WO1999026735A1 - Bichromatic method and apparatus for detecting peach pit fragments - Google Patents

Bichromatic method and apparatus for detecting peach pit fragments Download PDF

Info

Publication number
WO1999026735A1
WO1999026735A1 PCT/US1997/021631 US9721631W WO9926735A1 WO 1999026735 A1 WO1999026735 A1 WO 1999026735A1 US 9721631 W US9721631 W US 9721631W WO 9926735 A1 WO9926735 A1 WO 9926735A1
Authority
WO
WIPO (PCT)
Prior art keywords
peach halves
peach
inspection zone
halves
pitted
Prior art date
Application number
PCT/US1997/021631
Other languages
French (fr)
Inventor
M. Scott Howarth
Robin D. Tillett
Christine R. Bull
Original Assignee
Atlas Pacific Engineering Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Pacific Engineering Company filed Critical Atlas Pacific Engineering Company
Priority to PCT/US1997/021631 priority Critical patent/WO1999026735A1/en
Priority to AU35866/99A priority patent/AU3586699A/en
Publication of WO1999026735A1 publication Critical patent/WO1999026735A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3422Sorting according to other particular properties according to optical properties, e.g. colour using video scanning devices, e.g. TV-cameras

Definitions

  • This invention relates generally to a pit fragment detector and, more particularly, to a method and apparatus utilizing a bichromatic technique for detecting peach pit fragments in pitted peach halves.
  • Detectors are known in the prior art for determining the presence of pit fragments in peach halves prior to canning.
  • the Sarkar et al U.S. patent 4,146,135 dated March 27, 1979 teaches such an apparatus.
  • the Sarkar apparatus has several serious drawbacks.
  • the first serious drawback is that the peach halves slide downwardly across a viewing plate.
  • the optical beam path must pass upwardly through the viewing plate and pass through any debris, such as peach juice, flesh and possibly pit fragments, that collect on the viewing plate. That design inherently causes unwanted debris in the optical path which adversely affects viewing of peaches passing across the viewing plate.
  • the Sarkar patent also teaches the use of very narrow wavelength bands, preferably centered at 730 nm and 940 nm.
  • the Sarkar apparatus uses either LEDs to produce extremely narrow bandwidths, as taught at column 6, lines 54-67, or incandescent bulbs with filters, as taught at column 7, lines 5-11. In either event, the total amount of light available to the sensors is limited. The combination of a relatively low amount of light available and an optical path which inherently will accumulate debris are serious drawbacks to the Sarkar design. Additional drawbacks of the Sarkar teaching are that the light sources must be energized and de-energized every cycle and the system relies upon sequential scanning. Taken together, the above-identified aspects of the Sarkar teaching limit the overall speed and reliability of the apparatus. The design is limited to the speed at which a peach will slide across the viewing plate and by the sequential operation of the light sources and scanning.
  • pitted peach halves are oriented into a "cup-up" position wherein the pit cavity of each peach half is directed upwardly.
  • the peach halves so oriented are conveyed at a relatively high speed to an inspection zone or station where they are illuminated.
  • the diffusely reflected light is separated and filtered into two relatively wide wavelength bands.
  • the difference in reflectivity between pit fragments and either the peach flesh or the peach skin is sensed by each of the two wavelength bands.
  • the images sensed are enhanced by combining the signals.
  • peaches can be presented to the inspection station at approximately 45 peaches per second and pit fragments as small as 2 mm 2 can be reliably detected.
  • a primary object of the invention is to provide a method and apparatus for rapidly and reliably detecting pit fragments in pitted peach halves.
  • Another object of the invention is to provide a bichromatic system of detecting peach pit fragments wherein the peach half is presented in a "cup-up" orientation and wherein two relatively wide wavelength bands of light are utilized to reliably detect either the presence or absence of pit fragments.
