WO1999032671A1 - Ultra-high strength dual phase steels with excellent cryogenic temperature toughness - Google Patents
Ultra-high strength dual phase steels with excellent cryogenic temperature toughness Download PDFInfo
- Publication number
- WO1999032671A1 WO1999032671A1 PCT/US1998/012701 US9812701W WO9932671A1 WO 1999032671 A1 WO1999032671 A1 WO 1999032671A1 US 9812701 W US9812701 W US 9812701W WO 9932671 A1 WO9932671 A1 WO 9932671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- temperature
- steel plate
- phase
- vol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- This invention relates to ultra-high strength, weldable, low alloy, dual phase steel plates with excellent cryogenic temperature toughness in both the base plate and in the heat affected zone (HAZ) when welded. Furthermore, this invention relates to a method for producing such steel plates.
- cryogenic temperatures i.e., at temperatures lower than about -40°C (-40°F).
- PLNG pressurized liquefied natural gas
- Welded steels used in the construction of storage and transportation containers for the aforementioned cryogenic temperature applications and for other load-bearing, cryogenic temperature service must have DBTTs well below the service temperature in both the base steel and the HAZ to avoid failure by low energy cleavage fracture.
- Nickel-containing steels conventionally used for cryogenic temperature structural applications e.g., steels with nickel contents of greater than about 3 wt%, have low DBTTs, but also have relatively low tensile strengths.
- 3.5 wt% Ni, 5.5 wt% Ni, and 9 wt% Ni steels have DBTTs of about -100°C (-150°F), -155°C (-250°F), and -175°C (-280°F), respectively, and tensile strengths of up to about 485 MPa (70 ksi), 620 MPa (90 ksi), and 830 MPa (120 ksi), respectively.
- these steels In order to achieve these combinations of strength and toughness, these steels generally undergo costly processing, e.g., double annealing treatment.
- HSLA state-of-the-art, low and medium carbon high strength, low alloy
- AISI 4320 or 4330 steels have the potential to offer superior tensile strengths (e.g., greater than about 830 MPa (120 ksi)) and low cost, but suffer from relatively high DBTTs in general and especially in the weld heat affected zone (HAZ).
- HTZ weld heat affected zone
- weldability and low temperature toughness to decrease as tensile strength increases. It is for this reason that currently commercially available, state-of-the-art HSLA steels are not generally considered for cryogenic temperature applications.
- the high DBTT of the HAZ in these steels is generally due to the formation of undesirable microstructures arising from the weld thermal cycles in the coarse grained and intercritically reheated HAZs, i.e., HAZs heated to a temperature of from about the Aci transformation temperature to about the Ac transformation temperature.
- HAZs heated to a temperature of from about the Aci transformation temperature to about the Ac transformation temperature.
- DBTT increases significantly with increasing grain size and embrittling microstructural constituents, such as martensite-austenite (MA) islands, in the HAZ.
- MA martensite-austenite
- the DBTT for the HAZ in a state-of-the-art HSLA steel, XI 00 linepipe for oil and gas transmission is higher than about -50°C (-60°F).
- the primary objects of the present invention are to improve the state-of-the-art HSLA steel technology for applicability at cryogenic temperatures in three key areas: (i) lowering of the DBTT to less than about -73°C (-100°F) in the base steel and in the weld HAZ, (ii) achieving tensile strength greater than 830 MPa (120 ksi), and (iii) providing superior weldability.
- Other objects of the present invention are to achieve the aforementioned HSLA steels with substantially uniform through-thickness microstructures and properties in thicknesses greater than about 2.5 cm (1 inch) and to do so using current commercially available processing techniques so that use of these steels in commercial cryogenic temperature processes is economically feasible.
- a processing methodology is provided wherein a low alloy steel slab of the desired chemistry is reheated to an appropriate temperature then hot rolled to form steel plate and rapidly cooled, at the end of hot rolling, by quenching with a suitable fluid, such as water, to a suitable Quench Stop Temperature (QST), to produce a dual phase microstructure comprising, preferably, about 10 vol% to about 40 vol% of a ferrite phase and about 60 vol% to about 90 vol% of a second phase of predominantly fine-grained lath martensite, fine-grained lower bainite, or mixtures thereof.
- a suitable fluid such as water
- QST Quench Stop Temperature
- quenching refers to accelerated cooling by any means whereby a fluid selected for its tendency to increase the cooling rate of the steel is utilized, as opposed to air cooling the steel to ambient temperature.
- the steel plate is air cooled to ambient temperature after quenching is stopped.
- steels processed according to the present invention are especially suitable for many cryogenic temperature applications in that the steels have the following characteristics, preferably for steel plate thicknesses of about 2.5 cm (1 inch) and greater: (i) DBTT lower than about -73 °C (-100°F) in the base steel and in the weld HAZ, (ii) tensile strength greater than 830 MPa (120 ksi), preferably greater than about 860 MPa (125 ksi), and more preferably greater than about 900 MPa (130 ksi), (iii) superior weldability, (iv) substantially uniform through-thickness microstructure and properties, and (v) improved toughness over standard, commercially available, HSLA steels.
- These steels can have a tensile strength of greater than about 930 MPa (135 ksi), or greater than about 965 MPa (140 ksi), or greater than about 1000 MPa (145 ksi).
- FIG. 1 is a schematic illustration of a tortuous crack path in the dual phase microcomposite structure of steels of this invention
- FIG. 2A is a schematic illustration of austenite grain size in a steel slab after reheating according to the present invention
- FIG. 2B is a schematic illustration of prior austenite grain size (see Glossary) in a steel slab after hot rolling in the temperature range in which austenite recrystallizes, but prior to hot rolling in the temperature range in which austenite does not recrystalhze, according to the present invention.
- FIG. 2C is a schematic illustration of the elongated, pancake grain structure in austenite, with very fine effective grain size in the through-thickness direction, of a steel plate upon completion of TMCP according to the present invention. While the present invention will be described in connection with its preferred embodiments, it will be understood that the invention is not limited thereto. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents which may be included within the spirit and scope of the invention, as defined by the appended claims.
- the present invention relates to the development of new HSLA steels meeting the above-described challenges by producing an ultra- fine-grained, dual phase structure.
- Such dual phase microcomposite structure is preferably comprised of a soft ferrite phase and a strong second phase of predominantly fine-grained lath martensite, fine-grained lower bainite, or mixtures thereof.
- the invention is based on a novel combination of steel chemistry and processing for providing both intrinsic and microstructural toughening to lower DBTT as well as to enhance toughness at high strengths. Intrinsic toughening is achieved by the judicious balance of critical alloying elements in the steel as described in detail in this specification.
- Microstructural toughening results from achieving a very fine effective grain size as well as producing a very fine dispersion of strengthening phase while simultaneously reducing the effective grain size ("mean slip distance") in the soft phase ferrite.
- the second phase dispersion is optimized to substantially maximize tortuosity in the crack path, thereby enhancing the crack propagation resistance in the microcomposite steel.
- Stop Temperature preferably below about the M s transformation temperature plus 200°C (360°F); and (f) stopping said quenching.
- the QST is preferably below about the M s transformation temperature plus
- the steel plate is allowed to air cool to ambient temperature after step (f).
- This processing facilitates transformation of the microstructure of the steel plate to about 10 vol% to about 40 vol% of a first phase of ferrite and about 60 vol% to about 90 vol% of a second phase of predominantly fine-grained lath martensite, fine-grained lower bainite, or mixtures thereof. (See Glossary for definitions of T ⁇ - temperature, and of Ar 3 and Ari transformation temperatures.)
- the microstructure of the second phase in steels of this invention comprises predominantly fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof. It is preferable to substantially minimize the formation of embrittling constituents such as upper bainite, twinned martensite and MA in the second phase. As used in describing the present invention, and in the claims, "predominantly" means at least about 50 volume percent.
- the remainder of the second phase microstructure can comprise additional fine-grained lower bainite, additional fine-grained lath martensite, or ferrite.
- the microstructure of the second phase comprises at least about 60 volume percent to about 80 volume percent fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof. Even more preferably, the microstructure of the second phase comprises at least about 90 volume percent fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof.
- a steel slab processed according to this invention is manufactured in a customary fashion and, in one embodiment, comprises iron and the following alloying elements, preferably in the weight ranges indicated in the following Table I:
- Chromium (Cr) is sometimes added to the steel, preferably up to about 1.0 wt%, and more preferably about 0.2 wt% to about 0.6 wt%.
- Molybdenum (Mo) is sometimes added to the steel, preferably up to about 0.8 wt%, and more preferably about 0.1 wt% to about 0.3 wt%.
- Silicon (Si) is sometimes added to the steel, preferably up to about 0.5 wt%, more preferably about 0.01 wt% to about 0.5 wt%, and even more preferably about 0.05 wt% to about 0.1 wt%.
- Copper (Cu) preferably in the range of about 0.1 wt% to about 1.0 wt%, more preferably in the range of about 0.2 wt% to about 0.4 wt%, is sometimes added to the steel.
- Boron (B) is sometimes added to the steel, preferably up to about 0.0020 wt%, and more preferably about 0.0006 wt% to about 0.0010 wt%.
- the steel preferably contains at least about 1 wt% nickel.
- Nickel content of the steel can be increased above about 3 wt% if desired to enhance performance after welding.
- Each 1 wt% addition of nickel is expected to lower the DBTT of the steel by about 10°C (18°F).
- Nickel content is preferably less than 9 wt%, more preferably less than about 6 wt%.
- Nickel content is preferably minimized in order to minimize cost of the steel. If nickel content is increased above about 3 wt%, manganese content can be decreased below about 0.5 wt% down to 0.0 wt%.
- Phosphorous (P) content is preferably less than about 0.01 wt%.
- Sulfur (S) content is preferably less than about 0.004 wt%.
- Oxygen (O) content is preferably less than about 0.002 wt%.
- Achieving a low DBTT is a key challenge in the development of new HSLA steels for cryogenic temperature applications.
- the technical challenge is to maintain/increase the strength in the present HSLA technology while lowering the DBTT, especially in the HAZ.
- the present invention utilizes a combination of alloying and processing to alter both the intrinsic as well as microstructural contributions to fracture resistance in a way to produce a low alloy steel with excellent cryogenic temperature properties in the base plate and in the HAZ, as hereinafter described.
- microstructural toughening is exploited for lowering the base steel DBTT.
- a key component of this microstructural toughening consists of refining prior austenite grain size, modifying the grain morphology through thermo-mechanical controlled rolling processing (TMCP), and producing a dual phase dispersion within the fine grains, all aimed at enhancing the interfacial area of the high angle boundaries per unit volume in the steel plate.
- TMCP thermo-mechanical controlled rolling processing
- grain boundary as used herein means a narrow zone in a metal corresponding to the transition from one crystallographic orientation to another, thus separating one grain from another.
- a “high angle grain boundary” is a grain boundary that separates two adjacent grains whose crystallographic orientations differ by more than about 8°.
- a “high angle boundary or interface” is a boundary or interface that effectively behaves as a high angle grain boundary, i.e., tends to deflect a propagating crack or fracture and, thus, induces tortuosity in a fracture path.
- d is the average austenite grain size in a hot-rolled steel plate prior to rolling in the temperature range in which austenite does not recrystalhze (prior austenite grain size);
- R is the reduction ratio (original steel slab thickness/final steel plate thickness); and r is the percent reduction in thickness of the steel due to hot rolling in the temperature range in which austenite does not recrystalhze. It is well known in the art that as the Sv of a steel increases, the DBTT decreases, due to crack deflection and the attendant tortuosity in the fracture path at the high angle boundaries. In commercial TMCP practice, the value of R is fixed for a given plate thickness and the upper limit for the value of r is typically 75. Given fixed values for R and r , Sv can only be substantially increased by decreasing d , as evident from the above equation.
- Ti-Nb microalloying is used in combination with optimized TMCP practice.
- TMCP practice For the same total amount of reduction during hot rolling/deformation, a steel with an initially finer average austenite grain size will result in a finer finished average austenite grain size. Therefore, in this invention the amount of Ti-Nb additions are optimized for low reheating practice while producing the desired austenite grain growth inhibition during TMCP.
- a relatively low reheating temperature preferably between about 955°C and about 1065°C (1750°F - 1950°F) is used to obtain initially an average austenite grain size D' of less than about 120 microns in reheated steel slab 20' before hot deformation.
- Processing according to this invention avoids the excessive austenite grain growth that results from the use of higher reheating temperatures, i.e., greater than about 1095°C (2000°F), in conventional TMCP.
- higher reheating temperatures i.e., greater than about 1095°C (2000°F)
- heavy per pass reductions greater than about 10% are employed during hot rolling in the temperature range in which austenite recrystallizes.
- processing according to this invention provides an average prior austenite grain size D" (i.e., d ) of less than about 30 microns, preferably less than about 20 microns, and even more preferably less than about 10 microns, in steel slab 20" after hot rolling (deformation) in the temperature range in which austenite recrystallizes, but prior to hot rolling in the temperature range in which austenite does not recrystalhze.
- D average prior austenite grain size
- d average prior austenite grain size of less than about 30 microns, preferably less than about 20 microns, and even more preferably less than about 10 microns, in steel slab 20" after hot rolling (deformation) in the temperature range in which austenite recrystallizes, but prior to hot rolling in the temperature range in which austenite does not recrystalhze.
- heavy reductions preferably exceeding about 70% cumulative, are carried out in the temperature range below about the T ⁇ - temperature but above about the Ar 3 transformation temperature.
- TMCP leads to the formation of an elongated, pancake structure in austenite in a finish rolled steel plate 20'" with very fine effective grain size D'" in the through-thickness direction, e.g., effective grain size D"' less than about 10 microns, preferably less than about 8 microns, and even more preferably less than about 5 microns, thus enhancing the interfacial area of the high angle boundaries, e.g., 21, per unit volume in steel plate 20'", as will be understood by those skilled in the art.
- Finish rolling in the intercritical temperature range also induces "pancaking" in the ferrite that forms from the austenite decomposition during the intercritical exposure, which in turn leads to lowering of its effective grain size ("mean slip distance") in the through-thickness direction.
- the ferrite that forms from the austenite decomposition during the intercritical exposure also has a high degree of deformation substructure, including a high dislocation density (e.g., about 10 8 or more dislocations/cm 2 ), to boost its strength.
- the steels of this invention are designed to benefit from the refined ferrite for simultaneous enhancement of strength and toughness.
- a steel according to this invention is prepared by forming a slab of the desired composition as described herein; heating the slab to a temperature of from about 955°C to about 1065°C (1750°F - 1950°F); hot rolling the slab to form steel plate in one or more passes providing about 30 percent to about 70 percent reduction in a first temperature range in which austenite recrystallizes, i.e., above about the T m temperature, further hot rolling the steel plate in one or more passes providing about 40 percent to about 80 percent reduction in a second temperature range below about the T m temperature and above about the Ar 3 transformation temperature, and finish rolling the steel plate in one or more passes to provide about 15 percent to about 50 percent reduction in the intercritical temperature range below about the Ar transformation temperature and above about the An transformation temperature.
- the hot rolled steel plate is then quenched at a cooling rate of about 10°C per second to about 40°C per second (18°F/sec - 72°F/sec) to a suitable Quench Stop Temperature (QST) preferably below about the M s transformation temperature plus 200°C (360°F), at which time the quenching is terminated.
- QST Quench Stop Temperature
- the QST is preferably below about the M s transformation temperature plus 100°C (180°F), and is more preferably below about 350°C (662°F).
- the steel plate is allowed to air cool to ambient temperature after quenching is terminated.
- percent reduction in thickness refers to percent reduction in the thickness of the steel slab or plate prior to the reduction referenced.
- a steel slab of about 25.4 cm (10 inches) thickness may be reduced about 30% (a 30 percent reduction), in a first temperature range, to a thickness of about 17.8 cm (7 inches) then reduced about 80% (an 80 percent reduction), in a second temperature range, to a thickness of about 3.6 cm (1.4 inch), and then reduced about 30% (a 30 percent reduction), in a third temperature range, to a thickness of about 2.5 cm (1 inch).
- slab means a piece of steel having any dimensions.
- the steel slab is preferably heated by a suitable means for raising the temperature of substantially the entire slab, preferably the entire slab, to the desired reheating temperature, e.g., by placing the slab in a furnace for a period of time.
- a suitable means for raising the temperature of substantially the entire slab, preferably the entire slab, to the desired reheating temperature e.g., by placing the slab in a furnace for a period of time.
- the specific reheating temperature that should be used for any steel composition within the range of the present invention may be readily determined by a person skilled in the art, either by experiment or by calculation using suitable models.
- the furnace temperature and reheating time necessary to raise the temperature of substantially the entire slab, preferably the entire slab, to the desired reheating temperature may be readily determined by a person skilled in the art by reference to standard industry publications.
- temperatures referenced in describing the processing method of this invention are temperatures measured at the surface of the steel.
- the surface temperature of steel can be measured by use of an optical pyrometer, for example, or by any other device suitable for measuring the surface temperature of steel.
- the cooling rates referred to herein are those at the center, or substantially at the center, of the plate thickness; and the Quench Stop Temperature (QST) is the highest, or substantially the highest, temperature reached at the surface of the plate, after quenching is stopped, because of heat transmitted from the mid-thickness of the plate.
- QST Quench Stop Temperature
- thermocouple is placed at the center, or substantially at the center, of the steel plate thickness for center temperature measurement, while the surface temperature is measured by use of an optical pyrometer.
- a correlation between center temperature and surface temperature is developed for use during subsequent processing of the same, or substantially the same, steel composition, such that center temperature may be determined via direct measurement of surface temperature.
- the required temperature and flow rate of the quenching fluid to accomplish the desired accelerated cooling rate may be determined by one skilled in the art by reference to standard industry publications.
- the temperature that defines the boundary between the recrystallization range and non-recrystallization range depends on the chemistry of the steel, particularly the carbon concentration and the niobium concentration, on the reheating temperature before rolling, and on the amount of reduction given in the rolling passes. Persons skilled in the art may determine this temperature for a particular steel according to this invention either by experiment or by model calculation. Similarly, the Ar 1 ⁇ Ar 3 , and M s transformation temperatures referenced herein may be determined by persons skilled in the art for any steel according to this invention either by experiment or by model calculation.
- the TMCP practice thus described leads to a high value of Sv .
- the dual phase microstructure produced during rapid cooling further increases the interfacial area by providing numerous high angle interfaces and boundaries, i.e., ferrite phase/second phase interfaces and martensite/lower bainite packet boundaries, as further discussed below.
- the heavy texture resulting from the intensified rolling in the intercritical temperature range establishes a sandwich or laminate structure in the through-thickness direction consisting of alternating sheets of soft phase ferrite and strong second phase. This configuration, as schematically illustrated in FIG. 1, leads to significant tortuosity in the through-thickness direction of the path of crack 12.
- the present invention provides a method for maintaining sufficiently low DBTT in the coarse grained regions of the weld HAZ by utilizing intrinsic effects of alloying elements, as described in the following.
- BCC body-centered cubic
- CRSS is an intrinsic property of the steel and is sensitive to the ease with which dislocations can cross slip upon deformation; that is, a steel in which cross slip is easier will also have a low CRSS and hence a low DBTT.
- FCC face-centered cubic
- BCC stabilizing alloying elements such as Si, Al, Mo, Nb and V discourage cross slip.
- content of FCC stabilizing alloying elements is preferably optimized, taking into account cost considerations and the beneficial effect for lowering DBTT, with Ni alloying of preferably at least about 1.0 wt% and more preferably at least about 1.5 wt%; and the content of BCC stabilizing alloying elements in the steel is substantially minimized.
- the steels have excellent cryogenic temperature toughness in both the base plate and the HAZ after welding.
- DBTTs in both the base plate and the HAZ after welding of these steels are lower than about -73 °C (-100°F) and can be lower than about -107°C (-160°F).
- the strength of dual phase microcomposite structures is determined by the volume fraction and strength of the constituent phases.
- the second phase (martensite/lower bainite) strength is primarily dependent on its carbon content.
- a deliberate effort is made to obtain the desired strength by primarily controlling the volume fraction of second phase so that the strength is obtained at a relatively low carbon content with the attendant advantages in weldability and excellent toughness in both the base steel and in the HAZ.
- volume fraction of the second phase is preferably in the range of about 60 vol% to about 90 vol%. This is achieved by selecting the appropriate finish rolling temperature for the intercritical rolling.
- a minimum of about 0.04 wt% C is preferred in the overall alloy for attaining tensile strength of at least about 1000 MPa (145 ksi).
- alloying elements other than C, in steels according to this invention are substantially inconsequential as regards the maximum attainable strength in the steel, these elements are desirable to provide the required through-thickness uniformity of microstructure and strength for plate thickness greater than about 2.5 cm (1 inch) and for a range of cooling rates desired for processing flexibility. This is important as the actual cooling rate at the mid section of a thick plate is lower than that at the surface.
- the microstructure of the surface and center can thus be quite different unless the steel is designed to eliminate its sensitivity to the difference in cooling rate between the surface and the center of the plate.
- Mn and Mo alloying additions, and especially the combined additions of Mo and B are particularly effective.
- these additions are optimized for hardenability, weldability, low DBTT and cost considerations.
- the preferred chemistry targets and ranges are set to meet these and the other requirements of this invention.
- the steels of this invention are designed for superior weldability.
- the most important concern, especially with low heat input welding, is cold cracking or hydrogen cracking in the coarse grained HAZ. It has been found that for steels of the present invention, cold cracking susceptibility is critically affected by the carbon content and the type of HAZ microstructure, not by the hardness and carbon equivalent, which have been considered to be the critical parameters in the art.
- the preferred upper limit for carbon addition is about 0.1 wt%.
- low heat input welding means welding with arc energies of up to about 2.5 kilojoules per millimeter (kJ/mm) (7.6 kJ/inch).
- Lower bainite or auto-tempered lath martensite microstructures offer superior resistance to cold cracking.
- Other alloying elements in the steels of this invention are carefully balanced, commensurate with the hardenability and strength requirements, to ensure the formation of these desirable microstructures in the coarse grained HAZ.
- Carbon (C) is one of the most effective strengthening elements in steel. It also combines with the strong carbide formers in the steel such as Ti, Nb, and V to provide grain growth inhibition and precipitation strengthening. Carbon also enhances hardenability, i.e., the ability to form harder and stronger microstructures in the steel during cooling. If the carbon content is less than about 0.04 wt%, it is generally not sufficient to induce the desired strengthening, viz., greater than 830 MPa (120 ksi) tensile strength, in the steel.
- the steel is susceptible to cold cracking during welding and the toughness is reduced in the steel plate and its HAZ on welding.
- Carbon content in the range of about 0.04 wt% to about 0.12 wt% is preferred to produce the desired HAZ microstructures, viz., auto-tempered lath martensite and lower bainite. Even more preferably, the upper limit for carbon content is about 0.07 wt%.
- Manganese (Mn) is a matrix strengthener in steels and also contributes strongly to the hardenability.
- a minimum amount of 0.5 wt% Mn is preferred for achieving the desired high strength in plate thickness exceeding about 2.5 cm (1 inch), and a minimum of at least about 1.0 wt% Mn is even more preferred.
- an upper limit of about 2.5 wt% Mn is preferred in the present invention.
- This upper limit is also preferred to substantially minimize centerline segregation that tends to occur in high Mn and continuously cast steels and the attendant through-thickness non-uniformity in microstructure and properties.
- the upper limit for Mn content is about 1.8 wt%. If nickel content is increased above about 3 wt%, the desired high strength can be achieved without the addition of manganese. Therefore, in a broad sense, up to about 2.5 wt% manganese is preferred.
- Si Silicon
- Si is added to steel for deoxidation purposes and a minimum of about 0.01 wt% is preferred for this purpose.
- Si is a strong BCC stabilizer and thus raises DBTT and also has an adverse effect on the toughness.
- an upper limit of about 0.5 wt% Si is preferred. More preferably, the upper limit for Si content is about 0.1 wt%.
- Silicon is not always necessary for deoxidation since aluminum or titanium can perform the same function.
- Niobium (Nb) is added to promote grain refinement of the rolled microstructure of the steel, which improves both the strength and toughness.
- Niobium carbide precipitation during hot rolling serves to retard recrystallization and to inhibit grain growth, thereby providing a means of austenite grain refinement. For these reasons, at least about 0.02 wt% Nb is preferred. However, Nb is a strong BCC stabilizer and thus raises DBTT. Too much Nb can be harmful to the weldability and HAZ toughness, so a maximum of about 0.1 wt% is preferred. More preferably, the upper limit for Nb content is about 0.05 wt%.
- Ti is added in such an amount that the weight ratio of Ti/N is preferably about 3.4.
- Ti is a strong BCC stabilizer and thus raises DBTT. Excessive Ti tends to deteriorate the toughness of the steel by forming coarser TiN or titanium carbide (TiC) particles.
- a Ti content below about 0.008 wt% generally can not provide sufficiently fine grain size or tie up the N in the steel as TiN while more than about 0.03 wt% can cause deterioration in toughness.
- the steel contains at least about 0.01 wt% Ti and no more than about 0.02 t% Ti.
- Aluminum (Al) is added to the steels of this invention for the purpose of deoxidation. At least about 0.002 wt% Al is preferred for this purpose, and at least about 0.01 wt% Al is even more preferred. Al ties up nitrogen dissolved in the HAZ. However, Al is a strong BCC stabilizer and thus raises DBTT. If the Al content is too high, i.e., above about 0.05 wt%, there is a tendency to form aluminum oxide (Al 2 O 3 ) type inclusions, which tend to be harmful to the toughness of the steel and its HAZ. Even more preferably, the upper limit for Al content is about 0.03 wt%.
- Molybdenum increases the hardenability of steel on direct quenching, especially in combination with boron and niobium.
- Mo is a strong BCC stabilizer and thus raises DBTT.
- Excessive Mo helps to cause cold cracking on welding, and also tends to deteriorate the toughness of the steel and HAZ, so when Mo is added, a maximum of about 0.8 wt% is preferred. More preferably, when Mo is added, the steel contains at least about 0.1 wt% Mo and no more than about 0.3 wt% Mo.
- Chromium tends to increase the hardenability of steel on direct quenching. Cr also improves corrosion resistance and hydrogen induced cracking (HIC) resistance. Similar to Mo, excessive Cr tends to cause cold cracking in weldments, and tends to deteriorate the toughness of the steel and its HAZ, so when Cr is added, a maximum of about 1.0 wt% Cr is preferred. More preferably, when Cr is added, the Cr content is about 0.2 wt% to about 0.6 wt%.
- Nickel (Ni) is an important alloying addition to the steels of the present invention to obtain the desired DBTT, especially in the HAZ. It is one of the strongest FCC stabilizers in steel. Ni addition to the steel enhances the cross slip and thereby lowers DBTT. Although not to the same degree as Mn and Mo additions, Ni addition to the steel also promotes hardenability and therefore through-thickness uniformity in microstructure and properties in thick sections (i.e., thicker than about 2.5 cm (1 inch)).
- the minimum Ni content is preferably about 1.0 wt%, more preferably about 1.5 wt%.
- the Ni content of the steel is preferably less than about 3.0 wt%, more preferably less than about 2.5 wt%, more preferably less than about 2.0 wt%, and even more preferably less than about 1.8 wt%, to substantially minimize cost of the steel.
- Copper (Cu) is an FCC stabilizer in steel and can contribute to lowering of DBTT in small amounts. Cu is also beneficial for corrosion and HIC resistance. At higher amounts, Cu induces excessive precipitation hardening via ⁇ -copper precipitates. This precipitation, if not properly controlled, can lower the toughness and raise the DBTT both in the base plate and HAZ. Higher Cu can also cause embrittlement during slab casting and hot rolling, requiring co-additions of Ni for mitigation. For the above reasons, when copper is added to the steels of this invention, an upper limit of about 1.0 wt% Cu is preferred, and an upper limit of about 0.4 wt% Cu is even more preferred.
- Boron (B) in small quantities can greatly increase the hardenability of steel and promote the formation of steel microstructures of lath martensite, lower bainite, and ferrite by suppressing the formation of upper bainite, both in the base plate and the coarse grained HAZ. Generally, at least about 0.0004 wt% B is needed for this purpose.
- B is added to steels of this invention, from about 0.0006 wt% to about 0.0020 wt% is preferred, and an upper limit of about 0.0010 wt% is even more preferred.
- boron may not be a required addition if other alloying in the steel provides adequate hardenability and the desired microstructure.
- PWHT Post Weld Heat Treatment
- the base steel chemistry as described above is preferably modified by adding a small amount of vanadium. Vanadium is added to give precipitation strengthening by forming fine vanadium carbide (VC) particles in the base steel and HAZ upon PWHT. This strengthening is designed to offset substantially the strength loss upon PWHT. However, excessive VC strengthening is to be avoided as it can degrade the toughness and raise DBTT both in the base plate and its HAZ.
- an upper limit of about 0.1 wt% is preferred for V for these reasons.
- the lower limit is preferably about 0.02 wt%. More preferably, about 0.03 wt% to about 0.05 wt% V is added to the steel.
- This step-out combination of properties in the steels of the present invention provides a low cost enabling technology for certain cryogenic temperature operations, for example, storage and transport of natural gas at low temperatures.
- These new steels can provide significant material cost savings for cryogenic temperature applications over the current state-of-the-art commercial steels, which generally require far higher nickel contents (up to about 9 wt%) and are of much lower strengths (less than about 830 MPa (120 ksi)).
- Chemistry and microstructure design are used to lower DBTT and provide uniform mechanical properties in the through-thickness for section thicknesses exceeding about 2.5 cm. (1 inch).
- These new steels preferably have nickel contents lower than about 3 wt%, tensile strength greater than 830 MPa (120 ksi), preferably greater than about 860 MPa (125 ksi), and more preferably greater than about 900 MPa (130 ksi), ductile to brittle transition temperatures (DBTTs) below about -73 °C (-100°F), and offer excellent toughness at DBTT.
- These new steels can have a tensile strength of greater than about 930 MPa (135 ksi), or greater than about 965 MPa (140 ksi), or greater than about 1000 MPa (145 ksi). Nickel content of these steel can be increased above about 3 wt% if desired to enhance performance after welding.
- Nickel content is preferably less than 9 wt%, more preferably less than about 6 wt%. Nickel content is preferably minimized in order to minimize cost of the steel.
- Aci transformation temperature the temperature at which austenite begins to form during heating
- Ac 3 transformation temperature the temperature at which transformation of ferrite to austenite is completed during heating
- Al 2 O 3 aluminum oxide
- Ar ⁇ transformation temperature the temperature at which transformation of austenite to ferrite or to ferrite plus cementite is completed during cooling
- Ar 3 transformation temperature the temperature at which austenite begins to transform to ferrite during cooling
- BCC body-centered cubic
- cooling rate cooling rate at the center, or substantially at the center, of the plate thickness
- CRSS critical resolved shear stress
- cryogenic temperature any temperature lower than about -40°C (-40°F); DBTT (Ductile to Brittle Transition Temperature): delineates the two fracture regimes in structural steels; at temperatures below the DBTT, failure tends to occur by low energy cleavage (brittle) fracture, while at temperatures above the DBTT, failure tends to occur by high energy ductile fracture;
- FCC face-centered cubic
- grain boundary a narrow zone in a metal corresponding to the transition from one crystallographic orientation to another, thus separating one grain from another;
- HAZ heat affected zone
- HIC hydrogen induced cracking
- high angle boundary or interface boundary or interface that effectively behaves as a high angle grain boundary, i.e., tends to deflect a propagating crack or fracture and, thus, induces tortuosity in a fracture path;
- high angle grain boundary a grain boundary that separates two adjacent grains whose crystallographic orientations differ by more than about 8°; HSLA: high strength, low alloy;
- intercritically reheated heated (or reheated) to a temperature of from about the Aci transformation temperature to about the Ac 3 transformation temperature;
- intercritical temperature range from about the Aci transformation temperature to about the Ac 3 transformation temperature on heating, and from about the Ar transformation temperature to about the Art transformation temperature on cooling;
- low alloy steel a steel containing iron and less than about 10 wt% total alloy additives
- low heat input welding welding with arc energies of up to about 2.5 kJ/mm (7.6 kJ/inch);
- M s transformation temperature the temperature at which transformation of austenite to martensite starts during cooling
- prior austenite grain size average austenite grain size in a hot-rolled steel plate prior to rolling in the temperature range in which austenite does not recrystalhze
- quenching as used in describing the present invention, accelerated cooling by any means whereby a fluid selected for its tendency to increase the cooling rate of the steel is utilized, as opposed to air cooling;
- QST Quench Stop Temperature
- slab a piece of steel having any dimensions
- tensile strength in tensile testing, the ratio of maximum load to original cross-sectional area
- TiC titanium carbide
- TiN titanium nitride
- T m temperature the temperature below which austenite does not recrystalhze
- TMCP thermo-mechanical controlled rolling processing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98931362A EP1040205A4 (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
CA002315086A CA2315086C (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
BR9813690-9A BR9813690A (en) | 1997-12-19 | 1998-06-18 | Processes for preparing double phase steel plate and for improving the crack propagation resistance of a steel plate and double phase steel plate. |
AU81510/98A AU741006B2 (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
UA2000074220A UA59426C2 (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength hardened double purpose steel with perfect criogenic temperature |
SI9820086A SI20277A (en) | 1997-12-19 | 1998-06-18 | Ultra-high strenght dual phase steels with excellent cryogenic temperature toughness |
AT0915598A AT409388B (en) | 1997-12-19 | 1998-06-18 | EXTREMELY HIGH-STRENGTH TWO-PHASE STEELS WITH EXCELLENT DEPTH TEMPERATURE |
GB0013635A GB2347684B (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
DE19882881T DE19882881T1 (en) | 1997-12-19 | 1998-06-18 | Extremely high-strength two-phase steels with excellent low-temperature toughness |
JP2000525585A JP2001527154A (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength dual phase steel with excellent low temperature toughness |
HU0101159A HUP0101159A3 (en) | 1997-12-19 | 1998-06-18 | Dual phase steel, a method for producing it and a method for enhancing the crack propagation resistance of a steel plate containing at least 1 wt% and maximum 9 wt% nickel |
PL98341755A PL341755A1 (en) | 1997-12-19 | 1998-06-18 | High-strength two-phase steels exhibiting excellent toughness properties at cryogenic temperatures |
NZ505335A NZ505335A (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
SK874-2000A SK8742000A3 (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
IL13684498A IL136844A (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
SE0002246A SE517697C2 (en) | 1997-12-19 | 2000-06-16 | Ultra-strong two-phase steels with excellent toughness at cryogenic temperature and method of manufacturing them |
FI20001441A FI112381B (en) | 1997-12-19 | 2000-06-16 | Ultra high strength biphasic steels with excellent cryogenic temperature toughness |
DK200000937A DK200000937A (en) | 1997-12-19 | 2000-06-16 | Double-phase steel types with ultra-high strength and excellent toughness at cryogenic temperatures |
NO20003173A NO20003173L (en) | 1997-12-19 | 2000-06-19 | Ultra-high, two-phase steel with excellent toughness at cryogenic temperatures |
BG104623A BG104623A (en) | 1997-12-19 | 2000-07-18 | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6881697P | 1997-12-19 | 1997-12-19 | |
US60/068,816 | 1997-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999032671A1 true WO1999032671A1 (en) | 1999-07-01 |
Family
ID=22084874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/012701 WO1999032671A1 (en) | 1997-12-19 | 1998-06-18 | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness |
Country Status (42)
Country | Link |
---|---|
US (1) | US6066212A (en) |
EP (1) | EP1040205A4 (en) |
JP (1) | JP2001527154A (en) |
KR (1) | KR100374437B1 (en) |
CN (1) | CN1098359C (en) |
AR (1) | AR013110A1 (en) |
AT (1) | AT409388B (en) |
AU (1) | AU741006B2 (en) |
BG (1) | BG104623A (en) |
BR (1) | BR9813690A (en) |
CA (1) | CA2315086C (en) |
CH (1) | CH694098A5 (en) |
CO (1) | CO5040183A1 (en) |
DE (1) | DE19882881T1 (en) |
DK (1) | DK200000937A (en) |
DZ (1) | DZ2531A1 (en) |
ES (1) | ES2181565B2 (en) |
FI (1) | FI112381B (en) |
GB (1) | GB2347684B (en) |
GC (1) | GC0000037A (en) |
GE (1) | GEP20043272B (en) |
HR (1) | HRP980344B1 (en) |
HU (1) | HUP0101159A3 (en) |
ID (1) | ID26843A (en) |
IL (1) | IL136844A (en) |
MY (1) | MY114596A (en) |
NO (1) | NO20003173L (en) |
NZ (1) | NZ505335A (en) |
OA (1) | OA11425A (en) |
PE (1) | PE89499A1 (en) |
PL (1) | PL341755A1 (en) |
RU (1) | RU2216599C2 (en) |
SE (1) | SE517697C2 (en) |
SI (1) | SI20277A (en) |
SK (1) | SK8742000A3 (en) |
TN (1) | TNSN98101A1 (en) |
TR (1) | TR200001855T2 (en) |
TW (1) | TW459053B (en) |
UA (1) | UA59426C2 (en) |
WO (1) | WO1999032671A1 (en) |
YU (1) | YU37700A (en) |
ZA (1) | ZA985320B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1144698A1 (en) * | 1998-12-19 | 2001-10-17 | Exxonmobil Upstream Research Company | Ultra-high strength triple phase steels with excellent cryogenic temperature toughness |
GB2350121B (en) * | 1997-12-19 | 2003-04-16 | Exxonmobil Upstream Res Co | Process components, containers, and pipes suitable for containing and transporting cryogenic temperature fluids |
EP1325966A1 (en) * | 2000-09-12 | 2003-07-09 | Nkk Corporation | Super high tensile cold-rolled steel plate and method for production thereof |
EP1371446A1 (en) | 2002-06-14 | 2003-12-17 | L'Air Liquide S. A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Use helium/nitrogen gas mixtures in laser welding of abutted flanks |
WO2007051080A2 (en) | 2005-10-24 | 2007-05-03 | Exxonmobil Upstream Research Company | High strength dual phase steel with low yield ratio, high toughness and superior weldability |
EP2089556A2 (en) * | 2006-10-06 | 2009-08-19 | Exxonmobile Upstream Research Company | Low yield ratio dual phase steel linepipe with superior strain aging resistance |
EP2799567A4 (en) * | 2011-12-28 | 2015-08-12 | Nippon Steel & Sumitomo Metal Corp | High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet |
EP3239329A4 (en) * | 2014-12-24 | 2017-11-01 | Posco | Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor |
CN110643800A (en) * | 2019-10-22 | 2020-01-03 | 马鞍山钢铁股份有限公司 | 1200 MPa-level hot-rolled high-strength dual-phase steel plate and manufacturing method thereof |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2230396C (en) * | 1997-02-25 | 2001-11-20 | Sumitomo Metal Industries, Ltd. | High-toughness, high-tensile-strength steel and method of manufacturing the same |
FR2781506B1 (en) * | 1998-07-21 | 2000-08-25 | Creusot Loire | PROCESS AND STEEL FOR THE MANUFACTURE OF A TANK ENCLOSURE WORKING IN THE PRESENCE OF SULFURATED HYDROGEN |
US6739333B1 (en) * | 1999-05-26 | 2004-05-25 | Boehringer Ingelheim Pharma Kg | Stainless steel canister for propellant-driven metering aerosols |
US6315946B1 (en) * | 1999-10-21 | 2001-11-13 | The United States Of America As Represented By The Secretary Of The Navy | Ultra low carbon bainitic weathering steel |
US6669789B1 (en) | 2001-08-31 | 2003-12-30 | Nucor Corporation | Method for producing titanium-bearing microalloyed high-strength low-alloy steel |
ITRM20010678A1 (en) * | 2001-11-15 | 2003-05-15 | Acciai Speciali Terni Spa | PROCEDURE FOR THE ONLINE RECRYSTALLIZATION OF RAW SOLIDIFICATION TAPES IN CARBON STEEL AND IN ALLOY AND BONDED STEEL |
JP2005525509A (en) | 2001-11-27 | 2005-08-25 | エクソンモービル アップストリーム リサーチ カンパニー | CNG storage and delivery system for natural gas vehicles |
US6852175B2 (en) * | 2001-11-27 | 2005-02-08 | Exxonmobil Upstream Research Company | High strength marine structures |
US6746548B2 (en) * | 2001-12-14 | 2004-06-08 | Mmfx Technologies Corporation | Triple-phase nano-composite steels |
US20060152344A1 (en) * | 2002-12-07 | 2006-07-13 | Mowery Richard A Jr | Powerline Communication Network Handoff |
CN100348763C (en) * | 2004-03-08 | 2007-11-14 | 大连荣创科技发展有限公司 | Method for manufacturing non-carbide segregation high-alloy ledeburite steel by phase transition resistance diffusion welding |
CN100392135C (en) * | 2005-06-30 | 2008-06-04 | 宝山钢铁股份有限公司 | Ultra-high strength strip steel and its production process |
DE102006001198A1 (en) * | 2006-01-10 | 2007-07-12 | Sms Demag Ag | Method and device for setting specific property combinations in multiphase steels |
CN101255528B (en) * | 2007-02-26 | 2010-12-01 | 宝山钢铁股份有限公司 | Niobium-containing steel plate with excellent ultralow-temperature flexibility and rolling method thereof |
US20090301613A1 (en) * | 2007-08-30 | 2009-12-10 | Jayoung Koo | Low Yield Ratio Dual Phase Steel Linepipe with Superior Strain Aging Resistance |
CA2718304C (en) * | 2008-03-27 | 2012-03-06 | Nippon Steel Corporation | High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and weldability,and methods for manufacturing the same |
KR20110036705A (en) * | 2008-07-11 | 2011-04-08 | 아크티에볼라게트 에스케이에프 | A method for manufacturing a steel component, a weld seam, a welded steel component, and a bearing component |
JP5712484B2 (en) * | 2008-12-26 | 2015-05-07 | Jfeスチール株式会社 | A steel material excellent in ductile crack initiation characteristics of a weld heat-affected zone and a base metal zone, and a method for producing the same. |
DE102010020886B4 (en) * | 2010-03-01 | 2012-09-06 | Mt Aerospace Ag | Pressure vessel for cryogenic liquids |
CN101880823A (en) * | 2010-07-05 | 2010-11-10 | 北京科技大学 | Hot rolled niobium micro-alloyed multi-phase steel and preparation method thereof |
CN101974722A (en) * | 2010-10-29 | 2011-02-16 | 河北钢铁股份有限公司唐山分公司 | Steel plate for manufacturing concrete mixer tank and production method |
FI20115702L (en) * | 2011-07-01 | 2013-01-02 | Rautaruukki Oyj | METHOD FOR PRODUCING HIGH-STRENGTH STRUCTURAL STEEL AND HIGH-STRENGTH STRUCTURAL STEEL |
BR112014007498B1 (en) | 2011-09-30 | 2019-04-30 | Nippon Steel & Sumitomo Metal Corporation | HIGH RESISTANCE HOT GALVANIZED STEEL SHEET AND SAME PRODUCTION METHOD |
JP5574059B2 (en) * | 2011-12-15 | 2014-08-20 | 新日鐵住金株式会社 | High-strength H-section steel with excellent low-temperature toughness and method for producing the same |
KR101658744B1 (en) * | 2012-09-26 | 2016-09-21 | 신닛테츠스미킨 카부시키카이샤 | Compositestructure steel sheet and process for producing same |
EP3409804B1 (en) * | 2016-01-29 | 2022-04-20 | JFE Steel Corporation | Steel plate for high-strength and high-toughness steel pipes and method for producing steel plate |
WO2017163098A1 (en) * | 2016-03-25 | 2017-09-28 | Arcelormittal | Process for manufacturing cold-rolled and welded steel sheets, and sheets thus produced |
BR112019006502A2 (en) | 2017-01-31 | 2019-08-13 | Nippon Steel & Sumitomo Metal Corp | steel plate |
JP6428970B1 (en) * | 2017-03-30 | 2018-11-28 | Jfeスチール株式会社 | Hot-pressed member and manufacturing method thereof |
CN107385326B (en) * | 2017-06-27 | 2019-06-04 | 南京钢铁股份有限公司 | A kind of production technology of the generous Pipeline Steel Plate of ultra-fine grain |
MX2020001538A (en) * | 2017-10-30 | 2020-07-13 | Nippon Steel Corp | Hot-rolled steel sheet and manufacturing method therefor. |
RU2686758C1 (en) * | 2018-04-02 | 2019-04-30 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Structural cryogenic steel and method of its production |
CN112824551A (en) * | 2019-11-21 | 2021-05-21 | 上海梅山钢铁股份有限公司 | Steel substrate of steel-backed aluminum-based composite board for bearing bush and manufacturing method |
CN112647021B (en) * | 2020-12-09 | 2021-10-15 | 上海电气上重铸锻有限公司 | High-strength 9% Ni steel for ultralow-temperature engineering fastener and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184898A (en) * | 1977-07-20 | 1980-01-22 | Nippon Kokan Kabushiki Kaisha | Method of manufacturing high strength low alloys steel plates with superior low temperature toughness |
US4687525A (en) * | 1984-09-03 | 1987-08-18 | Hoesch Stahl Ag | Worked low-temperature tough ferritic steel |
US5531842A (en) * | 1994-12-06 | 1996-07-02 | Exxon Research And Engineering Company | Method of preparing a high strength dual phase steel plate with superior toughness and weldability (LAW219) |
US5545270A (en) * | 1994-12-06 | 1996-08-13 | Exxon Research And Engineering Company | Method of producing high strength dual phase steel plate with superior toughness and weldability |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3550726B2 (en) * | 1994-06-03 | 2004-08-04 | Jfeスチール株式会社 | Method for producing high strength steel with excellent low temperature toughness |
US5900075A (en) * | 1994-12-06 | 1999-05-04 | Exxon Research And Engineering Co. | Ultra high strength, secondary hardening steels with superior toughness and weldability |
US5545269A (en) * | 1994-12-06 | 1996-08-13 | Exxon Research And Engineering Company | Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability |
JPH08176659A (en) * | 1994-12-20 | 1996-07-09 | Sumitomo Metal Ind Ltd | Production of high tensile strength steel with low yield ratio |
CA2186476C (en) * | 1995-01-26 | 2001-01-16 | Hiroshi Tamehiro | Weldable high strength steel having excellent low temperature toughness |
CA2187028C (en) * | 1995-02-03 | 2001-07-31 | Hiroshi Tamehiro | High strength line pipe steel having low yield ratio and excellent low temperature toughness |
JP3314295B2 (en) * | 1995-04-26 | 2002-08-12 | 新日本製鐵株式会社 | Method of manufacturing thick steel plate with excellent low temperature toughness |
-
1998
- 1998-06-17 TW TW087109711A patent/TW459053B/en not_active IP Right Cessation
- 1998-06-17 DZ DZ980141A patent/DZ2531A1/en active
- 1998-06-18 DE DE19882881T patent/DE19882881T1/en not_active Withdrawn
- 1998-06-18 CA CA002315086A patent/CA2315086C/en not_active Expired - Fee Related
- 1998-06-18 TR TR2000/01855T patent/TR200001855T2/en unknown
- 1998-06-18 BR BR9813690-9A patent/BR9813690A/en not_active IP Right Cessation
- 1998-06-18 TN TNTNSN98101A patent/TNSN98101A1/en unknown
- 1998-06-18 AU AU81510/98A patent/AU741006B2/en not_active Ceased
- 1998-06-18 GE GEAP19985469A patent/GEP20043272B/en unknown
- 1998-06-18 CH CH01231/00A patent/CH694098A5/en not_active IP Right Cessation
- 1998-06-18 HR HR980344A patent/HRP980344B1/en not_active IP Right Cessation
- 1998-06-18 RU RU2000119124/02A patent/RU2216599C2/en not_active IP Right Cessation
- 1998-06-18 KR KR10-2000-7006667A patent/KR100374437B1/en not_active IP Right Cessation
- 1998-06-18 PE PE1998000528A patent/PE89499A1/en not_active Application Discontinuation
- 1998-06-18 WO PCT/US1998/012701 patent/WO1999032671A1/en not_active IP Right Cessation
- 1998-06-18 IL IL13684498A patent/IL136844A/en not_active IP Right Cessation
- 1998-06-18 EP EP98931362A patent/EP1040205A4/en not_active Withdrawn
- 1998-06-18 YU YU37700A patent/YU37700A/en unknown
- 1998-06-18 ZA ZA9805320A patent/ZA985320B/en unknown
- 1998-06-18 SK SK874-2000A patent/SK8742000A3/en unknown
- 1998-06-18 GB GB0013635A patent/GB2347684B/en not_active Expired - Fee Related
- 1998-06-18 PL PL98341755A patent/PL341755A1/en unknown
- 1998-06-18 UA UA2000074220A patent/UA59426C2/en unknown
- 1998-06-18 NZ NZ505335A patent/NZ505335A/en unknown
- 1998-06-18 ID IDW20001391A patent/ID26843A/en unknown
- 1998-06-18 HU HU0101159A patent/HUP0101159A3/en unknown
- 1998-06-18 CO CO98034682A patent/CO5040183A1/en unknown
- 1998-06-18 CN CN98812426A patent/CN1098359C/en not_active Expired - Fee Related
- 1998-06-18 AT AT0915598A patent/AT409388B/en not_active IP Right Cessation
- 1998-06-18 US US09/099,152 patent/US6066212A/en not_active Expired - Lifetime
- 1998-06-18 ES ES200050040A patent/ES2181565B2/en not_active Expired - Fee Related
- 1998-06-18 SI SI9820086A patent/SI20277A/en not_active IP Right Cessation
- 1998-06-18 JP JP2000525585A patent/JP2001527154A/en active Pending
- 1998-06-19 AR ARP980102966A patent/AR013110A1/en unknown
- 1998-06-20 MY MYPI98002810A patent/MY114596A/en unknown
- 1998-10-25 GC GCP199824 patent/GC0000037A/en active
-
2000
- 2000-06-15 OA OA1200000172A patent/OA11425A/en unknown
- 2000-06-16 DK DK200000937A patent/DK200000937A/en not_active Application Discontinuation
- 2000-06-16 FI FI20001441A patent/FI112381B/en not_active IP Right Cessation
- 2000-06-16 SE SE0002246A patent/SE517697C2/en not_active IP Right Cessation
- 2000-06-19 NO NO20003173A patent/NO20003173L/en not_active Application Discontinuation
- 2000-07-18 BG BG104623A patent/BG104623A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4184898A (en) * | 1977-07-20 | 1980-01-22 | Nippon Kokan Kabushiki Kaisha | Method of manufacturing high strength low alloys steel plates with superior low temperature toughness |
US4687525A (en) * | 1984-09-03 | 1987-08-18 | Hoesch Stahl Ag | Worked low-temperature tough ferritic steel |
US5531842A (en) * | 1994-12-06 | 1996-07-02 | Exxon Research And Engineering Company | Method of preparing a high strength dual phase steel plate with superior toughness and weldability (LAW219) |
US5545270A (en) * | 1994-12-06 | 1996-08-13 | Exxon Research And Engineering Company | Method of producing high strength dual phase steel plate with superior toughness and weldability |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2350121B (en) * | 1997-12-19 | 2003-04-16 | Exxonmobil Upstream Res Co | Process components, containers, and pipes suitable for containing and transporting cryogenic temperature fluids |
EP1144698A1 (en) * | 1998-12-19 | 2001-10-17 | Exxonmobil Upstream Research Company | Ultra-high strength triple phase steels with excellent cryogenic temperature toughness |
EP1144698A4 (en) * | 1998-12-19 | 2004-10-27 | Exxonmobil Upstream Res Co | Ultra-high strength triple phase steels with excellent cryogenic temperature toughness |
EP1325966A1 (en) * | 2000-09-12 | 2003-07-09 | Nkk Corporation | Super high tensile cold-rolled steel plate and method for production thereof |
EP1325966A4 (en) * | 2000-09-12 | 2006-05-31 | Jfe Steel Corp | Super high tensile cold-rolled steel plate and method for production thereof |
EP1371446A1 (en) | 2002-06-14 | 2003-12-17 | L'Air Liquide S. A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Use helium/nitrogen gas mixtures in laser welding of abutted flanks |
WO2007051080A2 (en) | 2005-10-24 | 2007-05-03 | Exxonmobil Upstream Research Company | High strength dual phase steel with low yield ratio, high toughness and superior weldability |
EP1951519A2 (en) * | 2005-10-24 | 2008-08-06 | ExxonMobil Upstream Research Company | High strength dual phase steel with low yield ratio, high toughness and superior weldability |
EP1951519A4 (en) * | 2005-10-24 | 2008-12-31 | Exxonmobil Upstream Res Co | High strength dual phase steel with low yield ratio, high toughness and superior weldability |
EP2089556A2 (en) * | 2006-10-06 | 2009-08-19 | Exxonmobile Upstream Research Company | Low yield ratio dual phase steel linepipe with superior strain aging resistance |
EP2089556A4 (en) * | 2006-10-06 | 2011-10-05 | Exxonmobile Upstream Res Company | Low yield ratio dual phase steel linepipe with superior strain aging resistance |
EP2799567A4 (en) * | 2011-12-28 | 2015-08-12 | Nippon Steel & Sumitomo Metal Corp | High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet |
EP3239329A4 (en) * | 2014-12-24 | 2017-11-01 | Posco | Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor |
CN110643800A (en) * | 2019-10-22 | 2020-01-03 | 马鞍山钢铁股份有限公司 | 1200 MPa-level hot-rolled high-strength dual-phase steel plate and manufacturing method thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6066212A (en) | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness | |
US6159312A (en) | Ultra-high strength triple phase steels with excellent cryogenic temperature toughness | |
AU739791B2 (en) | Ultra-high strength ausaged steels with excellent cryogenic temperature toughness | |
US6254698B1 (en) | Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof | |
EP1047799A1 (en) | Ultra-high strength steels with excellent cryogenic temperature toughness | |
WO2000039352A2 (en) | Ultra-high strength steels with excellent cryogenic temperature toughness | |
MXPA00005795A (en) | Ultra-high strength dual phase steels with excellent cryogenic temperature toughness | |
MXPA00005794A (en) | Ultra-high strength ausaged steels with excellent cryogenic temperature toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: P-377/00 Country of ref document: YU Ref document number: 136844 Country of ref document: IL Ref document number: 98812426.2 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 81510/98 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: GB0013635.8 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8742000 Country of ref document: SK |
|
WWE | Wipo information: entry into national phase |
Ref document number: PV2000-2141 Country of ref document: CZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2000/005795 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 200050040 Country of ref document: ES Kind code of ref document: A Ref document number: 2000 200000630 Country of ref document: RO Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: P200050040 Country of ref document: ES |
|
ENP | Entry into the national phase |
Ref document number: 2315086 Country of ref document: CA Ref document number: 2315086 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 00022467 Country of ref document: SE Ref document number: 1020007006667 Country of ref document: KR Ref document number: 20001441 Country of ref document: FI |
|
WWP | Wipo information: published in national office |
Ref document number: 00022467 Country of ref document: SE |
|
ENP | Entry into the national phase |
Ref document number: 1998 9155 Country of ref document: AT Date of ref document: 19990701 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19989155 Country of ref document: AT Ref document number: 2000/01855 Country of ref document: TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 505335 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998931362 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1200000645 Country of ref document: VN Ref document number: 5469/1 Country of ref document: GE |
|
WWP | Wipo information: published in national office |
Ref document number: 1998931362 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: PV2000-2141 Country of ref document: CZ |
|
WWP | Wipo information: published in national office |
Ref document number: 1020007006667 Country of ref document: KR |
|
RET | De translation (de og part 6b) |
Ref document number: 19882881 Country of ref document: DE Date of ref document: 20010712 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19882881 Country of ref document: DE |
|
WWG | Wipo information: grant in national office |
Ref document number: 81510/98 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020007006667 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 200050040 Country of ref document: ES Kind code of ref document: A |
|
WWG | Wipo information: grant in national office |
Ref document number: 20001441 Country of ref document: FI |
|
WWG | Wipo information: grant in national office |
Ref document number: 200050040 Country of ref document: ES Kind code of ref document: A |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998931362 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8607 |
|
WWX | Former pct application expired in national office |
Ref document number: 200050040 Country of ref document: ES Kind code of ref document: A |