ultraviolet light, and on day 50, the color difference between the two panels was compared. As a result, the surface A had the white color that had been recovered before it was attached; the surface B had no change in the adhesion state. Industrial applicability
本発明の酸化チタ ン系光触媒は、 優れた光触媒作用を有する と と も に、 材料 (基材) の表面に基材との結合性に優れ、 加工性、 強度、 外観等の 皮膜性状が良好な光触媒層を形成する こ とができ る。 こ の光触媒で形成 された層を表面に備えた材料は、 大気中や水中に含まれる有害物質の分 解や無害化、 生活空間における防臭、 殺菌 (抗菌) 等に極めて有効であ る。 特に、 こ の光触媒で形成された層を塗装金属板 (プ レ コー ト 金属板) の表面に備えた材料は、 優れた光触媒活性と 良好な加工性を併せ有して いる。 INDUSTRIAL APPLICABILITY The titanium oxide photocatalyst of the present invention has an excellent photocatalytic action, has excellent bonding properties with a substrate on the surface of a material (substrate), and has good film properties such as processability, strength, and appearance. It is possible to form an excellent photocatalyst layer. Materials with a photocatalytic layer on the surface are extremely effective in decomposing and detoxifying harmful substances contained in the air and water, deodorizing in living spaces, and sterilizing (antibacterial). In particular, the layer formed with this photocatalyst is coated with a coated metal plate (pre-coated metal plate). The material provided on the surface has both excellent photocatalytic activity and good processability.
こ の光触媒およびこの光触媒で形成された層を表面に備えた材料は、 本発明の方法によ り容易に製造する こ とができる。  The photocatalyst and the material provided with the layer formed by the photocatalyst on the surface can be easily produced by the method of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1. チタ ン酸ジルコニウムを含み、 チタ ンに対する ジルコニウムの原子 %比が 0. 0 0 1 以上 0. 5以下である光触媒基本体と珪素系化合物を 主体とする酸化チタ ン系光触媒。  1. A photocatalyst basic body containing zirconium titanate and having an atomic percentage ratio of zirconium to titanium of not less than 0.001 and not more than 0.5 and a titanium oxide-based photocatalyst mainly composed of a silicon-based compound.
2. 珪素系化合物が、 シ リ カ微粒子、 ポ リ シロキサ ン、 シ リ コ ー ン系樹 脂およびこれらが部分的に反応 した化合物のう ちの少な く と も一つであ る請求の範囲 1 に記載の酸化チタ ン系光触媒。  2. Claim 1 in which the silicon-based compound is at least one of silica fine particles, polysiloxane, silicone-based resin, and a partially reacted compound thereof. 2. The titanium oxide photocatalyst according to item 1.
3. チタ ン酸ジルコニ ウムを含み、 チタ ンに対するジルコニウムの原子 %比が 0. 0 0 1 以上 0. 5以下である光触媒基本体と珪素系化合物を 主体とする酸化チタ ン系光触媒で形成された層を基材表面に備えた材料。  3. It is formed of a photocatalyst basic body containing zirconium titanate and having an atomic percentage ratio of zirconium to titanium of not less than 0.01 and not more than 0.5 and a titanium oxide photocatalyst mainly composed of a silicon compound. Material with a layer formed on the surface of a substrate.
4. 珪素系化合物が、 シ リ カ微粒子、 ポ リ シ ロキサ ン、 シ リ コ ー ン系樹 脂およびこれらが部分的に反応した化合物のう ちの少な く と も一つであ る請求の範囲 3に記載の材料。 4. Claims in which the silicon-based compound is at least one of silica fine particles, polysiloxane, silicone-based resin, and a partially reacted compound thereof. The material according to 3.
5. 基材が金属材料または塗装金属板で、 基材と酸化チタ ン系光触媒で 形成された層の間にバ リ ア層を備え る請求の範囲 3に記載の材料。  5. The material according to claim 3, wherein the base material is a metal material or a coated metal plate, and a barrier layer is provided between the base material and the layer formed by the titanium oxide-based photocatalyst.
6. 基材が金属材料または塗装金属板で、 基材と酸化チ タ ン系光触媒で 形成された層の間にバリ ア層を備え る請求の範囲 4に記載の材料。  6. The material according to claim 4, wherein the base material is a metal material or a coated metal plate, and a barrier layer is provided between the base material and the layer formed by the titanium oxide-based photocatalyst.
7. チタ ン酸ジルコ ニ ウムを含み、 チタ ンに対する ジルコニ ウムの原子 %比が 0. 0 0 1 以上 0. 5以下である光触媒基本体と珪素系化合物を 主体とする酸化チタ ン系光触媒と、 水およびノまたは有機溶剤を含む配 合剤。  7. A basic photocatalyst containing zirconium titanate and having an atomic percentage ratio of zirconium to titanium of not less than 0.001 and not more than 0.5, and a titanium oxide-based photocatalyst mainly composed of a silicon-based compound. A combination agent containing water, water and organic solvent.
8. 珪素系化合物が、 シ リ カ微粒子、 ポ リ シ ロキサ ン、 シ リ コ ー ン系樹 脂およびこれらが部分的に反応 した化合物のう ちの少な く と も一つであ る請求の範囲 7に記載の配合剤。  8. Claims in which the silicon-based compound is at least one of silica fine particles, polysiloxane, silicone-based resin, and a partially reacted compound thereof. 7. The combination according to 7.
9. チタ ン酸ジルコニ ウムを含み、 チタ ンに対する ジルコニウムの原子 %比が 0. 0 0 1 以上 0. 5以下である光触媒基本体と珪素系化合物を 主体とする酸化チタ ン系光触媒と、 水および または有機溶剤を含む配 合剤で基材表面を被覆した後、 焼成する酸化チタ ン系光触媒で形成され た層を基材表面に備えた材料の製造方法。 9. A photocatalyst basic body containing zirconium titanate and having an atomic percentage ratio of zirconium to titanium of not less than 0.01 and not more than 0.5, a titanium oxide-based photocatalyst mainly composed of a silicon-based compound, and water And / or distributions containing organic solvents A method for producing a material in which a layer formed of a titanium oxide-based photocatalyst, which is formed by coating a base material surface with a mixture and then firing, is provided on the base material surface.
1 0 . 珪素系化合物が、 シ リ カ微粒子、 ポリ シロキサン、 シ リ コーン系 樹脂およびこれらが部分的に反応 した化合物のう ちの少な く と も一つで ある請求の範囲 9 に記載の材料の製造方法。  10. The material according to claim 9, wherein the silicon-based compound is at least one of a silica fine particle, a polysiloxane, a silicone-based resin, and a compound in which these are partially reacted. Production method.
1 1 . 基材である金属材料または塗装金属板の表面をバリ ア層を形成す る薬液で被覆 した後、 乾燥してバ リ ア層と し、 次いで、 前記バ リ ア層の 表面をチタ ンに対するジルコニ ウムの原子%比が 0 . 0 0 1 以上 0 . 5 以下である光触媒基本体と珪素系化合物を主体とする酸化チタ ン系光触 媒層を形成する薬液で被覆した後、 乾燥する酸化チタ ン系光触媒で形成 された層を基材表面に備えた材料の製造方法。  1 1. The surface of a metal material or a coated metal plate as a base material is coated with a chemical solution for forming a barrier layer, dried to form a barrier layer, and then the surface of the barrier layer is titrated. After coating with a photocatalyst having an atomic% ratio of zirconium to zinc of 0.001 or more and 0.5 or less and a chemical solution for forming a titanium oxide-based photocatalyst layer mainly composed of a silicon-based compound, and then drying. A method for producing a material having a layer formed of a titanium oxide-based photocatalyst on a substrate surface.
1 2 . チタ ン酸ジルコ ニ ウ ムを含み、 チタ ンに対する ジル コ ニ ウ ムの原 子%比が 0 . 0 0 1 以上 0 . 5 以下である光触媒基本体と珪素系化合物 を主体とする酸化チタ ン系光触媒で形成された層を基材表面に備えた材 料によ り、 大気中も し く は水中の物質または前記材料表面に付着 した物 質を光照射下で処理する酸化チタ ン系光触媒層を表面に備えた材料の使 用方法。  1 2. It mainly contains a photocatalyst basic body and a silicon compound containing zirconium titanate and having an atomic% ratio of zirconium to titanium of not less than 0.01 and not more than 0.5. A material having a layer formed of a titanium oxide-based photocatalyst on the surface of a substrate, which is used to treat a substance in the air or water or a substance adhering to the surface of the material under light irradiation. How to use a material with a photocatalyst layer on the surface.
1 3 . 珪素系化合物が、 シ リ カ微粒子、 ポ リ シロ キサ ン、 シ リ コ ー ン系 樹脂およびこれらが部分的に反応した化合物のう ちの少な く と も一つで ある請求の範囲 1 2 に記載の酸化チ タ ン系光触媒層を表面に備えた材料 の使用方法。  13. The claim 1 wherein the silicon-based compound is at least one of silica fine particles, polysiloxane, a silicone-based resin, and a compound in which these have been partially reacted. Use of the material having a titanium oxide-based photocatalyst layer provided on the surface thereof according to 2.
1 4 . 酸化チ タ ン系光触媒で形成された層を基材表面に備えた材料が、 金属材料または塗装金属板を基材と し、 基材と酸化チタ ン系光触媒で形 成された層の間にバ リ ァ曆を備え る材料である請求の範囲 1 2 に記載の 酸化チタ ン系光触媒層を基材表面に備えた材料の使用方法。  1 4. A material having a layer formed of a titanium oxide-based photocatalyst on the surface of a substrate, a metal material or a painted metal plate as a base material, and a layer formed of the substrate and the titanium oxide-based photocatalyst. 13. The use of a material having a titanium oxide-based photocatalyst layer on the surface of a substrate according to claim 12, which is a material having a barrier between the two.
1 5 . 酸化チタ ン系光触媒で形成された層を基材表面に備えた材料が、 金属材料または塗装金属板を基材と し、 基材と酸化チタ ン系光触媒で形 成された層の間にバリ ァ層を備え る材料である請求の範囲 1 3 に記載の 酸化チタ ン系光触媒層を基材表面に備えた材料の使用方法。 15 5. A material provided with a layer formed of a titanium oxide-based photocatalyst on the surface of a base material is formed of a metal material or a coated metal plate as a base material, and formed of the base material and the titanium oxide-based photocatalyst. 14. The method for using a material having a titanium oxide-based photocatalyst layer on the surface of a substrate according to claim 13, which is a material having a barrier layer between the formed layers.
PCT/JP1998/002745 1997-12-24 1998-06-18 Titanium oxide-based photocatalyst, process for preparing the same, and use thereof WO1999033565A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU80366/98A AU8036698A (en) 1997-12-24 1998-06-18 Titanium oxide-based photocatalyst, process for preparing the same, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/354375 1997-12-24
JP9/355767 1997-12-24
JP35437597 1997-12-24
JP35576797 1997-12-24

Publications (1)

Publication Number Publication Date
WO1999033565A1 true WO1999033565A1 (en) 1999-07-08

Family

ID=26580045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002745 WO1999033565A1 (en) 1997-12-24 1998-06-18 Titanium oxide-based photocatalyst, process for preparing the same, and use thereof

Country Status (2)

Country Link
AU (1) AU8036698A (en)
WO (1) WO1999033565A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041796A (en) * 2011-10-17 2013-04-17 中国石油化工股份有限公司 TiO2 photocatalyst and preparation method thereof
JP2014069098A (en) * 2012-09-27 2014-04-21 Toto Ltd Photocatalyst member
CN104759273A (en) * 2015-03-04 2015-07-08 江苏大学 Preparation method for in-situ carbon doped hollow titanium dioxide visible light photocatalyst
WO2017146015A1 (en) * 2016-02-26 2017-08-31 日本曹達株式会社 Photocatalyst structure and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111994992A (en) * 2020-07-16 2020-11-27 广东工业大学 Method for killing red tide algae by using supported composite photocatalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149191A (en) * 1974-07-31 1976-04-28 Exxon Research Engineering Co
JPH01262944A (en) * 1988-04-11 1989-10-19 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorization catalyst
JPH02229547A (en) * 1988-11-25 1990-09-12 Nippon Shokubai Kagaku Kogyo Co Ltd Carrier for catalyst of exhaust gas treatment, production thereof and catalyst for exhaust gas treatment incorporating this carrier
JPH0924281A (en) * 1995-07-11 1997-01-28 Nhk Spring Co Ltd Photocatalyst and its manufacture
JPH0971437A (en) * 1995-09-05 1997-03-18 Nippon Soda Co Ltd Window glass
JPH09328336A (en) * 1996-06-07 1997-12-22 Asahi Glass Co Ltd Coating film having photocatalyst activity and composition forming the same coating film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149191A (en) * 1974-07-31 1976-04-28 Exxon Research Engineering Co
JPH01262944A (en) * 1988-04-11 1989-10-19 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorization catalyst
JPH02229547A (en) * 1988-11-25 1990-09-12 Nippon Shokubai Kagaku Kogyo Co Ltd Carrier for catalyst of exhaust gas treatment, production thereof and catalyst for exhaust gas treatment incorporating this carrier
JPH0924281A (en) * 1995-07-11 1997-01-28 Nhk Spring Co Ltd Photocatalyst and its manufacture
JPH0971437A (en) * 1995-09-05 1997-03-18 Nippon Soda Co Ltd Window glass
JPH09328336A (en) * 1996-06-07 1997-12-22 Asahi Glass Co Ltd Coating film having photocatalyst activity and composition forming the same coating film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041796A (en) * 2011-10-17 2013-04-17 中国石油化工股份有限公司 TiO2 photocatalyst and preparation method thereof
CN103041796B (en) * 2011-10-17 2014-12-31 中国石油化工股份有限公司 TiO2 photocatalyst and preparation method thereof
JP2014069098A (en) * 2012-09-27 2014-04-21 Toto Ltd Photocatalyst member
CN104759273A (en) * 2015-03-04 2015-07-08 江苏大学 Preparation method for in-situ carbon doped hollow titanium dioxide visible light photocatalyst
WO2017146015A1 (en) * 2016-02-26 2017-08-31 日本曹達株式会社 Photocatalyst structure and method for manufacturing same
JPWO2017146015A1 (en) * 2016-02-26 2018-12-06 日本曹達株式会社 Photocatalyst structure and manufacturing method thereof

Also Published As

Publication number Publication date
AU8036698A (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
JP3559892B2 (en) Photocatalytic film and method for forming the same
US6107241A (en) Photocatalytic body and method for making same
JP4995428B2 (en) Titanium oxide coating formation method
KR100393925B1 (en) Modified photocatalyst sol
EP0963789B1 (en) Photocatalyst-containing coating composition
KR101104262B1 (en) Article wih self-cleaning effect and method of preparation thereof
WO1998058736A1 (en) Titanium oxide-based photocatalyst, process for preparing the same, and use thereof
JP5301738B2 (en) Surface-treated metal and manufacturing method thereof
KR102436684B1 (en) Visible light responsive photocatalyst titanium oxide fine particle mixture, dispersion thereof, method for producing dispersion, photocatalyst thin film, and member having photocatalyst thin film on the surface
CN101137731A (en) Titanium oxide-coating agent, and forming method for titanium oxide-coating film
CN1701105A (en) Photocatalyst coating liquid, photocatalyst film and photocatalyst member
JP3444012B2 (en) Method of forming inorganic paint film
JP2003181299A (en) Production method of photocatalyst material
JP2004337740A (en) Photocatalyst body
WO1999033565A1 (en) Titanium oxide-based photocatalyst, process for preparing the same, and use thereof
JPH08141503A (en) Method for forming inorganic coating film
JP4693949B2 (en) Photocatalyst layer forming coating solution, photocatalyst complex, and photocatalyst structure
JPH09328336A (en) Coating film having photocatalyst activity and composition forming the same coating film
JP2000014755A (en) Metal plate having photocatalytic function
KR101760060B1 (en) Titanium dioxide photocatalyst composition for glass coating and preparation method thereof
JP5633571B2 (en) Method for producing rutile type titanium oxide fine particle dispersion
JP6112975B2 (en) Precoated metal plate with excellent contamination resistance
JP2004154779A (en) Substrate coated with photocatalytic film and method for forming photocatalytic film thereon
JP5065636B2 (en) Method for producing optical semiconductor fine particles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000526302

Format of ref document f/p: F