  • Yet another object of the invention is to provide a peach pit fragment detector wherein pitted peach halves are oriented into a "cup-up" position and wherein the pit cavity is illuminated by a pair of spaced apart lights to minimize the presence of shadows in the cavity.
  • Another object of the invention is to provide a pit fragment detector wherein the optical path utilized by the detector remains inherently clear of debris, that is the optical path is designed to inherently avoid the unwanted presence in the path of juice or other debris.
  • Another object is to provide an inspection zone wherein the background is air; the peach halves are launched off the end of the conveyor into the inspection zone to avoid background signals otherwise created by a conveying mechanism.
  • Fig. 1 is a graphical representation showing the difference in relative reflectivity of peach pit fragments, peach flesh and peach skin
  • Fig. 2 is a schematic representation of the detection system of the present invention
  • Fig. 3 is a top elevational view of a conveyor according to the present invention carrying peach halves toward the inspection station;
  • Fig. 4 is a section on the line 4-4 of Fig. 3;
  • Fig. 5 is a side elevational view of peaches being launched off the end of the conveyor into the inspection zone
  • Fig. 6 shows a portion of the conveying system which transports peach halves from a cup-up shaker to the three row conveyor;
  • Fig. 7 shows in perspective and in greater detail a transition portion of the conveyor system.
  • Fig. 1 is a reflectance diagram wherein the relative reflection of an illuminating light beam is expressed as a percentage on the y or vertical axis.
  • the horizontal or x axis shows the wavelength of the incident light in nanometers.
  • Line 11 depicts the relative reflectance of the peach pit as a function of incident wavelength.
  • Line 12 represents the reflec- tivity of the peach flesh as a function of wavelength and line 13 represents the reflectivity of the peach skin in the range of 400 to 800 nanometers.
  • the graph of Fig. 1 shows approximate relative reflectance.
  • a fundamental principle of the present invention is to take the fullest possible advantage of the differential reflectivities of the peach pit or pit fragments versus relative reflectivity of the peach flesh or peach skin.
  • a further important principle is to present as much light as possible to the imaging cameras.
  • two wavelength bands are utilized, the first being centered at 600 nm having a wavelength band of up to 100 nm extending from 550 to 650 nm.
  • the second wavelength band is centered at 750 nm and has a bandwidth of 100 nm extending from 700 to 800 nm.
  • a preferred pair of wavelength bands is a first band centered at 600 nm having a bandwidth of 70 nm and a second band centered at 750 nm having a bandwidth of 70 nm.
  • Narrower bandwidths can be used according to the present invention but those narrower bandwidths allow considerably less light to pass through the filters used and into the imaging cameras.
  • a single pitted peach half 15 is shown in a "cup-up" position wherein the pit cavity 16 is directed upwardly and wherein pitted peach half 15 is in an inspection station or zone represented by the dotted lines 17.
  • the conveyor which carries the pitted peach half 15 is not shown in Fig. 2 for purposes of clarity.
  • Illumination means 20 comprises a pair of quartz halogen lights each of 1,500 watts shown as 21 and 22.
  • Lights 21 and 22 are kept on continuously during operation of the system.
  • Light 21 is upstream of the inspection station 17 and is mounted above inspection zone or station 17 and is aimed downwardly at approximately a 60° angle from the horizontal.
  • Light 22 is mounted downstream of the inspection station 17, is mounted above the station or zone 17 and is oriented downwardly at an angle of approximately 60° from the horizontal.
  • the optical path utilized in the present invention is inherently "clear" in that juice and debris do not interrupt the optical path.
  • Light from the sources 21 and 22 is reflected off of the pitted peach half upwardly along optical path 30 through a lens system 32 and into a beam splitter 33.
  • Beam splitter 33 may be a prism, filter wheel or other commercially available splitter.
