WO1999032899A1 - Radar apparatus for vehicles - Google Patents

Radar apparatus for vehicles Download PDF

Info

Publication number
WO1999032899A1
WO1999032899A1 PCT/JP1997/004756 JP9704756W WO9932899A1 WO 1999032899 A1 WO1999032899 A1 WO 1999032899A1 JP 9704756 W JP9704756 W JP 9704756W WO 9932899 A1 WO9932899 A1 WO 9932899A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
vehicle
transmission
beat
radar sensor
Prior art date
Application number
PCT/JP1997/004756
Other languages
French (fr)
Japanese (ja)
Inventor
Masahito Sato
Yoshihiko Konishi
Shuji Urasaki
Shinichi Sato
Tetsuo Haruyama
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP52365099A priority Critical patent/JP3421058B2/en
Priority to PCT/JP1997/004756 priority patent/WO1999032899A1/en
Publication of WO1999032899A1 publication Critical patent/WO1999032899A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9329Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles cooperating with reflectors or transponders

Definitions

  • the present invention relates to an on-vehicle radar device for the purpose of preventing collision or monitoring forward.
  • Fig. 1 is a document (Konno and Koshikawa, "Milliwave radar sensor with simplified communication function", IEICE Electronics Society Conference, C1-2-7, P.107, September 1997, September 1997. 2) is a circuit block diagram showing the configuration of a radar sensor in the conventional on-vehicle radar device shown in FIG. 2), and FIG. 2 is a waveform diagram showing a mode switching signal in this on-vehicle radar device.
  • 1 is a radar sensor
  • 2 is a VCO (voltage controlled oscillator)
  • 3 is a transmitting antenna connected to the VC02
  • 5 is a receiving antenna
  • 6 is a directional coupler
  • 7 is the receiving antenna 5
  • the mixers connected to the directional coupler 6 and 8 and 9 are the BPF (no-pass filter) and LPF (mouth-pass filter) connected to the mixer 7, respectively.
  • a video amplifier connected to the LPF 9, 11 is a video amplifier connected to the BPF 8
  • 12 and 13 are a mode selection circuit and an ASK modulator connected to VC 02.
  • the radar sensor 1 operates in two modes, radar mode and communication mode, according to the mode switching signal shown in Fig. 2. Although not shown in the figure in the communication mode, the rear part of the vehicle ahead running ahead of the vehicle equipped with the radar sensor 1 It communicates with the communication device mounted on the device.
  • the carrier of VC02 becomes a transmission signal FM-modulated by the triangular waveform of the radar mode output from the mode selection circuit 12, and is transmitted to the transmission antenna 3 and the mixer 17 via the directional coupler 6.
  • the transmission signal radiated from the transmission antenna 3 reaches the preceding vehicle, and its reflected wave is received by the reception antenna 5.
  • the reflected wave is affected by the Doppler shift according to the relative speed between the own vehicle and the preceding vehicle on the frequency axis, and the distance between the own vehicle and the preceding vehicle based on the transmission signal on the time axis. Received as a signal delayed by the corresponding delay time.
  • the received signal is mixed with the transmission frequency by the mixer 7, and a beat signal corresponding to the up and down of the triangular waveform is output.
  • this beat signal differs depending on the system, it generally has a frequency component of 100 kHz or less. Therefore, only this beat signal can be extracted as a radar mode signal by the LPF 9.
  • the mode switching signal has a constant voltage waveform as shown in Fig. 2.
  • the carrier of V C02 is subjected to ASK modulation by the ASK modulator 13 in accordance with the modulation signal (data over time).
  • the ASK-modulated carrier is transmitted to transmission antenna 3 and mixer 7 via directional coupler 6 as a transmission signal having data information.
  • the transmission signal radiated from the transmission antenna 3 is not shown in the figure, but is received by the reception antenna of the communication device mounted on the vehicle ahead and the envelope is detected.
  • the communication device When transmitting data information to the radar sensor 1 from the communication device, the communication device transmits the data as a PSK modulated signal using a 45 OKHz subcarrier from the transmission antenna.
  • a signal obtained by adding Doppler shift to this modulated signal is received by the receiving antenna 5 and then mixed by the mixer 7 with the transmitted signal to obtain a modulated signal component of the 45 OKHz subcarrier and a Doppler frequency component.
  • the modulated signal component of the 45 OKHz subcarrier is extracted by the BPF 8 as a communication mode signal.
  • the radar sensor 1 can obtain the radar mode signal and the communication mode signal by switching the observation time according to each mode of the mode switching signal, and the communication device mounted on the vehicle ahead has the radar sensor only in the communication mode. Communicates with the server 1.
  • the server 1 while operating as an FM-CW radar that performs the radar function only with the vehicle equipped with the radar sensor 1, it is used by both the vehicle equipped with the radar sensor 1 and the vehicle ahead equipped with the communication device by time division. It acts as a vehicle-mounted radar device with a communication function that allows two-way communication.
  • the frequency components of the reflected wave from the vehicle ahead and the reflected wave from other stationary objects are the Doppler frequency. Except for the component, it has the same transmission frequency (carrier frequency) component.
  • the instantaneous radar mode signal (beat signal) finally obtained by the radar sensor does not make it possible to distinguish between the target of the vehicle ahead and other stationary objects, and the speed and distance on the time axis It is necessary to distinguish from separation and changes in angle information (beam scan angle or handle angle).
  • the polarization of the transmitting / receiving antenna of the radar sensor must be obliquely reduced to avoid direct wave interference from the oncoming vehicle to the host vehicle.
  • the antenna must have linear or circular polarization, and depending on the antenna system (for example, a traveling wave-fed slot antenna), this improvement in polarization isolation hinders an improvement in antenna efficiency. . For this reason, there is also a problem that it is necessary to reduce (or increase) the S / N of the receiver in order to reduce the risk of the maximum detection distance or to prevent it.
  • the present invention has been made in order to solve the above-described problems, and to obtain an on-vehicle radar device in which a false image does not occur due to leakage of a DC component, and to prevent interference by a direct wave from an oncoming vehicle.
  • the purpose is to obtain an in-vehicle radar device that can be avoided regardless of the wave isolation.
  • An on-vehicle radar device includes a radar sensor mounted on an own vehicle and, after receiving a transmission signal transmitted from the radar sensor, offsets a frequency of the received signal within a band receivable by the radar sensor. And a repeater having a transmitting means for transmitting the signal as a relay wave.
  • a vehicle-mounted radar device that can avoid detection of a false image depending on leakage of a DC component in a radar sensor. Only However, even when the radar sensors of the own vehicle and the oncoming vehicle have the same polarization, the radar sensor of the own vehicle detects the beat signal of the relay wave whose frequency has been offset by the repeater. Therefore, it is possible to avoid the interference of a direct wave from an oncoming vehicle that is not offset, and to obtain a vehicle-mounted radar device that does not need to restrict the polarization of the transmitting and receiving antennas.
  • the on-vehicle radar device further comprises a beat sensor extracting means for obtaining only a beat signal for the relay wave in the radar sensor, a two-beat signal for obtaining two types of beat signals for the reflected wave from the preceding vehicle and the relay wave. It is characterized by signal extraction means. This makes it possible to extract the beat signal for the reflected wave even when the forward car is out of order and the repeater is not operating, and in addition to vehicles without a repeater other than the preceding car, autopigs, bicycles, In addition, it is possible to obtain an on-vehicle radar device capable of detecting a beat signal for various stationary objects (guard rails and falling objects) ⁇
  • the on-vehicle radar device of the present invention uses a subcarrier for a transmission signal obtained by FM-modulating the transmission frequency with a triangular waveform or a transmission signal composed of a modulation signal with the above triangular waveform and an unmodulated signal with a constant voltage waveform.
  • a waveform adding means for adding a modulation waveform obtained by modulating with a modulation signal (data information such as an ID code), and a signal at a preceding stage for modulating a reception signal with a modulation signal using the above subcarrier.
  • a radar sensor having beat signal extraction means for obtaining a beat signal for a relay wave after mixing is provided. With this configuration, it is possible to identify whether the extracted beat signal is for a transmission signal transmitted from a radar sensor of another vehicle (for example, a vehicle traveling in an adjacent lane) or for the transmission signal of the own vehicle.
  • a vehicle-mounted radar device can be obtained.
  • the on-vehicle radar device provides a radar output device having a Having two types of beat signal extraction means to obtain two types of beat signals for reflected waves and relay waves from vehicles ahead after mixing with the signal at the previous stage where the power is modulated with a modulation signal using a subcarrier It is characterized by the following. With this configuration, even when multiple vehicles equipped with the same radar sensor travel, even if the repeater breaks down, the vehicle does not operate, the vehicle does not have the repeater, and various stationary objects (guard rails).
  • the present invention provides an on-vehicle radar device capable of extracting a beat signal for a transmission signal transmitted from a radar sensor of the own vehicle from among beat signals for reflected waves of the vehicle and a falling object.
  • a relay mounted on the rear part of the vehicle in front of the vehicle, demodulating means for demodulating the first data information from the received signal, and forming a portion of the received signal modulated by the first data information into an unmodulated signal. And a modulating means for modulating a part of the non-modulated signal by second decoding information using a subcarrier.
  • FIG. 1 is a circuit block diagram showing a configuration of a radar sensor showing an example of a conventional radar device
  • FIG. 2 is a waveform diagram of a mode switching signal in the radar device
  • FIG. 3 is an embodiment of the present invention.
  • FIG. 4 is a circuit block diagram showing a configuration of an on-vehicle radar device according to Embodiment 1
  • FIG. 4 is a waveform diagram of a transmission signal according to Embodiment 1 of the present invention
  • FIG. 5 is an on-vehicle vehicle showing Embodiment 2 of the present invention.
  • FIG. 6 is a circuit block diagram of a radar sensor constituting a radar apparatus for use in a vehicle
  • FIG. 6 is a circuit block diagram of a radar sensor constituting a radar apparatus for use in a vehicle
  • FIG. 6 is a waveform diagram of a transmission signal in a vehicle-mounted radar apparatus according to Embodiment 3 of the present invention
  • FIG. FIG. 8 is a circuit block diagram of a radar sensor constituting the on-vehicle radar device according to the third embodiment of the present invention.
  • FIG. 8 is a diagram showing a radar sensor constituting the on-vehicle radar device according to the fourth embodiment of the present invention.
  • FIG. 9 is a circuit block diagram
  • FIG. 9 is a waveform diagram of a transmission signal in the on-vehicle radar device according to the fifth embodiment of the present invention
  • FIG. 10 is a block diagram of the on-vehicle radar device according to the fifth embodiment of the present invention.
  • FIG. 2 is a circuit block diagram of a relay device that performs the operation. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a configuration diagram of an on-vehicle radar device according to Embodiment 1 of the present invention
  • FIG. 4 is a waveform diagram showing a transmission signal in Embodiment 1 of the present invention.
  • 21 a is a radar sensor mounted on the own vehicle
  • 22 is an FM modulator in the radar sensor 21 a
  • 23 a is a VCO whose voltage is controlled by the FM modulator
  • 24a is a transmitting antenna
  • 25a is a receiving antenna
  • 26 is a directional coupler connected between the VC023a and the transmitting antenna 24a
  • 27a and 27b are mixers
  • Reference numeral 28a denotes a BPF connected to the output side of the mixer 27a
  • 29a denotes a local oscillator connected to the mixer 27b.
  • the transmission means is provided by the FM modulator 22, VC 0 2 3 a, and the directional coupler 26, and is received by the directional coupler 26, the mixer 27 a, and the BPF 28 a Means are also constituted by a mixer 27 b and a local oscillator 29 a, respectively.
  • 30a is a repeater mounted on the rear of the vehicle ahead of the vehicle. It has a receiving antenna 25b, a local oscillator 29b, a mixer 27c, and a transmitting antenna 24b.
  • 3 1 is a reflected wave transmitted from the transmitting antenna 24 a and reflected by the vehicle ahead, 32 is transmitted from the transmitting antenna 24 a and passes through the repeater 30 a to the receiving antenna 25 a It is an incoming relay wave.
  • 33a and 34a are the modulated signal and the unmodulated signal output from the VC023a, respectively, and 35a is the modulated signal 33a and the unmodulated signal 34a respectively. Is a transmission signal.
  • the modulation waveform formed by the FM modulator 22 includes a triangular waveform, a triangular waveform, and a constant voltage waveform.
  • the VC023a controls the voltage by the latter triangle waveform and the constant voltage waveform.
  • the output from VCO 23a is a transmission signal 35a composed of a modulated signal 33a and an unmodulated signal 34a.
  • the modulation signal 33a is an FM modulation signal whose center frequency is f0 and whose frequency changes (up and down) within the band of the radar sensor 2la.
  • the frequency of the transmission signal 35a is typically represented using f0.
  • This transmission signal 35a is supplied to the transmission antenna 24a and the mixer 27a via the directional coupler 26.
  • the transmitted signal 35a radiated from the transmitting antenna 24a is received by the reflected wave 31 reflected by the vehicle traveling ahead and by the receiving antenna 25b of the repeater 30a.
  • the output (frequency foff) of the local oscillator 29 b is mixed by the mixer 27 c and split into two relay waves 32 transmitted from the transmission antenna 24 b, which are both reception antennas of the own vehicle. Received at 25a.
  • the driver according to the relative speed is used.
  • the frequency of the reflected wave 31 is f 0 + fd
  • the frequency of the relay wave 32 is f 0 + fd + foff because of the influence of the shifter shift.
  • fd is the Doppler frequency due to the Doppler shift, and in the case of an on-vehicle radar device, the frequency component is approximately 100 kHz or less.
  • the reflected wave 31 and the relay wave 32 received by the receiving antenna 25a are mixed by the transmission signal 35a (frequency component f0) and the mixer 27a, and the frequency component fd for the reflected wave 31 and relayed. Two groups of beat signals of frequency component fd + foff for wave 32 are obtained.
  • the relay wave 32 2 whose frequency is offset among the two groups of beat signals Only the beat signal of frequency component fd + foff can be extracted from BPF 28a. Further, the beat signal is mixed with the signal of the local oscillator 29a having the same frequency foff as that of the local oscillator 29b of the repeater 30a by the mixer 27b, thereby forming the relay wave 32. The corresponding Doppler frequency component fd can be extracted.
  • the frequency component of the two beat signals (up and down) corresponding to the difference between the modulated signal portions of the triangular waveform and the Doppler frequency component corresponding to the difference between the unmodulated signal portion of the constant voltage waveform are Since it is extracted, the output of the mixer 27 b becomes the frequency components of the above two types of beat signals and the Doppler frequency component (however, the Doppler frequency component can be calculated from the above two types of bit signals).
  • the distance and relative speed between the front vehicle equipped with the repeater 30a and the own vehicle can be known from these frequency components, and the vehicle mounted to prevent or avoid collision between the own vehicle and the front vehicle.
  • the beat signal is only the beat signal for the reflected wave 31 of the vehicle ahead, and due to the leakage of the DC component in the radar sensor 2 la, it always becomes an object with a speed of 0 or a combination of this DC component and the beat signal. More false images are detected.
  • the on-vehicle radar device of the first embodiment since the DC component due to the leakage is removed by the BPF 28a, the problem of the false image caused by the leakage of the DC component is solved. it can.
  • the finally obtained beat signal is for the relay wave 32 that has passed through the repeater 30a mounted on the vehicle ahead, the bee signal from a stationary object other than the vehicle ahead (for example, a guard rail or a signboard) is obtained. Signal can be removed, and the effect of being able to reliably detect the preceding vehicle even when traveling on a curve is obtained.
  • FIG. 5 is a configuration diagram of a radar sensor 21b constituting an on-vehicle radar device according to Embodiment 2 of the present invention.
  • the output of the mixer 27a in the radar sensor 21a of the on-vehicle radar device in the first embodiment shown in FIG. 3 is divided into two, one of which is a BPF 28a, and the other is a BPF 28a. Is supplied to the LPF 36a.
  • the output of the BPF 28a is the same as that of the radar sensor 21a of the first embodiment.
  • the output of 29 a is supplied to the mixer 27 b.
  • the repeater (not shown) in the second embodiment is the same as repeater 3Oa shown in FIG. 3, and the transmission signal is the same as transmission signal 35a shown in FIG.
  • the two groups for the reflected wave 31 and the relay wave 32 which are the outputs of the mixer 27a, as two types of beat signal extracting means.
  • the bit signal (frequency component fd) for the reflected wave 31 is higher than that of the LPF 36a, and the bit signal for the relay wave 32 (frequency component fd + foff ) Can be extracted from the BPF 28a.
  • the beat signal extracted by the BPF 28a is mixed with the output of the local oscillator 29a (frequency component foff) by the mixer 27b. By mixing, a beat signal (frequency component fd) for the relay wave 32 can be obtained.
  • a beat signal for the reflected wave 31 can be obtained in addition to the beat signal for the relay wave 32, and even if the forward vehicle fails and the repeater 30a is not operating, the own vehicle and the preceding vehicle can be obtained.
  • the vehicle can calculate the relative speed and distance from the vehicle, and can also use vehicles other than the vehicle in front without a repeater 30a, as well as motorcycles, white wheels, and various stationary objects (gardrails and falling objects). An effect that can be detected is obtained.
  • FIG. 6 is a waveform diagram of a transmission signal in the on-vehicle radar device according to Embodiment 3 of the present invention
  • FIG. 7 is a configuration of a radar sensor 2lc in the on-vehicle radar device according to Embodiment 3 of the present invention.
  • FIG. in the third embodiment in addition to the modulated signal 33a and the non-modulated signal 34b, the transmission signal 35a of the vehicle-mounted radar device according to the first embodiment shown in FIG.
  • a modulation signal 33b obtained by modulating with data information (for example, an ID code) is provided.
  • the transmission signal 35b is transmitted from the transmission antenna 24a of the radar sensor 21c.
  • the reflected wave 31 and the relay wave 32 are received by the receiving antenna 25a.
  • the transmitting system is provided with a modulator 37a between the output of the directional coupler 26 and the input of the transmitting antenna 24a, and the modulator 37a is connected to the FM modulator 22c. Is controlled by the timing signal 39 from the transmitter, and the data information 38 using the subcarrier (frequency component fsc) is used to control the transmission signal 35a formed by the VC02 3a (see FIG. 4).
  • a part of the modulation signal 34a is modulated (for example, PSK modulation) to generate a transmission signal 35b provided with the modulation signal 33b.
  • the receiving system supplies the output of the mixer 27a to the BPF 28a, mixes the output of the BPF 28a and the output of the local oscillator 29a with the mixer 27b, and mixes the output of the mixer 27b.
  • the output is supplied to LPF 36b and BPF 28b.
  • the repeater (not shown) in the third embodiment is the same as repeater 30a shown in FIG. 3, and the output of VC023a is the same as transmission signal 35a shown in FIG.
  • the on-vehicle radar device of the third embodiment in addition to the modulated signal 33a and the unmodulated signal 34b used for radar, data information of the own vehicle (for example, ID code) is used.
  • Modulated signal with 3 3 b and Is transmitted from the transmitting antenna 24a of the radar sensor 21c, and the reflected wave 31 and the relay wave 32 are received by the receiving antenna 25a and then transmitted to the mixer 27a.
  • the mixer 27 is used.
  • the output of a is a beat signal (frequency component fsc + fd) for the reflected wave 31 containing data (frequency component fsc) using the subcarrier and a beat signal (frequency component fsc + fd + foff).
  • the beat signal for the relay 32 By passing the two groups of beat signals through the BPF 28a, only the beat signal for the relay 32 can be extracted, and the output of the local oscillator 29a is output by the mixer 27b. After mixing with the frequency component foff), the beat signal (frequency component fd) and the de-night information (frequency component fsc) for the intermediate wave 32 are applied to the filter with the LPF 36b and BPF 28b. Can be separated and extracted.
  • the beat signal detected by the radar sensor 21c corresponds to the relay wave 32 of the transmit signal 35b transmitted from the own vehicle's transmit antenna 24a or not. Code, etc.) and the transmitted data (eg, the ID code of the own vehicle).
  • the extracted beat signal is a relay wave 32 for the transmission signal 35 b transmitted from the radar sensor 21 c of another vehicle (for example, a vehicle traveling in the next lane) or the transmission of the own vehicle.
  • FIG. 8 is a configuration diagram of a radar sensor 21 d in a vehicle-mounted radar device according to Embodiment 4 of the present invention.
  • This Embodiment 4 corresponds to FIG.
  • the output of the mixer 27a in the radar sensor 21c of the on-vehicle radar device in the third embodiment shown in Fig. 3 is divided into two, and one is supplied to the BPF 28a and the other is supplied to the LPF 36a. Further, the output of the LPF 36a is supplied to the LPF 36c and the BPF 28c.
  • the repeater (not shown) in the fourth embodiment is a repeater 30a shown in FIG. 3, an output of VC023a is a transmission signal 35a shown in FIG.
  • the output of the transmitter 37a is the same as the transmission signal 35b shown in Fig. 6.o
  • two groups of beat signals for the reflected wave 31 and the relay wave 32 output from the mixer 27a are represented by the BPF 28a. Since the LPF 36a is used to fill the filter, the beat signal (frequency component fsc + fd) for the reflected wave 31 is lower than that of the LPF 36a, and the beat signal for the relay wave 32 (frequency component: fsc + fd + foff) can be extracted from BPF 28a.
  • the beat signal for the relay wave 32 extracted by the BPF 28a is mixed with the output of the local oscillator 29a (frequency component foff) by the mixer 27b and the LPF 36b as in the third embodiment. And the BPF 28b to fill the signal, so that the beat signal (frequency component fd) and data information
  • Frequency component fsc + fd
  • LPF 36c and BPF 28c are filtered by LPF 36c and BPF 28c to separate the beat signal (frequency component fd) and de-night information (frequency component fsc) for reflected wave 31. Can be extracted.
  • FIG. 9 is a waveform diagram of a transmission signal in the on-vehicle radar device according to Embodiment 5 of the present invention.
  • FIG. 10 shows the configuration of a repeater in the on-vehicle radar device according to Embodiment 5 of the present invention. It is a block diagram.
  • the fifth embodiment is different from the third embodiment shown in FIG. 6 in that the transmission signal 35 b of the on-vehicle radar device according to the third embodiment includes a modulation signal 3 having information on the own vehicle (such as an ID code).
  • 3b is a transmission signal 35 which is a modulated signal 33c having data information of the own vehicle (for example, an ID code) and data information of another vehicle (for example, an ID code).
  • the radar sensor according to the fifth embodiment is the same as the radar sensors 21c and 21d shown in FIGS. 7 and 8.
  • the modulated signal 33 having data information of another vehicle (dummy data) in addition to data information of the own vehicle (for example, ID code).
  • the transmission signal 35c with c is transmitted to the radar sensor 21c (Fig. 7) or 2Id (Fig. 8) of the vehicle.
  • the signal notifying the start and end of the detection of the data information storage part by the synchronization circuit 41 is sent to the demodulator 40.
  • the radar sensor 21 stored in the data information part of the vehicle is used.
  • the ID code of the vehicle equipped with c or 2 Id (own vehicle) and various communication data can be received by the vehicle ahead.
  • the signal processing unit 43 stores the ID code and various communication data in the data overnight information part 33c of the other vehicle, and adds it to the received data of the own vehicle.
  • the modulation data 44 using the subcarriers is formed by the modulation and modulation (for example, PSK modulation) by the modulator 37b
  • the output of the local oscillator 29b is output by the mixer 27c.
  • the modulator 37 b converts the modulated signal 33 c portion of the received signal into a non-modulated signal once, and then modulates the non-modulated signal portion by the modulation decoder 44. Therefore, it is possible to obtain an on-vehicle radar device capable of two-way communication between the own vehicle and the preceding vehicle. In other words, the effect of obtaining an on-vehicle radar device having both the inter-vehicle communication function for the front and rear of the own vehicle and the collision prevention function is obtained.
  • the radar sensors 21a to 2Id of the on-vehicle radar devices according to Embodiments 1 to 5 described above are of the homodyne type, but the homodyne type or the heterodyne type having other configurations are described. May be used.
  • the radar sensors 21a to 2Id and the repeaters 30a and 30b of the on-vehicle radar device according to the first to fifth embodiments have been described for simplicity. Although the amplifier and the like are removed, these may be provided. Industrial applicability
  • the on-vehicle radar device includes a radar sensor that transmits and receives an FM modulation signal and extracts a beat signal, and a relay that offsets the frequency after receiving the FM modulation signal and relays the signal. Because it consists of a relay that transmits as waves, it does not detect false images that depend on the leakage of DC components in the radar sensor, and avoids direct wave interference from oncoming vehicles regardless of polarization isolation. And a beat signal for a stationary object can be removed.

Abstract

A radar apparatus for vehicles comprising a radar sensor for transmitting and receiving an FM signal and extracting a beat signal, and a relay for offsetting the frequency after receiving this FM signal and transmitting a relay wave. This radar apparatus does not detect a false image depending on leak-in of a DC component in the radar sensor, can avoid the interference due to a direct wave from an oncoming vehicle without using polarized wave isolation and can eliminate the beat signal corresponding to stationary objects.

Description

明 細 書 車載用レーダ装置 技術分野  Description Automotive radar equipment Technical field
この発明は、 衝突防止あるいは前方監視を目的と した車載用レーダ装 置に関するものである。 背景技術  The present invention relates to an on-vehicle radar device for the purpose of preventing collision or monitoring forward. Background art
第 1図は文献 (今野、 越川、 " 簡易通信機能付加ミ リ波レーダセンサ " 、 信学会エレク トロニクスソサイエティ大会、 C一 2 — 7 2 , P P. 1 0 7 , 1 9 9 7年 9月) に示された従来の車載用レーダ装置における レーダセンサの構成を示す回路プロ ック図、 第 2図はこの車載用レーダ 装置におけるモー ド切替え信号を示す波形図である。  Fig. 1 is a document (Konno and Koshikawa, "Milliwave radar sensor with simplified communication function", IEICE Electronics Society Conference, C1-2-7, P.107, September 1997, September 1997. 2) is a circuit block diagram showing the configuration of a radar sensor in the conventional on-vehicle radar device shown in FIG. 2), and FIG. 2 is a waveform diagram showing a mode switching signal in this on-vehicle radar device.
第 1図において、 1はレーダセンサ、 2は V C O (電圧制御発振器) 、 3は上記 V C 02 と接続された送信アンテナ、 5は受信アンテナ、 6 は方向性結合器、 7は上記受信アンテナ 5及び上記方向性結合器 6 と接 続されたミキサー、 8 と 9は各々上記ミキサー 7 と接続された B P F ( ノ、 *ン ドパスフ ィル夕) と L P F (口一パスフ ィ ル夕) 、 1 0は L P F 9 に接続されたビデオアンプ、 1 1は B P F 8に接続されたビデオアンプ 、 1 2 , 1 3は V C 0 2に接続されたモー ド選択回路及び A S K変調器 である。  In FIG. 1, 1 is a radar sensor, 2 is a VCO (voltage controlled oscillator), 3 is a transmitting antenna connected to the VC02, 5 is a receiving antenna, 6 is a directional coupler, 7 is the receiving antenna 5 and The mixers connected to the directional coupler 6 and 8 and 9 are the BPF (no-pass filter) and LPF (mouth-pass filter) connected to the mixer 7, respectively. A video amplifier connected to the LPF 9, 11 is a video amplifier connected to the BPF 8, and 12 and 13 are a mode selection circuit and an ASK modulator connected to VC 02.
次に動作について説明する。  Next, the operation will be described.
レーダセンサ 1は第 2図に示すモー ド切替え信号によ り レーダモード と通信モードの 2モー ドで動作する。 通信モー ド時には図には示してい ないが、 レーダセンサ 1 を搭載した自車の前方を走行する前方車の後部 に搭載した通信装置と通信を行う。 The radar sensor 1 operates in two modes, radar mode and communication mode, according to the mode switching signal shown in Fig. 2. Although not shown in the figure in the communication mode, the rear part of the vehicle ahead running ahead of the vehicle equipped with the radar sensor 1 It communicates with the communication device mounted on the device.
まず、 レーダモー ド時の動作について説明する。 V C 02の搬送波は モー ド選択回路 1 2から出力されるレーダモー ドの三角波形により FM 変調された送信信号となり、 方向性結合器 6を介して送信アンテナ 3と ミキサ一 7に送出される。 上記送信アンテナ 3から放射した送信信号は 前方車に到達しその反射波が受信アンテナ 5で受信される。 この時、 反 射波は、 周波数軸において自車と前方車との相対速度に応じた ドッブラ ーシフ 卜の影響を受け、 また時間軸においては送信信号を基準とすると 自車と前方車の距離に応じた遅延時間分の遅れを受けた信号と して受信 される。  First, the operation in the radar mode will be described. The carrier of VC02 becomes a transmission signal FM-modulated by the triangular waveform of the radar mode output from the mode selection circuit 12, and is transmitted to the transmission antenna 3 and the mixer 17 via the directional coupler 6. The transmission signal radiated from the transmission antenna 3 reaches the preceding vehicle, and its reflected wave is received by the reception antenna 5. At this time, the reflected wave is affected by the Doppler shift according to the relative speed between the own vehicle and the preceding vehicle on the frequency axis, and the distance between the own vehicle and the preceding vehicle based on the transmission signal on the time axis. Received as a signal delayed by the corresponding delay time.
上記受信信号はミキサー 7で送信周波数と ミキシングされ、 三角波形 のアップとダウンに相当するビー ト信号が出力される。 このビー ト信号 はシステムによ り異なるが、 概ね 1 0 0 K H z以下の周波数成分を有す る。 このため、 L P F 9によ り レーダモード信号としてこのビート信号 のみを抽出できる。  The received signal is mixed with the transmission frequency by the mixer 7, and a beat signal corresponding to the up and down of the triangular waveform is output. Although this beat signal differs depending on the system, it generally has a frequency component of 100 kHz or less. Therefore, only this beat signal can be extracted as a radar mode signal by the LPF 9.
次に、 通信モー ドについて説明する。 通信モー ド時はモー ド切替え信 号が、 第 2図に示すように一定電圧波形となる。 この時、 変調信号 (デ 一夕情報) に応じて A S K変調器 1 3によ り、 上記 V C 02の搬送波が A S K変調される。 A S K変調された搬送波はデータ情報を有する送信 信号として方向性結合器 6を介して送信アンテナ 3 と ミキサー 7に送出 される。 上記送信アンテナ 3から放射した送信信号は図には示していな いが、 前方車に搭載された通信装置の受信アンテナによ り受信され、 ェ ンべロープ検出される。  Next, the communication mode will be described. In the communication mode, the mode switching signal has a constant voltage waveform as shown in Fig. 2. At this time, the carrier of V C02 is subjected to ASK modulation by the ASK modulator 13 in accordance with the modulation signal (data over time). The ASK-modulated carrier is transmitted to transmission antenna 3 and mixer 7 via directional coupler 6 as a transmission signal having data information. The transmission signal radiated from the transmission antenna 3 is not shown in the figure, but is received by the reception antenna of the communication device mounted on the vehicle ahead and the envelope is detected.
また、 上記通信装置からデータ情報をレーダセンサ 1に送る時は、 通 信装置においてデ一夕情報を 4 5 O K H zのサブキャ リアを用いた P S K変調信号として送信アンテナから送出される。 レーダセンサ 1では、 この変調信号に ドップラーシフ トが加わった信号を受信アンテナ 5で受 信した後に送信信号と ミキサー 7 によ り ミキシングされ、 4 5 O K H z サブキヤ リァの変調信号成分と ドッブラ一周波数成分が得られる。 この うち、 4 5 O K H zサブキャ リアの変調信号成分のみが通信モー ド信号 として B P F 8によ り抽出される。 When transmitting data information to the radar sensor 1 from the communication device, the communication device transmits the data as a PSK modulated signal using a 45 OKHz subcarrier from the transmission antenna. In radar sensor 1, A signal obtained by adding Doppler shift to this modulated signal is received by the receiving antenna 5 and then mixed by the mixer 7 with the transmitted signal to obtain a modulated signal component of the 45 OKHz subcarrier and a Doppler frequency component. Of these, only the modulated signal component of the 45 OKHz subcarrier is extracted by the BPF 8 as a communication mode signal.
したがって、 レーダセンサ 1はモー ド切替え信号の各モードに応じた 観測時間の切替えにより、 レーダモー ド信号と通信モード信号を得るこ とができ、 前方車に搭載する通信装置では通信モー ド時のみレーダセン サ 1 と通信ができる。 つま り、 レーダセンサ 1の搭載車のみでレーダ機 能を果たす F M— C Wレーダとして動作しつつ、 且つ時間分割によ り レ —ダセンサ 1の搭載車と通信装置を搭載する前方車の双方によ り双方向 通信が可能な通信機能を持つ車載用レーダ装置と して作用する。  Therefore, the radar sensor 1 can obtain the radar mode signal and the communication mode signal by switching the observation time according to each mode of the mode switching signal, and the communication device mounted on the vehicle ahead has the radar sensor only in the communication mode. Communicates with the server 1. In other words, while operating as an FM-CW radar that performs the radar function only with the vehicle equipped with the radar sensor 1, it is used by both the vehicle equipped with the radar sensor 1 and the vehicle ahead equipped with the communication device by time division. It acts as a vehicle-mounted radar device with a communication function that allows two-way communication.
従来の車載用レーダ装置は以上のように構成されているので、 前方車 からの反射波と他の静止物 (例えばガードレールや路上への落下物) か らの反射波の周波数成分は、 ドッブラー周波数成分を除く と同一の送信 周波数 (搬送波の周波数) 成分を有する。 このため、 レーダセンサにて 最終的に得られる瞬時的なレーダモー ド信号 (ビー ト信号) からは前方 車と他の静止物とのターゲッ トの区別が付かず、 時間軸上での速度、 距 離、 及び角度情報 (ビームスキャン角度あるいはハン ドル角度) の変化 から区別する必要がある。. したがって、 時間軸上の夕ーゲッ ト情報 (距 離、 速度、 角度) を用いた処理が複雑となり、 場合によっては衝突を回 避する処理の実行 (運転手への警告、 自動減速、 自動急ブレーキ) に遅 れが生じるという課題がある。  Since the conventional on-vehicle radar system is configured as described above, the frequency components of the reflected wave from the vehicle ahead and the reflected wave from other stationary objects (for example, guardrails and falling objects on the road) are the Doppler frequency. Except for the component, it has the same transmission frequency (carrier frequency) component. For this reason, the instantaneous radar mode signal (beat signal) finally obtained by the radar sensor does not make it possible to distinguish between the target of the vehicle ahead and other stationary objects, and the speed and distance on the time axis It is necessary to distinguish from separation and changes in angle information (beam scan angle or handle angle). Therefore, processing using evening target information (distance, speed, angle) on the time axis becomes complicated, and in some cases, execution of processing to avoid collisions (warning to the driver, automatic deceleration, automatic emergency There is a problem that delay occurs in braking).
また、 実際にはレーダセンサにおける送信アンテナから受信アンテナ への電波の漏れ込み、 あるいはアンテナ以外のレーダセンサ内部での受 信側への電波の漏れ込み等があるため、 レーダモー ド信号と して相対速 度 0に相当する D C成分が存在する。 このため、 この D C成分に依存す る夕一ゲッ 卜の偽像が見えてしまう という F M— C Wレーダ固有の課題 がある。 In addition, there is actually leakage of radio waves from the transmitting antenna to the receiving antenna in the radar sensor, or leakage of radio waves to the receiving side inside the radar sensor other than the antenna. Speed There is a DC component corresponding to degree 0. For this reason, there is a problem unique to FM-CW radar that a false image of the evening that depends on this DC component can be seen.
また、 反対車線を走行する対向車が同一のレーダセンサを装備してい る場合、 この対向車から自車への直接波の干渉を避けるために、 レーダ センサの送受信アンテナの偏波を斜め 4 5度直線偏波あるいは円偏波を 有するアンテナとしなければならず、 アンテナ方式 (例えば進行波給電 スロ ヅ トァレ一アンテナ) によっては、 この偏波アイソレーショ ンの向 上がアンテナ効率向上の妨げとなる。 このため、 最大検知距離のスぺヅ クを緩和するか、 あるいはこれを防ぐために受信機の S / Nを向上 (コ ス トアップ) させなければならないという課題もある。  If the oncoming vehicle traveling in the opposite lane is equipped with the same radar sensor, the polarization of the transmitting / receiving antenna of the radar sensor must be obliquely reduced to avoid direct wave interference from the oncoming vehicle to the host vehicle. The antenna must have linear or circular polarization, and depending on the antenna system (for example, a traveling wave-fed slot antenna), this improvement in polarization isolation hinders an improvement in antenna efficiency. . For this reason, there is also a problem that it is necessary to reduce (or increase) the S / N of the receiver in order to reduce the risk of the maximum detection distance or to prevent it.
この発明は上記のような課題を解決するためになされたものであり、 D C成分の漏れ込みによる偽像の発生が無い車載用レーダ装置を得ると ともに、 対向車からの直接波による干渉を偏波アイ ソレーショ ンによら ず回避できる車載用レーダ装置を得ることを目的とする。  The present invention has been made in order to solve the above-described problems, and to obtain an on-vehicle radar device in which a false image does not occur due to leakage of a DC component, and to prevent interference by a direct wave from an oncoming vehicle. The purpose is to obtain an in-vehicle radar device that can be avoided regardless of the wave isolation.
また、 信号処理によらず H / Wによって静止物に対応するビー ト信号 を除去できるとともに、 前方車に対するビー ト信号を抽出可能な車載用 レーダ装置を得ることも目的とする。 発明の開示  It is another object of the present invention to obtain a vehicle-mounted radar device capable of removing a beat signal corresponding to a stationary object by H / W without using signal processing and extracting a beat signal for a vehicle ahead. Disclosure of the invention
この発明の車載用レーダ装置は、 自車に搭載するレーダセンサと、 こ のレーダセンサから送信された送信信号を受信した後、 この受信信号の 周波数を上記レーダセンサで受信可能な帯域内でオフセッ 卜 して中継波 として送信する送信手段を有する中継器とを備えたことを特徴とする。 この構成によって、 レーダセンサにおける D C成分の漏れ込みに依存す る偽像の検出を回避できる車載用レーダ装置を得ることができる。 しか も、 自車と対向車のレーダセンサの偏波が同一偏波の場合でも、 自車の レーダセンサは中継器によ り周波数がオフセッ トされた中継波のビー ト 信号を検出するため、 周波数がオフセッ 卜されていない対向車からの直 接波の干渉を回避でき、 送受信アンテナの偏波の制約が不要な車載用レ ーダ装置を得ることができる。 An on-vehicle radar device according to the present invention includes a radar sensor mounted on an own vehicle and, after receiving a transmission signal transmitted from the radar sensor, offsets a frequency of the received signal within a band receivable by the radar sensor. And a repeater having a transmitting means for transmitting the signal as a relay wave. With this configuration, it is possible to obtain a vehicle-mounted radar device that can avoid detection of a false image depending on leakage of a DC component in a radar sensor. Only However, even when the radar sensors of the own vehicle and the oncoming vehicle have the same polarization, the radar sensor of the own vehicle detects the beat signal of the relay wave whose frequency has been offset by the repeater. Therefore, it is possible to avoid the interference of a direct wave from an oncoming vehicle that is not offset, and to obtain a vehicle-mounted radar device that does not need to restrict the polarization of the transmitting and receiving antennas.
また、 この発明の車載用レーダ装置は、 レーダセンサにおいて中継波 に対するビー ト信号のみを得るビート信号抽出手段を、 前方車などから の反射波及び中継波に対する 2種類のビート信号を得る 2種類ビート信 号抽出手段としたことを特徴とするものである。 このことによって、 前 方車が故障し中継器が動作していない場合でも反射波に対するビー ト信 号を抽出できるとともに、 前方車以外の中継器を搭載していない車両の 他、 オートパイ、 自転車、 及び種々の静止物 (ガー ドレールや落下物) に対するビー ト信号も検出できる車載用レーダ装置を得ることができる ο  The on-vehicle radar device according to the present invention further comprises a beat sensor extracting means for obtaining only a beat signal for the relay wave in the radar sensor, a two-beat signal for obtaining two types of beat signals for the reflected wave from the preceding vehicle and the relay wave. It is characterized by signal extraction means. This makes it possible to extract the beat signal for the reflected wave even when the forward car is out of order and the repeater is not operating, and in addition to vehicles without a repeater other than the preceding car, autopigs, bicycles, In addition, it is possible to obtain an on-vehicle radar device capable of detecting a beat signal for various stationary objects (guard rails and falling objects) ο
また、 この発明の車載用レーダ装置は、 送信周波数を三角波形で F M 変調して得られる送信信号あるいは上記三角波形による変調信 と一定 電圧波形による無変調信号からなる送信信号にサブキャ リアを用いた変 調信号 ( I Dコー ドなどのデータ情報) によ り変調して得られる変調波 形を付加する波形付加手段と、 受信信号を上記サブキヤ リアを用いた変 調信号で変調する前段の信号でミキシングした後に中継波に対するビー ト信号を得るビー ト信号抽出手段とを有するレーダセンサを備えたこと を特徴とする。 この構成によって、 抽出したビー ト信号が他車 (例えば 隣り車線を走行する車) のレーダセンサから送信された送信信号に対す るものなのか、 あるいは自車の送信信号に対するものなのかを識別でき る車載用レーダ装置を得ることができる。  Also, the on-vehicle radar device of the present invention uses a subcarrier for a transmission signal obtained by FM-modulating the transmission frequency with a triangular waveform or a transmission signal composed of a modulation signal with the above triangular waveform and an unmodulated signal with a constant voltage waveform. A waveform adding means for adding a modulation waveform obtained by modulating with a modulation signal (data information such as an ID code), and a signal at a preceding stage for modulating a reception signal with a modulation signal using the above subcarrier. A radar sensor having beat signal extraction means for obtaining a beat signal for a relay wave after mixing is provided. With this configuration, it is possible to identify whether the extracted beat signal is for a transmission signal transmitted from a radar sensor of another vehicle (for example, a vehicle traveling in an adjacent lane) or for the transmission signal of the own vehicle. A vehicle-mounted radar device can be obtained.
また、 この発明の車載用レーダ装置は、 レーダセンサにおける受信出 力をサブキャ リアを用いた変調信号で変調する前段の信号でミ キシング した後に前方車などからの反射波及び中継波に対する 2種類のビー ト信 号を得る 2種類ビー ト信号抽出手段を有することを特徴とするものであ る。 この構成によって、 同一のレーダセンサを搭載した車が複数走行す る場合でも、 中継器が故障して動作していない車両や中継器を搭載して いない車両、 さらには種々の静止物 (ガー ドレールや落下物) の反射波 に対するビー ト信号のうち、 自車のレーダセンサから送信した送信信号 に対するビー ト信号を抽出できる車載用レーダ装置を得ることができる また、 この発明の車載用レーダ装置は、 前方車の後部に搭載した中継 器に、 受信信号から第 1のデータ情報を復調する復調手段と、 上記受信 信号における第 1のデータ情報で変調されている部分を無変調信号に波 形成形する波形形成手段と、 上記無変調信号の一部をサブキャ リアを用 いた第 2のデ一夕情報により変調する変調手段とを具備したことを特徴 とする。 この構成によって、 自車と前方車との間で双方向で通信が可能 な、 言い換えれば自車前方及び後方に対する車車間通信機能と衝突防止 機能の両機能を有する車載用レーダ装置を得ることができる。 図面の簡単な説明 Further, the on-vehicle radar device according to the present invention provides a radar output device having a Having two types of beat signal extraction means to obtain two types of beat signals for reflected waves and relay waves from vehicles ahead after mixing with the signal at the previous stage where the power is modulated with a modulation signal using a subcarrier It is characterized by the following. With this configuration, even when multiple vehicles equipped with the same radar sensor travel, even if the repeater breaks down, the vehicle does not operate, the vehicle does not have the repeater, and various stationary objects (guard rails). The present invention provides an on-vehicle radar device capable of extracting a beat signal for a transmission signal transmitted from a radar sensor of the own vehicle from among beat signals for reflected waves of the vehicle and a falling object. A relay mounted on the rear part of the vehicle in front of the vehicle, demodulating means for demodulating the first data information from the received signal, and forming a portion of the received signal modulated by the first data information into an unmodulated signal. And a modulating means for modulating a part of the non-modulated signal by second decoding information using a subcarrier. With this configuration, a two-way communication can be performed between the own vehicle and the preceding vehicle. In other words, an on-vehicle radar device having both a vehicle-to-vehicle communication function and a collision prevention function for the front and rear of the own vehicle can be obtained. it can. BRIEF DESCRIPTION OF THE FIGURES
第 1図は従来のレーダ装置の一例を示すレーダセンサの構成を示す回 路ブロ ック図、 第 2図はそのレーダ装置におけるモー ド切替え信号の波 形図、 第 3図はこの発明の実施の形態 1 による車載用レーダ装置の構成 を示す回路ブロ ック図、 第 4図はこの発明の実施の形態 1 における送信 信号の波形図、 第 5図はこの発明の実施の形態 2 を示す車載用レーダ装 置を構成するレーダセンサの回路ブロ ック図、 第 6図はこの発明の実施 の形態 3を示す車載用レーダ装置における送信信号の波形図、 第 7図は この発明の実施の形態 3を示す車載用レーダ装置を構成するレーダセン ザの回路ブロ ック図、 第 8図はこの発明の実施の形態 4を示す車載用レ —ダ装置を構成するレーダセンサの回路ブロ ック図、 第 9図はこの発明 の実施の形態 5を示す車載用レーダ装置における送信信号の波形図、 第 1 0図はこの発明の実施の形態 5を示す車載用レーダ装置を構成する中 継器の回路プロ ック図である。 発明を実施するための最良の形態 FIG. 1 is a circuit block diagram showing a configuration of a radar sensor showing an example of a conventional radar device, FIG. 2 is a waveform diagram of a mode switching signal in the radar device, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a circuit block diagram showing a configuration of an on-vehicle radar device according to Embodiment 1, FIG. 4 is a waveform diagram of a transmission signal according to Embodiment 1 of the present invention, and FIG. 5 is an on-vehicle vehicle showing Embodiment 2 of the present invention. FIG. 6 is a circuit block diagram of a radar sensor constituting a radar apparatus for use in a vehicle, FIG. 6 is a waveform diagram of a transmission signal in a vehicle-mounted radar apparatus according to Embodiment 3 of the present invention, and FIG. FIG. 8 is a circuit block diagram of a radar sensor constituting the on-vehicle radar device according to the third embodiment of the present invention. FIG. 8 is a diagram showing a radar sensor constituting the on-vehicle radar device according to the fourth embodiment of the present invention. FIG. 9 is a circuit block diagram, FIG. 9 is a waveform diagram of a transmission signal in the on-vehicle radar device according to the fifth embodiment of the present invention, and FIG. 10 is a block diagram of the on-vehicle radar device according to the fifth embodiment of the present invention. FIG. 2 is a circuit block diagram of a relay device that performs the operation. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明をよ り詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面に従ってこれを説明する。 実施の形態 1.  Hereinafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiment 1.
第 3図はこの発明の実施の形態 1 による車載用レーダ装置の構成図、 第 4図はこの実施の形態 1における送信信号を示す波形図である。 第 3 図において、 2 1 aは自車に搭載するレーダセンサ、 2 2は上記レーダ センサ 2 1 aにおける F M変調器、 2 3 aは上記 F M変調器 2 2によ り 電圧制御される V C O、 2 4 aは送信アンテナ、 2 5 aは受信アンテナ 、 2 6は上記 V C 02 3 aと上記送信アンテナ 2 4 aの間に接続された 方向性結合器、 2 7 a, 2 7 bはミキサー、 2 8 aは上記ミキサー 2 7 aの出力側に接続された B P F、 2 9 aは上記ミキサー 2 7 bに接続さ れた局部発振器であり、 これ等によ り レーダセンサ 2 l aを構成してい る。 ここで、 FM変調器 2 2、 V C 0 2 3 a、 方向性結合器 2 6によ り 送信手段を、 また、 方向性結合器 2 6、 ミキサー 2 7 a、 B P F 2 8 a によ り受信手段を、 また、 ミキサー 2 7 b、 局部発振器 2 9 aによ り ビ 一ト信号抽出手段をそれそれ構成している。  FIG. 3 is a configuration diagram of an on-vehicle radar device according to Embodiment 1 of the present invention, and FIG. 4 is a waveform diagram showing a transmission signal in Embodiment 1 of the present invention. In FIG. 3, 21 a is a radar sensor mounted on the own vehicle, 22 is an FM modulator in the radar sensor 21 a, 23 a is a VCO whose voltage is controlled by the FM modulator 22, 24a is a transmitting antenna, 25a is a receiving antenna, 26 is a directional coupler connected between the VC023a and the transmitting antenna 24a, 27a and 27b are mixers, Reference numeral 28a denotes a BPF connected to the output side of the mixer 27a, and 29a denotes a local oscillator connected to the mixer 27b.These components constitute a radar sensor 2la. You. Here, the transmission means is provided by the FM modulator 22, VC 0 2 3 a, and the directional coupler 26, and is received by the directional coupler 26, the mixer 27 a, and the BPF 28 a Means are also constituted by a mixer 27 b and a local oscillator 29 a, respectively.
3 0 aは自車の前方を走行する前方車の後部に搭載する中継器であり 、 受信アンテナ 2 5 b、 局部発振器 2 9 b、 ミキサー 2 7 c、 送信アン テナ 2 4 bを有する。 3 1は上記送信アンテナ 2 4 aから送信され前方 車で反射される反射波、 3 2は上記送信アンテナ 2 4 aから送信され上 記中継器 3 0 aを通過し上記受信アンテナ 2 5 aに到来する中継波であ る。 第 4図において、 3 3 aと 3 4 aは各々上記 V C 02 3 aから出力 される変調信号と無変調信号、 3 5 aは上記変調信号 3 3 aと上記無変 調信号 3 4 aからなる送信信号である。 30a is a repeater mounted on the rear of the vehicle ahead of the vehicle. It has a receiving antenna 25b, a local oscillator 29b, a mixer 27c, and a transmitting antenna 24b. 3 1 is a reflected wave transmitted from the transmitting antenna 24 a and reflected by the vehicle ahead, 32 is transmitted from the transmitting antenna 24 a and passes through the repeater 30 a to the receiving antenna 25 a It is an incoming relay wave. In FIG. 4, 33a and 34a are the modulated signal and the unmodulated signal output from the VC023a, respectively, and 35a is the modulated signal 33a and the unmodulated signal 34a respectively. Is a transmission signal.
次に、 この車載用レーダ装置の動作について説明する。  Next, the operation of the on-vehicle radar device will be described.
F M変調器 2 2で形成される変調波形としては、 三角波形あるいは三 角波形十一定電圧波形などがあるが、 ここでは後者の三角波形十一定電 圧波形により V C 02 3 aが電圧制御される場合について説明する。 こ の場合、 V C O 2 3 aからの出力は変調信号 3 3 aと無変調信号 3 4 a からなる送信信号 3 5 aとなる。 ここで変調信号 3 3 aは中心周波数が f 0であり且つレーダセンサ 2 l aの帯域内で周波数が変化 (アップと ダウン) する F M変調信号である。  The modulation waveform formed by the FM modulator 22 includes a triangular waveform, a triangular waveform, and a constant voltage waveform. In this case, the VC023a controls the voltage by the latter triangle waveform and the constant voltage waveform. The case in which it is performed will be described. In this case, the output from VCO 23a is a transmission signal 35a composed of a modulated signal 33a and an unmodulated signal 34a. Here, the modulation signal 33a is an FM modulation signal whose center frequency is f0 and whose frequency changes (up and down) within the band of the radar sensor 2la.
以下の説明で表現を簡単にするため、 送信信号 3 5 aの周波数を代表 的に f 0を用いて表現する。 この送信信号 3 5 aは方向性結合器 2 6を 介して送信アンテナ 2 4 aとミキサー 2 7 aに供給される。 送信アンテ ナ 2 4 aから放射された送信信号 3 5 aは、 前方を走行する前方車によ つて反射される反射波 3 1 と、 中継器 3 0 aの受信アンテナ 2 5 bによ つて受信され局部発振器 2 9 bの出力 (周波数 f o f f ) とミキサー 2 7 cによ り ミキシングされて送信アンテナ 2 4 bから送信される中継波 3 2の 2つに分かれ、 この両者が自車の受信アンテナ 2 5 aで受信され る。  In order to simplify the expression in the following description, the frequency of the transmission signal 35a is typically represented using f0. This transmission signal 35a is supplied to the transmission antenna 24a and the mixer 27a via the directional coupler 26. The transmitted signal 35a radiated from the transmitting antenna 24a is received by the reflected wave 31 reflected by the vehicle traveling ahead and by the receiving antenna 25b of the repeater 30a. The output (frequency foff) of the local oscillator 29 b is mixed by the mixer 27 c and split into two relay waves 32 transmitted from the transmission antenna 24 b, which are both reception antennas of the own vehicle. Received at 25a.
この時、 レーダセンサ 2 1 aを搭載している自車と中継器 3 0 aを搭 載している前方車の相対速度が 0でなければ、 その相対速度に応じた ド ッブラーシフ 卜の影響を受けるため、 反射波 3 1の周波数は f 0 + f d 、 中継波 3 2の周波数は f 0 + f d + f o f f となる。 ここで、 f dは ドッブラーシフ 卜による ドッブラー周波数であり、 車載用レーダ装置の 場合、 概ね 1 0 0 K H z以下の周波数成分となる。 受信アンテナ 2 5 a で受信した反射波 3 1 と中継波 3 2は送信信号 3 5 a (周波数成分 f 0 ) とミキサー 2 7 aによ り ミキシングされ、 反射波 3 1 に対する周波数 成分 f dと中継波 3 2に対する周波数成分 f d + f o f f の 2群のビー ト信号が得られる。 At this time, if the relative speed between the own vehicle equipped with the radar sensor 21a and the preceding vehicle equipped with the repeater 30a is not 0, the driver according to the relative speed is used. The frequency of the reflected wave 31 is f 0 + fd, and the frequency of the relay wave 32 is f 0 + fd + foff because of the influence of the shifter shift. Here, fd is the Doppler frequency due to the Doppler shift, and in the case of an on-vehicle radar device, the frequency component is approximately 100 kHz or less. The reflected wave 31 and the relay wave 32 received by the receiving antenna 25a are mixed by the transmission signal 35a (frequency component f0) and the mixer 27a, and the frequency component fd for the reflected wave 31 and relayed. Two groups of beat signals of frequency component fd + foff for wave 32 are obtained.
今、 中継波 3 2における局部発振器 2 9 bの周波数 f o f f を ドッブ ラー周波数成分 f dよ り十分高い周波数に設定すれば、 これら 2群のビ —ト信号のうち周波数オフセッ 卜された中継波 3 2に対する周波数成分 f d + f o f f のビー ト信号のみを B P F 2 8 aよ り取り出すことがで きる。 さらにこのビー ト信号を中継器 3 0 aの局部発振器 2 9 bと同じ 周波数 f o f f の局部発振器 2 9 aの信号と ミキサー 2 7 bによ り ミキ シングすることによ り、 中継波 3 2に対応する ドップラー周波数成分 f dを抽出できる。  Now, if the frequency foff of the local oscillator 29 b in the relay wave 32 is set to a frequency sufficiently higher than the Doppler frequency component fd, the relay wave 32 2 whose frequency is offset among the two groups of beat signals Only the beat signal of frequency component fd + foff can be extracted from BPF 28a. Further, the beat signal is mixed with the signal of the local oscillator 29a having the same frequency foff as that of the local oscillator 29b of the repeater 30a by the mixer 27b, thereby forming the relay wave 32. The corresponding Doppler frequency component fd can be extracted.
正確にはミキサー 2 7 aにおいて三角波形の変調信号部分の差に相当 する 2種のビート信号 (アップとダウン) の周波数成分と一定電圧波形 の無変調信号部分の差に相当する ドッブラー周波数成分が取り出される ため、 ミキサー 2 7 bの出力は上記 2種のビー ト信号の周波数成分と ド ップラー周波数成分 (ただし、 ドップラー周波数成分は上記 2種のビ一 ト信号よ り算出できる) となる。  To be precise, in the mixer 27a, the frequency component of the two beat signals (up and down) corresponding to the difference between the modulated signal portions of the triangular waveform and the Doppler frequency component corresponding to the difference between the unmodulated signal portion of the constant voltage waveform are Since it is extracted, the output of the mixer 27 b becomes the frequency components of the above two types of beat signals and the Doppler frequency component (however, the Doppler frequency component can be calculated from the above two types of bit signals).
したがって、 これらの周波数成分より中継器 3 0 aを搭載している前 方車と自車との距離と相対速度を知ることができ、 自車と前方車との衝 突を防止あるいは回避する車載用レーダ装置として作用する。  Therefore, the distance and relative speed between the front vehicle equipped with the repeater 30a and the own vehicle can be known from these frequency components, and the vehicle mounted to prevent or avoid collision between the own vehicle and the front vehicle. Act as a radar device for
第 1図に記載したような従来の車載用レーダ装置の場合、 最終的に得 られるビー ト信号は前方車の反射波 3 1 に対するビート信号のみであり 、 レーダセンサ 2 l aにおける D C成分の漏れ込みによ り常に速度 0の 物体や、 この D C成分とビー ト信号との組み合わせによ り偽像が検出さ れてしまう。 In the case of a conventional on-vehicle radar system as shown in Fig. 1, The beat signal is only the beat signal for the reflected wave 31 of the vehicle ahead, and due to the leakage of the DC component in the radar sensor 2 la, it always becomes an object with a speed of 0 or a combination of this DC component and the beat signal. More false images are detected.
また、 この課題を避けるために D C成分を信号処理によ りカツ 卜する と、 自車と前方車が同程度の速度で移動しているような場合、 前方車を 検出できなくなって しまう。 したがって、 距離や相対速度あるいは角度 などの時系列データの相関を取らなければならず、 偽像を信号処理で除 去するのにかなりの処理時間が必要となり、 数十 m s e cを争う衝突防 止レーダなどでは致命傷となる。  In addition, if the DC component is cut by signal processing to avoid this problem, if the own vehicle and the preceding vehicle are moving at the same speed, the preceding vehicle cannot be detected. Therefore, it is necessary to correlate time-series data such as distance, relative speed, and angle, and considerable processing time is required to remove false images by signal processing, and a collision prevention radar competing for tens of milliseconds In such cases, it is fatal.
これに対し、 この実施の形態 1の車載用レーダ装置によれば、 漏れ込 みによる D C成分は B P F 2 8 aで除去されるため、 D C成分の漏れ込 みに起因する偽像の課題を解決できる。 また、 最終的に得られるビート 信号は前方車に搭載した中継器 3 0 aを通過した中継波 3 2に対するも のであるため、 前方車以外の静止物 (例えば、 ガー ドレールや看板など ) によるビー ト信号を除去でき、 カーブ走行時でも前方車を確実に検知 できる効果が得られる。  On the other hand, according to the on-vehicle radar device of the first embodiment, since the DC component due to the leakage is removed by the BPF 28a, the problem of the false image caused by the leakage of the DC component is solved. it can. In addition, since the finally obtained beat signal is for the relay wave 32 that has passed through the repeater 30a mounted on the vehicle ahead, the bee signal from a stationary object other than the vehicle ahead (for example, a guard rail or a signboard) is obtained. Signal can be removed, and the effect of being able to reliably detect the preceding vehicle even when traveling on a curve is obtained.
さらに、 中継器 3 0 aでは受信した受信信号の周波数をオフセッ ト し てレーダセンサ 2 l aに戻すため、 自車と対向車のレーダセンサの偏波 が同一偏波であっても最終的に得られるビー ト信号は前方車に対するも のであり、 対向車の直接波による干渉を回避でき、 偏波を斜め 4 5度偏 波や円偏波に限定する必要が無く、 送信アンテナ 2 4 a及び 2 4 bゃ受 信アンテナ 2 5 a及び 2 5 bの設計の自由度を向上できる効果も得られ o 実施の形態 2 . 第 5図は、 この発明の実施の形態 2による車載用レーダ装置を構成す るレーダセンサ 2 1 bの構成図である。 この実施の形態 2は、 上記第 3 図に示した実施の形態 1における車載用レーダ装置のレーダセンサ 2 1 aにおける ミキサー 2 7 aの出力を 2分し、 一方を B P F 2 8 aに、 他 方を L P F 3 6 aに供給する構成と したものである。 ここで、 B P F 2 8 aの出力は実施の形態 1のレーダセンサ 2 1 aと同様に、 局部発振器Furthermore, since the repeater 30a offsets the frequency of the received signal and returns it to the radar sensor 2 la, even if the polarizations of the radar sensors of the own vehicle and the oncoming vehicle are the same, it is finally obtained. The transmitted beat signal is for the preceding vehicle, avoids interference from the direct waves of oncoming vehicles, and does not require the polarization to be limited to diagonal 45-degree polarization or circular polarization. 4b ゃ The effect of improving the degree of freedom in designing the receiving antennas 25a and 25b is also obtained.o Embodiment 2. FIG. 5 is a configuration diagram of a radar sensor 21b constituting an on-vehicle radar device according to Embodiment 2 of the present invention. In the second embodiment, the output of the mixer 27a in the radar sensor 21a of the on-vehicle radar device in the first embodiment shown in FIG. 3 is divided into two, one of which is a BPF 28a, and the other is a BPF 28a. Is supplied to the LPF 36a. Here, the output of the BPF 28a is the same as that of the radar sensor 21a of the first embodiment.
2 9 aの出力とともにミキサー 2 7 bに供給される構成である。 なお、 この実施の形態 2における中継器 (図は省略) は第 3図に示す中継器 3 O aと、 また、 送信信号は第 4図に示す送信信号 3 5 aと同様である。 以上説明したように、 この実施の形態 2の車載用レーダ装置によれば 、 2種類ビー ト信号抽出手段と してのミキサー 27 aの出力である反射 波 3 1 と中継波 3 2に対する 2群のビート信号を B P F 2 8 aと L P FIn this configuration, the output of 29 a is supplied to the mixer 27 b. The repeater (not shown) in the second embodiment is the same as repeater 3Oa shown in FIG. 3, and the transmission signal is the same as transmission signal 35a shown in FIG. As described above, according to the on-vehicle radar device of the second embodiment, the two groups for the reflected wave 31 and the relay wave 32, which are the outputs of the mixer 27a, as two types of beat signal extracting means. Beat signal of BPF 28a and LPF
3 6 aにてフィル夕にかけているため、 反射波 3 1に対するビ一 ト信号 (周波数成分 f d) が L P F 3 6 aよ り、 また、 中継波 3 2に対するビ ー ト信号 (周波数成分 f d + f o f f ) が B P F 2 8 aよ り抽出できる さらに、 実施の形態 1と同様に上記 B P F 2 8 aで抽出したビー ト信 号を局部発振器 2 9 a (周波数成分 f o f f ) の出力とともにミキサー 2 7 bでミキシングすることによ り、 中継波 3 2に対するビー ト信号 ( 周波数成分 f d) を得ることができる。 このため、 中継波 3 2に対する ビー ト信号の他に反射波 3 1に対するビート信号も得ることができ、 前 方車が故障し中継器 3 0 aが動作していない場合でも自車と前方車との 相対速度及び距離を算出できるとともに、 前方車以外の中継器 3 0 aを 搭載していない車両の他、 オー トバイ、 白転車、 及び種々の静止物 (ガ 一ドレールや落下物) を検出できる効果が得られる。 実施の形態 3. Since the filter is applied at 36a, the bit signal (frequency component fd) for the reflected wave 31 is higher than that of the LPF 36a, and the bit signal for the relay wave 32 (frequency component fd + foff ) Can be extracted from the BPF 28a.Moreover, similarly to the first embodiment, the beat signal extracted by the BPF 28a is mixed with the output of the local oscillator 29a (frequency component foff) by the mixer 27b. By mixing, a beat signal (frequency component fd) for the relay wave 32 can be obtained. For this reason, a beat signal for the reflected wave 31 can be obtained in addition to the beat signal for the relay wave 32, and even if the forward vehicle fails and the repeater 30a is not operating, the own vehicle and the preceding vehicle can be obtained. The vehicle can calculate the relative speed and distance from the vehicle, and can also use vehicles other than the vehicle in front without a repeater 30a, as well as motorcycles, white wheels, and various stationary objects (gardrails and falling objects). An effect that can be detected is obtained. Embodiment 3.
第 6図は、 この発明の実施の形態 3による車載用レーダ装置における 送信信号の波形図、 第 7図は、 この発明の実施の形態 3による車載用レ —ダ装置におけるレーダセンサ 2 l cの構成図である。 この実施の形態 3は、 上記第 4図に示した実施の形態 1における車載用レーダ装置の送 信信号 3 5 aにおいて、 変調信号 3 3 aと無変調信号 34 bの他に、 自 車のデータ情報 (例えば I Dコー ドなど) により変調して得られる変調 信号 33 bの部分を設けたものであり、 この送信信号 3 5 bをレーダセ ンサ 2 1 cの送信アンテナ 24 aから送信し、 また、 その反射波 3 1と 中継波 3 2を受信アンテナ 2 5 aで受信するものである。  FIG. 6 is a waveform diagram of a transmission signal in the on-vehicle radar device according to Embodiment 3 of the present invention, and FIG. 7 is a configuration of a radar sensor 2lc in the on-vehicle radar device according to Embodiment 3 of the present invention. FIG. In the third embodiment, in addition to the modulated signal 33a and the non-modulated signal 34b, the transmission signal 35a of the vehicle-mounted radar device according to the first embodiment shown in FIG. A modulation signal 33b obtained by modulating with data information (for example, an ID code) is provided. The transmission signal 35b is transmitted from the transmission antenna 24a of the radar sensor 21c. The reflected wave 31 and the relay wave 32 are received by the receiving antenna 25a.
また、 レーダセンサ 2 1 cにおいて、 送信系は方向性結合器 2 6の出 力と送信アンテナ 24 aの入力の間に変調器 3 7 aを設け、 この変調器 37 aを FM変調器 2 2からのタイ ミ ング信号 3 9で制御して、 サブキ ャ リア (周波数成分 f s c ) を用いたデータ情報 3 8により、 VC02 3 aで形成される送信信号 3 5 a (第 4図参照) における無変調信号 3 4 aの一部を変調 (例えば P S K変調) して変調信号 3 3 bを設けた送 信信号 3 5 bを生成する構成である。  Also, in the radar sensor 21c, the transmitting system is provided with a modulator 37a between the output of the directional coupler 26 and the input of the transmitting antenna 24a, and the modulator 37a is connected to the FM modulator 22c. Is controlled by the timing signal 39 from the transmitter, and the data information 38 using the subcarrier (frequency component fsc) is used to control the transmission signal 35a formed by the VC02 3a (see FIG. 4). In this configuration, a part of the modulation signal 34a is modulated (for example, PSK modulation) to generate a transmission signal 35b provided with the modulation signal 33b.
受信系はミキサー 2 7 aの出力を B P F 2 8 aに供給した後、 この B P F 2 8 aの出力と局部発振器 2 9 aの出力を ミキサー 2 7 bでミキシ ングし、 このミキサー 2 7 bの出力を L P F 3 6 bと B P F 2 8 bに供 給する構成と したものである。 なお、 この実施の形態 3における中継器 (図は省略) は第 3図に示す中継器 30 aと、 また V C02 3 aの出力 は第 4図に示す送信信号 3 5 aと同様である。  The receiving system supplies the output of the mixer 27a to the BPF 28a, mixes the output of the BPF 28a and the output of the local oscillator 29a with the mixer 27b, and mixes the output of the mixer 27b. The output is supplied to LPF 36b and BPF 28b. Note that the repeater (not shown) in the third embodiment is the same as repeater 30a shown in FIG. 3, and the output of VC023a is the same as transmission signal 35a shown in FIG.
以上説明したように、 この実施の形態 3の車載用レーダ装置によれば 、 レーダ用と して使用する変調信号 33 aと無変調信号 34 bに加えて 自車のデータ情報 (例えば I Dコー ドなど) を有する変調信号 3 3 bと からなる送信信号 3 5 bをレーダセンサ 2 1 cの送信アンテナ 2 4 aか ら送信し、 その反射波 3 1 と中継波 3 2を受信アンテナ 2 5 aで受信し た後にミキサー 2 7 aによ り方向性結合器 2 6よ り供給される変調信号 3 3 a及び無変調信号 3 4 aとからなる送信信号 3 5 a (周波数成分 f 0 ) の信号とミキシングするため、 上記ミキサー 2 7 aの出力としては サブキャ リアを用いたデ一夕情報 (周波数成分 f s c ) を含む反射波 3 1に対するビー ト信号 (周波数成分 f s c + f d ) と中継波 3 2に対す るビート信号 (周波数成分 f s c + f d + f o f f ) が得られる。 As described above, according to the on-vehicle radar device of the third embodiment, in addition to the modulated signal 33a and the unmodulated signal 34b used for radar, data information of the own vehicle (for example, ID code) is used. Modulated signal with 3 3 b and Is transmitted from the transmitting antenna 24a of the radar sensor 21c, and the reflected wave 31 and the relay wave 32 are received by the receiving antenna 25a and then transmitted to the mixer 27a. In order to mix with the signal of the transmission signal 35 a (frequency component f 0) composed of the modulated signal 33 a and the unmodulated signal 34 a supplied from the directional coupler 26, the mixer 27 is used. The output of a is a beat signal (frequency component fsc + fd) for the reflected wave 31 containing data (frequency component fsc) using the subcarrier and a beat signal (frequency component fsc + fd + foff).
これら 2群のビー ト信号は B P F 2 8 aを通過させることによ り中継 波 3 2に対するビー ト信号のみを取り出すことができ、 さらにミキサー 2 7 bによ り局部発振器 2 9 aの出力 (周波数成分 f o f f ) とミキシ ングした後に L P F 3 6 bと B P F 2 8 bでフィル夕にかけることで中 継波 3 2に対するビー ト信号 (周波数成分 f d ) とデ一夕情報 (周波数 成分 f s c ) を分離して抽出できる。  By passing the two groups of beat signals through the BPF 28a, only the beat signal for the relay 32 can be extracted, and the output of the local oscillator 29a is output by the mixer 27b. After mixing with the frequency component foff), the beat signal (frequency component fd) and the de-night information (frequency component fsc) for the intermediate wave 32 are applied to the filter with the LPF 36b and BPF 28b. Can be separated and extracted.
したがって、 レーダセンサ 2 1 cで検出したビー ト信号が自車の送信 アンテナ 2 4 aから送信された送信信号 3 5 bの中継波 3 2に対するも のかどうかを、 抽出したデ一夕情報 ( I Dコードなど) と送信したデー 夕情報 (自車の I Dコー ドなど) との比較結果によ り判定することが可 能となる。 つま り、 抽出したビー ト信号が他車 (例えば隣り車線を走行 する車) のレーダセンサ 2 1 cから送信された送信信号 3 5 bに対する 中継波 3 2のものなのか、 あるいは自車の送信信号 3 5 bに対する中継 波 3 2のものなのかを、 識別できる効果が得られる。 実施の形態 4.  Therefore, it is determined whether the beat signal detected by the radar sensor 21c corresponds to the relay wave 32 of the transmit signal 35b transmitted from the own vehicle's transmit antenna 24a or not. Code, etc.) and the transmitted data (eg, the ID code of the own vehicle). In other words, whether the extracted beat signal is a relay wave 32 for the transmission signal 35 b transmitted from the radar sensor 21 c of another vehicle (for example, a vehicle traveling in the next lane) or the transmission of the own vehicle The effect of being able to identify whether the signal is a signal of the relay wave 32 for the signal 35b is obtained. Embodiment 4.
第 8図は、 この発明の実施の形態 4による車載用レーダ装置における レーダセンサ 2 1 dの構成図である。 この実施の形態 4は、 上記第 7図 に示した実施の形態 3における車載用レーダ装置のレーダセンサ 2 1 c における ミキサー 2 7 aの出力を 2分し、 一方を B P F 2 8 aに、 他方 を L P F 3 6 aに供給するように構成し、 さらに、 L P F 3 6 aの出力 を L P F 3 6 cと B P F 2 8 cに供給する構成としたものである。 FIG. 8 is a configuration diagram of a radar sensor 21 d in a vehicle-mounted radar device according to Embodiment 4 of the present invention. This Embodiment 4 corresponds to FIG. The output of the mixer 27a in the radar sensor 21c of the on-vehicle radar device in the third embodiment shown in Fig. 3 is divided into two, and one is supplied to the BPF 28a and the other is supplied to the LPF 36a. Further, the output of the LPF 36a is supplied to the LPF 36c and the BPF 28c.
なお、 この実施の形態 4における中継器 (図は省略) は第 3図に示す 中継器 3 0 aと、 VC 02 3 aの出力は第 4図に示す送信信号 3 5 aと 、 また、 変調器 3 7 aの出力は第 6図に示す送信信号 3 5 bと同様であ る o  It should be noted that the repeater (not shown) in the fourth embodiment is a repeater 30a shown in FIG. 3, an output of VC023a is a transmission signal 35a shown in FIG. The output of the transmitter 37a is the same as the transmission signal 35b shown in Fig. 6.o
以上説明したように、 この実施の形態 4の車載用レーダ装置によれば 、 ミキサー 2 7 aの出力である反射波 3 1 と中継波 3 2に対する 2群の ビー ト信号を B P F 2 8 aと L P F 3 6 aにてフィル夕にかけているた め、 反射波 3 1に対するビー ト信号 (周波数成分 f s c + f d) が LP F 3 6 aより、 また、 中継波 3 2に対するビー ト信号 (周波数成分: f s c + f d + f o f f ) が B P F 2 8 aよ り抽出できる。 上記 B P F 2 8 aで抽出した中継波 3 2に対するビー ト信号は実施の形態 3と同様に局 部発振器 2 9 a (周波数成分 f o f f ) の出力とともにミキサー 2 7 b でミキシングした後に L P F 3 6 bと B P F 2 8 bでフィル夕にかける ことで中継波 3 2に対するビート信号 (周波数成分 f d) とデータ情報 As described above, according to the on-vehicle radar device of the fourth embodiment, two groups of beat signals for the reflected wave 31 and the relay wave 32 output from the mixer 27a are represented by the BPF 28a. Since the LPF 36a is used to fill the filter, the beat signal (frequency component fsc + fd) for the reflected wave 31 is lower than that of the LPF 36a, and the beat signal for the relay wave 32 (frequency component: fsc + fd + foff) can be extracted from BPF 28a. The beat signal for the relay wave 32 extracted by the BPF 28a is mixed with the output of the local oscillator 29a (frequency component foff) by the mixer 27b and the LPF 36b as in the third embodiment. And the BPF 28b to fill the signal, so that the beat signal (frequency component fd) and data information
(周波数成分 f s c ) を分離して抽出できる。 (Frequency component f s c) can be separated and extracted.
さらに、 上記 L P F 3 6 aで抽出した反射波 3 1に対するビー ト信号 In addition, the beat signal for the reflected wave 31 extracted by the above-mentioned LPF 36a
(周波数成分: f s c + f d ) は L P F 3 6 cと B P F 2 8 cでフィル夕 にかけることで反射波 3 1に対するビー ト信号 (周波数成分 f d ) とデ 一夕情報 (周波数成分 f s c ) を分離して抽出できる。 (Frequency component: fsc + fd) is filtered by LPF 36c and BPF 28c to separate the beat signal (frequency component fd) and de-night information (frequency component fsc) for reflected wave 31. Can be extracted.
このため、 自車と同じレーダセンサ 2 I dを搭載している車が例えば 隣り車線を走行している場合でも、 前方車からの反射波 3 1と中継波 3 2に対するビー ト信号が自車のレーダセンサ 2 I dから送信された送信 信号 3 5 bに対するものなのか、 それとも自車以外のレーダセンサ 2 1 dを搭載した他車からのものなのかを、 抽出した自車のデータ情報との 比較によ り識別できる効果が得られる。 したがって、 同一のレーダセン サ 2 I dを搭載した車が複数走行する場合でも、 自車のレーダセンサ 2 1 aから送信された送信信号 3 5 bの反射波 3 1及び中継波 3 2の両方 に対するビー ト信号を確実に検出できる効果が得られる。 実施の形態 5 . For this reason, even if a vehicle equipped with the same radar sensor 2Id as the own vehicle is running in the adjacent lane, for example, the beat signal for the reflected wave 31 and the relay wave 32 from the preceding vehicle is Transmitted from radar sensor 2 Id An effect can be obtained in which it is possible to identify whether the signal is for the signal 35b or from another vehicle equipped with a radar sensor 21d other than the own vehicle by comparing it with the extracted data information of the own vehicle. . Therefore, even when a plurality of vehicles equipped with the same radar sensor 2Id are traveling, the transmission signal 35b transmitted from the radar sensor 21a of the own vehicle is reflected by both the reflected wave 31 and the relay wave 32. The effect of reliably detecting the beat signal is obtained. Embodiment 5
第 9図は、 この発明の実施の形態 5による車載用レーダ装置における 送信信号の波形図であり、 第 1 0図はこの実施の形態 5 による車載用レ —ダ装置における中継器の構成を示す構成図である。 この実施の形態 5 は、 上記第 6図に示した実施の形態 3における車載用レーダ装置の送信 信号 3 5 bにおいて、 自車のデ一夕情報 (例えば I Dコードなど) を有 する変調信号 3 3 bを自車のデータ情報 (例えば I Dコードなど) と他 車のデータ情報 (例えば I Dコー ドなど) を有する変調信号 3 3 c とし た送信信号 3 5 としたものである。  FIG. 9 is a waveform diagram of a transmission signal in the on-vehicle radar device according to Embodiment 5 of the present invention. FIG. 10 shows the configuration of a repeater in the on-vehicle radar device according to Embodiment 5 of the present invention. It is a block diagram. The fifth embodiment is different from the third embodiment shown in FIG. 6 in that the transmission signal 35 b of the on-vehicle radar device according to the third embodiment includes a modulation signal 3 having information on the own vehicle (such as an ID code). 3b is a transmission signal 35 which is a modulated signal 33c having data information of the own vehicle (for example, an ID code) and data information of another vehicle (for example, an ID code).
さらに中継器 3 0 bを送信アンテナ 2 4 b、 受信アンテナ 2 5 b、 ミ キサ一 2 7 c及び局部発振器 2 9 bの他に復調手段としての復調器 4 0 、 同期回路 4 1、 変調手段としての変調器 3 7 b及び波形成形手段とし ての信号処理部 4 3を具備した構成としたものである。 なお、 この実施 の形態 5 におけるレーダセンサは第 7図及び第 8図に示すレーダセンサ 2 1 c及び 2 1 d と同様である。  Further, in addition to the repeater 30b, a transmitting antenna 24b, a receiving antenna 25b, a mixer 27c and a local oscillator 29b, a demodulator 40 as a demodulating means, a synchronizing circuit 41, and a modulating means. And a signal processing unit 43 as a waveform shaping means. The radar sensor according to the fifth embodiment is the same as the radar sensors 21c and 21d shown in FIGS. 7 and 8.
以上説明したように、 この実施の形態の車載用レーダ装置によれば、 自車のデータ情報 (例えば I Dコー ドなど) の他に他車のデータ情報 ( ダミーデ一夕) を有する変調信号 3 3 cを具備した送信信号 3 5 cを自 車のレーダセンサ 2 1 c (第 7図) あるいは 2 I d (第 8図) の送信ァ ンテナ 2 4 aから送信し、 前方車の中継器 3 O bの受信アンテナ 2 5 b で受信した後、 同期回路 4 1でデータ情報格納部分の検出開始及び終了 を通知する信号が復調器 4 0に入力され、 この信号に同期して受信信号 のデータ情報を復調デ一夕 4 2 と して信号処理部 4 3に送出するため、 自車のデータ情報部分に格納されているレーダセンサ 2 1 cあるいは 2 I dの搭載車 (自車) の I Dコー ドや種々の通信デ一夕を前方車で受信 することができる。 As described above, according to the on-vehicle radar device of this embodiment, the modulated signal 33 having data information of another vehicle (dummy data) in addition to data information of the own vehicle (for example, ID code). The transmission signal 35c with c is transmitted to the radar sensor 21c (Fig. 7) or 2Id (Fig. 8) of the vehicle. After transmitting from the antenna 24a and receiving by the receiving antenna 25b of the repeater 3Ob of the vehicle ahead, the signal notifying the start and end of the detection of the data information storage part by the synchronization circuit 41 is sent to the demodulator 40. In order to transmit the data information of the received signal to the signal processing unit 43 as a demodulated data 42 in synchronization with this signal, the radar sensor 21 stored in the data information part of the vehicle is used. The ID code of the vehicle equipped with c or 2 Id (own vehicle) and various communication data can be received by the vehicle ahead.
また、 前方車は上記信号処理部 4 3にて I Dコー ドや種々の通信デー 夕を他車のデ一夕情報部分 3 3 cに格納するとともに受信した自車のデ —夕情報に付加してサブキャ リアを用いた変調データ 4 4を構成し、 変 調器 3 7 bにて変調 (例えば P S K変調) した後、 ミキサー 2 7 cによ り局部発振器 2 9 bの出力 (周波数成分 f o f f ) とミキシングし、 周 波数をオフセッ ト して送信アンテナ 2 4 bから送信するため、 前方車の I Dコー ドや種々の通信デ一夕をレーダセンサ 2 1 cあるいは 2 I dの 搭載車に通信することができる。  For the preceding vehicle, the signal processing unit 43 stores the ID code and various communication data in the data overnight information part 33c of the other vehicle, and adds it to the received data of the own vehicle. After the modulation data 44 using the subcarriers is formed by the modulation and modulation (for example, PSK modulation) by the modulator 37b, the output of the local oscillator 29b (frequency component foff) is output by the mixer 27c. To transmit signals from the transmitting antenna 24b with the frequency offset, so that the ID code of the vehicle ahead and various communication data are communicated to the vehicle equipped with the radar sensor 21c or 2Id. be able to.
ここで、 変調器 3 7 bは受信信号における変調信号 3 3 c部分を一端 無変調信号に変えた後に、 この無変調信号部分を変調デ一夕 4 4により 変調するものとする。 したがって、 自車と前方車との間で双方向で通信 が可能な車載用レーダ装置を得ることができる。 つま り、 自車の前方及 び後方に対する車車間通信機能と衝突防止機能の両者を具備した車載レ —ダ装置を得ることができる効果が得られる。  Here, it is assumed that the modulator 37 b converts the modulated signal 33 c portion of the received signal into a non-modulated signal once, and then modulates the non-modulated signal portion by the modulation decoder 44. Therefore, it is possible to obtain an on-vehicle radar device capable of two-way communication between the own vehicle and the preceding vehicle. In other words, the effect of obtaining an on-vehicle radar device having both the inter-vehicle communication function for the front and rear of the own vehicle and the collision prevention function is obtained.
ここで、 以上の実施の形態 1〜 5における車載用レーダ装置のレーダ センサ 2 1 a〜 2 I dは、 ホモダイ ン方式について説明しているが、 こ れ以外の構成のホモダイ ン方式やへテロダイ ン方式であっても良い。  Here, the radar sensors 21a to 2Id of the on-vehicle radar devices according to Embodiments 1 to 5 described above are of the homodyne type, but the homodyne type or the heterodyne type having other configurations are described. May be used.
また、 以上の実施の形態 1〜 5における車載用レーダ装置のレーダセ ンサ 2 1 a〜 2 I dや中継器 3 0 a及び 3 0 bは、 説明を簡単にするた めアンプ等を除去しているが、 これらが具備されていても良い。 産業上の利用可能性 In addition, the radar sensors 21a to 2Id and the repeaters 30a and 30b of the on-vehicle radar device according to the first to fifth embodiments have been described for simplicity. Although the amplifier and the like are removed, these may be provided. Industrial applicability
以上のように、 この発明にかかる車載用レーダ装置は、 F M変調信号 を送信及び受信してビー ト信号を抽出するレーダセンサと、 この F M変 調信号を受信した後に周波数をオフセッ 卜 して中継波と して送信する中 継器とで構成したので、 レーダセンサにおける D C成分の漏れ込みに依 存する偽像を検出せず、 対向車からの直接波による干渉を偏波アイソレ ーシヨンによらず回避でき、 且つ静止物に対するビー ト信号を除去でき る。  As described above, the on-vehicle radar device according to the present invention includes a radar sensor that transmits and receives an FM modulation signal and extracts a beat signal, and a relay that offsets the frequency after receiving the FM modulation signal and relays the signal. Because it consists of a relay that transmits as waves, it does not detect false images that depend on the leakage of DC components in the radar sensor, and avoids direct wave interference from oncoming vehicles regardless of polarization isolation. And a beat signal for a stationary object can be removed.

Claims

請 求 の 範 囲 The scope of the claims
1 . 送信周波数が三角波状に変化する F M変調信号よりなる送信信号、 あるいは上記 F M変調信号と一定周波数の無変調信号からなる送信信号 を送信アンテナから送信する送信手段と、 受信アンテナで受信した受信 信号と上記送信信号とをミキシングして複数のビー ト信号を得る受信手 段とを具備したレーダセンサと、 1. Transmission means for transmitting a transmission signal consisting of an FM modulation signal whose transmission frequency changes in a triangular wave form, or a transmission signal consisting of the FM modulation signal and a non-modulation signal having a constant frequency, from a transmission antenna, and reception received by a reception antenna. A radar sensor comprising a receiving means for mixing a signal and the transmission signal to obtain a plurality of beat signals;
上記レーダセンサを搭載した自車からの送信波を受信アンテナで受信 して得られる受信信号の周波数を、 上記レーダセンサで受信可能な帯域 内でオフセッ 卜 した後に送信アンテナから中継波として送信する送信手 段を具備した前方車に搭載される中継器と、 上記レーザセンサから得ら れる複数のビー ト信号から上記中継波に対するビート信号を抽出するビ —ト信号抽出手段とを具備したことを特徴とする車載用レーダ装置。  A transmission in which the frequency of the received signal obtained by receiving the transmitted wave from the vehicle equipped with the radar sensor with the receiving antenna is offset within the band that can be received by the radar sensor, and then transmitted as a relay wave from the transmitting antenna A repeater mounted on a forward vehicle equipped with a means, and a beat signal extracting means for extracting a beat signal for the repeater wave from a plurality of beat signals obtained from the laser sensor. In-vehicle radar device.
2 . 中継波に対するビー ト信号のみを得るビー ト信号抽出手段、 あるい は前方車などからの反射波及び中継波に対応する 2種類のビー ト信号を 得る 2種類ビー ト信号抽出手段を具備したことを特徴とする請求の範囲 第 1項記載の車載用レーダ装置。 2. Equipped with a beat signal extracting means for obtaining only the beat signal for the relay wave, or two types of beat signal extracting means for obtaining two types of beat signals corresponding to the reflected wave from the preceding vehicle and the relay wave. 2. The on-vehicle radar device according to claim 1, wherein:
3 . レーダセンサにおける送信信号を、 送信周波数が三角波状に変化す る F M変調信号よ りなる送信信号、 あるいは上記 F M変調信号と一定周 波数の無変調信号からなる送信信号に、 サブキャ リアを用いた変調信号 によ り変調して得られる変調波形を具備した送信信号と し、 レーダセン ザにおける受信出力を上記サブキャ リアを用いた変調信号で変調する前 段の信号でミキシングした後に中継波に対応するビー ト信号を得るビー ト信号抽出手段を具備したことを特徴とする請求の範囲第 1項または第 2項記載の車載用レーダ装置。 3. The subcarrier is used for the transmission signal of the radar sensor as the transmission signal composed of the FM modulation signal whose transmission frequency changes in a triangular wave form, or the transmission signal composed of the FM modulation signal and the unmodulated signal of a constant frequency. A transmission signal having a modulated waveform obtained by modulating the modulated signal with the received signal, and the reception output of the radar sensor is mixed with the signal at the previous stage where it is modulated with the modulation signal using the above subcarrier, and then a relay signal is supported. Claim 1 or Claim 2 further comprising a beat signal extracting means for obtaining a beat signal to be transmitted. 2. The on-vehicle radar device according to item 2.
4 . レーダセンサにおける送信信号を、 送信周波数が三角波状に変化す る F M変調信号よ りなる送信信号、 あるいは上記 F M変調信号と一定周 波数の無変調信号からなる送信信号に、 サブキヤ リアを用いた変調信号 によ り変調して得られる変調波形を具備した送信信号とし、 上記レーダ センサにおける受信出力を上記サブキヤ リァを用いた変調信号で変調す る前段の信号でミキシングした後に前方車などからの反射波及び中继波 に対する 2種類のビー ト信号を得る 2種類ビート信号抽出手段を具備し たことを特徴とする請求の範囲第 1項, 第 2項または第 3項記載の車載 用レーダ装置。 4. A subcarrier is used for the transmission signal of the radar sensor as a transmission signal composed of an FM modulation signal whose transmission frequency changes in a triangular waveform, or a transmission signal composed of the FM modulation signal and a non-modulation signal of a constant frequency. A transmission signal having a modulated waveform obtained by modulation by the modulated signal, and the reception output of the radar sensor is mixed with a signal at the previous stage where the output is modulated by the modulation signal using the subcarrier, and then the signal is output from a vehicle ahead. 4. The on-vehicle radar according to claim 1, further comprising two kinds of beat signal extracting means for obtaining two kinds of beat signals for reflected waves and medium-waves. apparatus.
5 . 前方車に搭載した中継器を、 受信アンテナで受信して得られる受信 信号から復調器により第 1のデータ情報を復調する復調手段と、 上記受 信信号における第 1のデ一夕情報で変調されている部分を無変調信号に 波形成形する波形成形手段と、 上記無変調信号の一部をサブキャ リアを 用いた変調信号によ り変調する変調手段を具備した中継器としたことを 特徴とする請求の範囲第 3項または第 4項記載の車載用レーダ装置。 5. A demodulator that demodulates the first data information by a demodulator from a received signal obtained by receiving a repeater mounted on a preceding vehicle with a receiving antenna, and a first demodulator information in the received signal. A repeater comprising a waveform shaping means for shaping a modulated portion into a non-modulated signal and a modulating means for modulating a part of the non-modulated signal by a modulation signal using a subcarrier. The on-vehicle radar device according to claim 3 or 4, wherein:
PCT/JP1997/004756 1997-12-22 1997-12-22 Radar apparatus for vehicles WO1999032899A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52365099A JP3421058B2 (en) 1997-12-22 1997-12-22 Automotive radar equipment
PCT/JP1997/004756 WO1999032899A1 (en) 1997-12-22 1997-12-22 Radar apparatus for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004756 WO1999032899A1 (en) 1997-12-22 1997-12-22 Radar apparatus for vehicles

Publications (1)

Publication Number Publication Date
WO1999032899A1 true WO1999032899A1 (en) 1999-07-01

Family

ID=14181716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004756 WO1999032899A1 (en) 1997-12-22 1997-12-22 Radar apparatus for vehicles

Country Status (2)

Country Link
JP (1) JP3421058B2 (en)
WO (1) WO1999032899A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11331065A (en) * 1998-05-19 1999-11-30 Toyota Motor Corp Communication equipment for inter-car communication system
JP2007189436A (en) * 2006-01-12 2007-07-26 Toyota Motor Corp Car to car communication device
JP2007298317A (en) * 2006-04-28 2007-11-15 Fujitsu Ltd Frequency modulation circuit, fm-cw radar device, and communication integrated radar device
JP2008058165A (en) * 2006-08-31 2008-03-13 Hitachi Ltd On-board radar device
US7671788B2 (en) 2004-08-02 2010-03-02 Mitsubishi Electric Corporation Apparatus and method for suppression of unnecessary signals in a radar system
JP2010122226A (en) * 2008-11-24 2010-06-03 Mitsubishi Electric R&D Centre Europe Bv Method and system for determining at least one of distance to object and velocity of object
JP2014006072A (en) * 2012-06-21 2014-01-16 Nec Corp Rader device, target data acquisition method, and target tracking system
JP2016148616A (en) * 2015-02-13 2016-08-18 沖電気工業株式会社 Communication device, communication system and communication method
CN108226876A (en) * 2017-12-28 2018-06-29 北京融创远大网络科技有限公司 A kind of intelligent vehicle-carried radar installations for reducing polarization loss

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019246A (en) * 1998-07-03 2000-01-21 Denso Corp Obstacle detection system, radar device, and transponder
JP4910651B2 (en) * 2006-11-16 2012-04-04 株式会社デンソー Communication integrated radar device, communication integrated radar system
US9223017B2 (en) 2012-05-30 2015-12-29 Honeywell International Inc. Systems and methods for enhanced awareness of obstacle proximity during taxi operations
WO2014052060A1 (en) 2012-09-27 2014-04-03 Honeywell International Inc. Systems and methods for using radar-adaptive beam pattern for wingtip protection
KR102076704B1 (en) * 2018-04-02 2020-02-12 주식회사 에스원 FMCW Radar Sensor Based on a Gap Filler with Function of Frequency Offset and Method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501981A (en) * 1985-12-12 1988-08-04 シユテイフテルセン インスチチユ−テツト フオル ミクロフエ−クシユ テクニク ビドテクニスカ ホグスコ−ラン イ ストツクホルム Distance measurement method and distance measurement device
JPH04236388A (en) * 1991-01-18 1992-08-25 Mazda Motor Corp Radar system for motorcar
JPH06313795A (en) * 1993-04-30 1994-11-08 Isuzu Motors Ltd Measuring apparatus of inter-vehicle distance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501981A (en) * 1985-12-12 1988-08-04 シユテイフテルセン インスチチユ−テツト フオル ミクロフエ−クシユ テクニク ビドテクニスカ ホグスコ−ラン イ ストツクホルム Distance measurement method and distance measurement device
JPH04236388A (en) * 1991-01-18 1992-08-25 Mazda Motor Corp Radar system for motorcar
JPH06313795A (en) * 1993-04-30 1994-11-08 Isuzu Motors Ltd Measuring apparatus of inter-vehicle distance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENICHI KONNO, SHOICHI KOSHIKAWA, C-2-72, "Milimetric Wave Radder Sensor with Simplified Communication Function (in Japanese)", page 107, PAPERS I FROM THE ELECTRONICS SOCIETY CONVENTION OF IEICE, 1997, (Japan) IEICE, (13-08-97). *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11331065A (en) * 1998-05-19 1999-11-30 Toyota Motor Corp Communication equipment for inter-car communication system
US7671788B2 (en) 2004-08-02 2010-03-02 Mitsubishi Electric Corporation Apparatus and method for suppression of unnecessary signals in a radar system
JP2007189436A (en) * 2006-01-12 2007-07-26 Toyota Motor Corp Car to car communication device
JP2007298317A (en) * 2006-04-28 2007-11-15 Fujitsu Ltd Frequency modulation circuit, fm-cw radar device, and communication integrated radar device
JP2008058165A (en) * 2006-08-31 2008-03-13 Hitachi Ltd On-board radar device
JP4627749B2 (en) * 2006-08-31 2011-02-09 日立オートモティブシステムズ株式会社 Automotive radar equipment
JP2010122226A (en) * 2008-11-24 2010-06-03 Mitsubishi Electric R&D Centre Europe Bv Method and system for determining at least one of distance to object and velocity of object
JP2014006072A (en) * 2012-06-21 2014-01-16 Nec Corp Rader device, target data acquisition method, and target tracking system
JP2016148616A (en) * 2015-02-13 2016-08-18 沖電気工業株式会社 Communication device, communication system and communication method
CN108226876A (en) * 2017-12-28 2018-06-29 北京融创远大网络科技有限公司 A kind of intelligent vehicle-carried radar installations for reducing polarization loss

Also Published As

Publication number Publication date
JP3421058B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
US5444742A (en) System for bidirectional data transmission between a plurality of stationary units and a vehicle
WO1999032899A1 (en) Radar apparatus for vehicles
TWI287514B (en) Inter-vehicle communication and warning apparatus
US6064320A (en) Automatic vehicle identification system capable of vehicle lane discrimination
JP2512193B2 (en) Land vehicle transportation assistance method and device
KR20050081992A (en) A combined on-board train system for using an automatic train control, an automatic train stop and an automatic train protection
JP2007263915A (en) Onboard radar device and onboard radar control system
US5510794A (en) Vehicular radar wayside transponder system
JP4818836B2 (en) Train control device
US4109247A (en) Clutter free communications radar
US5537672A (en) System for bidirectional data transmission between a beacon and a vehicle
CA2071560C (en) Continuous-wave radar set, additionally usable as a transmitter for information transmission
JPH08136646A (en) On-vehicle multichannel radar equipment
WO1999058388A3 (en) Arrangement for transmitting a transmission signal from a transmitter to a railway vehicle in order for localization and transmission of information
AU2501497A (en) Selective data transmission process and device for communication systems used in traffic engineering
EP1936401A1 (en) Method and radar system for transmitting information
WO1991003109A1 (en) A method for the contactless transmission of information
Konno et al. Millimeter-wave dual mode radar for headway control in IVHS
EP2022697B1 (en) Communication system for vehicles particularly railway vehicles or the like and stationary units
JPH11331065A (en) Communication equipment for inter-car communication system
JP3190572B2 (en) Communication device
JPH09190593A (en) Road state monitoring device
JP4014034B2 (en) Radar device and radar integrated communication device
JPH11110688A (en) Traffic safety device and traffic safety system
JP2000065922A (en) Front monitoring and communication system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase