WO1999030035A1 - Variable displacement compressor - Google Patents

Variable displacement compressor Download PDF

Info

Publication number
WO1999030035A1
WO1999030035A1 PCT/JP1997/004537 JP9704537W WO9930035A1 WO 1999030035 A1 WO1999030035 A1 WO 1999030035A1 JP 9704537 W JP9704537 W JP 9704537W WO 9930035 A1 WO9930035 A1 WO 9930035A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive shaft
swash plate
support
hole
hinge mechanism
Prior art date
Application number
PCT/JP1997/004537
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Kimura
Hiroaki Kayukawa
Hideki Mizutani
Shigeyuki Hidaka
Original Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyoda Jidoshokki Seisakusho filed Critical Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Priority to DE19782257T priority Critical patent/DE19782257T1/en
Priority to PCT/JP1997/004537 priority patent/WO1999030035A1/en
Publication of WO1999030035A1 publication Critical patent/WO1999030035A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms

Definitions

  • the present invention relates to a variable displacement compressor applied to, for example, a vehicle air conditioning system and capable of changing a stroke of a piston by changing a tilt angle of a cam plate to adjust a discharge capacity.
  • the drive shaft 102 is rotatably supported by the housing 101.
  • the rotating support 103 is fixed to the drive shaft 102.
  • the swash plate 104 serving as a cam plate has an A through hole 105 formed in the center of the swash plate 104, and the drive shaft 102 is inserted into the through hole 105.
  • the piston 106 is accommodated in a cylinder bore 101a provided in a housing 101, and is moored to a swash plate 104 via a shoe 108.
  • the hinge mechanism 109 is interposed between the rotating support 103 and the swash plate 104. That is, the guide bin 110 is provided near the top dead center position D of the swash plate 104.
  • the spherical portion 110a is formed at the tip of the guide bin 110.
  • the support arm 111 is provided on the rotary support 103 so as to face the guide bin 110.
  • the guide hole 111a is formed in the support arm 111.
  • the guide bin 110 is inserted into the guide hole 111a of the support arm 111 with a spherical portion 110a.
  • the support portion 105a is provided on the inner surface of the through hole 105 on the side facing the hinge mechanism 109 with the axis L of the drive shaft 102 interposed therebetween.
  • the support portion 105a has an arc shape centered on the axis S.
  • the swash plate 104 is rotatable integrally with the drive shaft 102 via a rotation support 103 and a hinge mechanism 109.
  • the swing of the swash plate 1_04 back and forth in the direction of the axis L due to the rotation of the drive shaft 102 is converted into a reciprocating motion of the piston 106 via the shoe 108, and the refrigerant gas is compressed in the cylinder bore 101a.
  • the swash plate 104 is connected through a slide guide relationship between the spherical portion 110a of the hinge mechanism 109 and the guide hole 111a, and through a through hole 105 formed by the drive shaft 102. Due to the sliding support function, it can be tilted while sliding along the axis L. When the inclination angle of the swash plate 104 is changed, the stroke of the piston 106 is changed, and the discharge capacity is adjusted.
  • a load K is applied to the piston 106 by the compression of the refrigerant gas, and the compressed load K is transmitted through the swash plate 104 and the spherical portion 110a of the guide bin 110 to the guide hole. Acts on the inner surface of the rotating support 103 side of 111a.
  • the guide bin 110 receives the reaction force F of the compressive load K from the guide hole 111a.
  • the guide hole 111a extends toward the swash plate 104 side so as to approach the axis L of the drive shaft 102 from the outside. Accordingly, the reaction force F acting on the guide bin 110 generates a component force f in the direction of shifting the swash plate 104 toward the top dead center position D with respect to the drive shaft 102. For this reason, the swash plate 104 is in a state where the support portion 105a of the through hole 105 is pressed against the peripheral surface of the drive shaft 102 during the operation of the compressor.
  • the swash plate 104 When the capacity of the compressor is changed, the swash plate 104 is tilted while sliding on the drive shaft 102 with the support portion 105a pressed against the peripheral surface of the drive shaft 102. That is, the swash plate 104 is tilted about the arc-shaped center axis S of the support portion 105a. In other words, the swash plate 104 is tilted about the axis S set beyond the drive shaft 102 on the side facing the hinge mechanism 109 with the axis L interposed therebetween.
  • the supporting capital 105a is pressed against the peripheral surface of the drive shaft 102 and receives an excessive load.
  • the support portion 105a slides on the peripheral surface of the drive shaft 102. Therefore, the support portion 105a was easily worn and deformed, and could not maintain an arc shape centered on the axis S for a long period of time.
  • the tilt center is shifted from the axis S, and the swash plate 104 may be adjusted to a different tilt angle from the desired tilt angle, and the displacement control cannot be performed accurately.
  • the swash plate 104 be made of aluminum to reduce the weight of the compressor.
  • the strength of the swash plate 104 made of an aluminum material is lower than that of a swash plate 104 made of an iron-based material.
  • An object of the present invention is to provide a variable displacement compressor in which the support and guide of a cam plate by a drive shaft are directly performed via a support on the lower surface of a through hole, and the durability of the support is improved. Is to do.
  • an arc-shaped support portion is formed on the inner surface of the through-hole in the cam plate to be in contact with the drive shaft and receive a slide support operation by the drive shaft, and the arc-shaped support portion has an arc shape.
  • the center axis of the cam plate is set beyond the drive shaft on the side facing the hinge mechanism with the axis of the drive shaft interposed, and forms the center of tilt of the cam plate, and the support is hardened.
  • the cam plate is tilted about the axis of the support portion while sliding on the drive shaft by the guide of the hinge mechanism and the slide support action of the drive shaft through the support portion of the through hole.
  • the hardening process is a quenching process.
  • the hardness of the support portion is increased by quenching.
  • the quenching process is performed by ⁇ -frequency quenching.
  • the support portion is quenched by induction hardening.
  • the hardening process is performed on substantially the entire inner surface of the through hole.
  • the hardening process is applied to the entire inner surface of the through-hole, resulting in a hardening process applied to the support section, which is simpler and more reliable compared to performing the hardening process only on the support section. .
  • the cam plate is made of aluminum.
  • the cam plate is lighter in weight than that made of an iron-based material
  • the hardened support portion is made of, for example, aluminum alloy having a lower strength than that of an iron-based material. A decrease in durability due to the use of a rubber material is prevented.
  • FIG. 1 is a longitudinal sectional view of a variable displacement compressor according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a main part of FIG. 1, with the drive shaft cut away.
  • FIG. 3 is an explanatory diagram showing a state in which the discharge capacity is minimized.
  • FIG. 4 is an enlarged view of the vicinity of the support portion of the through hole in FIG.
  • Fig. 5 is a front view showing the swash plate extracted from Fig. 1.
  • FIG. 6 is a diagram illustrating induction hardening performed on a through hole of a swash plate.
  • FIG. 7 is an enlarged cross-sectional view of a main part showing a compressor disclosed in Japanese Patent Application Laid-Open No. 7-911366.
  • the front housing 11 is joined and fixed to the front end of the cylinder block 12.
  • the rear housing 13 is joined and fixed to the rear end of the cylinder block 12 via a valve forming body 14.
  • the crank chamber 15 is defined by being surrounded by the front housing 11 and the cylinder block 12.
  • the drive shaft 16 passes through the crankcase 15 through the front housing 11 and the cylinder block 1 2 And rotatably supported between them.
  • the drive shaft 16 is connected to a vehicle engine (not shown) as an external drive source via a clutch mechanism such as an electromagnetic clutch. Therefore, the drive shaft 16 is rotationally driven by the connection of the clutch mechanism when the vehicle engine is started.
  • the rotary support 17 is fixed to the drive shaft 16 in the crank chamber 15.
  • the swash plate 18 as a force plate is made of an aluminum material (including one made of an aluminum alloy) and housed in the crankcase 15.
  • the drive shaft 16 is inserted through a through-hole 19 provided at the center of the swash plate 18.
  • the hinge mechanism 20 is interposed between the rotary support 17 and the swash plate 18.
  • the through hole 19 in order to form the through hole 19, first, drilling is performed along the center line 1 to form a circular hole in the center of the swash plate work. Insert an end mill of approximately the same diameter into the circular hole, and rotate it around the axis S in the forward and reverse directions within a predetermined angle range while rotating it.
  • the axis S extends in a direction perpendicular to the axis L of the drive shaft 16 and is set at a position beyond the drive shaft 16 on a side facing the hinge mechanism 20 with the axis L interposed therebetween.
  • the support portion 19a having an arc shape centered on the axis S is provided on the inner surface of the through hole 19 with the hinge mechanism 20 with the axis L of the drive shaft 16 interposed therebetween. It is provided on the opposite side.
  • a pair of guide bins 21 are provided across the top dead center position D on the outer peripheral portion of the front surface of the swash plate 18.
  • the guide pin 21 extends toward the rotary support member 17, and a spherical portion 21a is formed at the tip thereof.
  • the pair of support arms 22 are provided so as to face the guide bin 21 at the outer peripheral portion of the back surface of the rotary support 17.
  • the support arm 22 extends toward the swash plate 18 and has a guide hole 22a formed at the end thereof.
  • the guide hole 22 a extends from the outside toward the axis L of the drive shaft 16 toward the swash plate 18.
  • the guide pin 21 is inserted into the guide hole 22a of the support arm 22 with a spherical portion 21a.
  • Cylinder pores 1 2a are at predetermined intervals around axis L in cylinder block 12 Are formed (only the-part is shown in the figure).
  • the single-headed piston 23 is housed in each cylinder bore 12a.
  • the piston 23 is moored to the outer periphery of the swash plate 18 via a shoe 24.
  • the suction chamber 25 is defined at the center of the rear housing 13 ⁇ .
  • the discharge chamber 26 is defined on the outer peripheral portion of the housing 13.
  • the suction port 27, the suction valve 28 for opening and closing the suction port 27, the discharge port 29, and the discharge valve 30 for opening and closing the discharge port 29 are formed in the valve forming body 14, respectively.
  • the swash plate 18 is rotatable with the drive shaft 16 via a rotation support 17 and a hinge mechanism 20.
  • the swing of the swash plate 18 back and forth in the axis L direction due to the rotation of the drive shaft 16 is converted into a reciprocating motion of the piston 23 via the shaft 24.
  • the biston 23 in the figure is located at the top dead center.
  • the piston 23 in the figure is located at the bottom dead center.
  • the refrigerant gas in the suction chamber 25 moves from the top dead center side of the biston 23 to the bottom dead center side and is sucked into the cylinder bore 12 a through the suction port 27 and the suction valve 28. .
  • the refrigerant gas flowing into the cylinder bore 12a is compressed by the movement of the piston 23 from the bottom dead center side to the top dead center side, and is discharged through the discharge port 29 and the discharge valve 30. Discharged into chamber 26.
  • the swash plate 18 has a slide guide relationship between the spherical portion 21 a of the guide bin 21 in the hinge mechanism 20 and the guide hole 22 a of the support arm 22, and is penetrated by the drive shaft 16.
  • the drive shaft 16 can be tilted while sliding in the direction of the axis L with respect to the drive shaft 16.
  • the circlip 31 is externally fixed to the drive shaft 16 between the swash plate 18 and the cylinder block 12, and regulates the minimum inclination angle of the swash plate 18.
  • the maximum inclination angle of the swash plate 18 is defined by the contact with the rotating support 17.
  • the tilt-reducing panel 32 is wound around the drive shaft 16 between the rotary support 17 and the swash plate 18, and the center of the radius of the swash plate 18 is a cylinder.
  • Block 1 Energize in 2 directions.
  • the bleed passage 35 connects the crank chamber 15 and the suction chamber 25.
  • the air supply passage 36 connects the discharge chamber 26 to the crank chamber 15.
  • the capacity control valve 37 is interposed on the air supply passage .36.
  • the displacement control valve 37 is a pressure-sensitive valve, and includes a diaphragm 39 responsive to a pressure change in the pressure-sensitive chamber 38 and a valve body 40 operatively connected to the diaphragm 39.
  • the pressure-sensitive passage 41 connects the suction chamber 25 to the pressure-sensitive chamber 38.
  • the refrigerant gas in the suction chamber 25 is introduced into the pressure-sensitive chamber 38 via the pressure-sensitive passage 41.
  • the diaphragm 39 is sensitive to the suction pressure, and the opening of the air supply passage 36 is adjusted by the operation of the valve body 40 accompanying the suction pressure.
  • the pressure in the crank chamber 15 is changed, and the difference between the pressure in the crank chamber 15 acting before and after the piston 23 and the pressure in the cylinder bore 12 a is adjusted. Therefore, the inclination angle of the swash plate 18 is changed, the stroke amount of the button 23 is changed, and the discharge capacity is adjusted.
  • the capacity control valve 37 is operated so as to reduce the opening of the air supply passage 36.
  • the pressure in the crank chamber 15 is released to the suction chamber 25 via the bleed passage 35 and is reduced. Therefore, the spherical portion 21 a of the guide pin 21 in the hinge mechanism 20 is moved in the guide hole 22 a of the support arm 22 in a direction away from the axis L.
  • the swash plate 18 makes the support portion 19 a contact the peripheral surface of the drive shaft 16, and moves the swash plate 18 on the drive shaft 16 against the inclination-reducing panel 32.
  • the suction pressure becomes lower than the set value, and the capacity control valve 37 is operated so as to increase the opening degree of the air supply passage 36. Therefore, the pressure of the crank chamber 15 is increased by the introduction of the refrigerant gas from the discharge chamber 26. Therefore, as shown in FIG. 3, the spherical portion 21 a of the guide bin 21 in the hinge mechanism 20 is It is moved in the direction approaching the axis L within the guide hole 2 2 a of No. 2.
  • the swash plate 18 is bent to the inclination reducing panel 32 while the supporting capital 19a is in contact with the peripheral surface of the drive shaft 16 and the swash plate 18 is bent.
  • a load K is applied to the piston 23 by the compression of the refrigerant gas, and this compression load K is transmitted through the swash plate 18 and the spherical portion 21a of the guide bin 21. It acts on the inner surface of the guide hole 22 a on the rotating support 17 side.
  • the spherical capital 2la receives a reaction force F of a compressive load K from the guide hole 22a.
  • the guide hole 22 a extends toward the swash plate 18 side so as to approach the axis L of the drive shaft 16 from the outside. Accordingly, the reaction force F acting on the guide bin 21 generates a component force f in the direction of shifting the swash plate 18 toward the top dead center position D with respect to the drive shaft 16.
  • the center of gravity of the swash plate 18 is shifted to the top dead center position D side with respect to the axis L mainly due to the uneven distribution of the guide bin 21 with respect to the axis L.
  • the uneven distribution of the guide pins 21 is offset by the counter weights 18a provided on the side of the swash plate 18 facing the guide bins 21 with the axis L interposed therebetween, but in this embodiment, The weight and formation position of the countergate 18a are set so that the rotational balance is slightly unbalanced on the guide bin 21 side. Therefore, the rotating swash plate 18 tends to shift to the top dead center position D side with respect to the drive shaft 16 due to the unbalance of the centrifugal force that increases the guide bin 21 side.
  • the above-mentioned compression load K becomes smaller as the discharge capacity is adjusted to the minimum side and the compression ratio becomes smaller, and the component force f becomes smaller accordingly. If the component force f becomes small, there is a possibility that the swash plate 18 cannot be held while being shifted toward the top dead center position D with respect to the drive shaft 16. For this reason, the center of gravity of the swash plate 18 is shifted to the top dead center position D side to compensate for the small component force f when the discharge capacity is small. You.
  • the inner surface of the through hole 19 of the swash plate 18 is in a state where the support portion 19a is pressed against the peripheral surface of the drive shaft 16 during the operation of the compressor. Therefore, the supporting portion 19a receives an excessive load from the peripheral surface of the drive shaft 16, and slides on the peripheral surface of the drive shaft 16 when the capacity is changed.
  • the hardness of the support portion 19a is increased by the hardening treatment, and the circumference of the drive shaft 16 is higher than the surface state of the aluminum material forming the swash plate 18 as it is. The durability against pressure contact and sliding with the surface has been improved. Therefore, the supporting portion 19a is hardly deformed by abrasion, and can maintain an arc shape centered on the axis S for a long time.
  • a quenching process is performed in the present embodiment.
  • This quenching process is performed by induction hardening. That is, as shown in FIG. 6, the coil 51 is inserted into the through hole 19, and a high-frequency current is supplied from the power supply 52 to the coil 51.
  • the high-frequency current is supplied to the coil 51, the entire inner surface of the through hole 19 including the support portion 19a is heated by Joule heat due to an overcurrent generated by electromagnetic induction based on the high frequency current.
  • the inner surface of the through hole 19 is heated for a predetermined time, and then rapidly cooled by a cooling liquid such as oil or water.
  • the present embodiment having the above configuration has the following effects.
  • the hardened support portion 19a has improved durability, and can maintain an arc shape around the axis S for a long time. Accordingly, the swash plate 18 can be tilted about the axis S between the maximum tilt position and the minimum tilt position, and the tilt angle of the swash plate 18 is adjusted to the tilt angle controlled by the displacement control valve 37. Changes can be made reliably and high-precision capacity control can be achieved over a long period of time. This leads to improved compressor reliability.
  • the hardening treatment of the support portion 19a is a quenching treatment.
  • the quenching process requires only a simple operation of heating and rapidly cooling the supporting portion 19a, and can perform the operation safely compared to a plating process using chemicals.
  • the shrinkage stress is applied to the inside of the swash plate 18a.
  • the hardening treatment is performed only on the support 19 a (the surface of the swash plate 18)
  • the deformation of the inside of the swash plate 18 causes an arc shape centered on the axis S of the support 19 a.
  • the heat applied during the quenching process is applied not only to the support capital 19a but also to the inside of the swash plate 18. Therefore, the hardening treatment can be performed to the inside of the swash plate 18 and the durability of the support portion 19a is further improved.
  • the quenching process of the support 19a is performed by induction hardening. Induction quenching is easier than quenching with flame quenching. In addition, compared with flame quenching, the swash plate 18 can be hardened deeper inside, and the durability of the support portion 19a is further improved.
  • the support part 19 ⁇ exists in the deep part inside the narrow through hole 19. Applying the curing treatment locally only to the support portion 19a in such an environment is a troublesome operation that requires accuracy to reliably aim at the support portion 19a.
  • the hardening process is performed on the entire surface of the through hole 19, and as a result, the hardening process is performed on the support portion 19a. Therefore, the hardening process can be easily and reliably applied to the support portion 19a.
  • the hardness of the part other than the support part 19a is increased by the hardening treatment, and the through-hole 19, which may be in pressure contact with the drive shaft 16 due to rattling of the swash plate 18, etc. The durability of the entire inner surface is improved.
  • the above quenching treatment includes carburizing quenching and flame quenching.
  • nitriding treatment examples include an ion nitriding treatment, a gas softening treatment, and a tough tride treatment.
  • a hardening treatment is applied to the entire surface of the swash plate 18 so that the supporting portion 19a is hardened as a result. This makes it possible to easily and reliably apply the curing treatment to the support 19a.
  • the swash plate 18 should be made of iron-based material. By doing so, the durability of the support portion 19a is further improved.
  • variable displacement compressor according to claim 1 wherein the curing process is a plating process. By doing so, the durability of the support portion 19a is improved.
  • variable displacement compressor according to claim 1 wherein the curing treatment is a nitrification treatment. By doing so, the durability of the support portion 19a is improved.
  • variable displacement compressor according to any one of claims 1 to 3, wherein the hardening treatment is performed on a surface of the through hole 19 other than the support portion 19a. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A swash plate (18) can rotate together with a drive shaft (16) through a rotating support (17) and a hinge mechanism (20), and rotation of the drive shaft (16) is converted into reciprocating motion of a piston (23). Guiding provided by the hinge mechanism (20) and a slide supporting action provided by the drive shaft (16) through a through hole (19) permit the swash plate (18) to incline while moving slidingly on the drive shaft (16), and a change in an inclination angle modifies a stroke of the piston (23) for regulation of delivery capacity. An arcuate-shaped support (19a) abuts against the drive shaft (16) to subject the swash plate (18) to the slide supporting action provided by the drive shaft (16). An axis (S) being the center of an arc for the support (19a) is set to be beyond the drive shaft (16) on a side opposite to the hinge mechanism (20) with an axis (L) of the drive shaft (16) therebetween, and defines the center of inclination of the swash plate (18). The support (19a) is increased in hardness by induction hardening to be improved in durability in pressure contact and sliding relative to a peripheral surface of the drive shaft (16).

Description

明 糸田 書  Akira Itoda
可変容量型圧縮機  Variable displacement compressor
. [技術分野]  . [Technical field]
本発明は、 例えば、 車両空調システムに適用され、 カムプレートの傾角を変更 することでビストンのストロークを変更して吐出容量を調節可能な可変容量型圧 縮機に関する。  The present invention relates to a variable displacement compressor applied to, for example, a vehicle air conditioning system and capable of changing a stroke of a piston by changing a tilt angle of a cam plate to adjust a discharge capacity.
[背景技術]  [Background technology]
この種の圧縮機としては、 例えば、 本出願人によって提案された、 特開平 7— 9 1 3 6 6号公報に示すようなものが存在する。 すなわち、 図 7に示すように、 駆動軸 102 はハウジング 101 に回転可能に支持されている。 回転支持体 103 は駆 動軸 102 に固定されている。 カムプレートとしての斜板 104 はその中央都に莨通 孔 105 が貫設され、 貫通孔 105 には駆動軸 102 が挿通されている。 ピス トン 106 は、 ハウジング 101 に設けられたシリンダボア 101aに収容されるとともに、 斜板 104 にシユー 108 を介して係留されている。  As this type of compressor, for example, there is one as disclosed in Japanese Patent Application Laid-Open No. 7-91636 proposed by the present applicant. That is, as shown in FIG. 7, the drive shaft 102 is rotatably supported by the housing 101. The rotating support 103 is fixed to the drive shaft 102. The swash plate 104 serving as a cam plate has an A through hole 105 formed in the center of the swash plate 104, and the drive shaft 102 is inserted into the through hole 105. The piston 106 is accommodated in a cylinder bore 101a provided in a housing 101, and is moored to a swash plate 104 via a shoe 108.
ヒンジ機構 109 は回転支持体 103 と斜板 104 との間に介在されている。 すなわ ち、 ガイ ドビン 110 は斜板 104 の上死点位置 D付近に設けられている。 球状部 11 0aはガイ ドビン 110 の先端部に形成されている。 支持アーム 111 はガイ ドビン 11 0 と対向して回転支持体 103 に設けられている。 ガイ ド孔 111aは支持アーム 111 に形成されている。 ガイ ドビン 110 は、 球状部 110aを以つて支持アーム 111 のガ ィ ド孔 111aに揷入されている。 支持部 105aは、 貫通孔 105 の内面において、 駆動 軸 102 の軸線 Lを挾んでヒンジ機構 109 と対向する側に設けられている。 支持部 105aは軸線 Sを中心とした円弧状をなす。  The hinge mechanism 109 is interposed between the rotating support 103 and the swash plate 104. That is, the guide bin 110 is provided near the top dead center position D of the swash plate 104. The spherical portion 110a is formed at the tip of the guide bin 110. The support arm 111 is provided on the rotary support 103 so as to face the guide bin 110. The guide hole 111a is formed in the support arm 111. The guide bin 110 is inserted into the guide hole 111a of the support arm 111 with a spherical portion 110a. The support portion 105a is provided on the inner surface of the through hole 105 on the side facing the hinge mechanism 109 with the axis L of the drive shaft 102 interposed therebetween. The support portion 105a has an arc shape centered on the axis S.
斜板 104 は、 回転支持体 103 及ぴヒンジ機構 109 を介して駆動軸 102 と一体回 転可能である。 駆動軸 102 の回転による斜板 1_04 の軸線 L方向前後の揺動は、 シ ユー 108 を介してピス トン 106 の往復動に変換され、 シリンダボア 101aにおいて 冷媒ガスの圧縮が行われる。 斜板 104 は、 ヒンジ機構 109 における球状部 110aと ガイ ド孔 111aとの間のスライ ドガイ ド関係、 駆動軸 102 による貫通孔 105 を介し たスライ ド支持作用により、 軸線 L方向ヘスライ ド移動しつつ傾動可能である。 斜板 104 の傾角が変更されるとピス トン 106 のス トロークが変更され、 吐出容量 が調節される。 The swash plate 104 is rotatable integrally with the drive shaft 102 via a rotation support 103 and a hinge mechanism 109. The swing of the swash plate 1_04 back and forth in the direction of the axis L due to the rotation of the drive shaft 102 is converted into a reciprocating motion of the piston 106 via the shoe 108, and the refrigerant gas is compressed in the cylinder bore 101a. The swash plate 104 is connected through a slide guide relationship between the spherical portion 110a of the hinge mechanism 109 and the guide hole 111a, and through a through hole 105 formed by the drive shaft 102. Due to the sliding support function, it can be tilted while sliding along the axis L. When the inclination angle of the swash plate 104 is changed, the stroke of the piston 106 is changed, and the discharge capacity is adjusted.
ここで、 圧縮機の運転中において、 荷重 Kが冷媒ガスの圧縮によりピス トン 10 6 に作用され、 この圧縮荷重 Kは、 斜板 104 及びガイ ドビン 110 の球状部 110aを 介して、 ガイ ド孔 111aの回転支持体 103 側の内面に作用される。 ガイ ドビン 110 はガイ ド孔 111aから、 この圧縮荷重 Kの反力 Fを受ける。 ガイ ド孔 111aは、 斜板 104 側に向かうにつれて、 駆動軸 102 の軸線 Lに対して外方から近づくように延 在されている。 従って、 ガイ ドビン 110 に作用する反力 Fが、 斜板 104 を駆動軸 102 に対して上死点位置 D側へずらす方向の分力 f を生じる。 このこと等から、 圧縮機の運転中において斜板 104 は、 貫通孔 105 の支持部 105aが駆動軸 102 の周 面に押し付けられた状態となっている。  Here, during operation of the compressor, a load K is applied to the piston 106 by the compression of the refrigerant gas, and the compressed load K is transmitted through the swash plate 104 and the spherical portion 110a of the guide bin 110 to the guide hole. Acts on the inner surface of the rotating support 103 side of 111a. The guide bin 110 receives the reaction force F of the compressive load K from the guide hole 111a. The guide hole 111a extends toward the swash plate 104 side so as to approach the axis L of the drive shaft 102 from the outside. Accordingly, the reaction force F acting on the guide bin 110 generates a component force f in the direction of shifting the swash plate 104 toward the top dead center position D with respect to the drive shaft 102. For this reason, the swash plate 104 is in a state where the support portion 105a of the through hole 105 is pressed against the peripheral surface of the drive shaft 102 during the operation of the compressor.
圧縮機の容量変更時、 斜板 104 は、 支持部 105aを駆動軸 102 の周面に押し付け た状態で駆動軸 102 上をスライ ド移動しつつ傾動される。 つまり、 斜板 104 の傾 動は、 支持部 105aの円弧状の中心軸線 Sを中心として行われている。 言い換えれ ば、 斜板 104 は、 軸線 Lを挟んでヒンジ機構 109 と対向する側において、 駆動軸 102 を越えて設定された軸線 Sを中心として傾動される。  When the capacity of the compressor is changed, the swash plate 104 is tilted while sliding on the drive shaft 102 with the support portion 105a pressed against the peripheral surface of the drive shaft 102. That is, the swash plate 104 is tilted about the arc-shaped center axis S of the support portion 105a. In other words, the swash plate 104 is tilted about the axis S set beyond the drive shaft 102 on the side facing the hinge mechanism 109 with the axis L interposed therebetween.
上記構成の特開平 7— 9 1 3 6 6号公報の技術においては、 駆動軸 102 による 斜板 104 の支持及び案内が、 貫通孔 105 の支持部 105aを介して直接行われている 。 従って、 その効果として、 例えば、 同公報の 「発明の効果」 の欄には次のよう な記載がなされている。 「従来 (特開平 4— 1 5 9 4 6 4号公報の技術) のよう に斜板と駆動軸との間に (駆動軸上にスライ ド移動可能に配設される) スリーブ 及び (スリーブに突設されて斜板を傾動可能に支持する) 枢軸ピンを設ける必要 がないため、 部品点数の削减を実現することができる。 したがって、 製造コスト の低廉化及び部品管理等の容易化を実現することができる。 」  In the technique disclosed in Japanese Patent Application Laid-Open No. Hei 7-911366, the support and guide of the swash plate 104 by the drive shaft 102 are directly performed via the support portion 105a of the through hole 105. Therefore, as the effects, for example, the following description is made in the column of “Effects of the Invention” in the publication. As in the prior art (the technology of Japanese Patent Application Laid-Open No. 4-159644), a sleeve (disposed on the drive shaft so as to be able to slide) between the swash plate and the drive shaft and a (It is projected and supports the swash plate so that it can be tilted.) Since there is no need to provide a pivot pin, it is possible to reduce the number of parts, thereby reducing manufacturing costs and facilitating parts management. be able to. "
ところが、 特開平 7— 9 1 3 6 6号公報の技術は、 圧縮機の運転中においては 、 支持都 105aが駆動軸 102 の周面に圧接されて過大な荷重を受けており、 しかも 、 容量変更中において支持部 105aは、 駆動軸 102 の周面と摺動される。 従って、 支持部 105aは摩耗変形し易く、 軸線 Sを中心とした円弧状を長期に渡って維持す ることができなかった。 その結果、 傾動中心が軸線 Sからずれて、 斜板 104 が所 望の傾角とは異なる傾角に調節されてしまうことがあり、 容量制御を精度良く行 い得なかった。 However, according to the technology disclosed in Japanese Patent Application Laid-Open No. H07-9-11366, during operation of the compressor, the supporting capital 105a is pressed against the peripheral surface of the drive shaft 102 and receives an excessive load. During the capacity change, the support portion 105a slides on the peripheral surface of the drive shaft 102. Therefore, the support portion 105a was easily worn and deformed, and could not maintain an arc shape centered on the axis S for a long period of time. As a result, the tilt center is shifted from the axis S, and the swash plate 104 may be adjusted to a different tilt angle from the desired tilt angle, and the displacement control cannot be performed accurately.
近年、 圧縮機の軽量化のために、 斜板 104 をアルミニウム材により構成するこ とが提案されている。 しかし、 アルミニウム材よりなる斜板 104 は、 鉄系の材料 よりなるものよりも強度が低いため、 支持部 105aの耐久性の向上が強く要望され ている。  In recent years, it has been proposed that the swash plate 104 be made of aluminum to reduce the weight of the compressor. However, the strength of the swash plate 104 made of an aluminum material is lower than that of a swash plate 104 made of an iron-based material.
本発明の目的は、 駆動軸によるカムプレートの支持及び案内が、 貫通孔の內面 の支持部を介して直接なされる構成において、 支持部の耐久性が向上された可変 容量型圧縮機を提供することにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide a variable displacement compressor in which the support and guide of a cam plate by a drive shaft are directly performed via a support on the lower surface of a through hole, and the durability of the support is improved. Is to do.
[発明の開示]  [Disclosure of the Invention]
本発明にともなう可変容量型圧縮機は、 カムプレートにおいて貫通孔の内面に は、 駆動軸に当接して駆動軸によるスライ ド支持作用を受ける円弧状の支持部が 形成され、 支持部の円弧状の中心軸線は、 駆動軸の軸線を挟んでヒンジ機構と対 向する側において駆動軸を越えて設定されてカムプレートの傾動中心をなし、 支 持都には硬化処理が施されている。  In the variable displacement compressor according to the present invention, an arc-shaped support portion is formed on the inner surface of the through-hole in the cam plate to be in contact with the drive shaft and receive a slide support operation by the drive shaft, and the arc-shaped support portion has an arc shape. The center axis of the cam plate is set beyond the drive shaft on the side facing the hinge mechanism with the axis of the drive shaft interposed, and forms the center of tilt of the cam plate, and the support is hardened.
この構成においては、 カムプレートが、 ヒンジ機構の案内及び駆動軸による貫 通孔の支持部を介したスライ ド支持作用により、 駆動軸上をスライ ド移動しつつ 支持部の軸線を中心として傾動される。 このカムプレートの傾角変更によりビス トンのス トロークが変更され、 吐出容量が調節される。 支持部は硬化処理により 硬度が上げられており、 駆動軸との圧接及び摺動に対する耐久性が向上されてい る。  In this configuration, the cam plate is tilted about the axis of the support portion while sliding on the drive shaft by the guide of the hinge mechanism and the slide support action of the drive shaft through the support portion of the through hole. You. By changing the cam plate tilt angle, the stroke of the biston is changed, and the discharge capacity is adjusted. The hardness of the supporting portion is increased by a hardening process, and the durability against pressure contact and sliding with the drive shaft is improved.
前記硬化処理は焼入れ処理である。  The hardening process is a quenching process.
この構成においては、 焼入れ処理により支持部の硬度が上げれられている。 前記焼入れ処理は髙周波焼入れにより行われている。 この構成においては、 高周波焼入れにより支持部に焼入れ処理が施されている 前記硬化処理は貫通孔の内面のほぼ全体に施されていろ。 In this configuration, the hardness of the support portion is increased by quenching. The quenching process is performed by 髙 -frequency quenching. In this configuration, the support portion is quenched by induction hardening. The hardening process is performed on substantially the entire inner surface of the through hole.
この構成においては、 硬化処理を貫通孔の内面全体に施すことで、 結果として 支持部に硬化処理が施され、 支持部にのみ硬化処理を施すことと比較して簡単か つ確実な作業となる。  In this configuration, the hardening process is applied to the entire inner surface of the through-hole, resulting in a hardening process applied to the support section, which is simpler and more reliable compared to performing the hardening process only on the support section. .
前記カムプレートはアルミニウム材ょりなる。  The cam plate is made of aluminum.
この構成においては、 例えば、 鉄系の材料よりなるものと比較してカムブレー トが軽量化されるし、 硬化処理された支持部は、 例えば、 鉄系の材料と比較して 強度が低いアルミ二ゥム材よりなることによる耐久性の低下が防止されている。  In this configuration, for example, the cam plate is lighter in weight than that made of an iron-based material, and the hardened support portion is made of, for example, aluminum alloy having a lower strength than that of an iron-based material. A decrease in durability due to the use of a rubber material is prevented.
[図面の簡单な説明] [Brief description of drawings]
図 1は、 本発明の実施の形態に従う可変容量型圧縮機の縦断面図。  FIG. 1 is a longitudinal sectional view of a variable displacement compressor according to an embodiment of the present invention.
図 2は、 図 1の要部拡大図であり、 駆動軸を破断して示す図。  FIG. 2 is an enlarged view of a main part of FIG. 1, with the drive shaft cut away.
図 3は、 吐出容量が最小となった状態を示す説明図。  FIG. 3 is an explanatory diagram showing a state in which the discharge capacity is minimized.
図 4は、 図 1において貫通孔の支持部付近を拡大して示す図。  FIG. 4 is an enlarged view of the vicinity of the support portion of the through hole in FIG.
図 5は、 図 1から斜板を取り出して示す正面図。  Fig. 5 is a front view showing the swash plate extracted from Fig. 1.
図 6は、 斜板の貫通孔に対して行われる高周波焼入れを説明する図。  FIG. 6 is a diagram illustrating induction hardening performed on a through hole of a swash plate.
図 7は、 特開平 7— 9 1 3 6 6号公報の圧縮機を示す要部拡大断面図。  FIG. 7 is an enlarged cross-sectional view of a main part showing a compressor disclosed in Japanese Patent Application Laid-Open No. 7-911366.
[発明を実施するための最良の形態]  [Best Mode for Carrying Out the Invention]
以下、 本発明を、 車両空調システムに適用される可変容量型圧縮機に具体化し た一例を、 図 1〜図 6に従って説明する。  Hereinafter, an example in which the present invention is embodied in a variable displacement compressor applied to a vehicle air conditioning system will be described with reference to FIGS.
囪 1に示すように、 フロントハウジング 1 1はシリンダブロック 1 2の前端に 接合固定されている。 リャハウジング 1 3は、 シリンダブロック 1 2の後端に弁 形成体 1 4を介して接合固定されている。 クランク室 1 5は、 フロン トハウジン グ 1 1とシリンダブ口ック 1 2とに囲まれて区画形成されている。 駆動軸 1 6は 、 クランク室 1 5を通るようにフロントハウジング 1 1とシリンダブ口ック 1 2 との間に回転可能に架設支持されている。 駆動軸 1 6は、 図示しない外部駆動源 としての車両エンジンに、 電磁クラツチ等のクラツチ機構を介して連結されてい る。 従って、 駆動軸 1 6は、 車両エンジンの起動状態においてクラッチ機構の接 統により回転駆動される。 As shown in 囪 1, the front housing 11 is joined and fixed to the front end of the cylinder block 12. The rear housing 13 is joined and fixed to the rear end of the cylinder block 12 via a valve forming body 14. The crank chamber 15 is defined by being surrounded by the front housing 11 and the cylinder block 12. The drive shaft 16 passes through the crankcase 15 through the front housing 11 and the cylinder block 1 2 And rotatably supported between them. The drive shaft 16 is connected to a vehicle engine (not shown) as an external drive source via a clutch mechanism such as an electromagnetic clutch. Therefore, the drive shaft 16 is rotationally driven by the connection of the clutch mechanism when the vehicle engine is started.
回転支持体 1 7は、 クランク室 1 5において駆動軸 1 6に止着されている。 力 ムブレートとしての斜板 1 8はアルミニウム材よりなり (アルミニウム合金より なるものも含む) 、 クランク室 1 5に収容されている。 駆動軸 1 6は、 斜板 1 8 の中央部に貫設された貫通孔 1 9に挿通されている。 ヒンジ機構 2 0は回転支持 体 1 7と斜板 1 8との間に介在されている。  The rotary support 17 is fixed to the drive shaft 16 in the crank chamber 15. The swash plate 18 as a force plate is made of an aluminum material (including one made of an aluminum alloy) and housed in the crankcase 15. The drive shaft 16 is inserted through a through-hole 19 provided at the center of the swash plate 18. The hinge mechanism 20 is interposed between the rotary support 17 and the swash plate 18.
図 2に示すように、 前記貫通孔 1 9を形成するには、 先ずドリル加工を中心線 1に沿って行い、 斜板ワークの中央部に円孔を形成する。 ほぼ同径のエンドミル を円孔に挿入し、 それを回転させながら軸線 Sを中心として正逆方向に所定の角 度範囲で回動させる。 軸線 Sは、 駆動軸 1 6の軸線 Lと直角方向に延在し、 軸線 Lを挟んでヒンジ機構 2 0と対向する側において駆動軸 1 6を越えた位置に設定 されている。 従って、 図 4に示すように、 軸線 Sを中心とした円弧状をなす支持 部 1 9 aが、 貫通孔 1 9の内面において、 駆動軸 1 6の軸線 Lを挟んでヒンジ機 構 2 0と対向する側に設けられている。  As shown in FIG. 2, in order to form the through hole 19, first, drilling is performed along the center line 1 to form a circular hole in the center of the swash plate work. Insert an end mill of approximately the same diameter into the circular hole, and rotate it around the axis S in the forward and reverse directions within a predetermined angle range while rotating it. The axis S extends in a direction perpendicular to the axis L of the drive shaft 16 and is set at a position beyond the drive shaft 16 on a side facing the hinge mechanism 20 with the axis L interposed therebetween. Accordingly, as shown in FIG. 4, the support portion 19a having an arc shape centered on the axis S is provided on the inner surface of the through hole 19 with the hinge mechanism 20 with the axis L of the drive shaft 16 interposed therebetween. It is provided on the opposite side.
前記ヒンジ機構 2 0について詳述すると、 図 2及び図 5に示すように、 一対の ガイ ドビン 2 1は、 斜板 1 8の前面外周部において上死点位置 Dを跨いで対設さ れている。 ガイ ドピン 2 1は回転支持体 1 7に向かって延在され、 その先端部に は球状部 2 1 aが形成されている。 一対の支持アーム 2 2は、 回転支持体 1 7の 裏面外周部においてガイ ドビン 2 1 と対向するように突設されている。 支持ァー ム 2 2は斜板 1 8に向かって延在され、 その先端部にはガイ ド孔 2 2 aが貫設さ れている。 ガイ ド孔 2 2 aは、 斜板 1 8側に向かうにつれて、 駆動軸 1 6の軸線 Lに対して外方から近づくように延在されている。 ガイ ドピン 2 1は、 球状部 2 1 aを以つて支持アーム 2 2のガイ ド孔 2 2 aに挿入されている。  The hinge mechanism 20 will be described in detail. As shown in FIGS. 2 and 5, a pair of guide bins 21 are provided across the top dead center position D on the outer peripheral portion of the front surface of the swash plate 18. I have. The guide pin 21 extends toward the rotary support member 17, and a spherical portion 21a is formed at the tip thereof. The pair of support arms 22 are provided so as to face the guide bin 21 at the outer peripheral portion of the back surface of the rotary support 17. The support arm 22 extends toward the swash plate 18 and has a guide hole 22a formed at the end thereof. The guide hole 22 a extends from the outside toward the axis L of the drive shaft 16 toward the swash plate 18. The guide pin 21 is inserted into the guide hole 22a of the support arm 22 with a spherical portion 21a.
シリンダポア 1 2 aは、 シリンダブ口ック 1 2において軸線 L周りに所定間隔 で複数が形成されている (図中には—個所のみ示す) 。 片頭型のピス トン 2 3は 各シリンダボア 1 2 aに収容されている。 ピス トン 2 3は、 シユー 2 4を介して 斜板 1 8の外周部に係留されている。 Cylinder pores 1 2a are at predetermined intervals around axis L in cylinder block 12 Are formed (only the-part is shown in the figure). The single-headed piston 23 is housed in each cylinder bore 12a. The piston 23 is moored to the outer periphery of the swash plate 18 via a shoe 24.
吸入室 2 5はリャハウジング 1 3內の中央部に区画形成されている。 吐出室 2 6はリャハウジング 1 3の外周部に区画形成されている。 吸入ポート 2 7、 吸入 ポート 2 7を開閉する吸入弁 2 8、 吐出ポート 2 9、 吐出ポート 2 9を開閉する 吐出弁 3 0は、 それぞれ弁形成体 1 4に形成されている。  The suction chamber 25 is defined at the center of the rear housing 13 內. The discharge chamber 26 is defined on the outer peripheral portion of the housing 13. The suction port 27, the suction valve 28 for opening and closing the suction port 27, the discharge port 29, and the discharge valve 30 for opening and closing the discharge port 29 are formed in the valve forming body 14, respectively.
前記斜板 1 8は、 回転支持体 1 7及びヒンジ機構 2 0を.介して駆動軸 1 6と一 体回転可能である。 駆動軸 1 6の回転にともなう斜板 1 8の軸線 L方向前後への 揺動は、 シユー 2 4を介してピス トン 2 3の往復動に変換される。 図 2及び図 3 に示すように、 斜板 1 8が上死点位置 Dを以つてピストン 2 3に対応すると、 図 中のビス トン 2 3は上死点に位置される。 斜板 1 8が図 2及び図 3に示す状態か ら 1 8 0 ° 回転すると、 図中のピス トン 2 3は下死点に位置される。  The swash plate 18 is rotatable with the drive shaft 16 via a rotation support 17 and a hinge mechanism 20. The swing of the swash plate 18 back and forth in the axis L direction due to the rotation of the drive shaft 16 is converted into a reciprocating motion of the piston 23 via the shaft 24. As shown in FIGS. 2 and 3, when the swash plate 18 corresponds to the piston 23 with the top dead center position D, the biston 23 in the figure is located at the top dead center. When the swash plate 18 rotates 180 ° from the state shown in FIGS. 2 and 3, the piston 23 in the figure is located at the bottom dead center.
従って、 吸入室 2 5の冷媒ガスは、 ビス トン 2 3の上死点側から下死点側への 移動により、 吸入ポート 2 7及び吸入弁 2 8を介してシリンダボア 1 2 aに吸入 される。 シリンダボア 1 2 aに流入された冷媒ガスは、 ピス トン 2 3の下死点側 から上死点側への移動により圧縮されるとともに、 吐出ポ一ト 2 9及び吐出弁 3 0を介して吐出室 2 6に吐出される。  Therefore, the refrigerant gas in the suction chamber 25 moves from the top dead center side of the biston 23 to the bottom dead center side and is sucked into the cylinder bore 12 a through the suction port 27 and the suction valve 28. . The refrigerant gas flowing into the cylinder bore 12a is compressed by the movement of the piston 23 from the bottom dead center side to the top dead center side, and is discharged through the discharge port 29 and the discharge valve 30. Discharged into chamber 26.
前記斜板 1 8は、 ヒンジ機構 2 0におけるガイ ドビン 2 1の球状部 2 1 aと支 持アーム 2 2のガイ ド孔 2 2 aとの間のスライ ドガイ ド関係、 駆動軸 1 6による 貫通孔 1 9を介したスライ ド支持作用により、 駆動軸 1 6に対してその軸線 L方 向ヘスライ ド移動しつつ傾動可能である。 斜板 1 8の半径中心部がシリンダブ口 ック 1 2側にスライ ド移動されると、 斜板 1 8の傾角が減少される。 サークリッ ブ 3 1は、 斜板 1 8とシリンダブ口ック 1 2との間において駆動軸 1 6に外嵌固 定され、 斜板 1 8の最小傾角を当接規定する。 斜板 1 8の最大傾角は、 回転支持 体 1 7との当接によって規定される。 傾角滅少パネ 3 2は、 回転支持体 1 7と斜 板 1 8との間において駆動軸 1 6に卷装され、 斜板 1 8の半径中心部をシリンダ ブロック 1 2方向へ付勢する。 The swash plate 18 has a slide guide relationship between the spherical portion 21 a of the guide bin 21 in the hinge mechanism 20 and the guide hole 22 a of the support arm 22, and is penetrated by the drive shaft 16. By the slide supporting action through the hole 19, the drive shaft 16 can be tilted while sliding in the direction of the axis L with respect to the drive shaft 16. When the center of the radius of the swash plate 18 is slid toward the cylinder block 12, the inclination angle of the swash plate 18 is reduced. The circlip 31 is externally fixed to the drive shaft 16 between the swash plate 18 and the cylinder block 12, and regulates the minimum inclination angle of the swash plate 18. The maximum inclination angle of the swash plate 18 is defined by the contact with the rotating support 17. The tilt-reducing panel 32 is wound around the drive shaft 16 between the rotary support 17 and the swash plate 18, and the center of the radius of the swash plate 18 is a cylinder. Block 1 Energize in 2 directions.
抽気通路 3 5はクランク室 1 5と吸入室 2 5とを接続する。 給気通路 3 6は吐 出室 2 6とクランク室 1 5とを接続する。 容量制御弁 3 7は給気通路.3 6上に介 在されている。 容量制御弁 3 7は感圧弁であって、 感圧室 3 8の圧力変化に感応 するダイヤフラム 3 9と、 ダイヤフラム 3 9に作動連結された弁体 4 0とを備え る。 感圧通路 4 1は吸入室 2 5と感圧室 3 8とを接続する。 吸入室 2 5の冷媒ガ スは、 感圧通路 4 1を介して感圧室 3 8に導入される。  The bleed passage 35 connects the crank chamber 15 and the suction chamber 25. The air supply passage 36 connects the discharge chamber 26 to the crank chamber 15. The capacity control valve 37 is interposed on the air supply passage .36. The displacement control valve 37 is a pressure-sensitive valve, and includes a diaphragm 39 responsive to a pressure change in the pressure-sensitive chamber 38 and a valve body 40 operatively connected to the diaphragm 39. The pressure-sensitive passage 41 connects the suction chamber 25 to the pressure-sensitive chamber 38. The refrigerant gas in the suction chamber 25 is introduced into the pressure-sensitive chamber 38 via the pressure-sensitive passage 41.
従って、 ダイヤフラム 3 9が吸入圧に感応され、 それに伴う弁体 4 0の動作に より給気通路 3 6の開度が調節される。 その結果、 クランク室 1 5の圧力が変更 され、 ピストン 2 3の前後に作用するクランク室 1 5の圧力とシリンダボア 1 2 aの圧力との差が調整される。 従って、 斜板 1 8の傾角が変更され、 ビス トン 2 3のストローク量が変更されて、 吐出容量が調整される。  Therefore, the diaphragm 39 is sensitive to the suction pressure, and the opening of the air supply passage 36 is adjusted by the operation of the valve body 40 accompanying the suction pressure. As a result, the pressure in the crank chamber 15 is changed, and the difference between the pressure in the crank chamber 15 acting before and after the piston 23 and the pressure in the cylinder bore 12 a is adjusted. Therefore, the inclination angle of the swash plate 18 is changed, the stroke amount of the button 23 is changed, and the discharge capacity is adjusted.
つまり、 例えば、 冷房食荷が大きいと吸入圧が設定値よりも高くなり、 容量制 御弁 3 7は給気通路 3 6の開度を小さくするように動作される。 このため、 図 2 に示すように、 クランク室 1 5の圧力は、 抽気通路 3 5を介して吸入室 2 5に放 圧されて低下される。 従って、 ヒンジ機構 2 0におけるガイ ドピン 2 1の球状部 2 1 aは、 支持アーム 2 2のガイ ド孔 2 2 a内を軸線 Lから離れる方向に移動さ れる。 また、 図 4に示すように、 斜板 1 8は、 支持部 1 9 aを駆動軸 1 6の周面 に当接させつつ、 傾角滅少パネ 3 2に抗して駆動軸 1 6上を回転支持体 1 7側に スライ ド移動されるとともに、 支持部 1 9 aの軸線 Sを中心として時計回りに回 動される。 これにより、 斜板 1 8の傾角が最大傾角側に変更されてビス トン 2 3 のス トローク量が大きくなる。 その結果、 吐出容量が大きくなつて、 吸入圧が設 定値に近づくように低下される。  That is, for example, when the cooling load is large, the suction pressure becomes higher than the set value, and the capacity control valve 37 is operated so as to reduce the opening of the air supply passage 36. For this reason, as shown in FIG. 2, the pressure in the crank chamber 15 is released to the suction chamber 25 via the bleed passage 35 and is reduced. Therefore, the spherical portion 21 a of the guide pin 21 in the hinge mechanism 20 is moved in the guide hole 22 a of the support arm 22 in a direction away from the axis L. Further, as shown in FIG. 4, the swash plate 18 makes the support portion 19 a contact the peripheral surface of the drive shaft 16, and moves the swash plate 18 on the drive shaft 16 against the inclination-reducing panel 32. It is slid to the rotating support 17 side and rotated clockwise about the axis S of the support 19a. As a result, the inclination angle of the swash plate 18 is changed to the maximum inclination side, and the stroke amount of the biston 23 increases. As a result, as the discharge capacity increases, the suction pressure decreases so as to approach the set value.
冷房負荷が小さいと吸入圧が設定値よりも低くなり、 容量制御弁 3 7は、 給気 通路 3 6の開度を大きくするように動作される。 このため、 クランク室 1 5の圧 力が吐出室 2 6からの冷媒ガスの導入により上昇される。 従って、 図 3に示すよ うに、 ヒンジ機構 2 0におけるガイ ドビン 2 1の球状部 2 1 aは、 支持アーム 2 2のガイ ド孔 2 2 a内を軸線 Lに近づく方向に移動される。 また、 図 4において 二点鎖線で示すように、 斜板 1 8は、 支持都 1 9 aを駆動軸 1 6の周面に当接さ せつつ、 傾角減少パネ 3 2に屈して駆動軸 1 6上をシリンダブロック 1 2側にス ライ ド移動されるとともに、 支持部 1 9 aの軸線 Sを中心として反時計回りに回 動される。 このため、 斜板 1 8の傾角が最小傾角側に変更されてピス トン 2 3の ス トローク量が小さくなる。 その結果、 吐出容量が小さくなつて、 吸入圧が設定 値に近づくように上昇される。 When the cooling load is small, the suction pressure becomes lower than the set value, and the capacity control valve 37 is operated so as to increase the opening degree of the air supply passage 36. Therefore, the pressure of the crank chamber 15 is increased by the introduction of the refrigerant gas from the discharge chamber 26. Therefore, as shown in FIG. 3, the spherical portion 21 a of the guide bin 21 in the hinge mechanism 20 is It is moved in the direction approaching the axis L within the guide hole 2 2 a of No. 2. In addition, as shown by a two-dot chain line in FIG. 4, the swash plate 18 is bent to the inclination reducing panel 32 while the supporting capital 19a is in contact with the peripheral surface of the drive shaft 16 and the swash plate 18 is bent. 6 and slides counterclockwise about the axis S of the support portion 19a. For this reason, the inclination angle of the swash plate 18 is changed to the minimum inclination side, and the stroke amount of the piston 23 is reduced. As a result, as the discharge capacity becomes smaller, the suction pressure is increased so as to approach the set value.
さて、 圧縮機の運転中において、 荷重 Kが冷媒ガスの圧縮によりピス トン 2 3 に作用され、 この圧縮荷重 Kは、 斜板 1 8及びガイ ドビン 2 1の球状部 2 1 aを 介して、 ガイ ド孔 2 2 aの回転支持体 1 7側の内面に作用される。 球状都 2 l a はガイ ド孔 2 2 aから圧縮荷重 Kの反力 Fを受ける。 ガイ ド孔 2 2 aは、 斜板 1 8側に向かうにつれて、 駆動軸 1 6の軸線 Lに対して外方から近づくように延在 されている。 従って、 ガイ ドビン 2 1に作用する反力 Fが、 斜板 1 8を駆動軸 1 6に対して上死点位置 D側へずらす方向の分力 f を生じる。  Now, during operation of the compressor, a load K is applied to the piston 23 by the compression of the refrigerant gas, and this compression load K is transmitted through the swash plate 18 and the spherical portion 21a of the guide bin 21. It acts on the inner surface of the guide hole 22 a on the rotating support 17 side. The spherical capital 2la receives a reaction force F of a compressive load K from the guide hole 22a. The guide hole 22 a extends toward the swash plate 18 side so as to approach the axis L of the drive shaft 16 from the outside. Accordingly, the reaction force F acting on the guide bin 21 generates a component force f in the direction of shifting the swash plate 18 toward the top dead center position D with respect to the drive shaft 16.
また、 斜板 1 8は、 主にはガイ ドビン 2 1の軸線 Lに対する偏在によって、 軸 線 Lに対して上死点位置 D側に重心がずれている。 ガイ ドピン 2 1の偏在は、 斜 板 1 8において軸線 Lを挟んでガイ ドビン 2 1と対向する側に設けられたカウン タウエイ ト 1 8 aにより相殺されるのではあるが、 本実施形態では、 敢えて、 回 転バランスがガイ ドビン 2 1側に若干アンバランスとなるように、 カウンタゥェ イ ト 1 8 aの重量や形成位置が設定されている。 従って、 回転する斜板 1 8は、 ガイ ドビン 2 1側が大となる遠心力のアンバランスにより、 駆動軸 1 6に対して 上死点位置 D側へずれようとする。  In addition, the center of gravity of the swash plate 18 is shifted to the top dead center position D side with respect to the axis L mainly due to the uneven distribution of the guide bin 21 with respect to the axis L. The uneven distribution of the guide pins 21 is offset by the counter weights 18a provided on the side of the swash plate 18 facing the guide bins 21 with the axis L interposed therebetween, but in this embodiment, The weight and formation position of the countergate 18a are set so that the rotational balance is slightly unbalanced on the guide bin 21 side. Therefore, the rotating swash plate 18 tends to shift to the top dead center position D side with respect to the drive shaft 16 due to the unbalance of the centrifugal force that increases the guide bin 21 side.
つまり、 前述した圧縮荷重 Kは、 吐出容量が最小側に調節されて圧縮比が小さ くなると小さくなり、 それに応じて分力 f も小さくなる。 分力 f が小さくなると 、 斜板 1 8を駆動軸 1 6に対して上死点位置 D側にずらした状態で保持しておく ことができなくなるおそれがある。 このため、 斜板 1 8の重心を上死点位置 D側 にずらすことで、 吐出容量が小の時の分力 f の小ささを補おうとしているのであ る。 That is, the above-mentioned compression load K becomes smaller as the discharge capacity is adjusted to the minimum side and the compression ratio becomes smaller, and the component force f becomes smaller accordingly. If the component force f becomes small, there is a possibility that the swash plate 18 cannot be held while being shifted toward the top dead center position D with respect to the drive shaft 16. For this reason, the center of gravity of the swash plate 18 is shifted to the top dead center position D side to compensate for the small component force f when the discharge capacity is small. You.
以上のこと等から、 圧縮機の運転中において斜板 1 8の貫通孔 1 9の内面は、 支持部 1 9 aが駆動軸 1 6の周面に圧接された状態となっている。 従って、 支持 部 1 9 aは駆動軸 1 6の周面から過大な荷重を受けており、 しかも、 容量変更時 には駆動軸 1 6の周面と摺動される。. しかし、 本実施形態においては硬化処理が 施されて支持部 1 9 aの硬度が上げられており、 斜板 1 8を構成するアルミユウ ム材そのままの表面状態よりも、 駆動軸 1 6の周面との圧接ゃ摺動に対する耐久 性が向上されている。 従って、 支持部 1 9 aは摩耗変形し難く、 軸線 Sを中心と した円弧状を長期に渡って維持できる。  From the above and the like, the inner surface of the through hole 19 of the swash plate 18 is in a state where the support portion 19a is pressed against the peripheral surface of the drive shaft 16 during the operation of the compressor. Therefore, the supporting portion 19a receives an excessive load from the peripheral surface of the drive shaft 16, and slides on the peripheral surface of the drive shaft 16 when the capacity is changed. However, in the present embodiment, the hardness of the support portion 19a is increased by the hardening treatment, and the circumference of the drive shaft 16 is higher than the surface state of the aluminum material forming the swash plate 18 as it is. The durability against pressure contact and sliding with the surface has been improved. Therefore, the supporting portion 19a is hardly deformed by abrasion, and can maintain an arc shape centered on the axis S for a long time.
前述した硬化処理として、 本実施形態においては焼入れ処理が施されている。 この焼入れ処理は高周波焼入れにより行われている。 すなわち、 囡 6に示すよう に、 コイル 5 1を貫通孔 1 9内に挿入し、 電源 5 2からコィノレ 5 1に高周波電流 を供給する。 高周波電流がコイル 5 1に供給されると、 それに基づく電磁誘導に よって発生する過電流によるジュール熱により、 支持部 1 9 aを含む貫通孔 1 9 の内面全体が加熱される。 このようにして貫通孔 1 9の内面は所定時間加熱され 、 その後、 オイルや水等の冷却液により急冷される。  As the above-described hardening process, a quenching process is performed in the present embodiment. This quenching process is performed by induction hardening. That is, as shown in FIG. 6, the coil 51 is inserted into the through hole 19, and a high-frequency current is supplied from the power supply 52 to the coil 51. When the high-frequency current is supplied to the coil 51, the entire inner surface of the through hole 19 including the support portion 19a is heated by Joule heat due to an overcurrent generated by electromagnetic induction based on the high frequency current. Thus, the inner surface of the through hole 19 is heated for a predetermined time, and then rapidly cooled by a cooling liquid such as oil or water.
上記構成の本実施形態においては、 次のような効果を奏する。  The present embodiment having the above configuration has the following effects.
( 1 ) 上述したように、 硬化処理が施された支持部 1 9 aは耐久性が向上され 、 軸線 Sを中心とした円弧状を長期に渡って維持できる。 従って、 斜板 1 8を、 最大傾角位置と最小傾角位置との間において軸線 Sを中心として傾動させること ができ、 斜板 1 8の傾角を、 容量制御弁 3 7が制御しょうとすろ傾角に確実に変 更できて、 高精度な容量制御を長期に渡って達成できる。 これは、 圧縮機の信頼 性向上につながる。  (1) As described above, the hardened support portion 19a has improved durability, and can maintain an arc shape around the axis S for a long time. Accordingly, the swash plate 18 can be tilted about the axis S between the maximum tilt position and the minimum tilt position, and the tilt angle of the swash plate 18 is adjusted to the tilt angle controlled by the displacement control valve 37. Changes can be made reliably and high-precision capacity control can be achieved over a long period of time. This leads to improved compressor reliability.
( 2 ) 支持部 1 9 aの硬化処理は焼入れ処理である。 焼入れ処理は、 支持部 1 9 aを加熱、 そして急冷するのみの簡単な作業で良く、 しかも、 薬品を使用する メツキ処理等と比較して安全に作業を行い得る。  (2) The hardening treatment of the support portion 19a is a quenching treatment. The quenching process requires only a simple operation of heating and rapidly cooling the supporting portion 19a, and can perform the operation safely compared to a plating process using chemicals.
ここで、 支持部 1 9 aに荷重が作用されると、 そめ応力が斜板 1 8の内部にま で及ぶ。 従って、 硬化処理を支持都 1 9 a (斜板 1 8の表面) にのみ施したとし ても、 斜板 1 8の内部の変形により、 支持部 1 9 aの軸線 Sを中心とした円弧状 が崩れる危惧がある。 しかし、 焼入れ処理時に加えられる熱は、 支持都 1 9 aの みならず斜板 1 8の内部にまで加えられている。 従って、 硬化処理を斜板 1 8の 内部にまで施すことができて、 支持部 1 9 aの耐久性がさらに向上される。 Here, when a load is applied to the support portion 19a, the shrinkage stress is applied to the inside of the swash plate 18a. Reach. Therefore, even if the hardening treatment is performed only on the support 19 a (the surface of the swash plate 18), the deformation of the inside of the swash plate 18 causes an arc shape centered on the axis S of the support 19 a. There is a risk of collapse. However, the heat applied during the quenching process is applied not only to the support capital 19a but also to the inside of the swash plate 18. Therefore, the hardening treatment can be performed to the inside of the swash plate 18 and the durability of the support portion 19a is further improved.
( 3 ) 支持部 1 9 aの焼入れ処理は高周波焼入れにより行われている。 高周波 焼入れは、 焼入れの手間が火炎焼入れ等と比較して簡単である。 また、 火炎焼入 れ等と比較して斜板 1 8の内部深くにまで焼入れでき、 支持部 1 9 aの耐久性が さらに向上される。  (3) The quenching process of the support 19a is performed by induction hardening. Induction quenching is easier than quenching with flame quenching. In addition, compared with flame quenching, the swash plate 18 can be hardened deeper inside, and the durability of the support portion 19a is further improved.
( 4 ) 支持部 1 9 ηは、 狭い貫通孔 1 9内においてその奥部に存在する。 この ような環境にある支持部 1 9 aにのみ、 局部的に硬化処理を施すことは、 確実に 支持部 1 9 aを狙う精度が必要で手間な作業となる。 しかし、 前述したように、 硬化処理は貫通孔 1 9の內面全体に施されており、 結果として支持部 1 9 aに硬 化処理が施されることになる。 従って、 硬化処理を支持部 1 9 aに対して簡単か つ確実に施すことが可能となる。 また、 支持部 1 9 a以外の部位も硬化処理によ り硬度が上げられることになり、 斜板 1 8のがたつき等により駆動軸 1 6と圧接 する可能性のある貫通孔 1 9の内面全体の耐久性が向上される。  (4) The support part 19 η exists in the deep part inside the narrow through hole 19. Applying the curing treatment locally only to the support portion 19a in such an environment is a troublesome operation that requires accuracy to reliably aim at the support portion 19a. However, as described above, the hardening process is performed on the entire surface of the through hole 19, and as a result, the hardening process is performed on the support portion 19a. Therefore, the hardening process can be easily and reliably applied to the support portion 19a. In addition, the hardness of the part other than the support part 19a is increased by the hardening treatment, and the through-hole 19, which may be in pressure contact with the drive shaft 16 due to rattling of the swash plate 18, etc. The durability of the entire inner surface is improved.
なお、 本発明の趣旨から逸脱しない範囲で以下の態様でも実施できる。  The present invention can be implemented in the following modes without departing from the spirit of the present invention.
〇上記焼入れ処理は高周波焼入れ以外にも、 浸炭焼入れ、 火炎焼入れ等が挙げ られる。  〇 In addition to induction hardening, the above quenching treatment includes carburizing quenching and flame quenching.
〇支持部 1 9 aに対する硬化処理をメツキ処理に変更すること。 メツキとして は、 例えば、 二ッケ/レボロンメツキが挙げられる。  硬化 Change the hardening process for the support 19 a to the plating process. Examples of the plating include Nikke / Revolon plating.
〇支持部 1 9 aに対する硬化処理をチッ化処理に変更すること。 チッ化処理と しては、 イオンチッ化処理、 ガス軟チッ化処理、 タフトライ ド処理等が挙げられ る。  硬化 Change the hardening treatment for the support 19 a to the nitrification treatment. Examples of the nitriding treatment include an ion nitriding treatment, a gas softening treatment, and a tough tride treatment.
〇上記以外の硬化処理としては、 ダイヤモンド . ライク ·カーボン (D L C ) やチッ化チタンコーティング等が挙げられる。 〇硬化処理を支持部 1 9 aにのみ施すこと。 硬化 Other hardening treatments include diamond like carbon (DLC) and titanium nitride coating. 〇 Apply curing treatment only to the support 19 a.
〇硬化処理を斜板 1 8の表面全体に施し、 結果として支持部 1 9 aに硬化処理 が施されるようにすること。 このようにすれば、 硬化処理を支持都 1 9 aに対し て簡単かつ確実に施すことが可能となる。  (4) A hardening treatment is applied to the entire surface of the swash plate 18 so that the supporting portion 19a is hardened as a result. This makes it possible to easily and reliably apply the curing treatment to the support 19a.
〇斜板 1 8を鉄系の材料により構成すること。 このようにすれば、 支持部 1 9 aの耐久性がさらに向上される。  〇The swash plate 18 should be made of iron-based material. By doing so, the durability of the support portion 19a is further improved.
上記実施形態から把握できる技術的思想について記載する。  The technical idea that can be grasped from the above embodiment will be described.
( 1 ) 前記硬化処理はメツキ処理である請求項 1に記載の可変容量型圧縮機。 このようにすれば、 支持部 1 9 aの耐久性が向上される。  (1) The variable displacement compressor according to claim 1, wherein the curing process is a plating process. By doing so, the durability of the support portion 19a is improved.
( 2 ) 前記硬化処理はチッ化処理である請求項 1に記載の可変容量型圧縮機。 このようにすれば、 支持部 1 9 aの耐久性が向上される。  (2) The variable displacement compressor according to claim 1, wherein the curing treatment is a nitrification treatment. By doing so, the durability of the support portion 19a is improved.
( 3 ) 前記硬化処理は貫通孔 1 9の內面において支持部 1 9 a以外にも施され ている請求項 1〜 3のいずれかに記載の可変容量型圧縮機。.  (3) The variable displacement compressor according to any one of claims 1 to 3, wherein the hardening treatment is performed on a surface of the through hole 19 other than the support portion 19a. .
このようにすれば、 支持都 1 9 a以外の都位も硬化処理により耐久性が向上さ れる。  In this way, the durability can be improved by curing treatment in other places than the support capital 19a.

Claims

請求の範囲 The scope of the claims
1 . 駆動軸には回転支持体が固定され、 駆動軸にはカムプレートが貫通孔を介 して支持され、 カムプレートにはピス トンが連結され、 回転支持体とカムプレー 卜との間にはヒンジ機構が介在されており、 カムプレートは、 回転支持体及びヒ ンジ機構を介して駆動軸と一体回転可能であって、 駆動軸の回転をビストンの往 復動に変換し、 カムプレートは、 ヒンジ機構の案内及び駆動軸による貫通孔を介 したスライ ド支持作用により、 駆動軸上をスライ ド移動しつつ傾動可能であり、 カムプレートの傾角を変更することによりビストンのストロークを変更して吐出 容量を調節する構成の可変容量型圧縮機において、  1. A rotary support is fixed to the drive shaft, a cam plate is supported on the drive shaft through a through hole, a piston is connected to the cam plate, and there is a gap between the rotary support and the cam plate. A hinge mechanism is interposed, the cam plate is rotatable integrally with the drive shaft via the rotation support and the hinge mechanism, and converts the rotation of the drive shaft into forward / backward movement of the piston. By the guide of the hinge mechanism and the slide support action through the through hole by the drive shaft, it can be tilted while sliding on the drive shaft, and the stroke of the piston is changed by changing the inclination angle of the cam plate to discharge. In the variable displacement compressor with the capacity to be adjusted,
前記カムブレートにおいて貫通孔の内面には、 駆動軸に当接して駆動軸による スライ ド支持作用を受ける円弧状の支持都が形成され、 支持部の円弧状の中心軸 線は、 駆動軸の軸線を挟んでヒンジ機構と対向する側において駆動軸を越えて設 定されてカムプレートの傾動中心をなし、 支持部には硬化処理が施されている可 変容量型圧縮機。  On the inner surface of the through hole in the cam plate, an arc-shaped support is formed on the inner surface of the through-hole, which is in contact with the drive shaft and receives a slide support action by the drive shaft. A variable displacement compressor that is set beyond the drive shaft on the side facing the hinge mechanism with the pinch in between and forms the center of tilt of the cam plate, and the support is hardened.
2 . 前記硬化処理は焼入れ処理である請求項 1に記載の可変容量型圧縮機。  2. The variable displacement compressor according to claim 1, wherein the hardening process is a quenching process.
3 . 前記焼入れ処理は髙周波焼入れにより行われている請求項 2に記載の可変 容量型圧縮機。  3. The variable displacement compressor according to claim 2, wherein the quenching is performed by low-frequency quenching.
4 . 前記硬化処理は貫通孔の内面のほぼ全体に施されている請求項 1〜 3のい ずれかに記載の可変容量型圧縮機。  4. The variable displacement compressor according to any one of claims 1 to 3, wherein the hardening treatment is performed on substantially the entire inner surface of the through hole.
5 . 前記カムプレートはアルミニウム材ょりなる請求項 1〜4のいずれかに記 載の可変容量型圧縮機。  5. The variable displacement compressor according to any one of claims 1 to 4, wherein the cam plate is made of aluminum.
PCT/JP1997/004537 1997-12-10 1997-12-10 Variable displacement compressor WO1999030035A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19782257T DE19782257T1 (en) 1997-12-10 1997-12-10 Variable displacement compressors
PCT/JP1997/004537 WO1999030035A1 (en) 1997-12-10 1997-12-10 Variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004537 WO1999030035A1 (en) 1997-12-10 1997-12-10 Variable displacement compressor

Publications (1)

Publication Number Publication Date
WO1999030035A1 true WO1999030035A1 (en) 1999-06-17

Family

ID=14181623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004537 WO1999030035A1 (en) 1997-12-10 1997-12-10 Variable displacement compressor

Country Status (2)

Country Link
DE (1) DE19782257T1 (en)
WO (1) WO1999030035A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310655A (en) * 1994-05-12 1995-11-28 Toyota Autom Loom Works Ltd Clutchless single piston type variable displacement compressor
JPH08159026A (en) * 1994-05-12 1996-06-18 Toyota Autom Loom Works Ltd Variable capacity compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310655A (en) * 1994-05-12 1995-11-28 Toyota Autom Loom Works Ltd Clutchless single piston type variable displacement compressor
JPH08159026A (en) * 1994-05-12 1996-06-18 Toyota Autom Loom Works Ltd Variable capacity compressor

Also Published As

Publication number Publication date
DE19782257T1 (en) 2000-03-30

Similar Documents

Publication Publication Date Title
US6186048B1 (en) Variable displacement compressor
WO1996039581A1 (en) Piston for a compressor and piston-type compressor
JP5071810B2 (en) Axial piston compressor
JP2003049766A (en) Sliding part and compressor
US6116145A (en) Variable displacement compressor
JPH10266952A (en) Variable displacement type swash plate compressor
EP1712790B1 (en) Swash plate compressor
JP2003042061A (en) Swash plate compressor
US5839347A (en) Wobble plate compressor with swash plate guide member
WO1999030035A1 (en) Variable displacement compressor
US6508633B2 (en) Swash plate type compressor of variable capacity type
EP0852294A2 (en) Variable capacity swash plate compressor and method of surface treatment of a swash plate thereof
JP2006291748A (en) Piston type variable displacement compressor
JP2002138954A (en) Rotary swash plate type compressor
US5882179A (en) Compressor with bearing between the drive shaft and the swash-plate boss
US20010029837A1 (en) Hinge mechanism for variable displacement compressor
KR20000070849A (en) Variable displacement compressor
EP1275846B1 (en) Hinge for a swash plate
JP4505976B2 (en) Piston compressor
JP2006291749A (en) Variable displacement compressor
JP2002031048A (en) Rotary swash plate compressor
JP2001123943A (en) Capacity control structure for variable displacement type compressor
JPH10266953A (en) Swash plate type compressor
JPH0741902Y2 (en) Variable capacity swash plate compressor
JP2002364530A (en) Variable displacement compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP KR US

WWE Wipo information: entry into national phase

Ref document number: 1019997007114

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09367162

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19782257

Country of ref document: DE

Date of ref document: 20000330

WWE Wipo information: entry into national phase

Ref document number: 19782257

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019997007114

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019997007114

Country of ref document: KR