  • the beam splitter 33 separates the reflected light into a first beam 35 and a second beam 36.
  • First beam 35 enters a first filter means 40 which extracts a first wavelength band from the first beam.
  • first filter means 40 allows a first wavelength band to pass through centered at 600 nm and having a bandwidth of 70 nm extending from 565 nm to 635 nm.
  • the second beam 36 passing out of beam splitter 33 enters a second filter means 41 which extracts a second wavelength band.
  • the second wavelength band allowed to pass through the filter is centered at 750 nm and has a bandwidth of 70 nm extending from 715 nm to 785 nm.
  • wavelength bands up to about 100 nm centered at 600 nm and 750 nm will also perform, as well as narrower bandwidths down to 10 nm. According to the invention, both wavelength bands are filtered and imaged simultaneously and continuously during operation of the system.
  • the first wavelength band passing through the first filter means 40 enters a first line scan camera means 51 and the second wavelength band passing through filter means 41 enters a second line scan camera means 52.
  • Both line scan camera means 51 and 52 are Dalsa line scan cameras model number CLC3-512 with lenses. Each of these cameras operates continuously and each camera has 512 pixels per line or two pixels per millimeter. Each pixel element creates a signal which is converted to a number between 0 and 255.
  • the first method of enhancing the signal is done by subtracting the second image signal from the first image signal, that is subtracting the signal from the higher wavelength light band from the shorter wavelength light band.
  • the second method of combining the image signals is accomplished by obtaining a ratio of the two signals wherein the output signal from the wavelength band centered at 750 nm is the numerator in the ratio and the image signal from the first image signal or the waveband centered at 600 nm is the denominator in the ratio.
  • Figs. 3 and 4 show the conveyor means generally as 60 which comprises in the preferred embodiment a three row conveyor having longitudinal rows 61, 62 and 63.
  • the transverse cross section of each of the rows is shown best in Fig. 4 and has a concave arcuate shape forming an elongated trough which extends longitudinally along the direction of travel of the conveyor means shown by arrow 69 in Fig. 3.
  • the conveyor also has concave grooves formed on its lower surface shown as 61A, 62A and 63A. These concave grooves are supported by rollers not shown for clarity.
  • the inspection zone or station 17 is downstream of and adjacent the end 67 of conveyor means 60 and at approximately the same vertical height as the surface of conveyor means 60.
  • Peach halves 15 are launched off the end of conveyor means 60 into the inspection zone 17.
  • the conveyor means 60 operates at a sufficiently high speed to launch the peach halves into the inspection zone and to deliver a sufficient quantity of peaches per second to justify the cost of the system.
  • the lens system 32 cooperates with the line scan camera means 51 and 52 (not shown in Fig.
  • Figs. 6 and 7 show how the peaches are agitated into a cup-up position and how they are transported from the cup-up shaker to the three row conveyor means 60.
  • a commercially available cup-up shaker 70 is shown. This mechanism may be obtained from H.G. Molenaar, W.O. 9370, Paarl, South Africa.
  • the shaker 70 uses an agitating bed to agitate the pitted peach halves until the heaviest side of the peach is oriented downwardly and the pit cavity is oriented upwardly.
  • a merging slide 75 having a generally triangular shape and downward slope receives the peaches from the output of the cup-up shaker and arranges the peaches into three rows for placement ultimately on the high speed conveyor means 60.
  • the slide 75 receives 21 rows of peaches from the shaker 70 at its upper end 76 and merges those 21 output rows into three rows at its bottom portion 77.
  • An intermediate conveyor means 90 receives the peach halves from slide 75 and transports the peach halves to high speed conveyor means 60.
  • transition slides 81, 82 and 83 allow the cup-up peach halves to slide downwardly on their inclined surfaces onto the relatively high speed three row conveyor means 60.

Abstract

A method and apparatus are provided for detecting the presence of pit fragments as small as 2 mm2 in pitted peach halves. Pitted peach halves are agitated into a cup-up position, are conveyed to a position adjacent an inspection zone and are launched airborne into the inspection zone. Each peach half in the inspection zone is illuminated by a pair of quartz halogen lights and the diffusely reflected light is separated into first and second beams. The first and second beams are filtered to extract a first relatively wide wavelength band centered at 600 nm and a second relatively wide wavelength band centered at 750 nm. Preferably, each wavelength band is approximately 70 nm. Each of the wavelength bands enters a separate line scan camera for acquiring image signals from each wavelength band. The signals from both cameras are combined and enhanced to determine the presence or absence of fragments.

Description

BICHROMATIC METHOD AND APPARATUS FOR DETECTING PEACH PIT FRAGMENTS
Background
This invention relates generally to a pit fragment detector and, more particularly, to a method and apparatus utilizing a bichromatic technique for detecting peach pit fragments in pitted peach halves.
Detectors are known in the prior art for determining the presence of pit fragments in peach halves prior to canning. For example, the Sarkar et al U.S. patent 4,146,135 dated March 27, 1979 teaches such an apparatus. However, the Sarkar apparatus has several serious drawbacks. The first serious drawback is that the peach halves slide downwardly across a viewing plate. The optical beam path must pass upwardly through the viewing plate and pass through any debris, such as peach juice, flesh and possibly pit fragments, that collect on the viewing plate. That design inherently causes unwanted debris in the optical path which adversely affects viewing of peaches passing across the viewing plate. The Sarkar patent also teaches the use of very narrow wavelength bands, preferably centered at 730 nm and 940 nm. The Sarkar apparatus uses either LEDs to produce extremely narrow bandwidths, as taught at column 6, lines 54-67, or incandescent bulbs with filters, as taught at column 7, lines 5-11. In either event, the total amount of light available to the sensors is limited. The combination of a relatively low amount of light available and an optical path which inherently will accumulate debris are serious drawbacks to the Sarkar design. Additional drawbacks of the Sarkar teaching are that the light sources must be energized and de-energized every cycle and the system relies upon sequential scanning. Taken together, the above-identified aspects of the Sarkar teaching limit the overall speed and reliability of the apparatus. The design is limited to the speed at which a peach will slide across the viewing plate and by the sequential operation of the light sources and scanning.
Another prior art teaching is the Gillespie et al U.S. patent 4,666,045 dated May 19, 1987 which attempts to determine the presence of pit fragments by transmitting light completely through the fruit. By choosing an optical path which must pass completely through the fruit, the Gillespie teaching inherently limits the detection of relatively small fragments.
Brief Summary of the Invention In accordance with the present invention, pitted peach halves are oriented into a "cup-up" position wherein the pit cavity of each peach half is directed upwardly. The peach halves so oriented are conveyed at a relatively high speed to an inspection zone or station where they are illuminated. The diffusely reflected light is separated and filtered into two relatively wide wavelength bands. The difference in reflectivity between pit fragments and either the peach flesh or the peach skin is sensed by each of the two wavelength bands. The images sensed are enhanced by combining the signals. According to the present invention, peaches can be presented to the inspection station at approximately 45 peaches per second and pit fragments as small as 2 mm2 can be reliably detected.
A primary object of the invention is to provide a method and apparatus for rapidly and reliably detecting pit fragments in pitted peach halves.
Another object of the invention is to provide a bichromatic system of detecting peach pit fragments wherein the peach half is presented in a "cup-up" orientation and wherein two relatively wide wavelength bands of light are utilized to reliably detect either the presence or absence of pit fragments.
Yet another object of the invention is to provide a peach pit fragment detector wherein pitted peach halves are oriented into a "cup-up" position and wherein the pit cavity is illuminated by a pair of spaced apart lights to minimize the presence of shadows in the cavity.
Another object of the invention is to provide a pit fragment detector wherein the optical path utilized by the detector remains inherently clear of debris, that is the optical path is designed to inherently avoid the unwanted presence in the path of juice or other debris.
Another object is to provide an inspection zone wherein the background is air; the peach halves are launched off the end of the conveyor into the inspection zone to avoid background signals otherwise created by a conveying mechanism. Other objects and advantages of the invention will become apparent from the following description and the drawings wherein:
Brief Description of the Drawings
Fig. 1 is a graphical representation showing the difference in relative reflectivity of peach pit fragments, peach flesh and peach skin; Fig. 2 is a schematic representation of the detection system of the present invention;
Fig. 3 is a top elevational view of a conveyor according to the present invention carrying peach halves toward the inspection station; Fig. 4 is a section on the line 4-4 of Fig. 3;
Fig. 5 is a side elevational view of peaches being launched off the end of the conveyor into the inspection zone;
Fig. 6 shows a portion of the conveying system which transports peach halves from a cup-up shaker to the three row conveyor; and
Fig. 7 shows in perspective and in greater detail a transition portion of the conveyor system.
Detailed Description of the Drawings
. Fig. 1 is a reflectance diagram wherein the relative reflection of an illuminating light beam is expressed as a percentage on the y or vertical axis. The horizontal or x axis shows the wavelength of the incident light in nanometers. Line 11 depicts the relative reflectance of the peach pit as a function of incident wavelength. Line 12 represents the reflec- tivity of the peach flesh as a function of wavelength and line 13 represents the reflectivity of the peach skin in the range of 400 to 800 nanometers. The graph of Fig. 1 shows approximate relative reflectance.
A fundamental principle of the present invention is to take the fullest possible advantage of the differential reflectivities of the peach pit or pit fragments versus relative reflectivity of the peach flesh or peach skin. A further important principle is to present as much light as possible to the imaging cameras. As described in greater detail below, two wavelength bands are utilized, the first being centered at 600 nm having a wavelength band of up to 100 nm extending from 550 to 650 nm. The second wavelength band is centered at 750 nm and has a bandwidth of 100 nm extending from 700 to 800 nm. A preferred pair of wavelength bands is a first band centered at 600 nm having a bandwidth of 70 nm and a second band centered at 750 nm having a bandwidth of 70 nm. Narrower bandwidths can be used according to the present invention but those narrower bandwidths allow considerably less light to pass through the filters used and into the imaging cameras.
Referring the Fig. 2, a single pitted peach half 15 is shown in a "cup-up" position wherein the pit cavity 16 is directed upwardly and wherein pitted peach half 15 is in an inspection station or zone represented by the dotted lines 17. The conveyor which carries the pitted peach half 15 is not shown in Fig. 2 for purposes of clarity.
Illumination means 20 comprises a pair of quartz halogen lights each of 1,500 watts shown as 21 and 22. Lights 21 and 22 are kept on continuously during operation of the system. Light 21 is upstream of the inspection station 17 and is mounted above inspection zone or station 17 and is aimed downwardly at approximately a 60° angle from the horizontal. Light 22 is mounted downstream of the inspection station 17, is mounted above the station or zone 17 and is oriented downwardly at an angle of approximately 60° from the horizontal. By spacing apart the light sources 21 and 22, as shown and described, shadows inside the pit cavity 16 are minimized and ample light is diffusely reflected off of the pitted peach half and upwardly along the optical path 30 to present sufficient light to the sensors. The optical path utilized in the present invention is inherently "clear" in that juice and debris do not interrupt the optical path. Light from the sources 21 and 22 is reflected off of the pitted peach half upwardly along optical path 30 through a lens system 32 and into a beam splitter 33. Beam splitter 33 may be a prism, filter wheel or other commercially available splitter. The beam splitter 33 separates the reflected light into a first beam 35 and a second beam 36.
First beam 35 enters a first filter means 40 which extracts a first wavelength band from the first beam. In the preferred embodiment, first filter means 40 allows a first wavelength band to pass through centered at 600 nm and having a bandwidth of 70 nm extending from 565 nm to 635 nm. Similarly, the second beam 36 passing out of beam splitter 33 enters a second filter means 41 which extracts a second wavelength band. In the preferred embodiment, the second wavelength band allowed to pass through the filter is centered at 750 nm and has a bandwidth of 70 nm extending from 715 nm to 785 nm. Wider wavelength bands up to about 100 nm centered at 600 nm and 750 nm will also perform, as well as narrower bandwidths down to 10 nm. According to the invention, both wavelength bands are filtered and imaged simultaneously and continuously during operation of the system.
The first wavelength band passing through the first filter means 40 enters a first line scan camera means 51 and the second wavelength band passing through filter means 41 enters a second line scan camera means 52. Both line scan camera means 51 and 52 are Dalsa line scan cameras model number CLC3-512 with lenses. Each of these cameras operates continuously and each camera has 512 pixels per line or two pixels per millimeter. Each pixel element creates a signal which is converted to a number between 0 and 255. We have found that by running three rows of pitted peach halves through the inspection station 17 simultaneously at a conveyor speed of 100 meters per minute, 45 peach halves per second are scanned and pit fragments as small as 2 mm2 can be reliably detected. If no pitted peach half is in the inspection station or zone, the line scan cameras are essentially coasting and will not generate a significant signal.
The output of line scan cameras 51 and 52 is fed into image acquisition circuitry 55 where the pixel voltages are converted to numerical values. These numerical values are then fed to computer 59 and combined to enhance the resultant output.
The first method of enhancing the signal is done by subtracting the second image signal from the first image signal, that is subtracting the signal from the higher wavelength light band from the shorter wavelength light band. The second method of combining the image signals is accomplished by obtaining a ratio of the two signals wherein the output signal from the wavelength band centered at 750 nm is the numerator in the ratio and the image signal from the first image signal or the waveband centered at 600 nm is the denominator in the ratio.
Figs. 3 and 4 show the conveyor means generally as 60 which comprises in the preferred embodiment a three row conveyor having longitudinal rows 61, 62 and 63. The transverse cross section of each of the rows is shown best in Fig. 4 and has a concave arcuate shape forming an elongated trough which extends longitudinally along the direction of travel of the conveyor means shown by arrow 69 in Fig. 3. In the preferred embodiment, the conveyor also has concave grooves formed on its lower surface shown as 61A, 62A and 63A. These concave grooves are supported by rollers not shown for clarity.
As shown best in Fig. 5, the inspection zone or station 17 is downstream of and adjacent the end 67 of conveyor means 60 and at approximately the same vertical height as the surface of conveyor means 60. Peach halves 15 are launched off the end of conveyor means 60 into the inspection zone 17. By having the peach halves "airborne" while passing through the inspection zone 17, we avoid the generation of background signals which might otherwise be caused by the surface of the conveyor as well as debris, such as juice or peach flesh particles or pit particles, that might otherwise adhere to the surface of conveyor means 60. The conveyor means 60 operates at a sufficiently high speed to launch the peach halves into the inspection zone and to deliver a sufficient quantity of peaches per second to justify the cost of the system. The lens system 32 cooperates with the line scan camera means 51 and 52 (not shown in Fig. 5) to limit the field of view of the line scan cameras 51 and 52 so that essentially the only source of signals presented to the cameras is the peach halves in the inspection zone 17; we have effectively removed any background source of spurious signals from the inspection zone. Although the present invention would operate with an inspection zone on the conveyor, it is preferable to launch the peach halves off the conveyor into the inspection zone. Figs. 6 and 7 show how the peaches are agitated into a cup-up position and how they are transported from the cup-up shaker to the three row conveyor means 60. As shown in Fig. 6, a commercially available cup-up shaker 70 is shown. This mechanism may be obtained from H.G. Molenaar, W.O. 9370, Paarl, South Africa. The shaker 70 uses an agitating bed to agitate the pitted peach halves until the heaviest side of the peach is oriented downwardly and the pit cavity is oriented upwardly.
A merging slide 75 having a generally triangular shape and downward slope receives the peaches from the output of the cup-up shaker and arranges the peaches into three rows for placement ultimately on the high speed conveyor means 60. The slide 75 receives 21 rows of peaches from the shaker 70 at its upper end 76 and merges those 21 output rows into three rows at its bottom portion 77.
An intermediate conveyor means 90 receives the peach halves from slide 75 and transports the peach halves to high speed conveyor means 60.
As shown best in Fig. 7, transition slides 81, 82 and 83 allow the cup-up peach halves to slide downwardly on their inclined surfaces onto the relatively high speed three row conveyor means 60.
It is understood that other types of conveyor mechanisms could be utilized in conjunction with the invention without departing from the spirit therefrom. It is also understood that various components of the invention disclosed and described herein may be modified without departing from the scope of the present invention.

Claims

WHAT IS CLAIMED IS:
1. A method of detecting the presence or absence of pit fragments in pitted peach halves comprising the steps: orienting pitted peach halves to a cup-up position on a conveyor, conveying said oriented pitted peach halves to an inspection station, illuminating each of said peach halves at said inspection station to generate diffusely reflected light from the surface of each peach half, separating said reflected light into first and second beams, filtering said first beam to extract a first wavelength band, filtering said second beam to extract a second wavelength band, acquiring first and second image signals of each peach half from said first and second wavelength bands, respectively, combining said image signals from said first and second wavelength bands, and using said combined image signals to determine the presence or absence of pit fragments in each of said peach halves .
2. The method of claim 1 wherein said first wavelength band is from 550 nm to 650 nm and wherein said second wavelength band is from 700 nm to 800 nm.
3. The method of claim 2 wherein the combining of said image signals is done by subtracting said second image signal from said first image signal.
4. The method of claim 2 wherein the combining of said image signals is done by obtaining a ratio of said two signals, wherein said second image signal is the numerator and said first image signal is the denominator.
5. The method of claim 1 wherein said first wavelength band is centered at approximately 600 nm and has a bandwidth of approximately 70 nm and said second wavelength band is centered at approximately 750 nm and has a bandwidth of approximately 70 nm.
6. The method of claim 1 comprising the further steps of : conveying said pitted peach halves to a position adjacent to said inspection station at a relatively high speed, and launching said peach halves from said conveyor so they pass airborne through said inspection station.
7. The method of claim 6 wherein said peach halves are conveyed to the position adjacent to said inspection station at a rate of approximately or at least 45 peach halves per second and wherein said peach halves are continuously illuminated in said illuminating step.
8. The method of claim 1 comprising the further step of simultaneously filtering said first beam and said second beam to extract said first and second wavelength bands.
9. The method of claim 1 wherein in said conveying step, said peach halves are conveyed to a position adjacent said inspection zone at a speed that is so high as to cause said peach halves to be launched from said conveyor and pass airborne through said inspection zone, and wherein after said illuminating step said method comprises the step of providing a lens means focused on said inspection zone for receiving and transmitting reflected light only off of said peach halves, wherein in said separating step reflected light transmitted by said lens means is separated into said first and second beams.
10. Apparatus for detecting the presence or absence of pit fragments in pitted peach halves as those pitted peach halves are passed through an inspection zone comprising: conveyor means for conveying pitted peach halves into said inspection zone, orienting means for orienting each of said pitted peach halves to a cup-up position prior to reaching said inspection zone, illumination means for directing light at each of said pitted peach halves at said inspection zone and generating diffusely reflected light from the surface of each pitted peach half, beam splitting means for separating said reflected light into first and second beams, first filter means for extracting a first wavelength band from said first beam, second filter means for extracting a second wavelength band from said second beam, first and second line scan camera means for acquiring first and second image signals from said first and second wavelength bands, respectively, and means for combining said first and second image signals to determine the presence or absence of pit fragments in each of said pitted peach halves.
11. The apparatus of claim 10 wherein said conveyor means has an upper surface formed in the shape of one or more concave troughs which extend longitudinally along the direction of travel of said conveyor means.
12. The apparatus of claim 10 wherein said illumination means comprises first and second lights, said first light mounted upstream of and above said inspection zone and oriented at approximately a 60┬░ angle from the horizontal, and said second light is mounted downstream of and above said inspection zone and oriented at approximately a 60┬░ angle from the horizontal .
13. The apparatus of claim 12 wherein each of said illumination means continuously illuminates pitted peach halves passing through said inspection zone.
14. The apparatus of claim 12 wherein said illumi- nation means provides a concentrated light beam extending through said inspection zone and adjacent to an end of said conveyor means.
15. The apparatus of claim 14 wherein said concen- trated light beam ranges in width from substantially two to three inches.
16. The apparatus of claim 10 wherein said first wavelength band is from 550 nm to 650 nm and wherein said second wavelength band is from 700 nm to 800 nm.
17. The apparatus of claim 10 wherein said first wavelength band is from 565 nm to 635 nm and wherein said second wavelength band is from 715 nm to 785 nm.
18. The apparatus of claim 10 wherein said conveyor means conveys said peach halves to a position adjacent to said inspection zone, said conveyor means conveying said peach halves at such a rate that said peach halves are launched from said conveyor means and pass airborne through said inspection zone in a plane parallel to said conveyor means.
19. The apparatus of claim 18 wherein said conveyor means comprises three separate rows capable of delivering three peach halves to said inspection zone simultaneously, wherein said conveyor means travels at 100 meters/minute, approximately 45 peach halves/sec. are presented to said inspection zone, and each of said line scan cameras has sufficient pixels to reliably detect pit fragments of 2 mm2 and larger.
20. The apparatus of claim 18 further comprising a lens system coupled to said beam splitting means, said lens system focused on said inspection zone to receive and transmit reflected light only off said peach halves to said beam splitting means.
21. The apparatus of claim 10 wherein said conveyor means is able to convey up to approximately or at least 45 pitted peach halves per second to the end of said conveyor means located adjacent said inspection zone, said conveyor means conveying said peach halves at such a rate that said peach halves are launched from the end of said conveyor means into said inspection zone and pass through said inspection zone airborne; said apparatus further comprising lens means focused on said inspection zone to receive and transmit light reflected only off of the surface of each of said peach halves, wherein said beam splitting means separates reflected light transmitted from said lens means into said first and second beams.
22. The apparatus of claim 10 wherein said conveyor means conveys said pitted peach halves at a rate of up to or at least 45 pitted peach halves per second and wherein said illumination means are continuous illumination means.
PCT/US1997/021631 1997-11-26 1997-11-26 Bichromatic method and apparatus for detecting peach pit fragments WO1999026735A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US1997/021631 WO1999026735A1 (en) 1997-11-26 1997-11-26 Bichromatic method and apparatus for detecting peach pit fragments
AU35866/99A AU3586699A (en) 1997-11-26 1997-11-26 Bichromatic method and apparatus for detecting peach pit fragments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1997/021631 WO1999026735A1 (en) 1997-11-26 1997-11-26 Bichromatic method and apparatus for detecting peach pit fragments

Publications (1)

Publication Number Publication Date
WO1999026735A1 true WO1999026735A1 (en) 1999-06-03

Family

ID=22262141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/021631 WO1999026735A1 (en) 1997-11-26 1997-11-26 Bichromatic method and apparatus for detecting peach pit fragments

Country Status (2)

Country Link
AU (1) AU3586699A (en)
WO (1) WO1999026735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20169904A1 (en) * 2016-01-11 2017-07-11 Biagio Crescenzo Process for pitting and re-pitting half-cut fruit, in particular peaches, and relative multi-line machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515273A (en) * 1967-08-11 1970-06-02 Fmc Corp Method for detecting object in translucent substance and device therefor
US4146135A (en) * 1977-10-11 1979-03-27 Fmc Corporation Spot defect detection apparatus and method
US4205752A (en) * 1977-07-13 1980-06-03 Tri/Valley Growers Color sorting of produce
US4901861A (en) * 1989-02-22 1990-02-20 Clayton Durand Manufacturing Company Asynchronous fruit sorter apparatus
US5077477A (en) * 1990-12-12 1991-12-31 Richard Stroman Method and apparatus for detecting pits in fruit
US5675419A (en) * 1991-10-01 1997-10-07 Van Den Bergh; Herman Scattered/transmitted light information system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3515273A (en) * 1967-08-11 1970-06-02 Fmc Corp Method for detecting object in translucent substance and device therefor
US4205752A (en) * 1977-07-13 1980-06-03 Tri/Valley Growers Color sorting of produce
US4146135A (en) * 1977-10-11 1979-03-27 Fmc Corporation Spot defect detection apparatus and method
US4901861A (en) * 1989-02-22 1990-02-20 Clayton Durand Manufacturing Company Asynchronous fruit sorter apparatus
US5077477A (en) * 1990-12-12 1991-12-31 Richard Stroman Method and apparatus for detecting pits in fruit
US5675419A (en) * 1991-10-01 1997-10-07 Van Den Bergh; Herman Scattered/transmitted light information system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20169904A1 (en) * 2016-01-11 2017-07-11 Biagio Crescenzo Process for pitting and re-pitting half-cut fruit, in particular peaches, and relative multi-line machine
WO2017122118A1 (en) * 2016-01-11 2017-07-20 Crescenzo Biagio Method for pitting and re-pitting fruit halves, and machine
US10455856B2 (en) 2016-01-11 2019-10-29 Biagio Crescenzo Method and machine for pitting and re-pitting fruit halves

Also Published As

Publication number Publication date
AU3586699A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US4630736A (en) Sorting machine utilizing an improved light detection system
EP1185854B1 (en) Inspection of matter
US5085510A (en) Pharmaceutical tablet vision inspection system
CN101061382B (en) Method and device for determining foreign matter or defect of multiple filled containers
US4723659A (en) Apparatus for detecting impurities in translucent bodies
JP5332268B2 (en) Optical rice grain sorter
US20080093538A1 (en) Machine for inspecting glass containers
EP2726221B1 (en) Inspection apparatus with alternate side illumination
US20080116358A1 (en) Machine for inspecting glass containers
US9156065B2 (en) Sorting and inspection apparatus and method with determination of product velocity
US20040247193A1 (en) Method and apparatus for article inspection
CN102253053A (en) Appearance inspection apparatus
US7541572B2 (en) Machine for inspecting rotating glass containers with light source triggered multiple times during camera exposure time
US6519356B1 (en) System and method for inspecting cans
US20150177157A1 (en) Article inspection apparatus
US5748324A (en) Bichromatic method and apparatus for detecting peach pit fragments
WO1999026735A1 (en) Bichromatic method and apparatus for detecting peach pit fragments
US9347892B2 (en) Optical inspection apparatus and optical sorting apparatus
GB2172699A (en) Apparatus and method for separating mixed products
GB2180060A (en) Agricultural product sorting
JPS6366445A (en) Visual inspecting device
JP2000346813A (en) Inspection device for surface of article
JPH0423745B2 (en)
EP1034048B1 (en) Arrangement and method for sorting granules
JP2002048727A (en) Laver visual inspection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase