WO1999028133A1 - Biaxially oriented polyester film for thermal transfer - Google Patents

Biaxially oriented polyester film for thermal transfer Download PDF

Info

Publication number
WO1999028133A1
WO1999028133A1 PCT/JP1998/005431 JP9805431W WO9928133A1 WO 1999028133 A1 WO1999028133 A1 WO 1999028133A1 JP 9805431 W JP9805431 W JP 9805431W WO 9928133 A1 WO9928133 A1 WO 9928133A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thickness
polyester film
coating
stretching
Prior art date
Application number
PCT/JP1998/005431
Other languages
French (fr)
Japanese (ja)
Inventor
Narihiro Masuda
Shigeyuki Watanabe
Original Assignee
Mitsubishi Polyester Film Corporation
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26340315&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999028133(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Polyester Film Corporation, Dai Nippon Printing Co., Ltd. filed Critical Mitsubishi Polyester Film Corporation
Priority to DE69813520T priority Critical patent/DE69813520T2/en
Priority to EP98957128A priority patent/EP0962332B1/en
Publication of WO1999028133A1 publication Critical patent/WO1999028133A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/41Base layers supports or substrates

Definitions

  • the present invention relates to a biaxially oriented polyester film for thermal transfer. More specifically, the present invention relates to a biaxially oriented polyester film for thermal transfer capable of giving a high-definition image with less density unevenness during printing.
  • Ink ribbons of the thermal transfer type both the fusion type and the sublimation type, have an ink layer on one side of the base polyester film.At the time of transfer, the film is heated from the side opposite to the ink layer with a thermal head or the like. By transferring this heat to the ink layer, the ink is melted or sublimated to be selectively transferred to the transfer target. At this time, the heat applied to the opposite surface is transmitted through the thickness direction of the film and reaches the ink layer. Therefore, if the thickness of the film is large, it is difficult for heat to be transmitted, and if it is thin, heat is easily transmitted.
  • polyester films which are widely used as base films for thermal transfer ink ribbons, are provided with a coating on the surface to provide a special function for thermal transfer.
  • This coating is generally applied by so-called in-line coating, in which a coating liquid containing an organic polymer compound using water as a medium is applied to a film, followed by drying, stretching, and crystallization.
  • inline coating for example, a method of applying a coating solution using water as a medium to a film that has been subjected to longitudinal stretching and drying using a preheating zone in the next transverse stretching process is a simple process. It is preferred in terms of convenience and thermal efficiency, and is widely used.
  • a coating liquid containing a large amount of water is applied onto the polyester film, so that the heat given to stretch the film is first taken away by the latent heat of vaporization of water. . Then, after the water content of the coating liquid evaporates sufficiently, the temperature of the film rises, and the temperature of the film is more likely to be uneven than when the in-line coating is not performed. Fluctuations increase.
  • An object of the present invention is to provide a base film which provides an ink ribbon for thermal transfer capable of performing printing with little density fluctuation and good color tone reproducibility.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, if a thermal transfer ink ribbon was manufactured using a polyester film in a specific thickness variation area, high-definition full-color printing was performed. However, the present inventors have found that print density fluctuations are reduced, and have completed the present invention.
  • the present invention provides a method of applying a coating liquid containing a water-soluble or water-dispersible organic polymer compound on at least one surface of a polyester film before completion of orientation crystallization.
  • a coating liquid containing a water-soluble or water-dispersible organic polymer compound on at least one surface of a polyester film before completion of orientation crystallization.
  • the thickness unevenness in an arbitrary 15 m long section in the longitudinal direction of the coated film is 10% or less.
  • a biaxially oriented polyester film for thermal transfer is provided.
  • the polyester of the polyester film used in the present invention is 80 mol of the repeating unit. / 0 or more, preferably refers 9 0 mole 0/0 or an ethylene terephthalate, Oh Rui ethylene one 2, 6-naphthalate, and the cyclo Cyclohexanedicarboxylic methylene terephthalate phthalate what a repeating unit derived from at least one . 80 moles of the above repeating units. If it is / 0 or more, it may be a copolymer containing other repeating units.
  • copolymer components that form other repeating units include glycol components such as ethylene glycol, propylene glycol, diethylene glycol, neopentinole glycol, 1,4-butylene glycol, and 1,4- Examples of dicarboxylic components such as cyclohexanedimethylenedaricone and polyalkyleneglycol, and carboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, and oxybenzoic acid as dicarboxylic acid components. I can do it.
  • glycol components such as ethylene glycol, propylene glycol, diethylene glycol, neopentinole glycol, 1,4-butylene glycol, and 1,4- Examples of dicarboxylic components such as cyclohexanedimethylenedaricone and polyalkyleneglycol, and carboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalened
  • the polyester film used in the present invention may contain, as necessary, inorganic particles, an organic lubricant, an antistatic agent, a stabilizer, a dye, a pigment, an organic polymer, or the like as an additional component.
  • the polyester film contains inorganic particles and organic particles. Is preferably roughened. When the average surface roughness of the film is set to 0.3 to 0.2 // m, and more preferably to 0.4 to 0.2, both running property and high-definition image can be compatible. preferable.
  • the polyester film used in the present invention is 0.45 to: I. 20 dl Zg, and more preferably 0.5 to 50. It is preferable to have an intrinsic viscosity in the range of 0.80 d 1, g in order to maintain continuity during film formation and to keep thickness unevenness within a specific range.
  • the polyester film of the present invention is used as a base film of a thermal transfer material, it is necessary that its mechanical strength, thermal conductivity, operability during production of the thermal transfer material, and the like be good.
  • the total thickness (of the coated film) is preferably 20 / m or less, more preferably 10m or less.
  • the lower limit of the total thickness is usually 0.5 / zm, preferably 1 / m.
  • the biaxially oriented polyester film of the present invention is a film that is biaxially oriented and oriented in the longitudinal direction of the film and in a direction perpendicular to the film (width direction). Poor strength and dimensional stability make it impossible to obtain high-definition transferred images.
  • the biaxially oriented polyester film of the present invention is obtained by applying a coating solution containing a water-soluble mono- or water-dispersible organic polymer compound to at least one surface of the film before the orientation crystallization is completed, and then drying, stretching, It is a coating film obtained by performing a heat treatment.
  • a water-soluble organic polymer compound those which are soluble in cold or warm water or solubilized by adjusting the pH are preferable.
  • the water-dispersible organic polymeric compound lay preferred those capable of stably finely dispersed in water, specifically, the range of suspension average particle diameter is preferably from 0.001 to 50 1 11, stable It is preferable that the rate of change of the average particle diameter of the suspension after standing at 25 ° C for 3 hours is within 10% of soil.
  • Fine dispersions of organic high molecular compounds can be prepared by emulsion polymerization, dispersion by applying strong mechanical shearing, or after adding water to the organic high molecular compound solution. It may be a dispersion prepared by a method of distilling off the agent, and a dispersant may be used to disperse the organic polymer compound in water.
  • Organic polymer compounds that can be finely dispersed in water include polyethylene, polypropylene, polybutadiene, polystyrene, polyacrylate, polymethacrylate, polyacrylonitrile, polyacetate, polyvinyl butyrate, polychloride butyl, and poly.
  • Vinylidene chloride aromatic or aliphatic polyester, aromatic or lurid aliphatic polyamide, aromatic or aliphatic polyurethane, aromatic or aliphatic polyether, aromatic or aliphatic polyimide, polycarbonate, polyalkyl ketone
  • Compounds such as aromatic, aliphatic or aliphatic epoxy resins, phenolic resins, urea resins, melamine resins, cyanate resins, polyfluoroethylene, polyorganosiloxanes, natural or synthetic waxes, polyamino acids, and the like. Can Rukoto like the body.
  • organic polymer compounds may be homopolymers or random, block or graft copolymers containing two or more types of repeating units. Furthermore, not only can the desired organic polymer compound be present in water from the beginning, but also a reactive monomer or polymer can coexist or be present, and after coating, a crosslinking reaction or polymerization reaction can be performed. In this case, a catalyst may be used in combination.
  • the coating liquid applied to the biaxially stretched polyester film includes, in addition to the above organic polymer compound, for example, inorganic fine particles, an antistatic agent, a fungicide, an antioxidant, a stabilizer, and the like. Additives can be added in amounts as needed.
  • the medium of the coating liquid containing the organic high molecular compound in the present invention is preferably water, but is used to disperse the organic high molecular compound or to improve the flexibility (followability during stretching) of the coating film.
  • a water-soluble organic solvent can be used in combination.
  • the upper limit of the concentration is preferably set so that the concentration of the organic solvent used in the atmosphere is lower than the explosion limit.
  • the coating liquid containing the above-described organic polymer compound is applied to at least one side of the polyester film, and this application step needs to be performed in the polyester film production step. That is, it is applied to a polyester unstretched film, Simultaneous biaxial stretching, coating on a uniaxially stretched polyester film, and then stretching in a direction perpendicular to the uniaxial stretching direction, or applying to a biaxially stretched polyester film, and further stretching in the transverse and / or longitudinal directions Method must be used.
  • the method of applying to a uniaxially stretched polyester film is the most preferred method because it suppresses fluctuations in film thickness and does not impair productivity.
  • a usual coating apparatus for example, a reverse port-one coater, a gravure coater, a rod coater, an air doctor coater or the like can be used.
  • the biaxially oriented polyester film for thermal transfer of the present invention is required to have a thickness unevenness of 10% or less in an arbitrary length section of 15 m in the longitudinal direction.
  • This thickness unevenness is a value obtained by dividing the difference between the maximum thickness and the minimum thickness in an arbitrary 15 m length section in the longitudinal direction of the film by the average thickness of the film.
  • the thickness unevenness exceeds 10%, when printing a high-definition full-color image using an ink ribbon that uses this as a base film, the difference in color tone due to density fluctuations can be seen visually, and the image quality becomes poor. The result is impaired.
  • the range of thickness unevenness is preferably 7% or less, and if it is 5% or less, the difference in color tone is at a level that hardly causes a problem.
  • the lower limit is 0%, but for various reasons, the limit is usually around 2%.
  • the thickness unevenness in the width direction is also preferably 10% or less, more preferably 7% or less, and particularly preferably 5% or less.
  • the biaxially oriented polyester film for thermal transfer of the present invention is obtained by applying a coating solution containing a water-soluble or water-dispersible organic polymer compound before the completion of the orientation crystallization, followed by drying, stretching and heat treatment.
  • the film must be laminated using so-called in-line coating, and the thickness unevenness in the longitudinal direction must be small.
  • in-line coating when the above-mentioned in-line coating process is performed, the subsequent stretching is more difficult than when the in-line coating is not performed because the coating liquid containing a large amount of water is applied onto the polyester film.
  • the present inventors conducted further intensive studies to solve this problem.
  • the coating film having the remaining fluidity had an uneven thickness distribution.
  • the temperature distribution of the base film became non-uniform during the process of drying ⁇ preheating ⁇ transverse stretching, and it was concluded that this was a factor that had a very large effect on the thickness variation in the longitudinal direction.
  • the coating liquid After coating the coating liquid, it is subjected to the drying step and until the water in the coating liquid evaporates sufficiently (1% by weight of water in the coating film is a guideline).
  • most of the vibrations that occur in the film are due to the shock generated when the ears of the film are gripped by the tenter clip, and the film being pushed by the hot air blown out by the tenter. Things.
  • a method of suppressing pulsation by using hot air in a tenter by inverter control a method of reducing the amount of hot air flow itself, gradually increasing the clip width by the amount that expands due to heating of the film Spread out and avoid loosening in the center of the film gripped at both ends with clips.Use a cushioning material on the clips so that the tenter clips grip the ears of the film with less impact. Can be.
  • a cushioning material on the clips so that the tenter clips grip the ears of the film with less impact.
  • To minimize the amplitude of vibration by minimizing the distance from the taper to the point where the ear of the film is gripped by the tenter clip.
  • a method may be used in which a drive or a free roll is brought into contact with the film surface, or a single or a plurality of free rolls, so that the propagation of vibration is interrupted in a short period or in a section.
  • a drive or a free roll is brought into contact with the film surface, or a single or a plurality of free rolls, so that the propagation of vibration is interrupted in a short period or in a section.
  • two or more of these methods can be used in combination.
  • the vibration of the film in the drying section is suppressed, and as a result, the thickness unevenness in the longitudinal direction of the biaxially oriented and heat-fixed film is reduced. Can be reduced.
  • the amplitude of the film due to the vibration in the drying section depends on the width of the tenter, the thickness of the film, and the coating thickness, but is preferably 5 cm or less at most, and more preferably 3 cm or less.
  • a known thickness unevenness preventing method can be used in combination.
  • the unevenness in the film thickness tends to be dragged by the process having the worst defect, and the level thereof is determined. Therefore, even if the in-line coating process can be improved by the present invention, it cannot be said that it alone is sufficient, and a comprehensive measure is required.
  • an amorphous metal electrode having an edge portion having a thickness of 50 // m or less Japanese Unexamined Patent Publication No.
  • a laminated blade electrode in which a conductive thin film having a thickness of 0.01 to 10 ⁇ m is provided on at least one surface of an electric insulator (Japanese Patent Application Laid-Open No. 1-156600 / 1991). It is preferable to carry out the process while effectively bringing the molten polyester into close contact with the cooling drum by using a method described in the gazette.
  • the polyester used as a raw material The specific resistance at the time of melting is preferably 1 ⁇ 10 1 ° ⁇ ⁇ cm or less, more preferably 1 ⁇ 10 9 to IX 10 6 ⁇ ⁇ cm.
  • JP-A-8737, JP-A-62-213841, JP-A-62-236722, JP-A-62-236722 and the like can also be used.
  • the slit ratio of the die z If the ratio of the thickness of the cooled and solidified unstretched film is adjusted to 5 to 20, and further to 8 to 15, the thickness of the unstretched film I like it because it can reduce unevenness.
  • the width of the fluctuation of the linear grounding portion (hereinafter abbreviated as “grounding line”) spreading in the width direction on the cooling drum is 1 mm or less, more preferably 0.5 mm or less, in the area corresponding to the effective product width.
  • the polyester formed into an unstretched film in the casting step is then stretched longitudinally using a roll stretching method.
  • the stretching conditions used at this time vary depending on the composition of the polyester used.
  • PET polyethylene terephthalate
  • the stretching ratio is 2.0 to 3.0 times in a temperature range of 90 to 110 ° C.
  • the longitudinal stretching is divided into two stages, for example, the second stage stretching is performed at a stretching ratio of 1.2 to 2.0 times in a temperature range of 70 to 90 ° C. It is preferable that the stretching temperature of the second step is set lower than that of the first step.
  • a nip roll or an appropriate position should be set at an appropriate position to prevent fluctuations in the position where plastic deformation starts and ends in the stretching section on the low-speed roll and high-speed port. It is preferable to perform the process while pressing the film against each roll using an electrostatic adhesion method.
  • the uniaxially oriented film that has been subjected to the longitudinal stretching is subjected to the in-line coating process described above.
  • transverse stretching is performed with a tenter, and the conditions for transverse stretching also differ depending on the polyester composition used, as in the case of longitudinal stretching.
  • the draw ratio can be set to 3.0 to 5.0 times in the temperature range of 85 ° C to 130 ° C.
  • JP-A-5-301284 it is described in JP-A-5-301284.
  • the biaxially oriented film that has been transversely stretched can be further subjected to re-longitudinal stretching and Z or re-lateral stretching.
  • re-longitudinal stretching be performed by roll stretching and re-lateral stretching be performed by tenter method.
  • tenter method it is preferable to use the same method as the above-described thickness unevenness measure used in the roll stretching method and the tenter stretching method.
  • the biaxially oriented film that has completed the stretching step is then subjected to a heat setting step.
  • a tenter method for heat setting it is preferable to use a tenter method for heat setting, but also in this case, the same measures for thickness unevenness as in transverse stretching can be taken.
  • the temperature is in the range of 180-245 ° C and the time is in the range of 0.5-60 seconds.
  • the biaxially oriented polyester film thus obtained are breaking strength in the longitudinal direction and the width direction, at both 25 kgf / mm 2 or more and shrinkage at 180 ° C3 minutes, 5% or less in the longitudinal direction and the width direction both Preferably,
  • the laminated film of the present invention preferably has an adhesion of 100 gf Zl 25 mm or less, more preferably 50 8 125 1 11111 or less, particularly preferably 30 g or less, as measured by the method described in Examples described later. 8 £ / / 1 25111111 or less. Even if the laminated film is once wound into a roll and then exposed to high-temperature and high-humidity conditions with pressure applied between the films, the films do not stick to each other. This means that the film can be easily pulled out when unwinding.
  • the fixing force is controlled, for example, by adding a cross-linking agent or a cross-linkable polymer to the coating liquid, This is achieved by promoting cross-linking within or between the components of the organic polymer compound during the heat treatment step of the film. Further, with this, in the case of a coating layer for improving the adhesive strength with the sublimation ink, the adhesive strength with the ink can be further improved.
  • it is also effective to adjust the type and amount of organic or inorganic particles contained in the base film to increase the surface roughness.
  • F 5 value in the longitudinal direction and the width direction of the laminated film of the present invention are both 1 3. Is preferably 0 kgf ZMM 2 or more. When this condition is satisfied, the elongation of the ink ribbon in the longitudinal direction and the width direction can be further reduced, and as a result, print wrinkles and missing prints can be reduced. The method for measuring the F5 value will be described in Examples described later.
  • the method for measuring the characteristics and the method for evaluating the effects are as follows.
  • the total thickness of the laminate of the base film and the coating layer containing the organic polymer compound was measured using a micrometer.
  • the length of the biaxially oriented film is 15 m long and the width is 3 m long. Sections were extracted. The maximum thickness ( ⁇ ) and the minimum thickness (/ zm) were measured for each sample, and the thickness unevenness was calculated from the average thickness (/ zm) force in that section according to the following formula. Was regarded as the thickness unevenness of the sample.
  • Thickness unevenness (%) ⁇ (maximum thickness-minimum thickness) ⁇ average thickness ⁇ X I 0 0
  • the average thickness used here is a value calculated from the measured area, weight, and density of the sample, and the density at this time is 1.0 for polyethylene terephthalate. 3.97, 1.354 for polyethylene naphthalate, and 1.270 for polycyclohexanedimethylene terephthalate.
  • the average surface roughness measured the surface roughness of the polyester base film.
  • the surface roughness of the anti-coating side is used.
  • the ME Kacetone etc. to carefully peel off the coating layer so that the surface shape does not change. was measured for roughness.
  • the measurement was performed using a non-contact surface shape measurement system (Micromap 512; objective lens, 20 times) manufactured by Micromap Co., Ltd., and SRa was measured. The measurement was performed for 20 fields of view, and the average value was defined as the average surface roughness.
  • the intrinsic viscosity of the polyester film can be determined by completely removing the coating layer using an organic solvent such as MEK Paceton, and then using a sufficiently dried film to form a mixed solvent of phenol Z tetrachloroethane (50/50). ) And measured at a temperature of 30 ° C.
  • an organic solvent such as MEK Paceton
  • the particle size distribution was measured using a particle size analyzer UPA 9340 (manufactured by Nikkiso Co., Ltd. (laser Doppler-Z frequency analysis method)), and the average particle size was calculated.
  • a sublimable ink layer was formed on the coating layer surface of a biaxially oriented polyester sample having an ink-adhesive coating layer on one side, and a back layer was coated on the other side to form an ink ribbon.
  • composition of ink and back layer vehicle Composition of ink and back layer vehicle
  • the sample film was subjected to free-end heat treatment at 180 ° C for 3 minutes using a hot air circulating oven manufactured by Tabai, and the dimensional changes in the vertical and horizontal directions before and after the film were processed. Expressed as / 0 .
  • the two laminated film specimens were superimposed so that one coated surface was in contact with the other opposite surface, and was pressed by a press machine in a constant temperature and humidity room adjusted to 40 ° C and 80% RH. After leaving a rectangular section with a length of 10.0 cm pressed at a pressure of 1 O kgf Zcm 2 for 24 hours, release the pressure, change the temperature and humidity chamber to 23 ° C and 50% RH, and leave it for 24 hours I left it.
  • the specimen was taken out of the constant temperature and humidity chamber, and a tensioned 0.8 mm 0 piano wire was passed between the two superposed specimens, and the pressed rectangle was 12.5 cm wide. While maintaining the position parallel to the above, the piano wire was moved at a speed of 50 cmZ to peel off the above-mentioned pressed part.
  • the average line of the chart of the peeling load (gf / ⁇ 25 mm width) value applied to the piano wire at the time of this peeling was determined and defined as the fixing force.
  • Example 1 Using a tensile tester manufactured by Intesco Intesco Model 2001, in a room adjusted to a temperature of 23 ° C and 50% R. ⁇ , a sample film with a width of 15 mm is chucked with a chuck of 5 Omm, Pull at a speed of 200 mmZ, and apply the load (kgf) when elongating 5% from the original length to the original cross-sectional area (mm 2 ) of the test piece (use the total thickness of the above laminated film as the thickness) And calculated). Five points were measured in the same manner, and the average of the obtained values was defined as the F5 value.
  • Example 1 Example 1
  • Polyethylene terephthalate pellets having an intrinsic viscosity of 0.66 were sufficiently dried by heating, fed to an extruder, and melt-extruded at 290 ° C. to produce an unstretched film.
  • the extruder is equipped with a 10 / m-cut filter to remove foreign matter, a gear pump to suppress pulsation and discharge by metering, and to equalize the temperature distribution of the molten polyester in the melt line.
  • a static mixer was installed in order to make it possible to change the condition.
  • the film was extruded from a T-die into a film, and was wound around a cooling drum having a surface temperature of 40 ° C by an electrostatic adhesion method to be cooled and solidified.
  • the slit gap of the die of the T die was 1.1 mm, and the thickness of the unstretched film solidified by cooling was 91 ⁇ m (the ratio of the thickness of the unstretched film solidified by cooling to the slit gap was approximately 1 ⁇ m). twenty one ) .
  • a voltage of 6 kV was applied using a metal monorejan metal blade having a thickness of 20 / zm and a width of 2 mm, made of chromium-molybdenum monocarbon.
  • the zone for casting was enclosed as a small room to block the effects of wind from air conditioners and other equipment.
  • the fluctuation of the grounding line where the molten polyester was grounded to the cooling drum could be reduced to almost zero over the entire effective product width.
  • the obtained unstretched film was led to a longitudinal stretching step.
  • the longitudinal stretching is performed using a roll stretching method, the first-stage stretching is performed at 100 ° C at a stretching ratio of 2.70 times, and the second-stage stretching is performed at 87 ° C at a stretching ratio of 1.6. Went at 0x.
  • the low-speed roll and the high-speed roll which perform stretching using the peripheral speed difference, have the film separated from the mouth and the film at the mouth, respectively.
  • the nip roll was set at the contact position, and the film was pressed against the mouth so that the position where the plastic deformation started and ended in the stretching section did not fluctuate, and the film was moved.
  • One surface of the obtained uniaxially stretched film was subjected to a corona discharge treatment in air, and the treated surface was coated with a mixture prepared by mixing aqueous dispersions of each component so as to have the following composition by a Daravia coating method.
  • the application amount of the aqueous dispersion was 6 g Zm 2 , and the solid content in the aqueous dispersion was 10% by weight.
  • aqueous dispersion consisting of the dispersion of Okisazorin based crosslinking agent, styrene 5 8 2 wt%, butyl acrylate 2 1 8 wt%, 2 -.. Biel one 2- Okisazorin 2 0 weight. /. It was a polymer aqueous dispersion comprising:
  • the film was led to a drying and preheating step.
  • the following measures were taken so that the film coated with the aqueous dispersion was not vibrated as much as possible.
  • two free ports are installed at equal intervals (2 m) between the gravure coater and the entrance of the tenter, and a film is placed on the surface opposite to the surface on which the water dispersion is applied. The contact angle was 2 °.
  • both ends (ears) of the film were gripped with a tenter clip, and hot air, whose pulsation was suppressed by inverter control, was applied to the film to remove water from the water dispersion.
  • the maximum amplitude of the vibration received by the film was 1.5 cm in the drying section from the outlet of the coating solution of the coating solution to the time when the moisture of the coating layer was sufficiently evaporated.
  • the film was stretched in a transverse direction at 105 ° C. at a draw ratio of 4.5, and heat-treated at 230 ° C. for 2 seconds in a continuous tenter. Thereafter, the clip width is reduced by 5% at 210 ° C to perform a relaxation treatment.
  • a layered biaxially oriented polyester film having a total thickness of 4.5 ⁇ m was obtained.
  • the obtained film is a polyester film having a sublimable ink easy-adhesion layer provided on one side by in-line coating, and is a polyester film with little thickness unevenness. Concentration fluctuation was small.
  • Example 2 The same polyester raw material as in Example 1 was used for extrusion, casting, longitudinal stretching and corona discharge treatment in exactly the same manner as in Example 1, and a similar aqueous dispersion was applied by the same method.
  • both ends (ears) of the film were fixed with a tenter clip at the interval between the Daravia Coater and the entrance of the tenter without installing a free roll. Gripped.
  • hot air whose pulsation was suppressed by inverter control, was applied to the film to remove water from the water dispersion.
  • the clip was passed through the dry section with the center loosened.
  • the maximum amplitude of the vibration that the film received was 7 cm.
  • a biaxially oriented polyester having a total thickness of 4.5 / m in which a coating layer having a thickness of 0.1 / m was laminated and subjected to transverse stretching, heat fixing and width relaxation exactly in the same manner as in Example 1. A film was obtained.
  • Table 1 shows the properties of the obtained polyester film.
  • the obtained film has a sublimation-ink-easily-adhesive layer provided on one side by in-line coating.However, since the film is a polyester film having a large thickness unevenness, an ink ribbon made using this is used when printing. The density fluctuated greatly, making it unsuitable for printing full-color images.
  • Example 2 The same polyester raw material as in Example 1 was extruded and subjected to casting, longitudinal stretching, and corona discharge treatment in exactly the same manner as in Example 1.
  • the gravure coater was passed through without applying the aqueous dispersion performed in Example 1.
  • Example 1 in order to prevent the film from vibrating in the drying section, at the interval between the gravure coater and the entrance of the tenter, without setting the free roll, use a tenter to clip both ends of the film. ) was gripped. After that, the film was transported by applying hot air, whose pulsation was suppressed by inverter control, to the film.
  • the clip was passed through the dry section with a slack in the center.
  • the maximum amplitude of vibration experienced by the film was 7 cm.
  • Example 2 Subsequently, transverse stretching, heat fixing, and width relaxation were performed in exactly the same manner as in Example 1 to obtain a biaxially oriented polyester film having a total thickness of 4.4 ⁇ m without a coating layer.
  • Table 1 shows the properties of the obtained polyester film.
  • Polyethylene naphthalate (PEN) pellets having an intrinsic viscosity of 0.55 and containing 0.3% of silica particles having an average particle diameter of 1 .5 are sufficiently heated and dried, and then supplied to an extruder to be heated at 30.5 ° C. To give an unstretched film.
  • the extruder was provided with the same filter, gear-pump, and static mixer as in Example 1.
  • the film was extruded from a T-die into a film, and the obtained film was wound around a cooling drum having a surface temperature of 60 ° C. using an electrostatic adhesion method, and cooled and solidified.
  • the slit gap was 1.1 mm, and the thickness of the cooled and solidified unstretched film was 107 / m (the slit gap The ratio of the thickness of the cooled and solidified unstretched film was about 1 0.3).
  • the same voltage was applied using the same amorphous metal blade as in Example 1.
  • the zone where the casting was performed was enclosed as a small room, and the influence of the wind from the air conditioner and the like was cut off. As a result, the fluctuation of the grounding line where the molten polyester was grounded to the cooling drum could be reduced to almost zero over the entire effective product width.
  • This unstretched film was then led to a longitudinal stretching step.
  • the longitudinal stretching is performed using the roll stretching method, and the first-stage stretching is performed at 130 ° C at a stretching ratio of 2.70 times, and then further.
  • stretching was performed at 123 ° C. at a stretching magnification of 1.8 times.
  • the low-speed roll and the high-speed roll are equipped with an Ep roll at the same position as in Example 1, and the position where plastic deformation starts in the stretching section and the end position
  • the film was pressed against a roll so that no fluctuation of the position occurred.
  • One surface of the uniaxially stretched film was subjected to corona discharge treatment in air, and the treated surface was coated with an aqueous dispersion having exactly the same composition as in Example 1 by a gravure coat method in the same coating amount.
  • Example 2 After this coating treatment, a drying / preheating step was carried out. At this time, exactly the same means as in Example 1 were taken so that the film coated with the aqueous dispersion was not vibrated as much as possible. By taking this prescription, the maximum amplitude of vibration received by the film was 1.5 cm in the drying section from the coater outlet of the coating solution to the time when the water in the coating layer was sufficiently evaporated.
  • the film was stretched 4.7 times at 135 ° C. in the transverse direction, and heat-treated at 230 for 2 seconds in a continuous tenter. Thereafter, the clip width was reduced by 5% at 210 ° C. to perform a relaxation treatment, and the film was passed through a cooling zone, and finally, a coating layer having a thickness of 0. m biaxially oriented polyester film was obtained.
  • Table 1 shows the properties of the obtained polyester film.
  • Example 3 Even when PEN was used, as in Example 1 using PET, the obtained film had a sublimable ink easy-adhesion layer provided on one side by in-line coating, and had a small thickness unevenness. Since it was a film, the ink ribbon created using it had little fluctuation in density when printed. Comparative Example 3
  • Example 2 Using the same polyester raw material as in Example 2, extrusion was performed in exactly the same manner as in Example 2, casting, longitudinal stretching and corona discharge treatment were performed, and a similar aqueous dispersion was applied by the same method.
  • Example 2 After that, among the measures against film vibration in the drying section performed in Example 2, at the distance between the Daravia coater and the entrance of the tenter, do not install the free roll, and use a tenter clip to attach both ends (ears) of the film. Gripped. After that, hot air, whose pulsation was suppressed by inverter control, was applied to the film to remove water from the water dispersion. On this occasion At the same time, instead of slightly increasing the clip width so that it became wider toward the end of the tenter, it was passed through the drying section with the center part loosened. In the drying section, the amplitude of the vibration received by the film was up to 7 cm.
  • a biaxially oriented polyester having a total thickness of 4.5 // m was obtained by laminating a coating layer having a thickness of 0.1 m by performing transverse stretching, heat fixing, and width relaxation exactly in the same manner as in Example 2.
  • Table 1 shows the properties of the obtained polyester film.
  • the sublimable ink easy-adhesion layer is provided on one side by in-line coating, since the polyester film is a polyester film with a large thickness unevenness, the ink ribbon created using this has a large density fluctuation when printed. However, it was not suitable for printing a full-color image.
  • Terefutanore acid 9 Monore in the dicarboxylic acid 0/0, 5 _ source Jiu Mus Honoré e isophthalate 1 0 Monore 0/0, ethylene glycol in the glycated one Honoré Honoré 7 3 Monore 0/0, diethylene glycol 2 7 moles 0/0 polyester polymer made of.
  • ⁇ Acrylic polymer B> 35 mol of methacrylic acid. / 0 , an alkyl methacrylate 35 mol 0 / o, an acryl polymer comprising 30 mol% of styrene.
  • Water-soluble epoxy compound mainly composed of tetraglycerol tetradalicydinole ether.
  • Crosslinking agent or crosslinking polymer C 2>
  • a water-soluble melamine compound consisting mainly of mono-, di- and tri-nuclear melamines of almost tetrafunctional methylol and methoxymethylol melamine.
  • Polyethylene naphthalate pellets having an intrinsic viscosity of 0.55 and containing 0.7% of silica particles having an average particle diameter of 1.2; um are sufficiently heated and dried, and then supplied to an extruder to obtain a temperature of 30.5 °.
  • C was melt extruded to form an unstretched film.
  • the extruder is equipped with a 10 ⁇ cut filter to remove foreign substances, and a gear pump to suppress pulsation and discharge by metering.
  • the melt line is used to equalize the temperature distribution of the molten polyester.
  • a static mixer was installed. The molten polyester was extruded from a die into a film, wound around a cooling drum having a surface temperature of 60 ° C.
  • the slit gap of the die of the T die was 1.1 mm.
  • a voltage of 6 kV was applied using an amorphous metal plate of cobalt-chromium-molybdenum-carbon having a thickness of 20 / m and a width of 2 mm.
  • the casting zone was enclosed as a small room to block the effects of wind from air conditioners and other equipment. As a result, the fluctuation of the ground line where the molten polyester grounded to the cooling drum could be reduced to almost zero over the entire effective product width.
  • This unstretched film was then led to a longitudinal stretching step.
  • the longitudinal stretching was performed using the roll stretching method.
  • the first stage was stretched to 2.70 times at 130 ° C, and the second stage was stretched to 1.90 times at 123 ° C. Stretching was performed.
  • the low-speed roll and the high-speed roll which perform stretching using the difference in peripheral speed, are placed at the position where the film separates from the roll, and at the edge of the film.
  • a nip roll was installed at a position where the film contacts, and the film was pressed against the roll to perform longitudinal stretching so that the position where plastic deformation starts and ends does not fluctuate in the stretching section.
  • the amplitude of the vibration received by the film was 1.5 cm at the maximum in the drying section from the outlet of the coating liquid coating until the water in the coating layer was sufficiently evaporated. .
  • the film was stretched 4.8 times at 135 ° C. in the transverse direction, and heat-treated at 230 ° C. for 2 seconds in a continuous tenter. Thereafter, the clip width was reduced by 3% at 180 ° C. to perform a relaxation treatment, and the film was passed through a cooling zone to obtain a laminated film having a coating layer having a thickness of 0.09 / m. This coating layer improves (easy adhesion) the adhesive strength with the sublimation ink.
  • this laminated film While trimming this laminated film to a width of 50 mm, it is wound up into a roll of 300 m with an appropriate hardness so that the core with a 6 inch inner diameter and a wall thickness of 1 mm does not slip off.
  • a roll of 300 m with an appropriate hardness so that the core with a 6 inch inner diameter and a wall thickness of 1 mm does not slip off.
  • Table 2 shows the results of evaluating the properties of the obtained laminated film.
  • the wool-shaped laminated film obtained above was adjusted to 40 ° C and 80% RH. They were placed in a thermo-hygrostat and treated for 24 hours. After the treatment, the temperature and humidity in the constant temperature and humidity were changed to 23 ° C and 50% RH, and left as it was for 24 hours. After unwinding the unwound laminated film and transporting it on a plurality of rotating rollers, on the opposite side of the coating layer, two copies of Sekisui Kagaku's Polybier Petilal Esrec BX-1 were added.
  • an ink coating solution having the following composition is applied to the coating layer opposite to the heat-resistant easy-sliding layer, respectively.
  • Example 3 the thickness of the unstretched sheet was changed so that the final thickness of the polyethylene naphthalate film of the base material was the same as that of Example 3, and the magnification of the second step of longitudinal stretching was 1 Change to 6 times and adjust the solids concentration of the coating solution so that the final thickness of the coating layer becomes the same as in Example 3, and change the magnification of transverse stretching to 4.3 times
  • a laminated film was prepared in exactly the same manner except for the above. Table 3 shows the results of evaluating the properties of this laminated film. Further, in the same manner as in Example 3, after the high-temperature and high-humidity treatment, a sublimation-type thermal transfer ribbon was prepared, and various characteristics were evaluated. Table 3 shows the obtained results.
  • Example 3 Using the same polyester raw material as in Example 3, extrusion-casting, longitudinal stretching, and corona discharge treatment were performed in exactly the same manner as in Example 3, and a similar coating liquid was applied by the same method.
  • Example 3 After that, among the measures against film vibration in the drying section carried out in Example 3, at the interval between the gravure coater and the entrance of the tenter, without setting a free roll, use a tenter clip to end both ends (ears) of the film. Was gripped. Thereafter, hot air, whose pulsation was suppressed by inverter control, was applied to the film to remove the water content of the coating liquid. At this time, instead of slightly increasing the width of the clip so that it became wider toward the center, the clip was passed through the dry section with the center part loosened. Within the drying section, the amplitude of the vibration experienced by the film was up to 7 cm.
  • Example 3 transverse stretching, heat fixing, and width relaxation were performed in exactly the same manner as in Example 3 to obtain a laminated film.
  • Table 3 shows the results of evaluating the characteristics of the laminated film. Further, in the same manner as in Example 3, after a high-temperature and high-humidity treatment, a sublimation-type thermal transfer ribbon was prepared, and various characteristics were evaluated. Table 3 shows the obtained results.
  • Polyethylene terephthalate pellets containing 0.7% silica particles having an average particle diameter of 1.2 / m and having an intrinsic viscosity of 0.66 are heated and dried for + minutes, and then supplied to an extruder for 290 ° C. C was melt extruded to form an unstretched film.
  • the extruder was provided with the same filter, gear-pump, and static mixer as in Example 3.
  • the film was extruded from a T-die into a film and wound around a cooling drum having a surface temperature of 40 ° C. using an electrostatic adhesion method to be cooled and solidified.
  • the die gap of the T die had a slit gap of 1.1 mm.
  • Example 3 In this electrostatic adhesion method, the same voltage was applied using the same amorphous metal blade as in Example 3. Further, as in Example 3, the zone where the casting was performed was enclosed as a small room, and the influence of wind from an air conditioner or the like was cut off. As a result, the fluctuation of the grounding line where the molten polyester was grounded to the cooling drum could be reduced to almost zero over the entire effective product width.
  • This unstretched film was then led to a longitudinal stretching step.
  • the longitudinal stretching is performed using a roll stretching method.
  • the first stage stretching is performed at 100 ° C. at 2.70 times, and the second stage is further stretched at 87 ° C. at 1.60 times.
  • the nip roll is set at the same position as in Example 3 for the low-speed roll and the high-speed roll at the time of the first-stage and second-stage stretching, and the position where plastic deformation starts and ends in the stretching section
  • the film was pressed against a roll and stretched longitudinally so that no positional fluctuation occurred.
  • Example 3 One side of this uniaxially stretched film was subjected to a corner discharge treatment in air, and the treated surface was changed to the composition shown in Table 2 by a gravure coating method, and the final thickness of the coating layer was changed to Example 3. Coating was performed in exactly the same manner as in Example 3, except that the solid content of the coating liquid was changed so as to be the same as in Example 3.
  • Table 3 shows the results of evaluating the characteristics of the laminated film. Further, in the same manner as in Example 3, after a high-temperature and high-humidity treatment, a sublimation-type thermal transfer ribbon was prepared, and various characteristics were evaluated. Table 3 shows the obtained results.
  • a laminated film was obtained in exactly the same manner as in Example 3, except that the composition of the coating liquid was changed to the composition shown in Table 2.
  • Table 3 shows the results of evaluating the characteristics of the laminated film. Further, when an attempt was made to produce a sublimation-type thermal transfer ribbon in exactly the same manner as in Example 3, when the film was unwound and processed into a ribbon, the films were not easily separated from each other, and the processing yield was low. Mari has dropped slightly.
  • the total thickness of the laminated films obtained in Examples 3 to 6 and Comparative Example 4 was 2.8 ⁇ .
  • the biaxially oriented polyester film for thermal transfer of the present invention has a coating for imparting a special function for thermal transfer, and the coating is performed using water as a medium during the film forming process. Despite being applied and laminated, there is little unevenness in film thickness. As a result, according to the ink ribbon using the film of the present invention, it is possible to perform printing with little density fluctuation and good color tone reproducibility.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

A biaxially oriented polyester film for thermal transfer which is a coated film having a thickness of 20 νm or smaller and obtained by applying a coating fluid containing a water-soluble or water-dispersible organic polymer to at least one side of a polyester film whose orientation and crystallization have not been completed and then drying, stretching, and heating the film, characterized by having thickness fluctuations of 10 % or smaller in any 15 m range in the machine direction. When an ink ribbon containing this film as a base is used in printing, prints having reduced image density fluctuation can be obtained with satisfactory color tone reproducibility.

Description

明 細 書  Specification
感熱転写用二軸配向ポリエステルフィルム 技術分野  Biaxially oriented polyester film for thermal transfer
本発明は、 感熱転写用二軸配向ポリエステルフィルムに関する。 より詳しくは、 本発明は、 印刷時の濃度ムラの少ない、 高精細な画像を与えることができる感熱 転写用二軸配向ポリエステルフィルムに関する。  The present invention relates to a biaxially oriented polyester film for thermal transfer. More specifically, the present invention relates to a biaxially oriented polyester film for thermal transfer capable of giving a high-definition image with less density unevenness during printing.
背景技術  Background art
感熱転写方式のィンクリボンは、 溶融型 ·昇華型共に、 ベースとなるポリエス テルフィルムの片面にインク層を有しており、 転写時には、 フィルムを、 インク 層とは反対の面からサーマルヘッド等で加熱し、 この熱をインク層に伝えること によってィンクを溶融あるいは昇華させて選択的に被転写体に転写させる。 この 時、 反対面に加えられた熱は、 フィルムの厚み方向を貫通する形で伝わり、 イン ク層まで到達する。 したがって、 フィルムの厚みが厚ければ熱が伝わり難く、 逆 に薄ければ熱が伝わりやすい。 すなわち、 フィルムに厚み変動があると、 厚い部 分では印字濃度が薄くなり、 薄い部分では印字濃度が濃くなる現象が生じる。 こ の現象は、 文字や単純なカラー画像等の画質を問わない用途であれば問題は少な レ、。 しかしながら、 感熱転写方式の印刷は、 最近のパーソナルコンピューターや デジタルカメラ等の普及に伴い、 画像の高画質化の傾向が顕著であり、 特に写真 画像を印刷するような高精細なフルカラー印刷が必要な場合、 インクリボンのベ —スフイルムの厚さ変動による印字濃度変動が、 画像の色調を不本意に変えてし まったり、 色調の再現性をなくしてしまったりするなどの不具合となり、 極めて 大きな問題となっている。  Ink ribbons of the thermal transfer type, both the fusion type and the sublimation type, have an ink layer on one side of the base polyester film.At the time of transfer, the film is heated from the side opposite to the ink layer with a thermal head or the like. By transferring this heat to the ink layer, the ink is melted or sublimated to be selectively transferred to the transfer target. At this time, the heat applied to the opposite surface is transmitted through the thickness direction of the film and reaches the ink layer. Therefore, if the thickness of the film is large, it is difficult for heat to be transmitted, and if it is thin, heat is easily transmitted. That is, when the film has a thickness variation, a phenomenon occurs in which the print density becomes thin in a thick portion and the print density becomes high in a thin portion. This phenomenon is less problematic for applications that do not depend on the image quality, such as characters and simple color images. However, thermal transfer printing has been remarkably trending toward higher image quality with the recent spread of personal computers and digital cameras, and particularly high-resolution full-color printing such as printing photographic images is required. In this case, fluctuations in printing density due to fluctuations in the thickness of the base film of the ink ribbon may inadvertently change the color tone of the image or cause loss of color reproducibility. ing.
ところで感熱転写用インクリボンのベースフィルムとして汎用されているポリ エステルフィルムは、 その表面に感熱転写用としての特殊な機能を付与するため にコーティングを施されているものがある。 このコーティングは、 一般に、 水を 媒体とした有機高分子化合物を含む塗液をフィルムに塗布した後、 乾燥 ·延伸 · 結晶化を行う、 いわゆるインラインコーティングにより適用されている。 インラ インコーティングには、 たとえば縦延伸を終えたフィルムに水を媒体とした塗液 を塗布し、 次の横延伸工程の予熱ゾ一ンを利用して乾燥を行う方法が、 工程の簡 便さおよび熱効率の点で好ましく、 広く用いられている。 By the way, some polyester films, which are widely used as base films for thermal transfer ink ribbons, are provided with a coating on the surface to provide a special function for thermal transfer. This coating is generally applied by so-called in-line coating, in which a coating liquid containing an organic polymer compound using water as a medium is applied to a film, followed by drying, stretching, and crystallization. For inline coating, for example, a method of applying a coating solution using water as a medium to a film that has been subjected to longitudinal stretching and drying using a preheating zone in the next transverse stretching process is a simple process. It is preferred in terms of convenience and thermal efficiency, and is widely used.
このようなインラインコーティングプロセスでは、 水を多量に含む塗液をポリ エステルフィルムの上に塗布するため、 フィルムの延伸のために与えられた熱量 は、 まず先に水の蒸発潜熱により奪われてしまう。 そして塗液の水分が十分に蒸 発した後に、 フィルムの温度が上昇することになるため、 インラインコーティン グを施さない場合と比べて、 フィルムの温度ムラが生じやすく、 その結果、 フィ ルムの厚み変動が大きくなる。  In such an in-line coating process, a coating liquid containing a large amount of water is applied onto the polyester film, so that the heat given to stretch the film is first taken away by the latent heat of vaporization of water. . Then, after the water content of the coating liquid evaporates sufficiently, the temperature of the film rises, and the temperature of the film is more likely to be uneven than when the in-line coating is not performed. Fluctuations increase.
さらに感熱転写用として比較的薄いフィルムを生産する場合には、 フィルムの 厚みに対する塗液の厚みの比率、 すなわちポリエステル量に対する水分量の比率 が必然的に大きくなり、 前述したフィルムの厚み変動は一層顕著なものとなる。 ィンラインコーティングを施さないポリエステルフィルムの厚み変動を抑える 技術としては、 たとえばポリエチレンナフタレートフィルムに関する改良 (特開 昭 6 3— 6 0 7 3 0号公報、 特開昭 6 3— 6 0 7 3 1号公報、 特開昭 6 3— 6 0 7 3 2号公報) 、 ポリエステル系収縮フィルムに関する改良 (特開昭 6 3— 1 4 6 9 4 0号公報 (米国特許第 4 , 9 8 5 , 5 3 8号に対応) ) 、 口金周辺の音圧レ ベルを一定値以下とする製造方法 (特開昭 6 3 - 1 6 2 2 1 5号公報) 、 厚さム ラの波形をフ一リエ変換した際のスぺクトル強度和の比を規定した技術 (特顧平 9— 2 5 4 2 5 4号公報) などが知られているが、 インラインコーティングが施 されていて、 しかも厚さ変動の少ないポリエステルフィルム、 およびそれを製造 する技術に関しては、 従来知られていない。  Furthermore, when a relatively thin film is produced for thermal transfer, the ratio of the coating liquid thickness to the film thickness, that is, the ratio of the water content to the polyester content, is inevitably large, and the above-mentioned film thickness variation is further increased. It will be noticeable. Techniques for suppressing thickness fluctuations of polyester films not subjected to in-line coating include, for example, improvements in polyethylene naphthalate films (JP-A-63-67030, JP-A-63-0731). Japanese Patent Application Laid-Open No. Sho 63-670732), Improvements Regarding Polyester Shrink Films (Japanese Patent Application Laid-Open No. Sho 63-146940 (US Patent Nos. 4,985,5) ), Manufacturing method to keep the sound pressure level around the base below a certain value (Japanese Patent Application Laid-Open No. Sho 63-162122), A technique that defines the ratio of the spectrum intensity sum after conversion (Japanese Patent Application Publication No. 9-254424) is known, but the inline coating is applied and the thickness varies. Polyester film with low density and technology for manufacturing it have not been known
発明の概要  Summary of the Invention
本発明の目的は、 濃度変動の少ない色調再現性の良好な印刷を行うことができ る感熱転写用インクリボンを提供するベースフィルムを提供することである。 本発明者らは、 上記目的を達成すべく鋭意検討した結果、 特定の厚さ変動の領 域にあるポリエステルフィルムを用いて感熱転写用インクリボンを製造したなら ば、 高精細なフルカラー印刷を行っても、 印字濃度変動が少なくなることを見い だし、 本発明を完成する至った。  SUMMARY OF THE INVENTION An object of the present invention is to provide a base film which provides an ink ribbon for thermal transfer capable of performing printing with little density fluctuation and good color tone reproducibility. The present inventors have conducted intensive studies to achieve the above object, and as a result, if a thermal transfer ink ribbon was manufactured using a polyester film in a specific thickness variation area, high-definition full-color printing was performed. However, the present inventors have found that print density fluctuations are reduced, and have completed the present invention.
すなわち、 本発明は、 水溶性または水分散性の有機高分子化合物を含む塗液を、 配向結晶化が完了する前のポリエステルフィルムの少なくとも片面に塗布し、 つ いで乾燥'延伸 '熱処理を施して得られる厚み 2 0 / m以下の塗布フィルムであ つて、 当該塗布フィルムの長手方向の任意の 1 5 m長区間における厚さムラが 1 0 %以下である感熱転写用二軸配向ポリエステルフィルムを提供する。 That is, the present invention provides a method of applying a coating liquid containing a water-soluble or water-dispersible organic polymer compound on at least one surface of a polyester film before completion of orientation crystallization. In the case of a coated film having a thickness of 20 / m or less obtained by performing a dry 'stretching' heat treatment, the thickness unevenness in an arbitrary 15 m long section in the longitudinal direction of the coated film is 10% or less. Provided is a biaxially oriented polyester film for thermal transfer.
発明の詳細な説明  Detailed description of the invention
本発明で用いるポリエステルフィルムのポリエステルとは、 その繰り返し単位 の 8 0モル。 /0以上、 好ましくは 9 0モル0 /0以上が、 エチレンテレフタレート、 あ るいはエチレン一 2、 6—ナフタレート、 およびシクロへキサンジメチレンテレ フタレートの少なくとも一種に由来する繰り返し単位であるものを指す。 上記繰 り返し単位の割合が 8 0モル。 /0以上であれば、 他の繰り返し単位を含むコポリェ ステルであってもよい。 他の繰り返し単位を形成する共重合成分の例には、 グリ コール成分としてエチレングリコール、 プロピレンングリコール、 ジエチレング リコ一ノレ、 ネオペンチノレグリコ一ノレ、 1 , 4ーブチレングリコーノレ、 1 , 4ーシ クロへキサンジメチレンダリコーノレ、 ポリア キレングリコー 等のジォーノレ成 分など、 ジカルボン酸成分としてテレフタル酸、 イソフタル酸、 2, 6—ナフタ レンジカルボン酸、 アジピン酸、 ォキシ安息香酸等のォキシカルボン酸などが挙 げられる。 各種ポリエステルの中でも、 品質 .経済性を総合的に考盧すると、 ポ リエチレンテレフタレートが最も好ましく、 耐熱性に優れたポリエチレンナフタ レートを用いることにより、 インクリボンのしわを効果的に低減することができ る。 The polyester of the polyester film used in the present invention is 80 mol of the repeating unit. / 0 or more, preferably refers 9 0 mole 0/0 or an ethylene terephthalate, Oh Rui ethylene one 2, 6-naphthalate, and the cyclo Cyclohexanedicarboxylic methylene terephthalate phthalate what a repeating unit derived from at least one . 80 moles of the above repeating units. If it is / 0 or more, it may be a copolymer containing other repeating units. Examples of copolymer components that form other repeating units include glycol components such as ethylene glycol, propylene glycol, diethylene glycol, neopentinole glycol, 1,4-butylene glycol, and 1,4- Examples of dicarboxylic components such as cyclohexanedimethylenedaricone and polyalkyleneglycol, and carboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, and oxybenzoic acid as dicarboxylic acid components. I can do it. Among the various polyesters, considering the quality and economy, it is most preferable to use polyethylene terephthalate, and by using polyethylene naphthalate having excellent heat resistance, it is possible to effectively reduce the wrinkles of the ink ribbon. You.
本発明で用いるポリエステルフィルムは、 必要に応じて無機粒子 '有機系潤滑 剤 ·帯電防止剤 ·安定剤 ·染料 ·顔料 ·有機高分子等を添加成分として含有して いてもよい。 特に、 転写記録画像の光沢調整のため、 あるいはポリエステルフィ ルムの製造時やインクリボンにした際の走行性を改良するために、 無機粒子や有 機粒子をポリエステルフィルムに含有させ、 ポリエステルフィルムの表面を粗面 化することが好ましい。 フィルムの平均表面粗さを 0 . 0 3〜 0 . 2 // m、 さら には 0 . 0 4〜 0 . とした場合に、 走行性と高精細な画像を得ることが両 立できて特に好ましい。  The polyester film used in the present invention may contain, as necessary, inorganic particles, an organic lubricant, an antistatic agent, a stabilizer, a dye, a pigment, an organic polymer, or the like as an additional component. In particular, in order to adjust the gloss of the transferred recorded image, or to improve the runnability of the polyester film when it is manufactured or formed into an ink ribbon, the polyester film contains inorganic particles and organic particles. Is preferably roughened. When the average surface roughness of the film is set to 0.3 to 0.2 // m, and more preferably to 0.4 to 0.2, both running property and high-definition image can be compatible. preferable.
また、 製造途中で発生するフィルムのスクラップをリサイクル使用するときに、 後述するフィルム表面のコ一ト層成分が混入しても構わない。 本発明で用いるポリエステルフィルムは、 フエノールノテトラクロルエタン混 合溶媒 (重量比 50ノ 50) 中 30°Cで測定した場合、 0. 45〜: I . 20 d l Zg、 より好ましくは 0. 50〜0. 80 d 1 ,gの範囲の固有粘度を有するこ とが、 製膜時の連続性維持のためと、 厚さムラを特定の範囲内とするために好ま しい。 Further, when the scrap of the film generated during the production is recycled, a coat layer component on the film surface described later may be mixed. When measured at 30 ° C. in a phenol-no-tetrachloroethane mixed solvent (weight ratio of 50 to 50), the polyester film used in the present invention is 0.45 to: I. 20 dl Zg, and more preferably 0.5 to 50. It is preferable to have an intrinsic viscosity in the range of 0.80 d 1, g in order to maintain continuity during film formation and to keep thickness unevenness within a specific range.
本発明のポリエステルフィルムは、 感熱転写材のベースフィルムとして用いる ので、 その機械的強度、 熱伝導性あるいは感熱転写材の製造時の操作性等が良好 であることが必要である。 とりわけ、 高精細な画像を得るために、 (塗布フィル ムの) 総厚みは 20 / m以下であることが好ましく、 より好ましくは 10 m以 下である。 総厚みの下限は、 通常 0. 5/zm、 好ましくは 1 / mである。  Since the polyester film of the present invention is used as a base film of a thermal transfer material, it is necessary that its mechanical strength, thermal conductivity, operability during production of the thermal transfer material, and the like be good. In particular, in order to obtain a high-definition image, the total thickness (of the coated film) is preferably 20 / m or less, more preferably 10m or less. The lower limit of the total thickness is usually 0.5 / zm, preferably 1 / m.
本発明の二軸配向ポリエステルフィルムは、 フィルムの長手方向およびこれと 垂直方向 (幅方向) に二軸延伸されて配向しているフィルムであり、 未延伸の状 態あるいは一軸延伸フィルムでは、 機械的強度や寸法安定性が劣り、 高精細な転 写画像を得ることができない。  The biaxially oriented polyester film of the present invention is a film that is biaxially oriented and oriented in the longitudinal direction of the film and in a direction perpendicular to the film (width direction). Poor strength and dimensional stability make it impossible to obtain high-definition transferred images.
本発明の二軸配向ポリエステルフィルムは、 水溶 1生または水分散性の有機高分 子化合物を含む塗液を、 配向結晶化が完了する前のフィルムの少なくとも片面に 塗布し、 ついで乾燥 ·延伸 ·熱処理を施して得られる塗布フィルムである。 水溶性有機高分子化合物としては、 冷水または温水に可溶であるか、 あるいは pHを調整すれば可溶化するものが好ましく、 具体的には、 ポリアルキレンダリ コ一ル、 ポリビニルアルコール、 ポリアクリル酸、 ポリメタアタリル酸、 ポリア クリルアミ ド、 ポリビニルピロリ ドン、 ポリスチレンスルホン酸、 ゼラチン、 力 ゼイン、 デキストラン、 セルロースなどや、 これらの誘導体を挙げることができ る。  The biaxially oriented polyester film of the present invention is obtained by applying a coating solution containing a water-soluble mono- or water-dispersible organic polymer compound to at least one surface of the film before the orientation crystallization is completed, and then drying, stretching, It is a coating film obtained by performing a heat treatment. As the water-soluble organic polymer compound, those which are soluble in cold or warm water or solubilized by adjusting the pH are preferable. Specifically, polyalkylene alcohol, polyvinyl alcohol, polyacrylic acid , Polymetharalylic acid, polyacrylamide, polyvinylpyrrolidone, polystyrenesulfonic acid, gelatin, zein, dextran, cellulose and the like, and derivatives thereof.
水分散性の有機高分子化合物としては、 水中で安定に微分散できるものが好ま しく、 具体的には、 サスペンジョン平均粒径の範囲は、 0. 001〜50 111で あることが好ましく、 安定性は 25 °Cで 3時間放置した後のサスペンジョン平均 粒径の変化率が土 10 %以内であることが好ましい。 The water-dispersible organic polymeric compound, lay preferred those capable of stably finely dispersed in water, specifically, the range of suspension average particle diameter is preferably from 0.001 to 50 1 11, stable It is preferable that the rate of change of the average particle diameter of the suspension after standing at 25 ° C for 3 hours is within 10% of soil.
有機高分子化合物の微分散液は、 もともと乳化重合で作られた分散液、 機械的 な剪断を強くかけて分散する方法、 有機高分子分化合物溶液に水を加えた後に溶 剤を留去する方法等を用いて調製した分散液であってよく、 有機高分子化合物を 水に分散させるために、 分散剤を使用することもできる。 Fine dispersions of organic high molecular compounds can be prepared by emulsion polymerization, dispersion by applying strong mechanical shearing, or after adding water to the organic high molecular compound solution. It may be a dispersion prepared by a method of distilling off the agent, and a dispersant may be used to disperse the organic polymer compound in water.
水に微分散が可能な有機高分子化合物として、 ポリエチレン、 ポリプロピレン、 ポリブタジエン、 ポリスチレン、 ポリアクリル酸エステル、 ポリメタアクリル酸 ェステル、 ポリアクリロニトリル、 ポリ酢酸ビュル、 ポリ酪酸ビニル、 ポリ塩ィ匕 ビュル、 ポリ塩化ビニリデン、 芳香族または脂肪族ポリエステル、 芳香族または 月旨肪族ポリアミ ド、 芳香族または脂肪族ポリウレタン、 芳香族または脂肪族ポリ エーテル、 芳香族または脂肪族ポリイミド、 ポリカーボネ一ト、 ポリアリ一ルケ トン、 芳香族または脂肪族エポキシ樹脂、 フエノール樹脂、 尿素樹脂、 メラミン 樹脂、 シァネート樹脂、 ポリフルォロエチレン、 ポリオルガノシロキサン、 天然 または合成ワックス、 ポリアミノ酸などの化合物、 およびこれらの誘導体を挙げ ることができる。  Organic polymer compounds that can be finely dispersed in water include polyethylene, polypropylene, polybutadiene, polystyrene, polyacrylate, polymethacrylate, polyacrylonitrile, polyacetate, polyvinyl butyrate, polychloride butyl, and poly. Vinylidene chloride, aromatic or aliphatic polyester, aromatic or lurid aliphatic polyamide, aromatic or aliphatic polyurethane, aromatic or aliphatic polyether, aromatic or aliphatic polyimide, polycarbonate, polyalkyl ketone Compounds such as aromatic, aliphatic or aliphatic epoxy resins, phenolic resins, urea resins, melamine resins, cyanate resins, polyfluoroethylene, polyorganosiloxanes, natural or synthetic waxes, polyamino acids, and the like. Can Rukoto like the body.
これらの有機高分子化合物は、 ホモポリマーであってもよいし、 2種以上の繰 り返し単位を含むランダムあるいはブロックあるいはグラフトコポリマーであつ てもよい。 さらに、 初めから目的の有機高分子化合物を水中に存在させるだけで なく、 反応性モノマーあるいはポリマーを共存あるいは存在させて、 塗布を行つ た後に架橋反応あるいは重合反応を行うことも可能であるし、 この際には触媒を 併用してもよい。  These organic polymer compounds may be homopolymers or random, block or graft copolymers containing two or more types of repeating units. Furthermore, not only can the desired organic polymer compound be present in water from the beginning, but also a reactive monomer or polymer can coexist or be present, and after coating, a crosslinking reaction or polymerization reaction can be performed. In this case, a catalyst may be used in combination.
本発明においては、 二軸延伸ポリエステルフィルムに塗布する塗液には、 上述 の有機高分子化合物のほかに、 例えば無機微粒子、 帯電防止剤、 防カビ剤、 酸ィ匕 防止剤、 安定剤等の添加剤を必要に応じた量で添加することができる。  In the present invention, the coating liquid applied to the biaxially stretched polyester film includes, in addition to the above organic polymer compound, for example, inorganic fine particles, an antistatic agent, a fungicide, an antioxidant, a stabilizer, and the like. Additives can be added in amounts as needed.
本発明における有機高分子化合物を含む塗液の媒体は、 水であることが好まし いが、 有機高分子化合物を分散するため、 あるいは塗膜の可撓性 (延伸時の追従 性) を改善するために、 水に可溶な有機溶媒を併用することができる。 ただしこ の場合、 その濃度の上限は、 用いる有機溶媒の大気中での濃度が爆発限界以下と なるように設定するのが好ましい。  The medium of the coating liquid containing the organic high molecular compound in the present invention is preferably water, but is used to disperse the organic high molecular compound or to improve the flexibility (followability during stretching) of the coating film. For this purpose, a water-soluble organic solvent can be used in combination. In this case, however, the upper limit of the concentration is preferably set so that the concentration of the organic solvent used in the atmosphere is lower than the explosion limit.
上述した有機高分子化合物を含む塗液は、 ポリエステルフィルムの少なくとも 片面に塗布されるが、 この塗布工程は、 ポリエステルフィルムの製造工程内で行 う必要がある。 すなわち、 ポリエステル未延伸フィルムに塗布し、 逐次あるいは 同時に二軸延伸する方法、 一軸延伸されたポリエステルフィルムに塗布し、 さら にこの一軸延伸方向と直角の方向に延伸する方法、 あるいは二軸延伸ポリエステ ルフィルムに塗布し、 さらに横および または縦方向に延伸する方法を用いる必 要がある。 これらの中でも特に、 一軸延伸後のポリエステルフィルムに塗布する 方法が、 フィルムの厚さ変動を抑え、 しかも生産性を損なわないため、 最も好ま しい方法である。 The coating liquid containing the above-described organic polymer compound is applied to at least one side of the polyester film, and this application step needs to be performed in the polyester film production step. That is, it is applied to a polyester unstretched film, Simultaneous biaxial stretching, coating on a uniaxially stretched polyester film, and then stretching in a direction perpendicular to the uniaxial stretching direction, or applying to a biaxially stretched polyester film, and further stretching in the transverse and / or longitudinal directions Method must be used. Among these, the method of applying to a uniaxially stretched polyester film is the most preferred method because it suppresses fluctuations in film thickness and does not impair productivity.
上述した塗布液をポリエステルフィルムに塗布するには、 通常の塗布装置、 例 えば、 リバース口一ノレコーター、 グラビアコータ一、 ロッドコーター、 エアード クタコーター等を用いることができる。  In order to apply the above-mentioned coating solution to the polyester film, a usual coating apparatus, for example, a reverse port-one coater, a gravure coater, a rod coater, an air doctor coater or the like can be used.
上述した有機高分子化合物を含むコート層は、  The coat layer containing the organic polymer compound described above,
1 ) ポリエステルフィルムとインク層との中間層として、  1) As an intermediate layer between the polyester film and the ink layer,
a ) 昇華転写用ィンク層バインダーとの接着性改良  a) Improvement of adhesiveness with ink layer binder for sublimation transfer
b ) 溶融転写用ィンクとの接着性改良 ·離型性改良;  b) Improvement of adhesiveness to the melt transfer ink ・ Release of releasability;
2 ) ポリエステルフィルムと背面層との中間層として、  2) As an intermediate layer between the polyester film and the back layer,
インクリボン背面層との接着性改良;  Improve adhesion with ink ribbon back layer;
3 ) インクリボン背面層そのものとして、 あるいは  3) As the ink ribbon back layer itself, or
4 ) インクリボンに帯電防止性能を付加する  4) Add antistatic performance to ink ribbon
等の目的で、 設けられるものである。 It is provided for the purpose of etc.
本発明の感熱転写用二軸配向ポリエステルフィルムは、 長手方向の任意の 1 5 m長区間で、 厚さムラが 1 0 %以下であることが必要である。 この厚さムラは、 フィルムの長手方向に任意の 1 5 m長区間を設定した時に、 その区間での最大厚 みと最小厚みとの差を、 フィルムの平均厚みで除した値である。  The biaxially oriented polyester film for thermal transfer of the present invention is required to have a thickness unevenness of 10% or less in an arbitrary length section of 15 m in the longitudinal direction. This thickness unevenness is a value obtained by dividing the difference between the maximum thickness and the minimum thickness in an arbitrary 15 m length section in the longitudinal direction of the film by the average thickness of the film.
厚さムラが 1 0 %を越える場合には、 これをベースフィルムとして用いたイン クリボンで高精細なフルカラー画像を印刷した時に、 濃度変動による色調の差が 目視でも分かるようになり、 画像品位が損なわれる結果となる。 厚さムラの範囲 は 7 %以下が好ましく、 さらに 5 %以下であるならば、 色調の差はほとんど問題 にならないレベルとなる。 下限は 0 %となることが本来理想であるが、 様々な要 因で、 通常は 2 %程度が限界となることが多レ、。  If the thickness unevenness exceeds 10%, when printing a high-definition full-color image using an ink ribbon that uses this as a base film, the difference in color tone due to density fluctuations can be seen visually, and the image quality becomes poor. The result is impaired. The range of thickness unevenness is preferably 7% or less, and if it is 5% or less, the difference in color tone is at a level that hardly causes a problem. Ideally, the lower limit is 0%, but for various reasons, the limit is usually around 2%.
一方、 幅方向に関しても厚さムラが少ないことが好ましいが、 ほとんどの場合、 幅方向には通常 1 5 mの有効幅を取ることができないため、 測定長を 3 mとして 厚さムラを測定する。 このとき幅方向の厚さムラも、 1 0 %以下、 さらに 7 %以 下、 特に 5 %以下であることが好ましい。 On the other hand, it is preferable that thickness unevenness is small in the width direction, but in most cases, Since an effective width of 15 m cannot usually be taken in the width direction, the measurement length is set to 3 m and thickness unevenness is measured. At this time, the thickness unevenness in the width direction is also preferably 10% or less, more preferably 7% or less, and particularly preferably 5% or less.
本発明の感熱転写用二軸配向ポリエステルフィルムは、 水溶性または水分散性 の有機高分子化合物を含む塗液を配向結晶化が完了する前に塗布し、 ついで乾 燥 ·延伸 ·熱処理を施す、 いわゆるインラインコーティングを用いて積層したフ イルムであり、 しかも長手方向の厚さムラが小さいことが必要である。 ところが 前述したように、 上記インラインコーティングプロセスを行った場合、 水を多量 に含む塗液をポリエステルフィルムの上に塗布することが原因で、 インラインコ —ティングを施さない場合と比べて、 その後の延伸工程でフィルムの温度ムラを 生じやすく、 この結果フィルムの厚み変動が大きくなる問題が存在する。  The biaxially oriented polyester film for thermal transfer of the present invention is obtained by applying a coating solution containing a water-soluble or water-dispersible organic polymer compound before the completion of the orientation crystallization, followed by drying, stretching and heat treatment. The film must be laminated using so-called in-line coating, and the thickness unevenness in the longitudinal direction must be small. However, as described above, when the above-mentioned in-line coating process is performed, the subsequent stretching is more difficult than when the in-line coating is not performed because the coating liquid containing a large amount of water is applied onto the polyester film. There is a problem that temperature unevenness of the film easily occurs in the process, and as a result, the thickness variation of the film becomes large.
本発明者らは、 この問題を解決すべくさらに鋭意検討を行ったところ、 基材の ベースフィルムの振動が原因で、 流動性の残っている塗膜が不均一な厚み分布と なり、 この結果、 乾燥→予熱→横延伸と続く工程中にベースフィルムの温度分布 も不均一となって、 これが長手方向の厚さ変動に極めて大きな影響を及ぼすこと が要因であるとの結論に到達した。 すなわち、 この振動を少なくするか、 あるい は振動があってもその影響を受け難くすることで、 ポリエステルフィルムの長手 方向の厚さ変動を抑えられることが判明した。  The present inventors conducted further intensive studies to solve this problem. As a result, due to the vibration of the base film of the base material, the coating film having the remaining fluidity had an uneven thickness distribution. However, the temperature distribution of the base film became non-uniform during the process of drying → preheating → transverse stretching, and it was concluded that this was a factor that had a very large effect on the thickness variation in the longitudinal direction. In other words, it was found that by reducing this vibration or making it less susceptible to vibration, the thickness fluctuation in the longitudinal direction of the polyester film can be suppressed.
塗液をコートした後、 乾燥工程に供されてから塗液中の水分が十分に蒸発する (塗膜中の水分量で 1重量%を目安とする) までの間 (以後、 乾燥区間と略称す る) に、 フィルムに発生する振動の多くの部分は、 テンタークリップでフィルム の耳部を把持する際に発生する衝撃によるもの、 およびテンタ一での熱風の吹き 出しでフィルムが煽られることによるものである。 これらの振動を少なくするた めには、 例えば、 テンターでの熱風をインバーター制御として脈動を抑える方法、 熱風の風量自体を下げる方法、 フィルムが加熱されることにより膨張する分だけ クリップ幅を徐々に広げて、 両端をクリップで把持されたフィルムの中央に弛み を生じさせない方法、 テンタークリップがフィルムの耳を把持する際に、 衝撃が 少なくなるようにクリップに緩衝材を用いる方法などを採用することができる。 また、 振動があってもその影響を受け難くするために、 乾燥区間において、 コー ターからテンタークリップでフィルムの耳を把持する箇所までの距離をできるだ け短くして、 振動の振幅を小さく抑える方法、 片面塗布の場合には、 乾燥区間に ぉレ、て塗布面とは反対のフィルム面に、 駆動あるいはフリーロールを単独である いは複数個接触させて、 振動の伝搬を短レ、区間で遮断する方法などを用いること ができる。 もちろんこれらの 2つ以上の方法を併用することも可能である。 After coating the coating liquid, it is subjected to the drying step and until the water in the coating liquid evaporates sufficiently (1% by weight of water in the coating film is a guideline). In addition, most of the vibrations that occur in the film are due to the shock generated when the ears of the film are gripped by the tenter clip, and the film being pushed by the hot air blown out by the tenter. Things. In order to reduce these vibrations, for example, a method of suppressing pulsation by using hot air in a tenter by inverter control, a method of reducing the amount of hot air flow itself, gradually increasing the clip width by the amount that expands due to heating of the film Spread out and avoid loosening in the center of the film gripped at both ends with clips.Use a cushioning material on the clips so that the tenter clips grip the ears of the film with less impact. Can be. In addition, in order to reduce the effects of vibration, To minimize the amplitude of vibration by minimizing the distance from the taper to the point where the ear of the film is gripped by the tenter clip. A method may be used in which a drive or a free roll is brought into contact with the film surface, or a single or a plurality of free rolls, so that the propagation of vibration is interrupted in a short period or in a section. Of course, two or more of these methods can be used in combination.
上記のような方法を採用することにより、 乾燥区間内のフィルムの振動、 特に 振幅が大きな振動を抑えることで、 結果として二軸配向 ·熱固定が施されたフィ ルムにおける長手方向の厚さムラの発生を小さく抑えることができる。 この際に、 乾燥区間の振動によるフィルムの振幅は、 テンターの幅、 フィルムの厚み、 塗布 厚みにもよるが、 最大でも 5 c m以下、 さらには 3 c m以下とするのが好ましい。 本発明においては、 インラインコーティングに起因する厚さムラの上記防止方 法のほかに、 公知の厚さムラ防止方法を併用できる。 本発明者らの経験によれば、 フィルムの厚さムラは、 最も不良となるプロセスに足を引きずられて、 そのレべ ルが決まってしまう傾向にある。 したがって、 本発明によってインラインコーテ イングプロセスは改善できたとしても、 それだけでは必ずしも十分とは言えず、 総合的な対策が必要となる。  By adopting the method described above, the vibration of the film in the drying section, especially the vibration with large amplitude, is suppressed, and as a result, the thickness unevenness in the longitudinal direction of the biaxially oriented and heat-fixed film is reduced. Can be reduced. At this time, the amplitude of the film due to the vibration in the drying section depends on the width of the tenter, the thickness of the film, and the coating thickness, but is preferably 5 cm or less at most, and more preferably 3 cm or less. In the present invention, in addition to the above-described method of preventing thickness unevenness caused by in-line coating, a known thickness unevenness preventing method can be used in combination. According to the experience of the present inventors, the unevenness in the film thickness tends to be dragged by the process having the worst defect, and the level thereof is determined. Therefore, even if the in-line coating process can be improved by the present invention, it cannot be said that it alone is sufficient, and a comprehensive measure is required.
以下、 本発明のフィルムを得るために好ましく用いることのできるプロセスの 好ましい態様を説明するが、 本発明はこれらに限定されるわけではない。  Hereinafter, preferred embodiments of a process that can be preferably used to obtain the film of the present invention will be described, but the present invention is not limited thereto.
ポリエステル原料の溶融押し出しを行う際には、 吐出の脈動を押さえる目的で、 押し出し機のメルトラインにギヤ一ポンプを設置するのが好ましい。 このほか、 溶融ポリエステルのメルトラインでの温度分布を均一化させるため、 スタティッ クミキサーを設置するのも好ましい。  When performing the melt extrusion of the polyester raw material, it is preferable to install a gear pump in the melt line of the extruder in order to suppress the pulsation of the discharge. In addition, it is also preferable to install a static mixer to make the temperature distribution of the molten polyester in the melt line uniform.
溶融ポリエステルをキャスティングして固化させ、 未延伸フィルムを得るプロ セスには、 いわゆる静電密着法を用いるのが好ましい。 静電密着法は、 電極とし て、 エッジ部の厚みが 5 0 // m以下のアモルファス金属電極 (特開平 1一 1 5 2 In the process of casting and solidifying the molten polyester to obtain an unstretched film, it is preferable to use a so-called electrostatic adhesion method. In the electrostatic adhesion method, an amorphous metal electrode having an edge portion having a thickness of 50 // m or less (Japanese Unexamined Patent Publication No.
0 3 1号公報参照) や、 電気絶縁体の少なくとも片面に厚さ 0 . 0 1〜 1 0 μ m の導電性薄膜を設けてなる積層ブレード電極 (特開平 1— 1 5 6 0 3 6号公報参 照) など用いて、 溶融ポリエステルを効果的に冷却ドラムへ密着させつつ行うこ とが好ましい。 静電密着法を有効に行うため、 原料として用いるポリエステルの 溶融時の比抵抗を 1 X 101 °Ω · c m以下、 さらには 1 X 1 09〜: I X 106 Ω · cmの範囲とすることが好ましい。 また同じ目的で、 特開昭 57— 1 900 40号公報、 特開昭 58— 2251 23号公報、 特開昭 59— 91 121号公報、 特開昭 59—1 72542号公報、 特開昭 59— 182840号公報、 特開昭 5 9- 229314号公報、 特開昭 60— 141 751号公報、 特開昭 60— 24And a laminated blade electrode in which a conductive thin film having a thickness of 0.01 to 10 μm is provided on at least one surface of an electric insulator (Japanese Patent Application Laid-Open No. 1-156600 / 1991). It is preferable to carry out the process while effectively bringing the molten polyester into close contact with the cooling drum by using a method described in the gazette. In order to effectively perform the electrostatic adhesion method, the polyester used as a raw material The specific resistance at the time of melting is preferably 1 × 10 1 ° Ω · cm or less, more preferably 1 × 10 9 to IX 10 6 Ω · cm. For the same purpose, JP-A-57-190040, JP-A-58-225123, JP-A-59-91121, JP-A-59-172542, JP-A-59-172542 — 182840, JP-A-59-229314, JP-A-60-141 751, JP-A-60-24
8737号公報、 特開昭 62— 21 8416号公報、 特開昭 62— 236722 号公報、 特開昭 62-236722号公報などに記載されている方法も用いるこ ともできる。 Methods described in JP-A-8737, JP-A-62-213841, JP-A-62-236722, JP-A-62-236722 and the like can also be used.
さらに、 溶融ポリエステルを口金から吐出する際には、 口金スリット間隙 z冷 却固化した未延伸フィルムの厚みの比を 5〜20、 さらには 8〜1 5に調節すれ ば、 未延伸フィルムの厚さムラを少なくすることができて好ましレ、。  In addition, when the molten polyester is discharged from the die, the slit ratio of the die z If the ratio of the thickness of the cooled and solidified unstretched film is adjusted to 5 to 20, and further to 8 to 15, the thickness of the unstretched film I like it because it can reduce unevenness.
上記手法のほか、 冷却ドラムの回転ムラを極力小さくすること、 風等を遮るこ とで、 キャスティング時の溶融ポリエステルをできるだけ振動させないで冷却ド ラムへ密着させる等の処方も用いることができる。 これらの方法を採用し、 シー ト状の溶融ポリエステルが冷却ドラムに接地する際に、 冷却ドラム上に幅方向に 広がる線状の接地部 (以後、 接地ラインと略称する) のゆらぎの幅が、 有効製品 幅に相当する領域で、 1mm以下、 さらに 0. 5 mm以下となるようにするのが 好ましい。  In addition to the above-mentioned method, a prescription such as minimizing the rotation unevenness of the cooling drum and blocking the wind or the like so that the molten polyester at the time of casting adheres to the cooling drum as little as possible can be used. By adopting these methods, when the sheet-like molten polyester touches the cooling drum, the width of the fluctuation of the linear grounding portion (hereinafter abbreviated as “grounding line”) spreading in the width direction on the cooling drum is It is preferable that the width is 1 mm or less, more preferably 0.5 mm or less, in the area corresponding to the effective product width.
キャスティング工程で未延伸フィルムとしたポリエステルは、 次にロール延伸 法を用いた縦延伸を行うのが好ましい。 この時に用いる延伸条件は、 用いるポリ エステルの組成によって異なるが、 ポリエチレンテレフタレート (PET) の場 合を例にとると、 90〜 1 10 °Cの温度範囲で延伸倍率 2. 0〜 3. 0倍の 1段 目の延伸を行つた後、 70〜 90 °Cの温度範囲で延伸倍率 1. 2〜 2. 0倍の 2 段目の延伸を行うというように、 縦延伸を 2段階に分けて実施し、 しかも 2段目 の延伸温度を 1段目よりも低く設定することが好ましい。 またこの際には、 各々 の延伸段階において、 低速ロールおよび高速口一ル上の延伸区間で、 塑性変形が 開始する位置および終了する位置のゆらぎが発生しないように、 適切な位置に二 ップロールあるいは静電密着法を用いて、 各ロールにフィルムを押さえ付けなが ら行うことが好ましい。 縦延伸を終えた一軸配向フィルムは、 前述したインラインコーティングの工程 に供される。 It is preferable that the polyester formed into an unstretched film in the casting step is then stretched longitudinally using a roll stretching method. The stretching conditions used at this time vary depending on the composition of the polyester used. For example, in the case of polyethylene terephthalate (PET), the stretching ratio is 2.0 to 3.0 times in a temperature range of 90 to 110 ° C. After stretching the first stage, the longitudinal stretching is divided into two stages, for example, the second stage stretching is performed at a stretching ratio of 1.2 to 2.0 times in a temperature range of 70 to 90 ° C. It is preferable that the stretching temperature of the second step is set lower than that of the first step. In this case, in each stretching step, a nip roll or an appropriate position should be set at an appropriate position to prevent fluctuations in the position where plastic deformation starts and ends in the stretching section on the low-speed roll and high-speed port. It is preferable to perform the process while pressing the film against each roll using an electrostatic adhesion method. The uniaxially oriented film that has been subjected to the longitudinal stretching is subjected to the in-line coating process described above.
この後、 テンターで横延伸を行うが、 横延伸の条件も縦延伸と同様に、 用いる ポリエステルの組成によって異なる。 PETを例にとれば、 85°C〜1 30°Cの 温度範囲で 3. 0〜5. 0倍に延伸倍率を設定することができる。 この際に、 テ ンタ一内でフィルムを加熱 '冷却するための空気の吹き出しは、 インバ一ター制 御を行って脈動を極力抑えるのが好ましく、 また、 特開平 5— 301284号公 報に記載されているように、 吹き出し口の角度を経時的に変化させて、 幅方向の 厚さムラを改善する方法も採用できる。  After that, transverse stretching is performed with a tenter, and the conditions for transverse stretching also differ depending on the polyester composition used, as in the case of longitudinal stretching. Taking PET as an example, the draw ratio can be set to 3.0 to 5.0 times in the temperature range of 85 ° C to 130 ° C. At this time, it is preferable to suppress the pulsation by blowing the air for heating and cooling the film in the center as much as possible by controlling the inverter. Also, it is described in JP-A-5-301284. As described above, it is also possible to adopt a method of improving the thickness unevenness in the width direction by changing the angle of the outlet with time.
横延伸を終えた二軸配向フィルムは、 さらに再縦延伸および Zまたは再横延伸 を行うことも可能であるが、 再縦延伸はロール延伸法で、 再横延伸はテンター法 でそれぞれ行うのが好ましく、 これらの際には前述したロール延伸法およびテン タ一延伸法で用いた厚さムラ対策と同様の方法を用レ、ることができる。  The biaxially oriented film that has been transversely stretched can be further subjected to re-longitudinal stretching and Z or re-lateral stretching.However, it is preferable that re-longitudinal stretching be performed by roll stretching and re-lateral stretching be performed by tenter method. In these cases, it is preferable to use the same method as the above-described thickness unevenness measure used in the roll stretching method and the tenter stretching method.
延伸工程をすベて終了した二軸配向フィルムは、 次に熱固定工程へ供される。 熱固定にはテンター法を用いるのが好ましいが、 この際にも横延伸と同様の厚さ ムラ対策を行うことができる。 熱固定の際、 好ましくは、 温度は 1 80〜24 5°Cの範囲で、 時間は 0. 5〜60秒の範囲である。 また熱固定の際には、 Φ畐方 向の熱収縮率を改善する目的で、 最高到達温度領域および Zまたは冷却領域にお いて、 幅方向に 1〜10%の弛緩処理を行うことも可能である。  The biaxially oriented film that has completed the stretching step is then subjected to a heat setting step. It is preferable to use a tenter method for heat setting, but also in this case, the same measures for thickness unevenness as in transverse stretching can be taken. During heat setting, preferably, the temperature is in the range of 180-245 ° C and the time is in the range of 0.5-60 seconds. In addition, during heat setting, it is possible to perform 1 to 10% relaxation in the width direction in the maximum temperature range and the Z or cooling region in order to improve the heat shrinkage in the 畐 direction. It is.
かくして得られた二軸配向ポリエステルフィルムは、 長手方向および幅方向の 破断強度が、 いずれも 25 k g f /mm2以上で、 かつ 180°C3分間における 収縮率が、 長手方向および幅方向共に 5 %以下となることが好ましい。 The biaxially oriented polyester film thus obtained are breaking strength in the longitudinal direction and the width direction, at both 25 kgf / mm 2 or more and shrinkage at 180 ° C3 minutes, 5% or less in the longitudinal direction and the width direction both Preferably,
本発明の積層フィルムは、 後述の実施例に記載された方法により測定される固 着力が 100 g f Zl 25 mm以下であることが好ましく、 より好ましくは 50 8 1 25111111以下、 特に好ましくは308 £//1 25111111以下でぁる。 この ような固着力は、 積層フィルムが一旦ロール状に巻き取られた後,フィルム間に 圧力がかかった状態で高温高湿条件にさらされた場合でも、 フィルム同士が貼り 付かず、 加工時、 巻き出す際に容易にフィルムが引き出せることを意味する。 固着力の制御は、 例えば、 塗液中に架橋剤または架橋性高分子を添カ卩し、 上述 のフィルムの熱処理工程中で上記の有機高分子化合物の各成分内または成分間の 架橋を進行させることにより達成される。 また、 これにより、 昇華型インクとの 接着力向上のための塗布層の場合は、 さらにインクとの接着力を向上することが できる。 固着力の制御には、 基材フィルム中に含まれる有機または無機の粒子の 種類と添加量を調整し、 表面の粗度を大きくすることも効果的である。 The laminated film of the present invention preferably has an adhesion of 100 gf Zl 25 mm or less, more preferably 50 8 125 1 11111 or less, particularly preferably 30 g or less, as measured by the method described in Examples described later. 8 £ / / 1 25111111 or less. Even if the laminated film is once wound into a roll and then exposed to high-temperature and high-humidity conditions with pressure applied between the films, the films do not stick to each other. This means that the film can be easily pulled out when unwinding. The fixing force is controlled, for example, by adding a cross-linking agent or a cross-linkable polymer to the coating liquid, This is achieved by promoting cross-linking within or between the components of the organic polymer compound during the heat treatment step of the film. Further, with this, in the case of a coating layer for improving the adhesive strength with the sublimation ink, the adhesive strength with the ink can be further improved. To control the fixing force, it is also effective to adjust the type and amount of organic or inorganic particles contained in the base film to increase the surface roughness.
更に、 本発明の積層フィルムの長手方向および幅方向の F 5値は、 ともに 1 3 . 0 k g f Zmm 2以上であることが好ましい。 この条件が満足されると、 インク リボンの長手方向および幅方向の伸ぴをさらに低減することができ、 結果として、 印字しわおよび印字ぬけを低減することができる。 なお、 F 5値の測定法は、 後 述の実施例に記載する。 Further, F 5 value in the longitudinal direction and the width direction of the laminated film of the present invention are both 1 3. Is preferably 0 kgf ZMM 2 or more. When this condition is satisfied, the elongation of the ink ribbon in the longitudinal direction and the width direction can be further reduced, and as a result, print wrinkles and missing prints can be reduced. The method for measuring the F5 value will be described in Examples described later.
実施例  Example
以下、 実施例により本発明をさらに具体的に説明するが、 本発明は、 その要旨 を越えない限り、 以下の実施例に限定されるものではない。 なお実施例中の 「部」 または 「%」 は、 特に断りのない限り、 「重量部」 または 「重量%」 であ る。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless departing from the gist of the present invention. In the examples, “parts” or “%” is “parts by weight” or “% by weight” unless otherwise specified.
特性の測定方法および効果の評価方法は以下のとおりである。  The method for measuring the characteristics and the method for evaluating the effects are as follows.
( 1 ) フィルム厚み  (1) Film thickness
「フィルム厚み」 として、 ベースフィルムおよび有機高分子化合物を含む塗布 層の積層体の総厚みを、 マイクロメーターを用いて測定した。  As the “film thickness”, the total thickness of the laminate of the base film and the coating layer containing the organic polymer compound was measured using a micrometer.
( 2 ) フィルムの厚さムラ  (2) Film thickness unevenness
アンリツ株式会杜製連続フィルム厚さ測定器 (電子マイクロメーター使用) に より、 長手方向は二軸配向フィルムの 1 5 m長区間を、 幅方向は 3 m長区間を、 それぞれ無作為に 2 0区間抽出した。 それぞれのサンプル毎に最大厚み (μ πι) および最小厚み (/z m) を測定し、 さらにその区間での平均厚み (/z m) 力 ら以 下の式に従って厚さムラを算出し、 最も大きな値を、 そのサンプルの厚さムラと した。  Using a continuous film thickness measuring device (using an electronic micrometer) manufactured by Anritsu Corporation, the length of the biaxially oriented film is 15 m long and the width is 3 m long. Sections were extracted. The maximum thickness (μπι) and the minimum thickness (/ zm) were measured for each sample, and the thickness unevenness was calculated from the average thickness (/ zm) force in that section according to the following formula. Was regarded as the thickness unevenness of the sample.
厚さムラ (%) = { (最大厚み一最小厚み) ÷平均厚み } X I 0 0  Thickness unevenness (%) = {(maximum thickness-minimum thickness) ÷ average thickness} X I 0 0
なお、 ここで用いた平均厚みは、 測定したサンプルの面積、 重量および密度か ら算出したした値であり、 このとき密度は、 ポリエチレンテレフタレートでは 1 . 3 9 7、 ポリエチレンナフタレートでは 1 . 3 5 4、 ポリシクロへキサンジメチ レンテレフタレートでは 1 . 2 7 0を用いた。 The average thickness used here is a value calculated from the measured area, weight, and density of the sample, and the density at this time is 1.0 for polyethylene terephthalate. 3.97, 1.354 for polyethylene naphthalate, and 1.270 for polycyclohexanedimethylene terephthalate.
( 3 ) 平均表面粗さ  (3) Average surface roughness
平均表面粗さは、 ポリエステルベースフィルムの表面粗さを測定した。 塗布層 が片面のみの場合には反塗布面の表面粗さを、 両面塗布の場合には ME Kゃァセ トン等を用いて表面形状が変わらないように注意深く塗布層を剥がして現われた 表面での粗さを測定を行った。  The average surface roughness measured the surface roughness of the polyester base film. When the coating layer has only one side, the surface roughness of the anti-coating side is used.For double-sided coating, use the ME Kacetone etc. to carefully peel off the coating layer so that the surface shape does not change. Was measured for roughness.
測定は、 マイクロマップ社製 2光束干渉式非接触表面形状計測システム (Micromap 512。 対物レンズ 2 0倍) を使用して行い、 S R aを測定した。 測定 は 2 0視野について行い、 平均値を平均表面粗さとした。  The measurement was performed using a non-contact surface shape measurement system (Micromap 512; objective lens, 20 times) manufactured by Micromap Co., Ltd., and SRa was measured. The measurement was performed for 20 fields of view, and the average value was defined as the average surface roughness.
( 4 ) ポリエステルフィルムの固有粘度  (4) Intrinsic viscosity of polyester film
ポリエステルフィルムの固有粘度は、 塗布層を ME Kゃァセトン等の有機溶剤 を用いて完全に除去した後、 十分に乾燥したフィルムを用いて、 フエノール Zテ トラクロルエタン混合溶媒 ( 5 0 / 5 0重量) に溶解させて、 3 0 °Cの温度下で 測定した。  The intrinsic viscosity of the polyester film can be determined by completely removing the coating layer using an organic solvent such as MEK Paceton, and then using a sufficiently dried film to form a mixed solvent of phenol Z tetrachloroethane (50/50). ) And measured at a temperature of 30 ° C.
( 5 ) サスペンジョンの平均粒径  (5) Average particle size of suspension
有機高分子化合物を含むサスペンジョンについて、 日機装社製粒度分析計 U P A 9 3 4 0 (レーザードッブラ一 Z周波数解析方式) を用いて、 粒度分布を測定 し、 平均粒径を算出した。  For the suspension containing the organic polymer compound, the particle size distribution was measured using a particle size analyzer UPA 9340 (manufactured by Nikkiso Co., Ltd. (laser Doppler-Z frequency analysis method)), and the average particle size was calculated.
( 6 ) 印刷画像の濃度変動の程度  (6) Degree of density fluctuation of printed image
片面にインク易接着塗布層を有する二軸配向ポリエステルサンプルの塗布層面 に、 昇華性インク層を形成し、 反対面に背面層をコートして、 インクリボンを作 成した。  A sublimable ink layer was formed on the coating layer surface of a biaxially oriented polyester sample having an ink-adhesive coating layer on one side, and a back layer was coated on the other side to form an ink ribbon.
コーディングが施されていないフィルムの場合には、 任意の面にインク層を付 与して、 反対面に背面層をコートした。 下記に示した組成の昇華性インクビヒク ルおよび背面層ビヒクルを、 各々乾燥した後に 1 g /m 2の塗布量となるように、 グラビアコートで順次塗布した後、 乾燥し、 裁断して、 インクリボンを作成した。 In the case of uncoated film, an ink layer was applied to an arbitrary surface, and a back layer was coated on the opposite surface. Sublimable Inkubihiku Le and back layer vehicle composition shown below, so that each dry coating weight of 1 g / m 2 after, after sequentially coated by gravure coating, then dried, and cut, the ink ribbon It was created.
インクおよび背面層ビヒクルの組成  Composition of ink and back layer vehicle
イエロ—: マイクレックスイェロー 6 G (バイエノレ社製) 2部 ポリビニルァセトァセタール KS-5D (積水化学社製) 3部 トルエン ZMEK= lZl (重量比) 9 5部 マゼンダ: Yellow—: Micrex Yellow 6 G (Bayenore) 2 parts Polyvinylacetate KS-5D (Sekisui Chemical) 3 parts Toluene ZMEK = lZl (weight ratio) 9 5 parts Magenta:
バイミクロン VP S N 26 70 (ノ 製) 3部 ポリビニルァセトァセタール KS—5 D (積水化学社製) 4部 トルエン ZMEK= 1ノ1 (重量比) 9 3部 シアン:  Bimicron VP S N 26 70 (manufactured by NO) 3 parts Polyvinylacetoacetal KS-5D (manufactured by Sekisui Chemical Co., Ltd.) 4 parts Toluene ZMEK = 1 1 (weight ratio) 9 3 parts Cyan:
カャセットブルー 7 1 4 (日本化薬社製) 4部 ポリビ二/レアセトァセタ一ル K S- 5D (積水化学社製) 4部 トルエン ZMEK= 1 1 (重量比) 9 2部 背  Kaset Blue 7 1 4 (manufactured by Nippon Kayaku Co., Ltd.) 4 parts Polyvinyl acetate / reacetacetol K S-5D (manufactured by Sekisui Chemical Co., Ltd.) 4 parts Toluene ZMEK = 1 1 (weight ratio) 9 2 parts
ポリビュルプチラ一ル, エスレック BX— 1 (積水化学社製) 2部 ポリイソシァネート バーノック D750- 45 (大日本インキ社製) 9部 リン酸エステル滑剤プライサーフ A20SS (第一工業製薬社製) 2部 タルク, ミクロエース L一 1 (日本タルク社製) 0. 3部 トルエン ZMEK= 1 Zl (重量比) 86. 7部 これらのインクリボンを、 市販の昇華転写型カラープリンターに組み込んで、 昇華転写モードでテスト印刷を行った。 なお印刷紙は、 プリンター標準の専用紙 ^用レヽた。 Poribyurupuchira Ichiru, S-LEC BX- 1 (manufactured by Sekisui Chemical Co., Ltd.) 2 parts polyisobutylene Xia sulfonate Burnock D750- 45 (manufactured by Dainippon Ink and Chemicals, Inc.) 9 parts of phosphoric acid ester lubricants PLYSURF A 2 0SS (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) 2 parts Talc, Micro Ace L-1 1 (manufactured by Nippon Talc) 0.3 parts Toluene ZMEK = 1 Zl (weight ratio) 86.7 parts These ink ribbons are incorporated into a commercially available sublimation transfer type color printer to sublimate. Test printing was performed in the transfer mode. The printing paper was a special paper for printer standard.
テストでは、 人の顔写真のデジタルデータ (データサイズ約 3 2Mb、 A4サ ィズ画像) を基に、 同じ画像を連続して 5枚印刷し、 色調の再現性を評価した。 評価は、 5枚の画像について、 目視で注意深く全体の色調を比較すること、 およ び東京電色社製カラーアナライザー TC一 1 800ΜΚΠ 型を用いて、 5枚そ れぞれについて、 肌色部分の同じ個所を測定し、 色差の最大値 (ΔΕ) を求めた。 目視での評価の基準は、 色調の再現性について次の 3つのランクに分けた。  In the test, based on digital data of human face photographs (data size of about 32 Mb, A4 size image), the same image was printed five times in succession, and the color tone reproducibility was evaluated. The evaluation was done by carefully comparing the overall color tone of the five images visually, and by using the Tokyo Denshoku Color Analyzer TC-1800ΜΚΠ, the skin color of each of the five images was evaluated. The same location was measured, and the maximum value of the color difference (ΔΕ) was determined. The criteria for visual evaluation were classified into the following three ranks for color tone reproducibility.
A:画像の色調に、 全く差を認められず再現性が良好である  A: Good reproducibility with no difference in color tone of image
B :画像に色調の差が認められるが、 よほど注意深く見ないと認識できない C :画像に色調の差が認められ、 一目見て差が認識できる (不適格) B: There is a difference in color tone in the image, but it cannot be recognized unless you look very carefully C : Difference in color tone is recognized in the image, and the difference can be recognized at a glance (Not suitable)
(7) フィルムの破断強度  (7) Breaking strength of film
インテスコ社製引張試験機インテスコモデル 2001型を用いて、 温度 23°C、 湿度 50%RHに調節された室内において、 長さ 50mm、 幅 1 5mmの試料フ イルムを、 20 Om/分の速度で引張り、 引張応力一ひずみ曲線より、 破断時に おける荷重 (k g) を試験片の元の断面積 (mm2) で除した数値を破断強度と した。 Using a tensile tester manufactured by Intesco Intesco Model 2001, a sample film with a length of 50 mm and a width of 15 mm was sampled at a speed of 20 Om / min in a room adjusted to a temperature of 23 ° C and a humidity of 50% RH. The value obtained by dividing the load (kg) at break by the original cross-sectional area (mm 2 ) of the test piece from the tensile stress-strain curve was defined as the breaking strength.
(8) フイノレムの熱収縮率  (8) Thermal contraction rate of finolem
タバイ社製熱風循環式オーブンを用いて、 試料フィルムを 180°Cで 3分間、 自由端熱処理を行い、 フィルムの処理前後で縦方向および横方向の寸法変化を。 /0 で表した。 The sample film was subjected to free-end heat treatment at 180 ° C for 3 minutes using a hot air circulating oven manufactured by Tabai, and the dimensional changes in the vertical and horizontal directions before and after the film were processed. Expressed as / 0 .
(9) 固着力  (9) Sticking force
2枚の積層フィルム試験片の一方の塗布面と他方の反対面が接するように重ね 合わせ、 40°C、 80 %R. H.に調節された恒温恒湿室内でプレス機により、 幅 12. 5 c m、 長さ 1 0.0 c mの長方形部分を圧力 1 O k g f Zcm2でプレス した状態で 24時間放置した後、 圧力を解除し、 恒温恒湿室内を 23 °C、 50% R.H.に変更し、 そのまま 24時間放置した。 The two laminated film specimens were superimposed so that one coated surface was in contact with the other opposite surface, and was pressed by a press machine in a constant temperature and humidity room adjusted to 40 ° C and 80% RH. After leaving a rectangular section with a length of 10.0 cm pressed at a pressure of 1 O kgf Zcm 2 for 24 hours, release the pressure, change the temperature and humidity chamber to 23 ° C and 50% RH, and leave it for 24 hours I left it.
その後、 恒温恒湿室から試験片を取り出し、 重ね合わせた 2枚の試験片の間に 緊張させた線径 0. 8 mm 0のピアノ線を通し、 プレスした長方形の幅 12. 5 c mの辺に平行に維持した状態で、 ピアノ線を 50 c mZ分の速度で移動して前 記のプレス部分を剥離した。 この剥離の際にピアノ線にかかった剥離荷重 (g f /\ 25mm幅) 値のチャートの平均線を求め、 固着力とした。  After that, the specimen was taken out of the constant temperature and humidity chamber, and a tensioned 0.8 mm 0 piano wire was passed between the two superposed specimens, and the pressed rectangle was 12.5 cm wide. While maintaining the position parallel to the above, the piano wire was moved at a speed of 50 cmZ to peel off the above-mentioned pressed part. The average line of the chart of the peeling load (gf / \ 25 mm width) value applied to the piano wire at the time of this peeling was determined and defined as the fixing force.
(10) F 5値  (10) F 5 value
インテスコ社製引張試験機インテスコモデル 2001型を用いて、 温度 23°C、 50 %R. Η·に調節された室内において、 幅 1 5mmの試料フィルムを、 チヤッ ク間 5 Ommでチャックし、 200 mmZ分の速度で引っ張り、 元の長さより 5%伸びた時の荷重 (k g f ) を試験片の元の断面積 (mm2) (厚さとして上 記の積層フィルムの全厚さを使用して計算) で除した。 5点について同様に測定 して、 得られた数値の平均値を F 5値とした。 実施例 1 Using a tensile tester manufactured by Intesco Intesco Model 2001, in a room adjusted to a temperature of 23 ° C and 50% R.Η, a sample film with a width of 15 mm is chucked with a chuck of 5 Omm, Pull at a speed of 200 mmZ, and apply the load (kgf) when elongating 5% from the original length to the original cross-sectional area (mm 2 ) of the test piece (use the total thickness of the above laminated film as the thickness) And calculated). Five points were measured in the same manner, and the average of the obtained values was defined as the F5 value. Example 1
平均粒子径 1 . 2 μ mのシリ力粒子を 0 . 3。/。含有する固有粘度 0 . 6 6のポ リエチレンテレフタレ一トペレットを、 十分に加熱乾燥した後、 押出機に供給し、 2 9 0 °Cで溶融押出して未延伸フィルムを製造した。 この際、 押出機には、 異物 除去のために 1 0 / mカットのフィルター、 脈動を抑えて計量吐出するためのギ ヤーポンプを設置し、 かつ、 メルトラインには溶融ポリエステルの温度分布を均 一化させるためのスタティックミキサーを設置した。 Tダイよりフィルム状に押 出し、 これを静電密着法を用いて表面温度 4 0 °Cの冷却ドラムに巻きつけて冷却 固化させた。 Tダイの口金のスリッ ト間隙は 1 . 1 mmであり、 冷却固化した未 延伸フィルムの厚みは 9 1 μ mであつた (スリット間隙ノ冷却固化した未延伸フ イルムの厚みの比は約 1 2 . 1 ) 。 またこの静電密着法では、 厚さ 2 0 /z m、 幅 2 mmのコノ ノレトークロムーモリブデン一カーボンのァモノレファス金属ブレード を用いて、 6 k Vの電圧を印加した。 さらにキャスティングを行うゾ一ンを小部 屋として囲い、 空調機等の風による影響を遮断した。 この結果、 溶融ポリエステ ルが冷却ドラムに接地する接地ラインのゆらぎを、 有効製品幅全域でほぼ 0とす ることができた。  0.3 particles with an average particle diameter of 1.2 μm. /. Polyethylene terephthalate pellets having an intrinsic viscosity of 0.66 were sufficiently dried by heating, fed to an extruder, and melt-extruded at 290 ° C. to produce an unstretched film. At this time, the extruder is equipped with a 10 / m-cut filter to remove foreign matter, a gear pump to suppress pulsation and discharge by metering, and to equalize the temperature distribution of the molten polyester in the melt line. A static mixer was installed in order to make it possible to change the condition. The film was extruded from a T-die into a film, and was wound around a cooling drum having a surface temperature of 40 ° C by an electrostatic adhesion method to be cooled and solidified. The slit gap of the die of the T die was 1.1 mm, and the thickness of the unstretched film solidified by cooling was 91 μm (the ratio of the thickness of the unstretched film solidified by cooling to the slit gap was approximately 1 μm). twenty one ) . In addition, in this electrostatic adhesion method, a voltage of 6 kV was applied using a metal monorefass metal blade having a thickness of 20 / zm and a width of 2 mm, made of chromium-molybdenum monocarbon. In addition, the zone for casting was enclosed as a small room to block the effects of wind from air conditioners and other equipment. As a result, the fluctuation of the grounding line where the molten polyester was grounded to the cooling drum could be reduced to almost zero over the entire effective product width.
得られた未延伸フィルムを、 縦延伸工程へと導いた。 縦延伸はロール延伸法を 用いて行い、 1段目の延伸は 1 0 0 °Cで延伸倍率 2 . 7 0倍で行い、 さらに 2段 目の延伸は 8 7 °Cで延伸倍率 1 . 6 0倍で行つた。 この際、 1段目および 2段目 の延伸は共に、 周速差を利用して延伸を行う低速ロールと高速ロールには、 各々 口ールからフィルムが離れる位置、 および口ールにフィルムが接する位置に二ッ プロールを設置して、 延伸区間で塑性変形が開始する位置および終了する位置の ゆらぎが発生しないようにフィルムを口一ルに押さえ付けて、 行つた。  The obtained unstretched film was led to a longitudinal stretching step. The longitudinal stretching is performed using a roll stretching method, the first-stage stretching is performed at 100 ° C at a stretching ratio of 2.70 times, and the second-stage stretching is performed at 87 ° C at a stretching ratio of 1.6. Went at 0x. At this time, in both the first and second stages of stretching, the low-speed roll and the high-speed roll, which perform stretching using the peripheral speed difference, have the film separated from the mouth and the film at the mouth, respectively. The nip roll was set at the contact position, and the film was pressed against the mouth so that the position where the plastic deformation started and ended in the stretching section did not fluctuate, and the film was moved.
得られた一軸延伸フィルムの片面に空気中でコロナ放電処理を施し、 その処理 面にダラビアコート方式で、 次に示す組成となるように各成分の水分散液を混合 した混合物を塗布した。 水分散液の塗布量は 6 g Zm2 で、 水分散液中の固形分 量は 1 0重量%とした。 One surface of the obtained uniaxially stretched film was subjected to a corona discharge treatment in air, and the treated surface was coated with a mixture prepared by mixing aqueous dispersions of each component so as to have the following composition by a Daravia coating method. The application amount of the aqueous dispersion was 6 g Zm 2 , and the solid content in the aqueous dispersion was 10% by weight.
水分散液組成  Aqueous dispersion composition
ポリエステル系樹脂 4 0部 (固形分比) アタリル系樹脂 4 0部 (固形分比) Polyester resin 40 parts (solid content ratio) Ataryl resin 40 parts (solid content ratio)
ォキサゾリン系架橋剤 2 0部 (固形分比) なお、 上記ポリエステル系樹脂の分散液は、 酸成分としてのテレフタル酸 5 5 モル0 /0、 イソフタル酸 4 0モル0 /0および 5—ソジゥムスルホイソフタル酸 5モ ル0 /0と、 ジォ一ル成分としてのエチレングリコール 6 0モル0 /0、 ジェチレングリ コーノレ 1 3モ Λ^/οおよび 1, 4—ブタンジォ一 7モ とからなるポリエス テル系樹脂水分散体であり、 ァクリル系樹脂の分散体は、 ェチルァクリレート 5 0モノレ0 /ο、 ィソブチノレメタクリ レート 3 5モノレ0 /0、 2—ヒ ドロキシェチ /レメタク リレート 1 0モル%、 メタクリル酸 5モル。 /0よりなるァクリル系榭脂水分散体で あり、 ォキサゾリン系架橋剤の分散体は、 スチレン 5 8 . 2重量%、 アクリル酸 ブチル 2 1 . 8重量%、 2 -ビエル一 2—ォキサゾリン 2 0重量。/。よりなる重合 物水分散体であった。 Okisazorin based crosslinking agent 2 0 parts (solid content ratio) The dispersion liquid of the polyester resin, terephthalic acid 5 5 moles of the acid component 0/0, isophthalic acid 4 0 mole 0/0 and 5 Sojiumu and sulfoisophthalic acid 5 molar 0/0, Poriesu Tel consisting of di o Ichiru ethylene glycol 6 0 mole 0/0 as a component, Jechirenguri Konore 1 3 mode lambda ^ / o and 1, 4-Butanjio one 7 Mo a system resin aqueous dispersion, the dispersion of Akuriru based resin, E chill § chestnut rate 5 0 Monore 0 / o, I isobutyrate Honoré methacrylonitrile rate 3 5 Monore 0/0, 2 human Dorokishechi / Remetaku Relate 1 0 Mol%, methacrylic acid 5 mol. / 0 a Akuriru system榭脂aqueous dispersion consisting of the dispersion of Okisazorin based crosslinking agent, styrene 5 8 2 wt%, butyl acrylate 2 1 8 wt%, 2 -.. Biel one 2- Okisazorin 2 0 weight. /. It was a polymer aqueous dispersion comprising:
この塗布処理の後に、 フィルムを乾燥 ·予熱工程に導いたが、 このとき水分散 体が塗布されたフィルムができるだけ振動しないように次の手段を講じた。 まずグラビアコーターとテンター入り口までの間隔 (2 m) に、 2本のフリー 口一ルを等間隔となるように設置して、 水分散体が塗布してある面とは反対の面 に、 フィルムの抱き角が 2 ° となるように接触させた。 次にテンタークリップで フィルムの両端部 (耳部) を把持し、 インバーター制御で脈動を抑えた熱風をフ イルムに当てて、 水分散体から水分を除去した。 この際に塗布層の水分がなくな るに従って徐々にフィルムの温度が上昇し、 この結果フィルムが熱膨張して中央 部が弛む現象が見られた。 そこで中央部の弛みがなくなるように、 テンターの奥 へ行くほど広くなるようにクリップ幅をわずかに広げた。  After this coating treatment, the film was led to a drying and preheating step. At this time, the following measures were taken so that the film coated with the aqueous dispersion was not vibrated as much as possible. First, two free ports are installed at equal intervals (2 m) between the gravure coater and the entrance of the tenter, and a film is placed on the surface opposite to the surface on which the water dispersion is applied. The contact angle was 2 °. Next, both ends (ears) of the film were gripped with a tenter clip, and hot air, whose pulsation was suppressed by inverter control, was applied to the film to remove water from the water dispersion. At this time, the temperature of the film gradually increased as the water content of the coating layer disappeared, and as a result, a phenomenon was observed in which the film thermally expanded and the central portion was loosened. Therefore, the clip width was slightly increased so that it became wider toward the back of the tenter so that the central part would not loosen.
上記手段を講じることで、 塗布液のコ一ター出口から塗布層の水分が十分に蒸 発するまでの乾燥区間内で、 フィルムが受けた振動の最大振幅は、 1 . 5 c mで めった。  By taking the above measures, the maximum amplitude of the vibration received by the film was 1.5 cm in the drying section from the outlet of the coating solution of the coating solution to the time when the moisture of the coating layer was sufficiently evaporated.
次いで、 横方向に 1 0 5 °Cで延伸倍率 4 . 5倍で延伸し、 連続したテンター内 で、 2 3 0 °Cで 2秒間の熱処理を行った。 この後、 2 1 0 °Cでクリップ幅を 5 % 縮めて弛緩処理を行い、 冷却ゾーンを通過させて、 厚さ 0 . の塗布層が積 層された、 総厚み 4 . 5 μ mの二軸配向ポリエステルフィルムを得た。 Next, the film was stretched in a transverse direction at 105 ° C. at a draw ratio of 4.5, and heat-treated at 230 ° C. for 2 seconds in a continuous tenter. Thereafter, the clip width is reduced by 5% at 210 ° C to perform a relaxation treatment. A layered biaxially oriented polyester film having a total thickness of 4.5 μm was obtained.
得られたポリエステルフィルムの特性を下記表 1に示す。  The properties of the obtained polyester film are shown in Table 1 below.
得られたフィルムは、 ィンラインコーティングにより昇華性ィンク易接着層が 片面に付与されており、 しかも厚さムラの少ないポリエステルフィルムであるた め、 これを用いて作成したインクリボンは、 印刷した時の濃度変動が少ないもの であった。  The obtained film is a polyester film having a sublimable ink easy-adhesion layer provided on one side by in-line coating, and is a polyester film with little thickness unevenness. Concentration fluctuation was small.
比較例 1  Comparative Example 1
実施例 1と同じポリエステル原料を用いて、 実施例 1とまったく同様に押し出 し、 キャスティング、 縦延伸およびコロナ放電処理を行い、 さらに同様の水分散 液を同じ方法で塗布した。  The same polyester raw material as in Example 1 was used for extrusion, casting, longitudinal stretching and corona discharge treatment in exactly the same manner as in Example 1, and a similar aqueous dispersion was applied by the same method.
この後、 実施例 1で行つた乾燥区間内のフィルム振動対策のうち、 ダラビアコ 一ターとテンター入り口までの間隔に、 フリーロール設置を行わずに、 テンター クリップでフィルムの両端部 (耳部) を把持した。 この後、 インバーター制御で 脈動を抑えた熱風をフィルムに当てて、 水分散体の水分の除去を行った。 この際 に、 テンタ一の奥へ行くほど広くなるようにクリップ幅をわずかに広げることを せずに、 中央部に弛みができた状態で乾燥区間を通過させた。 乾燥区間内で、 フ イルムが受けた振動の最大振幅は、 7 c mであった。  After that, of the film vibration countermeasures in the drying section performed in Example 1, both ends (ears) of the film were fixed with a tenter clip at the interval between the Daravia Coater and the entrance of the tenter without installing a free roll. Gripped. After that, hot air, whose pulsation was suppressed by inverter control, was applied to the film to remove water from the water dispersion. At this time, instead of slightly increasing the width of the clip so that it became wider toward the end of the tenter, the clip was passed through the dry section with the center loosened. Within the drying section, the maximum amplitude of the vibration that the film received was 7 cm.
次いで実施例 1とまったく同様に横延伸、 熱固定および幅弛緩を行い、 塗布層 の厚さ 0 . 1 / mの塗布層が積層された、 総厚み 4 . 5 / mの二軸配向ポリエス テルフィルムを得た。  Next, a biaxially oriented polyester having a total thickness of 4.5 / m, in which a coating layer having a thickness of 0.1 / m was laminated and subjected to transverse stretching, heat fixing and width relaxation exactly in the same manner as in Example 1. A film was obtained.
得られたポリエステルフィルムの特性を表 1に示す。  Table 1 shows the properties of the obtained polyester film.
得られたフィルムは、 インラインコーティングにより昇華性ィンク易接着層が 片面に付与されているが、 厚さムラが多いポリエステルフィルムであるため、 こ れを用いて作成したインクリボンは、 印刷した時の濃度変動が多く、 フルカラー 画像の印刷には不向きであった。  The obtained film has a sublimation-ink-easily-adhesive layer provided on one side by in-line coating.However, since the film is a polyester film having a large thickness unevenness, an ink ribbon made using this is used when printing. The density fluctuated greatly, making it unsuitable for printing full-color images.
比較例 2  Comparative Example 2
実施例 1と同じポリエステル原料を用いて、 実施例 1とまったく同様に押し出 し、 キャスティング、 縦延伸およびコロナ放電処理を行った。 ここで、 実施例 1 で行った水分散液を塗布することなしに、 グラビアコーターを素通しさせた。 こ の後、 比較例 1と全く同様に、 乾燥区間内のフィルム振動対策のうち、 グラビア コーターとテンター入り口までの間隔に、 フリーロール設置を行わずに、 テンタ 一クリップでフィルムの両端部 (耳部) を把持した。 この後、 インバーター制御 で脈動を抑えた熱風をフィルムに当てて搬送した。 この際に、 テンターの奥へ行 くほど広くなるようにクリップ幅をわずかに広げることをせずに、 中央部に弛み ができた状態で乾燥区間を通過させた。 乾燥区間内で、 フィルムが受けた振動の 最大振幅は、 7 c mであった。 The same polyester raw material as in Example 1 was extruded and subjected to casting, longitudinal stretching, and corona discharge treatment in exactly the same manner as in Example 1. Here, the gravure coater was passed through without applying the aqueous dispersion performed in Example 1. This After that, in exactly the same way as in Comparative Example 1, in order to prevent the film from vibrating in the drying section, at the interval between the gravure coater and the entrance of the tenter, without setting the free roll, use a tenter to clip both ends of the film. ) Was gripped. After that, the film was transported by applying hot air, whose pulsation was suppressed by inverter control, to the film. At this time, instead of slightly increasing the width of the clip so that it became wider toward the end of the tenter, the clip was passed through the dry section with a slack in the center. Within the drying section, the maximum amplitude of vibration experienced by the film was 7 cm.
次いで実施例 1とまったく同様に横延伸、 熱固定および幅弛緩を行い、 塗布層 を有さない総厚み 4 . 4μ mの二軸配向ポリエステルフィルムを得た。  Subsequently, transverse stretching, heat fixing, and width relaxation were performed in exactly the same manner as in Example 1 to obtain a biaxially oriented polyester film having a total thickness of 4.4 μm without a coating layer.
得られたポリエステルフィルムの特性を表 1に示す。  Table 1 shows the properties of the obtained polyester film.
厚さムラのレベルは良好であつたが、 インラインコーティングによる昇華性ィ ンク易接着層が付与されておらず、 このフィルムを用いて作成したインクリボン では、 インク層が剥がれてしまい、 印刷を行うことができなかった。  Although the level of thickness unevenness was good, no sublimable ink easy-adhesion layer was applied by in-line coating, and the ink layer was peeled off with an ink ribbon made using this film, and printing was performed. I couldn't do that.
実施例 2  Example 2
平均粒子径 1 . のシリカ粒子を 0 . 3 %含有する固有粘度 0 . 5 5のポ リエチレンナフタレート (P E N) ペレットを、 十分に加熱乾燥した後、 押出機 に供給して 3 0 5 °Cで溶融押出して未延伸フィルムとした。 この際押出機には、 実施例 1と同様のフィルター、 ギヤ一ポンプ、 およびスタティックミキサーが 各々設置されている。 Tダイよりフィルム状に押出し、 得られたフィルムを、 静 電密着法を用いて表面温度 6 0 °Cの冷却ドラムに卷きつけて、 冷却固化させた。 Tダイの口金は、 スリツト間隙が 1 . 1 mmであり、 冷却固化した未延伸フィル ムの厚みは 1 0 7 / mであった (スリット間隙 冷却固化した未延伸フィルムの 厚みの比は約 1 0 . 3 ) 。 またこの静電密着法では、 実施例 1と同じァモルファ ス金属ブレードを用いて、 同じ電圧を印加した。 さらに実施例 1と同様に、 キヤ スティング行うゾーンを小部屋として囲い、 空調機等の風による影響を遮断した。 この結果、 溶融ポリエステルが冷却ドラムに接地する接地ラインのゆらぎを、 有 効製品幅全域でほぼ 0とすることができた。  Polyethylene naphthalate (PEN) pellets having an intrinsic viscosity of 0.55 and containing 0.3% of silica particles having an average particle diameter of 1 .5 are sufficiently heated and dried, and then supplied to an extruder to be heated at 30.5 ° C. To give an unstretched film. At this time, the extruder was provided with the same filter, gear-pump, and static mixer as in Example 1. The film was extruded from a T-die into a film, and the obtained film was wound around a cooling drum having a surface temperature of 60 ° C. using an electrostatic adhesion method, and cooled and solidified. In the die of the T die, the slit gap was 1.1 mm, and the thickness of the cooled and solidified unstretched film was 107 / m (the slit gap The ratio of the thickness of the cooled and solidified unstretched film was about 1 0.3). In this electrostatic adhesion method, the same voltage was applied using the same amorphous metal blade as in Example 1. Further, similarly to Example 1, the zone where the casting was performed was enclosed as a small room, and the influence of the wind from the air conditioner and the like was cut off. As a result, the fluctuation of the grounding line where the molten polyester was grounded to the cooling drum could be reduced to almost zero over the entire effective product width.
この未延伸フィルムを、 次に縦延伸工程へと導いた。 縦延伸は、 ロール延伸法 を用レ、て行い、 1段目の延伸は 1 3 0 °Cで延伸倍率 2 . 7 0倍で行つた後、 さら に 2段目の延伸を 1 2 3 °Cで延伸倍率 1 . 8 0倍で行つた。 この際、 1段目およ び 2段目の延伸は共に、 低速ロールと高速ロールには、 実施例 1と同様の位置に エップロールを設置して、 延伸区間で塑性変形が開始する位置および終了する位 置のゆらぎが発生しない様に、 フィルムをロールに押さえ付けて、 行った。 この一軸延伸フィルムの片面に空気中でコロナ放電処理を施し、 その処理面に グラビアコート方式で、 実施例 1と全く同じ組成の水分散液を、 同じ塗布量で塗 布した。 This unstretched film was then led to a longitudinal stretching step. The longitudinal stretching is performed using the roll stretching method, and the first-stage stretching is performed at 130 ° C at a stretching ratio of 2.70 times, and then further. In the second step, stretching was performed at 123 ° C. at a stretching magnification of 1.8 times. At this time, for both the first and second stages of stretching, the low-speed roll and the high-speed roll are equipped with an Ep roll at the same position as in Example 1, and the position where plastic deformation starts in the stretching section and the end position The film was pressed against a roll so that no fluctuation of the position occurred. One surface of the uniaxially stretched film was subjected to corona discharge treatment in air, and the treated surface was coated with an aqueous dispersion having exactly the same composition as in Example 1 by a gravure coat method in the same coating amount.
この塗布処理の後に、 乾燥'予熱工程に導いたが、 このとき水分散体が塗布さ れたフィルムができるだけ振動しないように、 実施例 1と全く同様の手段を講じ た。 この処方を講じることで、 塗布液のコーター出口から塗布層の水分が十分に 蒸発するまでの乾燥区間内で、 フィルムが受けた振動の最大振幅は、 1 . 5 c m であった。  After this coating treatment, a drying / preheating step was carried out. At this time, exactly the same means as in Example 1 were taken so that the film coated with the aqueous dispersion was not vibrated as much as possible. By taking this prescription, the maximum amplitude of vibration received by the film was 1.5 cm in the drying section from the coater outlet of the coating solution to the time when the water in the coating layer was sufficiently evaporated.
次いで、 横方向に 1 3 5 °Cで 4 . 7倍延伸し、 連続したテンター内で、 2 3 0 で 2秒間の熱処理を行った。 この後、 2 1 0 °Cでクリップ幅を 5 %縮めて弛 緩処理を行い、 冷却ゾーンを通過させて、 最終的に厚さ 0 . の塗布層が積 層された、 総厚み 4 . 5 mの二軸配向ポリエステルフィルムを得た。  Next, the film was stretched 4.7 times at 135 ° C. in the transverse direction, and heat-treated at 230 for 2 seconds in a continuous tenter. Thereafter, the clip width was reduced by 5% at 210 ° C. to perform a relaxation treatment, and the film was passed through a cooling zone, and finally, a coating layer having a thickness of 0. m biaxially oriented polyester film was obtained.
得られたポリエステルフィルムの特性を表 1に示す。  Table 1 shows the properties of the obtained polyester film.
P E Nを用いた場合においても P E Tを用いた実施例 1と同様に、 得られたフ イルムは、 インラインコーティングによる昇華性ィンク易接着層が片面に付与さ れており、 しかも厚さムラの少ないポリエステルフィルムであるため、 これを用 いて作成したインクリボンは、 印刷した時の濃度変動が少ないものであった。 比較例 3  Even when PEN was used, as in Example 1 using PET, the obtained film had a sublimable ink easy-adhesion layer provided on one side by in-line coating, and had a small thickness unevenness. Since it was a film, the ink ribbon created using it had little fluctuation in density when printed. Comparative Example 3
実施例 2と同じポリエステル原料を用いて、 実施例 2とまったく同様に押し出 し、 キャスティング、 縦延伸およびコロナ放電処理を行い、 さらに同様の水分散 液を同じ方法で塗布した。  Using the same polyester raw material as in Example 2, extrusion was performed in exactly the same manner as in Example 2, casting, longitudinal stretching and corona discharge treatment were performed, and a similar aqueous dispersion was applied by the same method.
この後、 実施例 2で行った乾燥区間内のフィルム振動対策のうち、 ダラビアコ —ターとテンター入り口までの間隔に、 フリーロール設置を行わずに、 テンター クリップでフィルムの両端部 (耳部) を把持した。 この後、 インバーター制御で 脈動を抑えた熱風をフィルムに当てて、 水分散体の水分の除去を行った。 この際 に、 テンターの奥へ行くほど広くなるようにクリップ幅をわずかに広げることを せずに、 中央部に弛みができた状態で乾燥区間を通過させた。 乾燥区間内で、 フ イルムが受けた振動の振幅は、 最大で 7 c mであった。 After that, among the measures against film vibration in the drying section performed in Example 2, at the distance between the Daravia coater and the entrance of the tenter, do not install the free roll, and use a tenter clip to attach both ends (ears) of the film. Gripped. After that, hot air, whose pulsation was suppressed by inverter control, was applied to the film to remove water from the water dispersion. On this occasion At the same time, instead of slightly increasing the clip width so that it became wider toward the end of the tenter, it was passed through the drying section with the center part loosened. In the drying section, the amplitude of the vibration received by the film was up to 7 cm.
次いで実施例 2とまったく同様に横延伸、 熱固定および幅弛緩を行い、 塗布層 の厚さ 0 . 1 mの塗布層が積層された、 総厚み 4 . 5 // mの二軸配向ポリエス 得られたポリエステルフィルムの特性を表 1に示す。  Next, a biaxially oriented polyester having a total thickness of 4.5 // m was obtained by laminating a coating layer having a thickness of 0.1 m by performing transverse stretching, heat fixing, and width relaxation exactly in the same manner as in Example 2. Table 1 shows the properties of the obtained polyester film.
インラインコ一ティングにより、 昇華性ィンク易接着層が片面に付与されてい るが、 厚さムラが多いポリエステルフィルムであるため、 これを用いて作成した インクリボンは、 印刷した時の濃度変動が多く、 フルカラー画像の印刷には不向 きであった。  Although the sublimable ink easy-adhesion layer is provided on one side by in-line coating, since the polyester film is a polyester film with a large thickness unevenness, the ink ribbon created using this has a large density fluctuation when printed. However, it was not suitable for printing a full-color image.
Figure imgf000022_0001
下記の実施例 3〜 6および比較例 4において使用した塗布剤は、 下記のとおり である。
Figure imgf000022_0001
The coating agents used in Examples 3 to 6 and Comparative Example 4 below are as follows.
<ポリエステル系ポリマー: A >  <Polyester polymer: A>
ジカルボン酸中のテレフタノレ酸 9 0モノレ0 /0、 5 _ソジゥムスノレホイソフタル酸 1 0モノレ0 /0、 グリコ一ノレ中のエチレングリコーノレ 7 3モノレ0 /0、 ジエチレングリコ ール 2 7モル0 /0よりなるポリエステル系ポリマー。 Terefutanore acid 9 0 Monore in the dicarboxylic acid 0/0, 5 _ source Jiu Mus Honoré e isophthalate 1 0 Monore 0/0, ethylene glycol in the glycated one Honoré Honoré 7 3 Monore 0/0, diethylene glycol 2 7 moles 0/0 polyester polymer made of.
<アクリル系ポリマ一: B〉 メタクリル酸 3 5モル。 /0、 メタクリル酸アルキル 3 5モル0 /o、 スチレン 3 0モ ル%よりなるァクリル系ポリマー。 <Acrylic polymer: B> 35 mol of methacrylic acid. / 0 , an alkyl methacrylate 35 mol 0 / o, an acryl polymer comprising 30 mol% of styrene.
<架橋剤あるいは架橋性高分子: C 1 〉 <Crosslinking agent or crosslinkable polymer: C 1>
テトラグリセ口ールテトラダリシジノレエーテルを主成分とする水溶性エポキシ 化合物。  Water-soluble epoxy compound mainly composed of tetraglycerol tetradalicydinole ether.
く架橋剤あるいは架橋性高分子: C 2 > Crosslinking agent or crosslinking polymer: C 2>
ほぼ 4官能のメチロールおよびメ トキシメチロールメラミンの 1核体、 2核体、 3核体を主成分とする水溶性メラミン化合物。  A water-soluble melamine compound consisting mainly of mono-, di- and tri-nuclear melamines of almost tetrafunctional methylol and methoxymethylol melamine.
実施例 3  Example 3
平均粒子径 1 . 2 ;u mのシリカ粒子を 0 . 7 %含有する固有粘度 0 . 5 5のポ リエチレンナフタレートペレッ トを、 十分に加熱乾燥した後、 押出機に供給して 3 0 5 °Cで溶融押出して未延伸フィルムを形成した。 この際押出機には、 異物除 去のために 1 0 μ πιカットのフィルター、 脈動を抑えて計量吐出するためにギヤ 一ポンプを設置し、 メルトラインには溶融ポリエステルの温度分布を均一化させ るためのスタティックミキサーを設置した。 溶融ポリエステルを Τダイよりフィ ルム状に押出し、 これを、 静電密着法を用いて表面温度 6 0 °Cの冷却ドラムに卷 きつけて冷却固化させた。 Tダイの口金のスリット間隙は 1 . 1 mmであった。 またこの静電密着法では、 厚さ 2 0 / m、 幅 2 mmのコバルト一クロム一モリブ デンーカーボンのアモルファス金属プレードを用いて、 6 k Vの電圧を印加した。 さらにキャスティング行うゾーンを小部屋として囲い、 空調機等の風による影響 を遮断した。 この結果、 溶融ポリエステルが冷却ドラムに接地する接地ラインの ゆらぎを、 有効製品幅全域でほぼ 0とすることができた。  Polyethylene naphthalate pellets having an intrinsic viscosity of 0.55 and containing 0.7% of silica particles having an average particle diameter of 1.2; um are sufficiently heated and dried, and then supplied to an extruder to obtain a temperature of 30.5 °. C was melt extruded to form an unstretched film. At this time, the extruder is equipped with a 10 μππ cut filter to remove foreign substances, and a gear pump to suppress pulsation and discharge by metering.The melt line is used to equalize the temperature distribution of the molten polyester. A static mixer was installed. The molten polyester was extruded from a die into a film, wound around a cooling drum having a surface temperature of 60 ° C. using an electrostatic contact method, and cooled and solidified. The slit gap of the die of the T die was 1.1 mm. In this electrostatic contact method, a voltage of 6 kV was applied using an amorphous metal plate of cobalt-chromium-molybdenum-carbon having a thickness of 20 / m and a width of 2 mm. Furthermore, the casting zone was enclosed as a small room to block the effects of wind from air conditioners and other equipment. As a result, the fluctuation of the ground line where the molten polyester grounded to the cooling drum could be reduced to almost zero over the entire effective product width.
この未延伸フィルムを、 次に縦延伸工程へと導いた。 縦延伸は、 ロール延伸法 を用いて行い、 1段目の延伸は 1 3 0 °Cで 2 . 7 0倍とした後、 さらに 2段目は 1 2 3 °Cで 1 · 9 0倍の延伸を行つた。 この際、 1段目および 2段目の延伸時と もに、 周速差を利用して延伸を行う低速ロールと高速ロールには、 各々ロールか らフィルムが離れる位置、 および口一ルにフィルムが接する位置に二ップロール を設置して、 延伸区間で塑性変形が開始する位置および終了する位置のゆらぎが 発生しないように、 フィルムをロールに押さえ付けて縦延伸を行った。 この一軸延伸フィルムの片面に空気中でコロナ放電処理を施し、 その処理面に ダラビア塗布方式で、 下記表 2に示す固形分比となるように各々の水分散液ある いは水溶液を混合したものを塗布した。 This unstretched film was then led to a longitudinal stretching step. The longitudinal stretching was performed using the roll stretching method.The first stage was stretched to 2.70 times at 130 ° C, and the second stage was stretched to 1.90 times at 123 ° C. Stretching was performed. At this time, at the time of stretching the first and second stages, the low-speed roll and the high-speed roll, which perform stretching using the difference in peripheral speed, are placed at the position where the film separates from the roll, and at the edge of the film. A nip roll was installed at a position where the film contacts, and the film was pressed against the roll to perform longitudinal stretching so that the position where plastic deformation starts and ends does not fluctuate in the stretching section. One side of this uniaxially stretched film is subjected to corona discharge treatment in air, and the treated surface is mixed with each aqueous dispersion or aqueous solution by Daravia coating method so as to have a solid content ratio shown in Table 2 below. Was applied.
この塗布処理の後に、 乾燥 ·予熱工程に導いたが、 このとき塗液が塗布された フィルムができるだけ振動しないように次の手段を講じた。 まずグラビアコ一タ —とテンター入り口までの間隔 (2 m) に、 2本のフリーロールを等間隔となる ように設置して、 塗液が塗布してある面とは反対の面に、 フィルムの抱き角が 2 ° となるように接触させた。 次にテンタークリップでフィルムの両端部 (耳 部) を把持し、 インバーター制御で脈動を抑えた熱風をフィルムに当てて、 塗液 の水分の除去を行った。 この際に塗布層の水分が無くなるに従って徐々にフィル ムの温度が上昇し、 この結果フィルムが熱膨張して中央部が弛む現象が見られた。 そこで中央部の弛みがなくなるまで、 テンターの奥へ行くほど広くなるようにク リップ幅を微小に広げた。  After this coating treatment, the drying and preheating process was conducted. At this time, the following measures were taken so that the film on which the coating liquid was applied was not vibrated as much as possible. First, two free rolls are installed at equal intervals (2 m) between the gravure coater and the entrance of the tenter, and a film is placed on the opposite side of the surface where the coating liquid is applied. The contact angle was 2 °. Next, both ends (ears) of the film were gripped with a tenter clip, and hot air, whose pulsation was suppressed by inverter control, was applied to the film to remove water from the coating liquid. At this time, as the water content of the coating layer disappeared, the temperature of the film gradually increased, and as a result, a phenomenon was observed in which the film thermally expanded and the central portion was loosened. Therefore, until the center part no longer loosened, the clip width was slightly increased so that it became wider toward the back of the tenter.
上記処方を講じることで、 塗布液のコ一タ一出口から塗布層の水分が十分に蒸 発するまでの乾燥区間内で、 フィルムが受けた振動の振幅は、 最大で 1 . 5 c m であった。  By taking the above prescription, the amplitude of the vibration received by the film was 1.5 cm at the maximum in the drying section from the outlet of the coating liquid coating until the water in the coating layer was sufficiently evaporated. .
次いで、 横方向に 1 3 5 °Cで 4 . 8倍延伸し、 連続したテンタ一内で、 2 3 0 °C 2秒間の熱処理を行つた。 この後、 1 8 0 °Cでクリップ幅を 3 %縮めて弛緩 処理を行い、 冷却ゾーンを通過させて、 厚さ 0 . 0 9 / mの塗布層が積層された 積層フィルムを得た。 この塗布層は昇華型インクとの接着力を向上 (易接着) す るものである。  Next, the film was stretched 4.8 times at 135 ° C. in the transverse direction, and heat-treated at 230 ° C. for 2 seconds in a continuous tenter. Thereafter, the clip width was reduced by 3% at 180 ° C. to perform a relaxation treatment, and the film was passed through a cooling zone to obtain a laminated film having a coating layer having a thickness of 0.09 / m. This coating layer improves (easy adhesion) the adhesive strength with the sublimation ink.
この積層フィルムを 5 0 O mm幅にトリミングしつつ、 内径 6インチ、 肉厚 1 O mmの巻き芯に卷きずれが起きないような適度な硬度でロール状に 3 0 0 0 0 m巻き取った。  While trimming this laminated film to a width of 50 mm, it is wound up into a roll of 300 m with an appropriate hardness so that the core with a 6 inch inner diameter and a wall thickness of 1 mm does not slip off. Was.
得られた積層フィルムの特性を評価した結果を下記表 2に示す。  Table 2 below shows the results of evaluating the properties of the obtained laminated film.
次にこの口ール状の積層フィルムから下記に示す方法で高温高湿処理した後、 昇華型感熱転写リボンを作成し、 諸特性を評価した。  Next, a high-temperature and high-humidity treatment was performed on the wool-shaped laminated film by the method described below, and then a sublimation-type thermal transfer ribbon was prepared and various characteristics were evaluated.
<高温高湿処理後の昇華型感熱転写リボンの製造 > <Production of sublimation type thermal transfer ribbon after high temperature and high humidity treatment>
上記で得られた口ール状の積層フィルムを 4 0 °C、 8 0 % R. H.に調整した恒 温恒湿室に入れ、 24時間処理した。 処理後、 恒温恒湿内を 23°C50%R. H. に変更し、 そのまま 24時間放置した。 この後、 取り出した積層フィルムを巻き 出して、 複数の回転するローラー上を搬送させた後、 塗布層の反対面に、 積水化 学社製ポリビエルプチラール エスレック BX— 1が 2部、 大曰本インキ社製ポ リイソシァネート バーノック D 750— 45が 9部、 第一工業製薬社製リン酸 エステル滑剤 プライサーフ A208 Sが 2部、 日本タルク社製タルク ミクロ エース L一 1が 0. 3部およびトルエン Zメチルェチルケトン (以下 ME Kと略 記する) = 1 1 (重量比) が 86. 7部からなる塗布液をダラビア塗布法によ り塗布し、 乾燥して最終厚さ 1. 0 / mの耐熱易滑層を設けた。 The wool-shaped laminated film obtained above was adjusted to 40 ° C and 80% RH. They were placed in a thermo-hygrostat and treated for 24 hours. After the treatment, the temperature and humidity in the constant temperature and humidity were changed to 23 ° C and 50% RH, and left as it was for 24 hours. After unwinding the unwound laminated film and transporting it on a plurality of rotating rollers, on the opposite side of the coating layer, two copies of Sekisui Kagaku's Polybier Petilal Esrec BX-1 were added. 9 parts of Polyisocyanate Vernock D 750-45 manufactured by Nippon Ink Co., 2 parts of phosphate ester lubricant Plysurf A208 S manufactured by Dai-ichi Kogyo Seiyaku, 0.3 part of Talc Micro Ace L-11 manufactured by Nippon Talc and toluene Z methyl ethyl ketone (hereinafter abbreviated as MEK) = 11 1 (weight ratio) 88.7 parts of coating solution is applied by Daravia coating method, dried and finished to a final thickness of 1.0 / m heat-resistant lubricating layer was provided.
次に、 上記の耐熱易滑層の設けられたフィルムを複数の回転するローラ一上を 搬送させた後、 耐熱易滑層と反対面の塗布層上に下記に示す組成のィンク塗布液 を各々グラビア塗布法により塗布し、 乾燥して各々、 最終厚さ 1. 0//mの昇華 型インク層を設けて、 インクリボンを作成した  Next, after transporting the film provided with the heat-resistant easy-sliding layer on a plurality of rotating rollers, an ink coating solution having the following composition is applied to the coating layer opposite to the heat-resistant easy-sliding layer, respectively. Coated by gravure coating method, dried and provided with a sublimation type ink layer with a final thickness of 1.0 // m to form an ink ribbon
インク塗布液組成  Ink coating liquid composition
イェロー:マクロレックスイエロ一 6 G (バイエノレ社製) 2部 ポリビニルァセトァセタール K S-5D (積水化学社製) 3部 トルエンノ ME K= 1/1 (重量比) 95部 マゼンダ:バイミクロン VP SN2670 (バイエル社製) 3部 ポリビニルァセトァセタ一ル K S-5D (積水化学社製) 4部 トルエンノ MEK= lZl (重量比) 93部 シァン : カャセッ トブルー 714 (日本化薬社製) 4部 ポリビュルァセトァセタール K S— 5 D (積水化学社製) 4部 トルエン ZMEK= 1 1 (重量比) 92部 実施例 4  Yellow: Macrorex Yellow 1 6 G (manufactured by Bayenore) 2 parts Polyvinylacetoacetal K S-5D (manufactured by Sekisui Chemical) 3 parts Toluene ME K = 1/1 (weight ratio) 95 parts Magenta: bimicron VP SN2670 (Manufactured by Bayer) 3 parts Polyvinyl acetate KS-5D (manufactured by Sekisui Chemical) 4 parts Toluene MEK = lZl (weight ratio) 93 parts Cyan: Kaset Blue 714 (manufactured by Nippon Kayaku) 4 parts Byuracetoacetal KS-5D (Sekisui Chemical Co., Ltd.) 4 parts Toluene ZMEK = 1 1 (weight ratio) 92 parts Example 4
実施例 3において、 最終の基材のポリエチレンナフタレートフィルムの厚さが 実施例 3のそれと同一になるように未延伸シートの厚さを変更し、 かつ、 縦延伸 の 2段目の倍率を 1. 6倍に変更し、 かつ、 塗布層の最終厚さが実施例 3と同じ になるように塗液の固形分濃度を調整し、 かつ、 横延伸の倍率を 4. 3倍に変更 したほかは、 全く同様にして積層フィルムを作成した。 この積層フィルムの特性 を評価した結果を表 3に示す。 さらに、 実施例 3と全く同様にして、 高温高湿処 理後、 昇華型感熱転写リボンを作成し、 諸特性を評価した。 得られた結果を表 3 に示す。 In Example 3, the thickness of the unstretched sheet was changed so that the final thickness of the polyethylene naphthalate film of the base material was the same as that of Example 3, and the magnification of the second step of longitudinal stretching was 1 Change to 6 times and adjust the solids concentration of the coating solution so that the final thickness of the coating layer becomes the same as in Example 3, and change the magnification of transverse stretching to 4.3 times A laminated film was prepared in exactly the same manner except for the above. Table 3 shows the results of evaluating the properties of this laminated film. Further, in the same manner as in Example 3, after the high-temperature and high-humidity treatment, a sublimation-type thermal transfer ribbon was prepared, and various characteristics were evaluated. Table 3 shows the obtained results.
比較例 4  Comparative Example 4
実施例 3と同じポリエステル原料を用いて、 実施例 3と全く同様にして押し出 し -キャスティング ·縦延伸 ·コロナ放電処理を行い、 さらに同様の塗液を同じ 方法で塗布した。  Using the same polyester raw material as in Example 3, extrusion-casting, longitudinal stretching, and corona discharge treatment were performed in exactly the same manner as in Example 3, and a similar coating liquid was applied by the same method.
この後、 実施例 3で行つた乾燥区間内のフィルム振動対策のうち、 グラビアコ —ターとテンター入り口までの間隔に、 フリーロール設置を行わずに、 テンター クリップでフィルムの両端部 (耳部) を把持した。 この後インバーター制御で脈 動を抑えた熱風をフィルムに当てて、 塗液の水分の除去を行った。 この際に、 テ ンターの奥へ行くほど広くなるようにクリップ幅を微小に広げることをせずに、 中央部に弛みができた状態で乾燥区間を通過させた。 乾燥区間内で、 フィルムが 受けた振動の振幅は、 最大で 7 c mであった。  After that, among the measures against film vibration in the drying section carried out in Example 3, at the interval between the gravure coater and the entrance of the tenter, without setting a free roll, use a tenter clip to end both ends (ears) of the film. Was gripped. Thereafter, hot air, whose pulsation was suppressed by inverter control, was applied to the film to remove the water content of the coating liquid. At this time, instead of slightly increasing the width of the clip so that it became wider toward the center, the clip was passed through the dry section with the center part loosened. Within the drying section, the amplitude of the vibration experienced by the film was up to 7 cm.
次いで実施例 3とまったく同様に横延伸 ·熱固定 ·幅弛緩を行い、 積層フィル ムを得た。 この積層フィルムの特性を評価した結果を表 3に示す。 さらに、 実施 例 3と全く同様にして、 高温高湿処理後、 昇華型感熱転写リボンを作成し、 諸特 性を評価した。 得られた結果を表 3に示す。  Next, transverse stretching, heat fixing, and width relaxation were performed in exactly the same manner as in Example 3 to obtain a laminated film. Table 3 shows the results of evaluating the characteristics of the laminated film. Further, in the same manner as in Example 3, after a high-temperature and high-humidity treatment, a sublimation-type thermal transfer ribbon was prepared, and various characteristics were evaluated. Table 3 shows the obtained results.
実施例 5  Example 5
平均粒子径 1 . 2 / mのシリカ粒子を 0 . 7 %含有する固有粘度 0 . 6 6のポ リエチレンテレフタレートペレッ トを、 +分に加熱乾燥した後、 押出機に供給し て 2 9 0 °Cで溶融押出して未延伸フィルムを形成した。 この際押出機には、 実施 例 3と同様のフィルター、 ギヤ一ポンプ、 およびスタティックミキサーを各々設 置した。 Tダイよりフィルム状に押出し、 これに静電密着法を用いて表面温度 4 0 °Cの冷却ドラムに巻きつけて冷却固化させた。 Tダイの口金は、 スリット間隙 が 1 . 1 mmであった。 またこの静電密着法では、 実施例 3と同じアモルファス 金属ブレードを用いて、 同じ電圧を印加した。 さらに実施例 3と同様に、 キャス ティング行うゾーンを小部屋として囲い、 空調機等の風による影響を遮断した。 この結果、 溶融ポリエステルが冷却ドラムに接地する接地ラインのゆらぎを、 有 効製品幅全域でほぼ 0とすることができた。 Polyethylene terephthalate pellets containing 0.7% silica particles having an average particle diameter of 1.2 / m and having an intrinsic viscosity of 0.66 are heated and dried for + minutes, and then supplied to an extruder for 290 ° C. C was melt extruded to form an unstretched film. At this time, the extruder was provided with the same filter, gear-pump, and static mixer as in Example 3. The film was extruded from a T-die into a film and wound around a cooling drum having a surface temperature of 40 ° C. using an electrostatic adhesion method to be cooled and solidified. The die gap of the T die had a slit gap of 1.1 mm. In this electrostatic adhesion method, the same voltage was applied using the same amorphous metal blade as in Example 3. Further, as in Example 3, the zone where the casting was performed was enclosed as a small room, and the influence of wind from an air conditioner or the like was cut off. As a result, the fluctuation of the grounding line where the molten polyester was grounded to the cooling drum could be reduced to almost zero over the entire effective product width.
この未延伸フィルムを、 次に縦延伸工程へと導いた。 縦延伸は、 ロール延伸法 を用いて行い、 1段目の延伸は 1 0 0 °Cで 2 . 7 0倍とした後、 さらに 2段目は 8 7 °〇で1 . 6 0倍の延伸を行った。 この際、 1段目および 2段目の延伸時とも に、 低速ロールと高速ロールには、 実施例 3と同様の位置にニップロールを設置 して、 延伸区間で塑性変形が開始する位置および終了する位置のゆらぎが発生し ないように、 フィルムをロールに押さえ付けて縦延伸を行った。  This unstretched film was then led to a longitudinal stretching step. The longitudinal stretching is performed using a roll stretching method. The first stage stretching is performed at 100 ° C. at 2.70 times, and the second stage is further stretched at 87 ° C. at 1.60 times. Was done. At this time, the nip roll is set at the same position as in Example 3 for the low-speed roll and the high-speed roll at the time of the first-stage and second-stage stretching, and the position where plastic deformation starts and ends in the stretching section The film was pressed against a roll and stretched longitudinally so that no positional fluctuation occurred.
この一軸延伸フィルムの片面に空気中でコ口ナ放電処理を施し、 その処理面に グラビア塗布方式で、 表 2に示す組成に変更し、 かつ、 塗布層の最終の厚さが実 施例 3と同じになるように塗液の固形分を変更した以外は実施例 3と全く同様に して塗布した。  One side of this uniaxially stretched film was subjected to a corner discharge treatment in air, and the treated surface was changed to the composition shown in Table 2 by a gravure coating method, and the final thickness of the coating layer was changed to Example 3. Coating was performed in exactly the same manner as in Example 3, except that the solid content of the coating liquid was changed so as to be the same as in Example 3.
この塗布処理の後に、 乾燥 ·予熱工程に導いたが、 このとき塗液が塗布された フィルムができるだけ振動しないように、 実施例 3と全く同様の手段を講じた。 この処方を講じることで、 塗布液のコーター出口から塗布層の水分が +分に蒸発 するまでの乾燥区間内で、 フィルムが受けた振動の振幅は、 最大で 1 . 5 c mで あった。  After this coating treatment, a drying and preheating step was performed. At this time, exactly the same means as in Example 3 were taken so that the film coated with the coating liquid did not vibrate as much as possible. By adopting this prescription, the amplitude of the vibration received by the film was 1.5 cm at the maximum in the drying section from the coater outlet of the coating solution to the evaporation of the water in the coating layer to + minutes.
次いで、 横方向に 1 0 5 °Cで 4 . 4倍延伸し、 連続したテンター内で、 2 2 0 °C 2秒間の熱処理を行つた。 この後 1 8 0 °Cでクリップ幅を 3 %縮めて弛緩処 理を行い、 冷却ゾーンを通過させて、 最終的に厚さ 0 . 0 9 /z mの塗布層が積層 された、 積層フィルムを得た。  Then, it was stretched 4.4 times at 105 ° C. in the transverse direction, and heat-treated at 220 ° C. for 2 seconds in a continuous tenter. Thereafter, the clip width is reduced by 3% at 180 ° C to perform a relaxation treatment, and the film is passed through a cooling zone to finally form a laminated film having a coating layer of 0.09 / zm in thickness. Obtained.
この積層フィルムの特性を評価した結果を表 3に示す。 さらに、 実施例 3と全 く同様にして、 高温高湿処理後、 昇華型感熱転写リボンを作成し、 諸特性を評価 した。 得られた結果を表 3に示す。  Table 3 shows the results of evaluating the characteristics of the laminated film. Further, in the same manner as in Example 3, after a high-temperature and high-humidity treatment, a sublimation-type thermal transfer ribbon was prepared, and various characteristics were evaluated. Table 3 shows the obtained results.
実施例 6  Example 6
実施例 3において、 塗液の組成を表 2に示す組成に変更した以外は全く同様に して積層フィルムを得た。 この積層フィルムの特性を評価した結果を表 3に示す。 さらに、 実施例 3と全く同様にして昇華型感熱転写リボンを作成しようとしたと ころ、 卷き出してリボンに加工する際にフィルム同士が剥離しにくく、 加工歩留 まりがやや低下した。 A laminated film was obtained in exactly the same manner as in Example 3, except that the composition of the coating liquid was changed to the composition shown in Table 2. Table 3 shows the results of evaluating the characteristics of the laminated film. Further, when an attempt was made to produce a sublimation-type thermal transfer ribbon in exactly the same manner as in Example 3, when the film was unwound and processed into a ribbon, the films were not easily separated from each other, and the processing yield was low. Mari has dropped slightly.
なお、 実施例 3〜 6および比較例 4で得た積層フィルムの総厚みは 2 . 8 μ ηι であった。  The total thickness of the laminated films obtained in Examples 3 to 6 and Comparative Example 4 was 2.8 μηι.
表 2 塗布層の全固形分の組成 (重量%) および最終塗布厚 (μ π )  Table 2 Composition (% by weight) and final coating thickness (μ π) of the total solid content of the coating layer
Figure imgf000028_0001
表 3
Figure imgf000028_0001
Table 3
Figure imgf000028_0002
Figure imgf000028_0002
発明の効果 The invention's effect
本発明の感熱転写用二軸配向ポリエステルフィルムは、 感熱転写用として特殊 な機能を付与するためのコ一ティングを有しており、 しかもそのコーティングは フィルムの製膜工程中に水を媒体にして施されて積層されたものであるにもかか わらず、 フィルムの厚さムラが少ない。 この結果、 本発明のフィルムを用いたィ ンクリボンによれば、 濃度変動の少ない色調再現性の良好な印刷を行うことがで きる。  The biaxially oriented polyester film for thermal transfer of the present invention has a coating for imparting a special function for thermal transfer, and the coating is performed using water as a medium during the film forming process. Despite being applied and laminated, there is little unevenness in film thickness. As a result, according to the ink ribbon using the film of the present invention, it is possible to perform printing with little density fluctuation and good color tone reproducibility.

Claims

請 求 の 範 囲 The scope of the claims
1. 水溶性または水分散性の有機高分子化合物を含む塗液を、 配向結晶化が完 了する前のポリエステルフィルムの少なくとも片面に塗布し、 ついで乾燥 '延 伸 ·熱処理を施して得られる厚み 20 /zm以下の塗布フィルムであって、 当該塗 布フィルムの長手方向の任意の 15m長区間における厚さムラが 10%以下であ ることを特徴とする感熱転写用二軸配向ポリエステルフィルム。  1. A coating solution containing a water-soluble or water-dispersible organic polymer compound is applied to at least one side of the polyester film before the orientation crystallization is completed, and then dried, stretched and heat-treated to obtain a thickness. A biaxially oriented polyester film for thermal transfer, wherein the coating film has a thickness of 20 / zm or less, and the thickness unevenness in an arbitrary 15 m long section in the longitudinal direction of the coating film is 10% or less.
2. 当該塗布フィルムの長手方向の任意の 1 5m長区間における厚さムラが 7 %以下である請求項 1に記載のポリエステルフィルム。  2. The polyester film according to claim 1, wherein the thickness unevenness in an arbitrary 15 m long section in the longitudinal direction of the coating film is 7% or less.
3. 当該塗布フィルムの長手方向の任意の 1 5 m長区間における厚さムラが 5%以下である請求項 1に記載のポリエステルフィルム。  3. The polyester film according to claim 1, wherein the thickness unevenness in an arbitrary 15 m length section in the longitudinal direction of the coating film is 5% or less.
4. 当該塗布フィルムの横方向の任意の 3m長区間における厚さムラが 10% 以下である請求項 1に記載のポリエステルフィルム。  4. The polyester film according to claim 1, wherein the thickness unevenness of the applied film in an arbitrary 3 m long section in the horizontal direction is 10% or less.
5. 当該塗布フィルムの横方向の任意の 3 m長区間における厚さムラが 7 <½以 下である請求項 1に記載のポリエステルフィルム。  5. The polyester film according to claim 1, wherein the thickness unevenness of the coating film in an arbitrary 3 m length section in the horizontal direction is 7 <½ or less.
6. 当該塗布フィルムの横方向の任意の 3 m長区間における厚さムラが 5%以 下である請求項 1に記載のポリエステルフィルム。  6. The polyester film according to claim 1, wherein the thickness unevenness of the applied film in an arbitrary 3 m long section in the horizontal direction is 5% or less.
7. ポリエステルフィルムは、 フエノール/テトラクロ/レエタン混合溶媒 (重 量比 5 OZ50) 中 30°Cで測定した場合、 0. 45〜1. 20 d 1 Z gの範囲 の固有粘度を有する請求項 1〜 6のレ、ずれかに記載のポリエステルフィルム。  7. The polyester film has an intrinsic viscosity in the range of 0.45 to 1.20 d1 Zg when measured at 30 ° C in a phenol / tetrachloro / ethane mixture solvent (weight ratio: 5 OZ50). Polyester film according to any one of Nos. 6 to 6.
8. 塗布フィルムの総厚みは、 20 / m以下である請求項 1~7のいずれかに 記載のポリエステルフィルム。  8. The polyester film according to claim 1, wherein the total thickness of the applied film is 20 / m or less.
9. 塗布層の固着力が、 1008 £ 125111111以下でぁる請求項1〜8のぃ ずれかに記載のポリエステルフィルム。 9. bonding strength of the coating layer, the polyester film according to any Aru claims 1-8 Noi deviation at 100 8 £ 1251 1 1111 or less.
10. 長手方向および幅方向の F 5値が共に、 少なくとも 13.0 k g f /m m2である請求項 1〜9のいずれかに記載のポリエステルフィルム。 10. longitudinal direction and the width direction of the F 5 value are both polyester film according to claim 1 is at least 13.0 kgf / mm 2.
PCT/JP1998/005431 1997-12-02 1998-12-02 Biaxially oriented polyester film for thermal transfer WO1999028133A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69813520T DE69813520T2 (en) 1997-12-02 1998-12-02 BIAXIAL-ORIENTED POLYESTER FILM FOR THERMAL TRANSFER PRINTING PROCESSES
EP98957128A EP0962332B1 (en) 1997-12-02 1998-12-02 Biaxially oriented polyester film for thermal transfer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP33151097 1997-12-02
JP9/331510 1997-12-02
JP622898 1998-01-16
JP10/6228 1998-01-16

Publications (1)

Publication Number Publication Date
WO1999028133A1 true WO1999028133A1 (en) 1999-06-10

Family

ID=26340315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005431 WO1999028133A1 (en) 1997-12-02 1998-12-02 Biaxially oriented polyester film for thermal transfer

Country Status (3)

Country Link
EP (1) EP0962332B1 (en)
DE (1) DE69813520T2 (en)
WO (1) WO1999028133A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410985A (en) * 1990-04-27 1992-01-16 Mitsubishi Paper Mills Ltd Polyester film for thermal transfer recording and manufacture thereof
JPH0441297A (en) * 1990-06-06 1992-02-12 Toray Ind Inc Ribbon for heat transfer
JPH0577374A (en) * 1991-09-19 1993-03-30 Toray Ind Inc Laminate polyester film
JPH09239931A (en) * 1996-03-06 1997-09-16 Diafoil Co Ltd Thermal transfer biaxially oriented polyester film
JPH10329292A (en) * 1997-06-03 1998-12-15 Toray Ind Inc Biaxially oriented polyester film and its manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104064A (en) * 1994-10-05 1996-04-23 Diafoil Co Ltd Sublimable thermal transfer polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410985A (en) * 1990-04-27 1992-01-16 Mitsubishi Paper Mills Ltd Polyester film for thermal transfer recording and manufacture thereof
JPH0441297A (en) * 1990-06-06 1992-02-12 Toray Ind Inc Ribbon for heat transfer
JPH0577374A (en) * 1991-09-19 1993-03-30 Toray Ind Inc Laminate polyester film
JPH09239931A (en) * 1996-03-06 1997-09-16 Diafoil Co Ltd Thermal transfer biaxially oriented polyester film
JPH10329292A (en) * 1997-06-03 1998-12-15 Toray Ind Inc Biaxially oriented polyester film and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0962332A4 *

Also Published As

Publication number Publication date
DE69813520T2 (en) 2004-02-26
EP0962332B1 (en) 2003-04-16
DE69813520D1 (en) 2003-05-22
EP0962332A1 (en) 1999-12-08
EP0962332A4 (en) 2000-03-01

Similar Documents

Publication Publication Date Title
KR100354803B1 (en) Polyester Film for Sublimation Thermal Transfer Recording Media
US5824394A (en) Biaxially oriented laminated polyester film
JP3316852B2 (en) Biaxially stretched polyester film and method for producing the same
EP0158344B2 (en) Ink transfer material for printer
JP4151370B2 (en) Release film
KR100636608B1 (en) Biaxially oriented polyester film for ribbon for use in thermal transfer recording, and laminated film comprising the same and method for manufacture thereof
WO1999017931A1 (en) Biaxially oriented polyester film
CA2082373A1 (en) Laminated polyester film
JP2782832B2 (en) Method for producing biaxially oriented polyester film
WO1999028133A1 (en) Biaxially oriented polyester film for thermal transfer
JPH10138431A (en) Release film
JP4336382B2 (en) Method for producing biaxially oriented polyester film for thermal transfer
JP4302806B2 (en) Laminated film for thermal transfer
JPH0284445A (en) Laminated polyester film
WO2011057030A1 (en) Polyester film with adhesive properties
JPH11240256A (en) Thermosensitive transfer biaxially oriented polyester film
JP2946786B2 (en) Sublimation type thermal transfer material
JP3726456B2 (en) Simultaneously biaxially stretched polyester film and method for producing the same
JPH04275340A (en) Biaxially oriented polyester film
KR20000070705A (en) Biaxially oriented polyester film for thermal transfer
KR100483131B1 (en) Biaxially oriented polyester film
JP3191435B2 (en) Polyester film for thermal transfer material
JPH02194034A (en) Biaxially oriented polyester film
JP4079338B2 (en) Biaxially oriented laminated film
KR100536006B1 (en) Biaxially oriented polyester film for heat transcription

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09355488

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997006955

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998957128

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998957128

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997006955

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998957128

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019997006955

Country of ref document: KR