WO1999024896A1 - Information processor - Google Patents

Information processor Download PDF

Info

Publication number
WO1999024896A1
WO1999024896A1 PCT/JP1998/004928 JP9804928W WO9924896A1 WO 1999024896 A1 WO1999024896 A1 WO 1999024896A1 JP 9804928 W JP9804928 W JP 9804928W WO 9924896 A1 WO9924896 A1 WO 9924896A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
information processing
microcomputer
terminal
pins
Prior art date
Application number
PCT/JP1998/004928
Other languages
French (fr)
Japanese (ja)
Inventor
Takanori Shimura
Takanobu Naruse
Atsushi Nakamura
Mitsuaki Katagiri
Kazuo Tanaka
Kunio Uchiyama
Original Assignee
Hitachi, Ltd.
Hitachi Ulsi Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Ulsi Systems Co., Ltd. filed Critical Hitachi, Ltd.
Priority to JP2000519828A priority Critical patent/JP3896250B2/en
Publication of WO1999024896A1 publication Critical patent/WO1999024896A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7828Architectures of general purpose stored program computers comprising a single central processing unit without memory
    • G06F15/7832Architectures of general purpose stored program computers comprising a single central processing unit without memory on one IC chip (single chip microprocessors)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10159Memory
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10522Adjacent components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10545Related components mounted on both sides of the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10689Leaded Integrated Circuit [IC] package, e.g. dual-in-line [DIL]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10734Ball grid array [BGA]; Bump grid array
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a control device to which a microcomputer (microcomputer) is applied, and more particularly, to a mounting device and a pin arrangement of a control device in a memory device, an image processing device, a portable information device, and a semiconductor control device such as a microcomputer and a logic LSI. .
  • a microcomputer microcomputer
  • the simultaneous switching noise of the output buffer When the output voltage of the output buffer of the semiconductor control device switches from high level to low level (or from low level to high level), the current flowing in the output buffer must be supplied from the external power supply of the chip. In this case, the current supplied from the outside Power / ground level inside the chip rises and falls between the power / ground inside the chip and the power ground Z on the printed circuit board to pass through the pins (bonding wire, lead frame) Generates a noise voltage. This is the switching noise of the output buffer. This causes the output pin or clock signal whose signal has not changed to appear as if it has changed, causing the circuit to malfunction.
  • the switching speed of the output buffer of a semiconductor control device such as a microcomputer was slowed down to, for example, about 15 nanoseconds, and the number of power / duland pins was output.
  • the problem was solved by preparing about one pin for every eight pins and mounting a large number of decoupling capacitors with low inductance on the printed circuit board.
  • An object of the present invention is to improve the pin arrangement of a logic LSI such as a microcomputer and a peripheral chip. To determine the layout of LSIs and memories on a printed circuit board, to facilitate wiring on the printed circuit board, and to provide a microcomputer control system that can transfer information over a high-speed external bus. is there.
  • the data transfer capacity required for an external bus to handle a large amount of image data is, for example, a high-speed bus of 100 MHz, a bus width of 64 bits, that is, 800 MHz / byte. High-speed transfer such as is required.
  • the output buffer switching speed cannot be slowed down.In a 100 MHz high-speed bus, one bus cycle is 10 ns, so the output buffer switching speed is 5 ns to 6 ns. And fast.
  • the number of power / ground pins is improved from one for eight output pins to one for four.
  • a second object of the present invention is to reduce the wiring length of the power supply / the ground in the package of the semiconductor control device and reduce the inductance so that the output buffer of the high-speed external bus whose bus clock is 100 MHz or more can be obtained. It is an object of the present invention to provide a semiconductor control device such as a microcomputer and a logic LSI that can reduce switching noise. Disclosure of the invention
  • the present invention provides a microcomputer control device including a microcomputer, a peripheral control semiconductor device, and a plurality of semiconductor memories, wherein a plurality of semiconductor memories are arranged between the microcomputer and the peripheral semiconductor device,
  • the pin arrangement of the microcomputer is such that a clock signal is output from the center of the side where the microcomputer and the semiconductor memory are closest to each other, an address signal is output from the left and right sides of the clock, and a control signal is output from the outside. It is proposed that the data bus be output from the side of the next closest memory device and semiconductor memory, and the wiring length of the clock, address bus, and control signal between the microcomputer and the memory be shortened.
  • the semiconductor memory arranged between the microcomputer and the peripheral control semiconductor device has the address bus inside (in the direction close to the line connecting the center of the microcomputer and the center of the peripheral semiconductor device) and the data bus outside and the horizontal. It is preferable to shorten the wiring length of the address bus.
  • the pin arrangement of the microcomputer and the peripheral control semiconductor device should be pin-symmetrical, and the peripheral control semiconductor device should be mounted on the back of the microcomputer to reduce the length of signal lines between the microcomputer and the peripheral control semiconductor device. It is also desirable to Furthermore, the microcomputer, peripheral control semiconductor device, and semiconductor memory can be integrated into one chip. As described above, according to the present invention, in a control system to which a microcomputer is applied, by realizing pin arrangement of signal lines necessary for controlling an external bus, wiring between the microcomputer and a memory and between the microcomputer and a peripheral chip are realized. This minimizes the number of wires and enables high-speed external bus data transfer.
  • a first semiconductor device having an arithmetic function and second and third semiconductor devices having a storage function when a first semiconductor device having an arithmetic function and second and third semiconductor devices having a storage function are provided, and an axis passing through the first semiconductor device is assumed to be a Y axis,
  • the second and third semiconductor devices are arranged so as to be line-symmetric with respect to the Y axis, and output a clock signal to a side of the first semiconductor device closer to the second and third semiconductor devices.
  • a clock signal terminal is provided, and a clock signal is supplied to the second and third semiconductor devices from the clock signal terminal.
  • the second and third semiconductor devices are preferably arranged along the X-axis direction.
  • the first semiconductor device may have address signal terminals on the left and right sides of the clock terminal, and the address signal terminal may supply the address signal to the second and third semiconductor devices.
  • the side where the clock signal terminal of the first semiconductor device is located is defined as the first side, and the sides on both sides of the first side are defined as the second and third sides.
  • the ratio of the number of data signal input / output terminals to the number of terminals arranged on each side is larger in the second or third side than in the first side. It is desirable to do. That is, the data signal is connected to the second and third sides as much as possible.
  • the second and third semiconductor devices have long sides in a direction parallel to the X axis, and a terminal to which an address signal is input on the long side is closer to the Y axis than a data signal input / output terminal.
  • the wiring length can be reduced.
  • the fourth semiconductor device has an address signal input terminal on the same side as the side where the clock signal input terminal is located, and the address signal from the first semiconductor device is input to the address signal input terminal. Further, when a side having a clock signal input terminal of the fourth semiconductor device is defined as a first side, and sides on both sides of the first side are defined as second and third sides, a terminal arranged on each side is provided. It is desirable that the ratio of the number of the data signal input / output terminals to the number of the first side is set to be larger in the second or third side than in the first side. The purpose is the same as that of the first semiconductor device.
  • the configurations of the first semiconductor device (for example, a microcomputer) and the fourth semiconductor device (for example, an arithmetic device that operates in cooperation with a microcomputer) suitable for the system proposed by the present invention are, for example, rectangular.
  • terminals for clock and address signals are arranged on one side, and input / output terminals for data signals are provided on the two sides on both sides. If the number of input / output terminals for data signals is large, some of them can be placed on the side where the terminals for clock and address signals are located.
  • the first and fourth semiconductor devices having such terminal arrangement are arranged such that the sides of the terminals related to clock and address signals face each other, and the clock, address, and data are connected, thereby achieving high-speed operation.
  • the wiring length of the clock address signal which has a large effect on Contributes to improved stem performance.
  • signal terminals that do not significantly affect high-speed performance such as low-speed memory and external interface circuits, can be connected.
  • fifth and sixth semiconductor devices having the same configuration as the second and third semiconductor devices are further provided, and the fifth and sixth semiconductor devices are replaced by Y.
  • the semiconductor devices are arranged so as to be line-symmetric with respect to the axis, and the fifth and sixth semiconductor devices have long sides in a direction parallel to the X-axis. Terminals can be arranged closer to the Y-axis than the data signal input / output terminals.
  • the fifth and sixth semiconductor devices are disposed on the same substrate surface as the substrate surface on which the second and third semiconductor devices are disposed, and are disposed between the first and fourth semiconductor devices. Have been. That is, these memory devices are located between the first and fourth semiconductor devices and arranged in a matrix.
  • the fifth and sixth semiconductor devices are arranged on a substrate surface opposite to the substrate surface on which the second and third semiconductor devices are arranged, and the second and third semiconductor devices are arranged with respect to the substrate. It is arranged so as to be plane-symmetric with the third semiconductor device.
  • the wiring length can be shorter than in the previous example, but the device thickness becomes thicker.
  • the second, third, fifth, and sixth semiconductor devices are semiconductor memories having a 16-bit data bus, for example, synchronous DRAM.
  • At least one of an emulator, a clock oscillator, an input / output port, a serial interface, and an interrupt circuit is provided as a peripheral module, and the first to the first semiconductor devices are provided. Terminals located on sides other than side 3 can be connected to peripheral modules. With these devices Does not require such a high speed.
  • a semiconductor memory of a type different from the second and third semiconductor devices is provided, and terminals arranged on sides other than the first to third sides of the first semiconductor device and the semiconductor memories are provided. You can also connect.
  • a semiconductor device for processing moving image data and other coprocessors can be considered.
  • an information processing apparatus including a microcomputer and two semiconductor memories arranged on a substrate, wherein the two semiconductor memories are arranged in a direction parallel to a first side of the microcomputer.
  • the memories are arranged side by side, and the microcomputer and the semiconductor memory are connected by a clock bus, an address bus, and a data bus, and the clock bus is connected to a terminal arranged on the first side of the microcomputer.
  • the proportion of the terminals connected to the data bus among the terminals arranged on the second side and the third side sandwiching the first side of the microcomputer is the data bus among the terminals arranged on the first side. It is desirable that the ratio be larger than the ratio of terminals connected to the terminal. It is also desirable that an address bus is connected to a terminal arranged on the first side of the microcomputer.
  • the long sides of the two semiconductor memories are parallel to the first side of the microcomputer, the address bus and the data bus are connected to the terminals arranged on the long sides, and the terminals near the opposite sides of the two semiconductor memories are connected. It is desirable that an address bus is connected to the server.
  • a clock bus be connected to a terminal on the long side of the two semiconductor memories between the terminal connected to the address bus and the terminal connected to the data bus.
  • the first data processing device having a rectangular parallelepiped shape
  • Two data processing devices multiple storage devices, and a board on which they are mounted. Assuming an X-axis and a Y-axis orthogonal to each other on the substrate surface, the first and second data processing devices are arranged on the Y-axis and a plurality of A storage device is arranged, a plurality of storage devices are arranged line-symmetrically with respect to the X axis, and first and second data processing devices are arranged with the plurality of storage devices interposed therebetween.
  • a wiring for supplying a clock signal is connected between opposing surfaces of the first data processing device and the second data processing device, and a plurality of storage devices are separately arranged on both sides of the wiring. ing.
  • a terminal on a surface on the right side of the Y axis of the first or second data processing device and a storage device on the right side of the Y axis among the storage devices are preferably connected by a data bus
  • the terminal on the left-hand side of the Y-axis of the second data processor and the storage device on the left-hand side of the Y-axis among the storage devices are connected by a data bus.
  • a first data processing device having a rectangular parallelepiped shape, a second data processing device, a plurality of storage devices, and an information processing device having a board on which the first and second data processing apparatuses are mounted.
  • the first and second data processing devices are arranged, and the input or output terminal of the first data processing device is arranged at a position facing the output or input terminal of the second data processing device.
  • the plurality of storage devices are disposed with the substrate surface interposed therebetween, and the clock input terminal, the address input terminal, and the data input terminal of the storage device are disposed at positions facing each other, thereby shortening the wiring length. It is especially effective.
  • the present invention can provide a system in which a plurality of chips or modules are arranged on a substrate and are connected to each other to operate at high speed.
  • a package with pins (solder balls) arranged in a two-dimensional array on the back of the package of the semiconductor control device has been developed.
  • power and ground are placed on the inner pins to minimize the distance from the bonding PAD of the chip in the package to the pins on the back of the package, and the power supply and ground in the package are connected.
  • the inductance of the ground By reducing the inductance of the ground, the switching noise of the output buffer of the semiconductor control device is reduced.
  • the ground is arranged on the innermost side and two rows from the inner side.
  • a power supply pin is placed in the eye to minimize the distance from the bonding pad of the chip in the package to the pin on the back side of the package. Output buffer switching ⁇ Noise is reduced.
  • a high-speed output buffer using an external bus is realized. Switching noise can be reduced, and high-speed data input / output can be achieved.
  • power / ground bins are placed on pins inside the package in this way. Pins on the outside of the package can be placed on the signal line, and if the mounting rule allows one signal line to pass between pins when the signal line is drawn out of the package, it can be placed on the printed circuit board. Since the signal lines can be drawn out without using through holes, the resistance due to through holes can be eliminated when implementing a high-speed bus.
  • the adjustment and routing of the impedance can be simplified, and the implementation of a high-speed external bus can be facilitated.
  • a typical example of the present invention is a semiconductor device having a semiconductor chip, a package containing the semiconductor chip, and a plurality of terminals arranged on the surface of the package.
  • a plurality of terminals of a first type for supplying power or ground to the chip, and a plurality of terminals of a second type for inputting signals to or outputting signals from the semiconductor chip;
  • the set A of the shortest distance between the outer edge of the semiconductor chip and the outer edge of each of the first type terminals is A1 to AN (where N is the number of the first type terminals),
  • the pins are arranged so that the wiring lengths of the power supply and the ground potential are preferentially reduced.
  • the terminals are arranged in a matrix on the plane having the largest area among the planes forming the outer shape of the package, and the plane having the largest area is a rectangle, usually a square.
  • the set AX of the shortest distance between the outer edge of this rectangular planar surface and the outer edge of each of the first type terminals is AX1 to AXN (where N is the number of the first type terminals).
  • the shortest distance BX between the outer edge of the plane and the outer edge of each of the above-mentioned second type terminals is BX1 to BXM (where M is the number of the second type terminals)
  • the signal pins are located closer to the outer edge of the terminal placement surface, and the power pins are located farther away.
  • a semiconductor chip a package containing the semiconductor chip
  • a semiconductor device having a plurality of terminals arranged in a matrix at equal intervals on the surface of a package, wherein the outermost terminal among the terminals arranged in the matrix is a first group, and a terminal in the first group is When the terminal located at the shortest distance is defined as the second group, and the terminal located at the shortest distance from the second group and not belonging to the first group is defined as the third group, the third group is obtained.
  • the ratio of terminals other than the signal input / output terminals in the first group is larger than that in the first group.
  • the ratio of terminals other than the signal input / output terminals in the third group is larger than that in the second group.
  • a terminal which is the shortest distance from the terminal of the third group and which does not belong to the second group is a fourth group
  • the ratio of terminals other than the signal input / output terminals in the fourth group is as follows. It is larger than that in the first group.
  • the power supply or ground pins are preferentially arranged for the inner two circuits that are arranged in a matrix over four circuits (either circular or rectangular). Then, the signal pins are arranged for the outer two rounds. In some cases, it is necessary to prepare a large number of signal pins, but in that case, signal pins may be appropriately set in the inner two turns.
  • first and second terminals for driving logic circuits formed in the semiconductor chip are used as terminals other than signal input / output terminals.
  • a terminal for supplying a potential is included.
  • the power supply may further include a terminal for supplying third and fourth potentials for driving a logic circuit formed in the semiconductor chip.
  • separate power supplies may be used for the internal logic circuit and the peripheral input / output circuit unit.
  • the arrangement of the power supply pins depends on the specific logic gate formed in the semiconductor chip. It is preferable that a pair of terminals for supplying the first and second potentials for driving the gate is divided into terminals belonging to the third and fourth groups. Also, terminals for supplying second and third potentials for driving a specific logic gate formed in the semiconductor chip are arranged separately in terminals belonging to the third and fourth groups. It is also desirable that In particular, it is preferable that the pair of the power supply and the ground potential be terminals arranged adjacently in the third and fourth groups.
  • the package is placed on the printed circuit board, wiring is drawn out from the terminals belonging to the first and second groups along the surface of the substrate, and the circuit board is drawn from the terminals belonging to the third and fourth groups. It is preferable that the wiring be drawn out through the through hole that penetrates, because the influence of noise on the power supply can be reduced.
  • the input / output terminal may transmit an input signal to be processed by a logic circuit formed in the semiconductor chip or an output signal processed by a logic circuit formed in the semiconductor chip.
  • a semiconductor chip a package including the semiconductor chip, and a semiconductor chip.
  • a semiconductor device comprising: a plurality of conductor pins arranged on a surface of a package; and a lead frame for electrically connecting a pad of the semiconductor chip and the conductor pins, wherein the plurality of pins are formed on the semiconductor chip.
  • a plurality of pins of the first kind for supplying at least two potentials for driving the active element, and a signal modulated by the active element of the semiconductor chip or modulated by the active element of the semiconductor chip Including a plurality of pins of the second type that output signals, the longest wiring between the first type of pins and the pad is the shortest of the wiring between the second type of pins and the pad It is characterized by not exceeding things.
  • a plurality of pins of the first type are arranged so as to surround an outer edge of the semiconductor chip, and a plurality of pins of the second type are It can be arranged to surround a plurality of pins of one type.
  • the package is placed on a printed circuit board, with most of the pins of the second type leading out of the wiring along the board surface and most of the pins of the first type leaving the board out of the pins. It is desirable that the wiring be drawn through a through hole that penetrates. Ideally, all pins of the first type should use through-holes to reduce wiring length, but in most cases (about 80% use of through-holes is also effective).
  • a pin arrangement of the microcomputer suitable for an external bus is provided to connect a logic LSI such as a microcomputer with an external memory or a peripheral chip. Necessary signal lines can be minimized, and data can be transferred via a high-speed external bus. This has a great effect when implementing amusement equipment and information equipment that require a high-speed bus.
  • the wiring between the chips is shortened, and the inductance of the wiring is reduced, so that it is effective in reducing electromagnetic interference noise.
  • a pin arrangement of a semiconductor control device such as a microcomputer logic LSI which is resistant to switching noise of an output buffer is provided, and noise due to a high-speed external bus is reduced.
  • the effect is great when realizing a mobile device, an image processing device, and an information device.
  • FIG. 1 is a plan view showing a configuration of a microcomputer control device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing a configuration of a microcomputer control device according to a second embodiment of the present invention.
  • FIG. 3 is a plan view showing a configuration of a microcomputer control device according to a third embodiment of the present invention.
  • FIG. 4 shows a configuration of a microcomputer control device according to a fourth embodiment of the present invention.
  • FIG. FIG. 5 is a plan view showing the connection between the microcomputer and the memory according to the present invention.
  • FIG. 6 is a table showing explanations of signal names of a memory.
  • FIG. 7 is a cross-sectional view of the mounting of the microcomputer and the peripheral chip of the present invention.
  • FIG. 1 is a plan view showing a configuration of a microcomputer control device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing a configuration of a microcomputer control device according to
  • FIG. 8 is a pin layout diagram of the BGA package of the present invention.
  • FIG. 9 is a table showing the description of the pins of the BGA and QFP packages of the present invention.
  • FIG. 10 is a table showing the pin descriptions of the BGA and QFP packages of the present invention.
  • FIG. 11 is a plan view of the left half of the pin arrangement diagram of the QFP package according to the embodiment of the present invention.
  • FIG. 12 is a plan view of the right half of the pin layout of the QFP package according to the embodiment of the present invention.
  • FIG. 13 is a plan view showing a configuration of a pin arrangement of a package of the semiconductor control device of the present invention.
  • FIG. 14 is a sectional view of the package A of FIG. 1 of the present invention.
  • FIG. 15 is a schematic diagram showing an example of mounting inside a package of the semiconductor control device of the present invention.
  • FIG. 16 is a plan view of another embodiment of the configuration of the pin arrangement of the package of the semiconductor control device of the present invention.
  • FIG. 17 is a sectional view of mounting the package of the present invention on a printed circuit board.
  • FIG. 18 is an enlarged plan view of a portion B in FIG. 1 of the present invention.
  • FIG. 19 is a plan view showing the configuration of a foot pattern for mounting the package of the present invention.
  • FIG. 1 shows a first embodiment of the present invention.
  • the semiconductor memories 20, 21, 22, and 23 are placed between the microcomputer 10 and the peripheral chip 30.
  • the Y axis Semiconductor memories 20 to 23 are arranged on both sides in line symmetry with respect to the Y axis.
  • Each semiconductor memory is placed horizontally with the address pins (ADR-A, ADR-B) inside and the data pins outside (D [0-15]). That is, each semiconductor memory is When the axis orthogonal to the Y axis is set to the X axis direction, the long sides are arranged in the X axis direction so that the address pins of each semiconductor memory are arranged closer to the ⁇ axis than the data pins. It has become so.
  • the semiconductor memory is described as an SDRAM (synchronous dynamic RAM) capable of realizing a synchronous high-speed data transfer, but may be another type of memory, for example, a synchronous SRAM, a normal SRAM, or a DRAM.
  • SDRAM synchronous dynamic RAM
  • the microcomputer 10 and the peripheral chip 30 are a 64-bit data bus.
  • the semiconductor memories 20, 21, 22, and 23 have a 16-bit data bus, and a 64-bit bus is realized by a 4-chip semiconductor memory.
  • the clock 104 is output from the center of the pin located on the lower side of the microcomputer 10 (the side closer to the memory), and the operation clock of the semiconductor memories 20, 21, 22, 23, and the peripheral chip 30 Used as That is, in the example of FIG. 1, the clock is routed from the microcomputer 10 to the peripheral chip along the Y-axis, branched right and left on the way, and supplied to the memories 20 to 23.
  • the address buses 105 and 106 are arranged and output on the left and right around the clock output of the microcomputer 10.
  • 105 is the lower bit (for example, AO to A6) of the address of the semiconductor memory
  • 106 is the upper bit (for example, A7 to A17) of the address of the semiconductor memory.
  • Control signals 107 (write strobe to right memory), 108 (write strobe to left memory), 109 (chip select, read / write switching signal, RAS strobe) And the CAS strobe) are output from the outside of the address of the microcomputer 10, and the control signal 109 common to the left and right semiconductor memories is output from the semiconductor memories 20, 21, 22, 22. 3 and output to peripheral chip 30.
  • the control signal 107 is output to the right semiconductor memories 21 and 23 and the peripheral chip 30.
  • the control signal 108 is output to the left semiconductor memories 20 and 22 and the peripheral chip 30. Is done.
  • Data buses 100, 101, 102, and 103 are overnight data buses in 16-bit units.
  • 100 is DO to D15
  • 101 is D16 to D31
  • 1 02 is from D32 to D47
  • 102 is from D48 to D63.
  • Each force is output from the left and right sides of the microcomputer 10 and connected to the semiconductor memories 20, 21, 22, 23 and the peripheral chip 30.
  • the load capacity of the output is heavy (when connected to four memories and one peripheral chip,
  • the load capacitance is 25 pF to 35 pF because each chip is 5 pF to 7 pF.)
  • the clock, address, and control signal pins are collected on the lower side of the microcomputer 10 and the semiconductor memory 20, 21, By arranging these signals horizontally so that the address buses 23 and 23 are located inside (in the direction near the line (Y axis) connecting the center of the microcomputer 10 and the center of the peripheral chip 30), these signals are The wires are routed so as to pass the shortest distance between the semiconductors 20, 21, 22, 23 and the peripheral chip 30.
  • the clock signal 104 has an operating frequency higher than that of other signal lines (usually twice or more), and it is necessary to take measures against wiring impedance matching and delay. Also control Regarding the signal 107 and the control signal 108, the control signal 107 connected to the semiconductor memories 21 and 23 on the right side is on the right, and the control signal 108 connected to the semiconductor memory on the left is on the left. So that the length of each wiring is short.
  • the data bus has a light load capacity (when connected to one memory and one peripheral chip, the load capacity is 5 pF to 7 pF for each chip, the load capacity is 10 pF to 14 pF). Since the delay time does not increase even if the wiring is slightly longer than the signal line, arrange them on the left and right of the microcomputer 10, connect to the semiconductor memories 20, 21, 22, 23 and reach the peripheral chip 30 So that Since the data bus is as wide as 64 bits, the data bus is divided into 32 bits and placed on the left and right sides.
  • Signals that do not require high-speed operation should be placed on the upper side of the microcomputer (the side farther from the memory) and connected to various interfaces and connectors. Thereby, a high-speed external bus can be realized.
  • FIG. 2 shows a second embodiment of the present invention.
  • the semiconductor memories 20 and 21 are arranged on the back surface of a printed circuit board.
  • the memory mounted on the back is indicated by the dotted line.
  • the wiring of the memory on the back surface is shown by a dotted line.
  • the semiconductor memories 20 and 21 are placed on the back of the semiconductor memories 22 and 23, so that the microcomputer 10 and the semiconductor memories 20 and 21 and the peripheral chips 3
  • the wiring of 0 can be further shortened. Wiring to the back surface can be easily achieved by providing wiring that penetrates the printed circuit board.
  • FIG. 3 shows a third embodiment of the present invention.
  • each of the semiconductor memories 40 and 41 is a 32-bit bus memory. 3
  • the load capacity of clock, address, and control signals can be reduced to 3 or less (when two memories and peripheral chip 1 are connected, Since the load capacitance can be reduced from 15 pF to 21 pF, the wiring delay on the printed board is reduced. Normally, it can send about 1 nanosecond / 10 pF, so using a 32-bit bus memory can improve wiring delay by about 0.5 nanosecond and realize a high-speed external bus system.
  • FIG. 4 shows a fourth embodiment of the present invention.
  • the peripheral chip 30 is pin-symmetrical to the microcomputer 10 and the peripheral chip 30 is arranged on the back surface of the microcomputer 10.
  • the peripheral chip 30 arranged on the back surface of the print substrate is indicated by a dotted line.
  • FIG. 7 shows a mounting example of pin symmetric mounting, which will be specifically described.
  • the microcomputer 10 and the peripheral chip 30 are both BGA (ball grid array).
  • the print substrate 200 is a four-layer substrate and includes a wiring layer, a ground layer, a power supply layer, and a wiring layer.
  • the pins of the microcomputer 10 and the peripheral chip 30 are signal pins 201 on the outside and the power supply pins 202 and ground pins 203 on the inside. Since the signal pin 201 is pin-symmetrical between the microcomputer 10 and the peripheral chip 30, each signal is connected via a through-hole in the printed circuit board.
  • the power supply pin 202 and the ground pin 203 are pin-symmetrical between the microcomputer 10 and the peripheral chip 30 so that they can be connected with through holes and at the same time can be connected to the inner power supply layer and the ground layer, respectively. Connecting.
  • the wiring between the microcomputer 10 and the peripheral chip 30 can be connected to the wiring layers of the printed circuit board by through holes, so that the wiring length is almost zero (the thickness of the printed circuit board). can do.
  • the peripheral module 70 connected to these signals is placed on the top side of the microcomputer (the side farthest from the memories 40 and 41). Specifically, emulator 71, clock oscillator 72, 10-port 73, serial interface 74, interrupt circuit 75, etc. These circuits are connected by control signal 110 (CTRL-D). Since the control signal 110 is a low-speed signal (about several tens of MHz), the wiring on the printed circuit board may be long, and the output buffer of the microcomputer 10 may be a low-speed buffer.
  • Address 111 is the upper pit of the address bus (A18-A25), and is used only for connection to SRAM or ROM with a relatively slow access time of 100 nanoseconds or more. Therefore, since there is no problem even if the wiring on the printed board becomes long, it can be arranged on the upper side of the microcomputer 10.
  • Fig. 8 shows an example of the pin arrangement of a microcomputer of a BGA (ball grid array).
  • Fig. 11 and Fig. 12 show the pin layout of QFP (flat package).
  • Fig. 11 is the left half and Fig. 12 is the right half.
  • This flat package is mounted on a lead frame, and these are mounted on a ball grid array.
  • the package is built-in.
  • the pins of the flat package and ball grid array package are connected by a lead frame.
  • FIGS. 9 and 10 are explanatory diagrams of the pins of the microcomputer shown in FIGS. 11 and 12.
  • the lower side is a signal line that shortens the wiring length between the semiconductor memory and the left and right sides are data buses.
  • Figure 5 shows an example of connection between the microcomputer 10 in a BGA package and semiconductor memory. This figure is an enlarged view of the connection between the microcomputer 10 and the memory 20 in FIG. SDRAM (synchronous dynamic RAM) is used as the memory.
  • SDRAM synchronous dynamic RAM
  • FIG. 6 is a diagram for explaining the pins of the SDRAM shown in FIG.
  • the SDRAM 20 is mounted horizontally with the address pins inside.
  • the wiring between the microcomputer 10 and the memory 20 will be described.
  • the clock 104 (CKI0) is prioritized.
  • address bus 105 (A3-A6), 106 (A7-A14) Connect.
  • A13 and A14 are connected through the back of the memory 20.
  • the control signal 1 08 has a different function depending on the memory to be connected. Connect to UDQM, LDQM of 0.
  • the LDQM wiring passes through the back of the memory 20.
  • CS2 # is connected to CS # (chip select) of memory 20 and RAS # is connected to RAS # of memory 20. Since RD # / CASS # / FRAME # has different functions depending on the connected memory, in the case of SDRAM, select CASS # function and connect to CAS # of memory 20. RD / WR # is connected to WE # of memory 20.
  • the data bus 100 connects the 16-bit data bus between the microcomputer 10 and the memory 20 one-to-one.
  • D8 and D15 are connected to the memory 20 via a wiring layer on the surface
  • DO-D7 is connected to the data pins of the memory through the back of the memory 20.
  • the wiring between the microcomputer 10 and the memory 20 can be minimized.
  • the number of through-holes is reduced, making it easier to adjust the wiring impedance and strengthening the power ground layer.
  • the other memories 21, 22 and 23 can be similarly connected in the shortest possible manner.
  • the present embodiment has been described with reference to the SDRAM, the present invention is also applicable to other high-speed memories.
  • each module of the microcomputer 10 the semiconductor memories 20, 21, 22, 23, and the peripheral chip 30 can be integrated into one chip. Also in this case, it is possible to realize high-speed operation wiring between modules by using the arrangement of the embodiment shown here.
  • the present invention relates to an amusement device, an image processing device, and a portable information device. It is not limited, and can be applied to household electrical appliances, information and communication equipment, and control devices.
  • FIG. 13 is a view of the package as viewed from the back.
  • An example of the package is a 256-pin BGA (ball grid array) package.
  • Pins 320 are arranged in 20 vertical rows and 20 horizontal rows.If all of them are mounted, they will have 400 pins.
  • the inner 144 pins are not mounted, and the outer four rows of pins are mounted. The outermost circumference is 20 vertical and 20 horizontal, the inside is 18 vertical and 18 horizontal, and the inner is 16 vertical 16 horizontal and the innermost mounted is 14 vertical and 14 horizontal. Individual.
  • the outer shape of the package is about 27 mm square.
  • FIG. 14 is a cross-sectional view of the package 310 at A in FIG. 13 to explain the internal configuration of the package 310. ,.
  • the logic LSI chip 70 and the read frame 90 are mounted inside the package 310, and the bonding PAD 71 and the read frame 90 created on the logic LSI chip 70 are Each pin is connected by a bonding wire 80.
  • the lead frame 90 and the pin 320 are connected by through holes for each pin.
  • the innermost pin 340 is located very close to the point of contact between the bonding wire 80 and the lead frame 90, so there is little inductance in the lead frame 90 and the wire bonding 80 You can only see the conductance.
  • the outer pin 21 is further away from the contact point between the wire bonding 80 and the lead frame 90 to the pin 21, the influence of the inductance of the lead frame 90 appears. Therefore, the innermost pin 340 has smaller inductance than the other pins. Suitable for use as a power supply Z ground pin.
  • FIG. 15 shows a schematic diagram of the inside of the package 310, which will be described in more detail.
  • the number of bonding pads 71 on the logic LSI chip 70 is 40 (10 on each side), and the total number of pins 320 is 40.
  • the inner side is composed of 5 rows, the outer side is 5 sides, and the inner side is 5 sides.
  • the logic LSI chip 70 operates with a two-power supply configuration of a power supply 51 for 10 and a power supply 50 for internal logic.
  • the internal logic power supply 50 has a lower voltage than the normal 10 power supply 51 in order to reduce the power consumption of the chip.
  • the logic LSI chip 70 includes an area 73 operated by the power supply 51 and an area 74 operated by the power supply 50 for the internal logic.
  • the 10 power supply operation area 73 mainly consists of a bonding pad 71, an input / output circuit, and a level conversion circuit 72 that converts the voltage level of the internal power supply to the voltage level of the 10 power supply. Control. However, when the power supply voltage for 10 and the power supply voltage for internal logic are the same, the level conversion circuit is not required.
  • the internal power supply operation area 74 contains the main functions of microcomputers and logic LSIs.
  • the configuration of the pins 320 on the package 310 and the lead frame 90 will be described.
  • the power and ground pins are assigned to the inner pins, and the signal lines are assigned to the outer pins.
  • the length of the bonding wire 80 connecting the bonding PAD 71 and the lead frame 90 on the logic LSI chip 70 is almost the same for both the signal pin and the power supply / ground bin.
  • Power / ground pin lead frame The wiring length is reduced to about 1/2 to 1733 of the wiring length of the outer signal line lead frame, and the inductance of the power / ground bin lead frame is reduced.
  • FIG. 16 illustrates the configuration of the pin arrangement of the 256 pins, which operates in a dual power supply configuration of 10 power supply 51 and internal logic power supply 50.
  • 10 power supplies are 3.3V and the internal power supply is 1.8V.
  • the internal logic power supply 50 shown by black pins in the figure
  • the internal logic ground 60 shown by black pins in the figure
  • the power supply 51 for 10 and the ground 61 for 10 Assign to the second row of pins from the inside.
  • the internal logic power supply 50 and ground 60 have nothing to do with the noise of the output buffer, so the number of pins is determined by the power consumption of the internal logic.
  • the power consumption of an LSI chip that can be mounted on a plastic package is about 1 to 1.5 bits.
  • the power supply 50 and ground 60 pins need less.
  • two internal power supplies 50 and two grounds 60 are assigned to each side.
  • the rest can be assigned to the power supply 51 for 10 and the ground 61 for 10.
  • FIG. 17 shows an embodiment in which the power supply / ground and the decapping capacitor 400 are mounted on the printed circuit board 110.
  • the ground pin is assigned to the innermost pin 340
  • the power supply pin is assigned to the second row of pins 340 from the inside.
  • the print substrate is a four-layer substrate, the first layer is a wiring layer, the second layer is a ground layer, the third layer is a power supply layer, and the fourth layer is a wiring layer.
  • the package on the back side of the package 3 10 is not mounted with the first layer 4 0 1 is the ground plane 4 0 1 on the printed circuit board 1 1 0, and the wiring length between this ground plane 4 0 1 and the ground bin Is the shortest.
  • the decoupling capacitor 400 mounted between the power supply pin and the ground bin can be mounted on the fourth layer with a through hole near the power supply pin and the ground bin, and can be mounted with the shortest wiring.
  • the wiring length of the power supply ground on the printed circuit board 110 can be minimized, and the chip coupling capacitor 400 can also be arranged at the shortest position. This makes it possible to suppress the switching noise of the output buffer.
  • FIG. 18 shows a configuration diagram of a pin arrangement in which a portion B in FIG. 13 is enlarged.
  • the size of the pin 320 is 0.75 mm, and the distance between the pins 320 is 1.27.
  • Fig. 19 shows the configuration of the printed circuit board when this package is mounted. Assuming that the size of the foot pattern 102 on the printed circuit board to be connected to the pin 320 by solder is 0.95 mm, the spacing between the foot patterns 102 is 0.3 mm.
  • the signal line 55 that can be drawn out by the above is one signal line having a wiring width of 0.1 mm and an interval between foot patterns of 0.1 mm. Since the signal lines are assigned to the outer two rows of pins, all the outermost and outermost signal lines can be pulled out of the chip. This allows the signal line to be drawn out of the package without using a through hole.
  • the printed circuit board on the back of the package does not require through-holes for signal lines, so that the through-holes can be used to reduce the area of the inner power ground plane ground plane, and the power ground plane can be strengthened. As a result, the signal line from the package 310 can be easily connected to an external chip or connector.
  • FIG. 8 shows an embodiment of the pin arrangement of the microcomputer.
  • FIG. 9 and FIG. 10 are tables for explaining the role of the signal pins of the microcomputer.
  • An example of this package is a BGA (Ball Grid Package). Inside The pins are assigned to place the power supply in the second row from the innermost ground.
  • the number of power supplies for 10 is 30, the number of grounds for 10 is 32, the number of power supplies for internal logic is 8, and the number of grounds for internal logic is 8.
  • the number of power supplies / grounds for 10 is one pair for four output signal lines.
  • the present invention can be applied not only to a BGA package but also to a PGA (Pingled Array) package and a CSP (Chip Size Package) in which a ball is similarly arranged on the back surface of a chip.
  • a semiconductor control device mounted on a package with two-dimensionally arranged pins on the array on the back of the package, power and ground are arranged on inner pins, and signal lines are arranged on outer pins.
  • a semiconductor control device comprising: a ground disposed on an innermost pin; and a power supply pin disposed on a second row of pins from the inner side.
  • a semiconductor control device that operates on two power supplies, a power supply for 10 and a power supply for internal logic, and has more power supplies and ground bins for 10 than for internal logic.
  • a semiconductor device comprising: a semiconductor chip; a package containing the semiconductor chip; and a plurality of terminals disposed on a surface of the package.
  • the terminals include a first plurality of terminals for supplying power or ground to the semiconductor chip, and a second plurality of terminals for inputting signals to or outputting signals from the semiconductor chip.
  • the set A of the shortest distance between the outer edge and the outer edge of each of the first type terminals is A 1 to AN (where N is the number of the first type terminals), and the outer edge of the semiconductor chip and the second type terminal
  • the set B of the shortest distance from each outer edge is B1 to BM (where M is the number of terminals of the second type)
  • the smallest set B is the largest set A and the largest set A A semiconductor device characterized by being the same or more.
  • the plurality of terminals are arranged in a matrix on a plane having the largest area among the planes forming the outer shape of the package, the plane having the largest area is rectangular, and the outer edge of the rectangular plane and the first type of terminal are arranged.
  • the set of the shortest distances from the outer edges AX is AX1 to AXN (where N is the number of terminals of the first type), and the shortest distance between the outer edge of the rectangular planar surface and the outer edges of the terminals of the second type is If the set of distances BX is BX1 to BXM (where M is the number of terminals of the second type), the largest of the set BX must be equal to or greater than the smallest of the set AX A semiconductor device characterized by the above-mentioned.
  • a semiconductor device comprising: a semiconductor chip; a package containing the semiconductor chip; and a plurality of terminals arranged in a matrix at equal intervals on the surface of the package, wherein the outermost terminal among the terminals arranged in a matrix is a first terminal.
  • the terminal that is the shortest distance from the terminal of the first group is the second group, and the terminal that is the shortest distance from the terminal of the second group and does not belong to the first group is the third group.
  • a semiconductor device wherein when grouped, the proportion of terminals other than the signal input / output terminals in the third group is larger than that in the first group.
  • the ratio of terminals other than signal input / output terminals in the third group A semiconductor device characterized by being larger than that of the group.
  • the ratio of terminals other than the signal input / output terminals in the fourth group is the first group.
  • a semiconductor device characterized in that the terminals other than the signal input / output terminals include terminals for supplying first and second potentials for driving a logic circuit formed in the semiconductor chip.
  • terminals other than the signal output terminal further include terminals for supplying third and fourth potentials for driving a logic circuit formed in the semiconductor chip.
  • Terminals for supplying first and second potentials for driving a specific logic gate formed in the semiconductor chip are divided into terminals belonging to third and fourth groups, and A semiconductor device.
  • Terminals for supplying the third and fourth potentials for driving specific logic gates formed in the semiconductor chip are arranged separately in terminals belonging to the third and fourth groups
  • a semiconductor device characterized by the above-mentioned The terminals separately arranged in the terminals belonging to the third and fourth groups are terminals arranged at the closest positions.
  • the semiconductor package is arranged on a printed circuit board. Wiring is drawn out from the terminals belonging to the first and second groups along the board surface, and wiring is drawn out from the terminals belonging to the third and fourth groups through through holes penetrating the board.
  • the signal input / output terminal is an input signal to be processed by a logic circuit formed in the semiconductor chip or a logic circuit formed in the semiconductor chip.
  • a semiconductor device comprising: a semiconductor chip; a package containing the semiconductor chip; a plurality of conductor pins arranged on a surface of the package; and a lead frame for electrically connecting the semiconductor chip pad and the conductor pin.
  • the plurality of pins receive a first type of pins for supplying at least two potentials for driving active elements formed on the semiconductor chip and a signal modulated by the active element of the semiconductor chip.
  • the semiconductor device includes a plurality of pins of a second type for outputting a signal modulated by an active element of a semiconductor chip, and the longest wiring length between the first type of pins and the pad is the second type of pins.
  • a semiconductor device characterized by not exceeding a minimum wiring length between pads. A semiconductor wherein the plurality of pins of the first type are arranged so as to surround the outer edge of the semiconductor chip, and the pins of the second type are arranged so as to surround the plurality of pins of the first type. apparatus.
  • the package is placed on a printed circuit board, and most of the pins of the second type lead out along the surface of the board, and most of the pins of the first type penetrate the board

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Dram (AREA)

Abstract

When a microcomputer and another arithmetic unit are connected to each other, semiconductor devices are so arranged and wired that clocks and address lines are provided at the shortest distances and memories are provided on both sides of the lines. The lines between the chips are short and data can be transferred via a high speed external bus. Moreover, since the inductances of the lines are small, it is also effective in reducing electromagnetic wave noise.

Description

明 細 書 情報処理装置 技術分野  Description Information processing equipment Technical field
本発明は、 マイクロコンピュータ (マイコン) を適用した制御装置で、 特にァミユーズメ ン卜機器、 画像処理装置、 携帯情報機器等における制 御装置およびマイコンゃ論理 LSI等の半導体制御装置の実装およびピン 配置に関する。 背景技術  The present invention relates to a control device to which a microcomputer (microcomputer) is applied, and more particularly, to a mounting device and a pin arrangement of a control device in a memory device, an image processing device, a portable information device, and a semiconductor control device such as a microcomputer and a logic LSI. . Background art
マイコン、 半導体メモリの高機能化、 高速化により、 従来数十 MHzで 動作していたプリ ント基板上の外部バスク口ックが、 数百 MHzに達しよ うとしている。 従来は、 外部バスク口ックが遅かったので、 プリ ント基 板上での配線は、 比較的長くても外部バスのシステム設計には大きな問 題になっていなかった。 しかし、 例えば、 100MHzのバスでは、 1バスサ ィクルが 10ナノ秒なので、 プリ ント基板上の配線遅延までも (例えば 1 ナノ秒 1 7 cm) 考慮して設計する必要が生じてきている。  With the sophistication and speed of microcontrollers and semiconductor memories, external bus terminals on printed circuit boards, which previously operated at tens of MHz, are approaching hundreds of MHz. In the past, external bus connections were slow, so wiring on the printed circuit board was not a major problem in external bus system design, even if it was relatively long. However, for example, in the case of a 100 MHz bus, one bus cycle is 10 nanoseconds, so it is necessary to take into account the wiring delay on the printed circuit board (for example, 1 nanosecond 17 cm).
このため、 マイコンのチップ設計においては、 プリ ン 卜基板上のチップ 配置と配線の引き回しが高速バス設計上の大きな課題となりつつある。 また、 高速外部バスを実現する上での問題の一つに、 出力バッファの 同時切り替えノイズがある。以下同時切り替えノイズに関して説明する。 半導体制御装置の出力バッファの出力電圧がハイレベルからローレべ ル (またはローレベルからハイレベル) に切り替わる際に、 出力バッフ ァに流れる電流を、 チップの外部電源から供給しなければならない。 こ の場合に、 外部から供給される電流は、 インダクタンスの大きいパッケ —ジのピン (ボンディ ングワイヤ、 リー ドフレーム) を通るため、 チッ プ内の電源/グランドレベルが上下して、 チップ内の電源/グランドと プリ ント基板上の電源 Zグラン ドの間に一時的にノイズ電圧が発生する。 これが、 出力バッファの切り替えノイズである。 これにより、 信号が変 化していない出力ピンやクロック信号があたかも変化したように見え、 回路が誤動作する原因になる。 For this reason, in the chip design of microcomputers, the arrangement of chips on a printed circuit board and the routing of wiring are becoming major issues in high-speed bus design. One of the problems in realizing a high-speed external bus is the simultaneous switching noise of the output buffer. Hereinafter, the simultaneous switching noise will be described. When the output voltage of the output buffer of the semiconductor control device switches from high level to low level (or from low level to high level), the current flowing in the output buffer must be supplied from the external power supply of the chip. In this case, the current supplied from the outside Power / ground level inside the chip rises and falls between the power / ground inside the chip and the power ground Z on the printed circuit board to pass through the pins (bonding wire, lead frame) Generates a noise voltage. This is the switching noise of the output buffer. This causes the output pin or clock signal whose signal has not changed to appear as if it has changed, causing the circuit to malfunction.
この切り替えノイズを少なくするためには、  To reduce this switching noise,
( 1 ) 同時に切り替わる出力バッファの数を少なくする。  (1) Reduce the number of output buffers that switch simultaneously.
( 2 ) 出力バッファの切り替えスピー ドを遅くする。  (2) Slow down the output buffer switching speed.
( 3 ) 電源ズグランドビンの本数を多くする。  (3) Increase the number of power supply ground bins.
( 4 ) 電源ダグランドのピンの長さを短くする。  (4) Reduce the length of the power ground pin.
( 5 ) プリ ント基板上にィンダク夕ンスの少ないデカップリ ングコンデ ンサを沢山実装する。  (5) Mount a large number of decoupling capacitors with low inductance on the printed circuit board.
( 6 ) 出力ピンの負荷容量、 配線容量を少なくする。  (6) Reduce the load capacitance and wiring capacitance of the output pins.
等の対策が考えられる。 Countermeasures such as are conceivable.
従来は、 外部バスクロックが 3 0 MHz程度と遅かったので、 マイコン 等の半導体制御装置の出力バッファの切り替えスピ一 ドを、 例えば 1 5 ナノ秒程度と遅く し、 電源/ダランドのピン数を出力ピン 8本に 1本程 度用意し、 プリ ント基板上にィンダクタンスの少ないデカップリ ングコ ンデンサを沢山実装することにより、 対処できていた。  In the past, since the external bus clock was as slow as about 30 MHz, the switching speed of the output buffer of a semiconductor control device such as a microcomputer was slowed down to, for example, about 15 nanoseconds, and the number of power / duland pins was output. The problem was solved by preparing about one pin for every eight pins and mounting a large number of decoupling capacitors with low inductance on the printed circuit board.
従来のマイコン装置では、 外部に実装する半導体メモリや周辺チップ を考慮することなく、 マイコンゃ周辺チップのピン配置を決めていたの で、 プリ ント基板設計する場合に信号線の引き回しに苦労していた。 場 合によっては、 信号線が長くなり過ぎ、 高速な外部バスでのデータ転送 ができなかったりもした。  In conventional microcontrollers, the pin arrangement of microcontrollers and peripheral chips was determined without considering the externally mounted semiconductor memory and peripheral chips.Therefore, when designing a printed circuit board, it was difficult to route the signal lines. Was. In some cases, the signal lines were too long, making it impossible to transfer data over a high-speed external bus.
本発明の目的は、 マイコンゃ周辺チップ等の論理 LSIのピン配置をプ リ ン卜基板上の LSIやメモリの配置を考慮して決め、 プリ ン ト基板上で の配線の引き回しを容易にし、 高速外部バスでの情報転送が可能なマイ コン制御システムを提供することにある。 An object of the present invention is to improve the pin arrangement of a logic LSI such as a microcomputer and a peripheral chip. To determine the layout of LSIs and memories on a printed circuit board, to facilitate wiring on the printed circuit board, and to provide a microcomputer control system that can transfer information over a high-speed external bus. is there.
また、 最近のマルチメディア用のシステムでは、 大量の画像データを 扱うために外部バスに要求されるデータ転送能力は、 例えば、 100MHzの 高速バスで、 バス幅 6 4 ビッ ト、 すなわち 800MHz/バイ ト等の高速転送 を要求されるようになっている。  In recent multimedia systems, the data transfer capacity required for an external bus to handle a large amount of image data is, for example, a high-speed bus of 100 MHz, a bus width of 64 bits, that is, 800 MHz / byte. High-speed transfer such as is required.
このため、 ( 1 ) については、 同時に切り替わる出力バッファの数を 少なくすることはできず、 逆に、 従来の 3 2 ビッ 卜バスから 6 4バスに 増えてしまっている。  Therefore, for (1), the number of output buffers that switch simultaneously cannot be reduced, and conversely, the conventional 32 bit bus has increased to 64 buses.
( 2 ) については、 出力バッファの切り替えスピー ドを遅くすること はできず、 100MHzの高速バスでは、 1バスサイクルが 10ナノ秒なので、 出カバッファの切り替えスピ一 ドを 5ナノ秒から 6ナノ秒と高速にしな ければならない。  Regarding (2), the output buffer switching speed cannot be slowed down.In a 100 MHz high-speed bus, one bus cycle is 10 ns, so the output buffer switching speed is 5 ns to 6 ns. And fast.
( 3 ) については、 電源/グランドのピン数を出力ピン 8本に 1本か ら 4本に 1本程度に改善する。  For (3), the number of power / ground pins is improved from one for eight output pins to one for four.
( 4 ) に関しては、 プリ ント基板上の電源 Zグランドのピンの長さを 短くするようにする。  Regarding (4), shorten the length of the power Z ground pin on the printed circuit board.
( 5 ) に関しては、 従来通りプリ ント基板上にィンダクタンスの少な ぃデカップリ ングコンデンサを沢山実装する。  Regarding (5), many ぃ decoupling capacitors with low inductance are mounted on the printed circuit board as before.
( 6 ) に関しては、 プリ ント基板実装時に考慮して、 プリ ント基板上 の出力ピンの負荷容量、配線容量を少なくする等の対策を行なっている。  With regard to (6), measures are taken to reduce the load capacitance and wiring capacitance of the output pins on the printed board, taking into account the mounting of the printed board.
しかし、 従来は上記 (4 ) に関して、 プリ ント基板上の電源ダグラン ドのピンの長さを短くするようにする対策は行なっているが、 パッケ一 ジ内部の電源/グランドビンを短く し、 ィンダクタンスを下げるという 対策はされていなかった。 本発明の第 2の目的は、 半導体制御装置のパッケージ内の電源/ダラ ンドの配線長を短く し、 ィンダンクタンスを下げることにより、 バスク ロックが 1 0 0 MHz以上の高速外部バスでの出力バッファの切り替えノ ィズの低減が可能なマイコンゃ論理 LSI等の半導体制御装置を提供する ことにある。 発明の開示 However, in the past, with regard to (4) above, measures were taken to reduce the length of the power supply ground pins on the printed circuit board, but the power supply / ground bins inside the package were shortened, and No measures were taken to lower the conductance. A second object of the present invention is to reduce the wiring length of the power supply / the ground in the package of the semiconductor control device and reduce the inductance so that the output buffer of the high-speed external bus whose bus clock is 100 MHz or more can be obtained. It is an object of the present invention to provide a semiconductor control device such as a microcomputer and a logic LSI that can reduce switching noise. Disclosure of the invention
(解決手段)  (Solution)
上記課題を解決するために、 本発明はマイコンと周辺制御半導体装置 と複数の半導体メモリ とから構成されるマイコン制御装置において、 マ ィコンと周辺半導体装置との間に複数の半導体メモリを配置し、 マイコ ンのピン配置は、 マイコンと半導体メモリ との位置が最も近い辺の中心 からクロック信号を出力し、 そのクロックの左右からァドレス信号を出 力し、 そのさらに外側から制御信号を出力し、 マイコンと半導体メモリ との位置が次に近い辺からデータバスを出力するようにし、 マイコンと メモリ間のクロック、 アドレスバス、 制御信号の配線長を短くすること を提案する。  In order to solve the above problems, the present invention provides a microcomputer control device including a microcomputer, a peripheral control semiconductor device, and a plurality of semiconductor memories, wherein a plurality of semiconductor memories are arranged between the microcomputer and the peripheral semiconductor device, The pin arrangement of the microcomputer is such that a clock signal is output from the center of the side where the microcomputer and the semiconductor memory are closest to each other, an address signal is output from the left and right sides of the clock, and a control signal is output from the outside. It is proposed that the data bus be output from the side of the next closest memory device and semiconductor memory, and the wiring length of the clock, address bus, and control signal between the microcomputer and the memory be shortened.
また、 マイコンと周辺制御半導体装置との間に配置された半導体メモ リがァドレスバスを内側 (マイコンの中心と周辺半導体装置の中心を結 んだ線に近い方向) にし、 データバスを外側にして横置きに配置され、 ァドレスバスの配線長を短くすることが好ましい。  In addition, the semiconductor memory arranged between the microcomputer and the peripheral control semiconductor device has the address bus inside (in the direction close to the line connecting the center of the microcomputer and the center of the peripheral semiconductor device) and the data bus outside and the horizontal. It is preferable to shorten the wiring length of the address bus.
さらに、 マイコンと周辺制御半導体装置とのピン配置がピン対称にな るようにし、 周辺制御半導体装置をマイコンの裏面に実装して、 マイコ ンと周辺制御半導体装置間の信号線の配線長を短くすることも望ましい。 さらに、 マイコンと周辺制御半導体装置と半導体メモリを 1チップに することもできる。 このように、 本発明によれば、 マイコンを適用した制御システムにお いて、外部バスの制御に必要な信号線のピン配置を実現することにより、 マイコンとメモリ間の配線およびマイコンと周辺チップ間の配線を最短 にし、 高速外部バスによるデータ転送を可能にすることができる。 In addition, the pin arrangement of the microcomputer and the peripheral control semiconductor device should be pin-symmetrical, and the peripheral control semiconductor device should be mounted on the back of the microcomputer to reduce the length of signal lines between the microcomputer and the peripheral control semiconductor device. It is also desirable to Furthermore, the microcomputer, peripheral control semiconductor device, and semiconductor memory can be integrated into one chip. As described above, according to the present invention, in a control system to which a microcomputer is applied, by realizing pin arrangement of signal lines necessary for controlling an external bus, wiring between the microcomputer and a memory and between the microcomputer and a peripheral chip are realized. This minimizes the number of wires and enables high-speed external bus data transfer.
本発明のある態様では、 演算機能を備える第 1の半導体装置と、 記憶 機能を備える第 2および第 3の半導体装置とを有し、 第 1の半導体装置 を通る軸を Y軸と想定したときに、 第 2および第 3の半導体装置が Y軸 に対して線対称の配置になるように配置され、 第 1の半導体装置の第 2 および第 3の半導体装置に近い辺にクロック信号を出力するクロック信 号端子を有し、 クロック信号端子からクロック信号が第 2および第 3の 半導体装置に供給されている。  In one embodiment of the present invention, when a first semiconductor device having an arithmetic function and second and third semiconductor devices having a storage function are provided, and an axis passing through the first semiconductor device is assumed to be a Y axis, The second and third semiconductor devices are arranged so as to be line-symmetric with respect to the Y axis, and output a clock signal to a side of the first semiconductor device closer to the second and third semiconductor devices. A clock signal terminal is provided, and a clock signal is supplied to the second and third semiconductor devices from the clock signal terminal.
また、 Y軸に直交する X軸を想定したときに、 第 2および第 3の半導 体装置は X軸の方向に沿って並んでいることが好ましい。 また、 Y軸の 上に、 演算機能を備える第 4の半導体装置を有し、 第 4の半導体装置と 第 1の半導体装置との間に第 2および第 3の半導体装置が配置され、 第 1の半導体装置から供給されるクロック信号が、 第 4の半導体装置の上 記第 2および第 3の半導体装置に近い辺のクロック入力端子に入力され ていることが望ましい。 そして、 クロック信号を伝達する配線が、 第 2 および第 3の半導体装置の間を通っていることが望ましい。 このような 配置構成により、ク口ック信号が最短距離を通ってかく装置に供給され、 高速かつ安定な動作が可能となる。  Further, when assuming an X-axis orthogonal to the Y-axis, the second and third semiconductor devices are preferably arranged along the X-axis direction. A fourth semiconductor device having an arithmetic function provided on the Y-axis; second and third semiconductor devices are arranged between the fourth semiconductor device and the first semiconductor device; It is preferable that the clock signal supplied from the semiconductor device is input to the clock input terminal on the side near the second and third semiconductor devices of the fourth semiconductor device. Further, it is desirable that the wiring for transmitting the clock signal passes between the second and third semiconductor devices. With such an arrangement, a quick signal is supplied to the device through the shortest distance, and high-speed and stable operation is possible.
ァドレス信号に関しては、 第 1の半導体装置のクロック端子の左右に ァドレス信号端子を有し、 ァドレス信号端子からァドレス信号が第 2お よび第 3の半導体装置に供給されるように構成できる。  Regarding the address signal, the first semiconductor device may have address signal terminals on the left and right sides of the clock terminal, and the address signal terminal may supply the address signal to the second and third semiconductor devices.
データ信号に関しては、 第 1の半導体装置のクロック信号端子のある 辺を第 1の辺とし、 この第 1の辺の両側の辺を第 2および第 3の辺とし たときに、 各辺に配置される端子の数に対するデータ信号入出力端子の 数の割合を、 第 1の辺における割合よりも、 第 2または第 3の辺におけ る割合の方が大きく設定することが望ましい。 すなわち、 データ信号は なるべく第 2および第 3の辺に接続される。 Regarding the data signal, the side where the clock signal terminal of the first semiconductor device is located is defined as the first side, and the sides on both sides of the first side are defined as the second and third sides. The ratio of the number of data signal input / output terminals to the number of terminals arranged on each side is larger in the second or third side than in the first side. It is desirable to do. That is, the data signal is connected to the second and third sides as much as possible.
第 2および第 3の半導体装置は X軸に平行な方向に長辺を有しており、 長辺においてァドレス信号の入力される端子は、 データ信号入出力端子 よりも Y軸に近く配置され、 配線長を短くすることができる。  The second and third semiconductor devices have long sides in a direction parallel to the X axis, and a terminal to which an address signal is input on the long side is closer to the Y axis than a data signal input / output terminal. The wiring length can be reduced.
第 4の半導体装置に関しては、 そのクロック信号入力端子のある辺と 同じ辺にァドレス信号入力端子を有し、 ァドレス信号入力端子に記第 1 の半導体装置からのアドレス信号を入力することが望ましい。 また、 第 4の半導体装置のクロック信号入力端子のある辺を第 1の辺とし、 第 1 の辺の両側の辺を第 2および第 3の辺としたときに、 各辺に配置される 端子の数に対するデータ信号入出力端子の数の割合は、 第 1の辺におけ る割合よりも、 第 2または第 3の辺における割合の方が大きく設定する ことが望ましい。 第 1の半導体装置の場合と同様の趣旨である。  Regarding the fourth semiconductor device, it is desirable that the fourth semiconductor device has an address signal input terminal on the same side as the side where the clock signal input terminal is located, and the address signal from the first semiconductor device is input to the address signal input terminal. Further, when a side having a clock signal input terminal of the fourth semiconductor device is defined as a first side, and sides on both sides of the first side are defined as second and third sides, a terminal arranged on each side is provided. It is desirable that the ratio of the number of the data signal input / output terminals to the number of the first side is set to be larger in the second or third side than in the first side. The purpose is the same as that of the first semiconductor device.
このように、本発明が提案するシステムに好適な第 1の半導体装置(例 えばマイコン) および、 第 4の半導体装置 (例えばマイコンと共同して 動作する演算装置)の構成は、例えば、矩形状の外形を有している場合、 一辺にクロックおよびァドレス信号に関する端子を配置し、 その両側の 2辺にデータ信号の入出力端子を設ける。 データ信号の入出力端子の数 が多い場合には、 その一部をクロックおよびァドレス信号に関する端子 のある辺に配置することもできる。  As described above, the configurations of the first semiconductor device (for example, a microcomputer) and the fourth semiconductor device (for example, an arithmetic device that operates in cooperation with a microcomputer) suitable for the system proposed by the present invention are, for example, rectangular. In this case, terminals for clock and address signals are arranged on one side, and input / output terminals for data signals are provided on the two sides on both sides. If the number of input / output terminals for data signals is large, some of them can be placed on the side where the terminals for clock and address signals are located.
このような端子の配置を有する第 1及び第 4の半導体装置を、 クロッ クおよびァドレス信号に関する端子のある辺どう しが向かい合うように 配置し、 クロック、 アドレス、 データを結線することで、 高速動作に影 響の大きいクロックゃァドレス信号の配線長を短くすることができ、 シ ステ厶性能の向上に寄与する。 ク口ックおよびァドレス信号に関する端 子のある辺と反対側の辺には、 高速性能にさほど影響しない信号端子、 たとえば、 低速のメモリや、 外部インタ一フェイス回路を接続すること ができる。 The first and fourth semiconductor devices having such terminal arrangement are arranged such that the sides of the terminals related to clock and address signals face each other, and the clock, address, and data are connected, thereby achieving high-speed operation. The wiring length of the clock address signal, which has a large effect on Contributes to improved stem performance. On the side opposite to the side with the terminal for the clip and address signals, signal terminals that do not significantly affect high-speed performance, such as low-speed memory and external interface circuits, can be connected.
高速な記憶装置の容量を増加したい場合には、 第 2および第 3の半導 体装置と同様の構成の第 5および第 6の半導体装置をさらに設け、 第 5 および第 6の半導体装置を Y軸に対して線対称の配置になるように配置 し、 かつ、 第 5および第 6の半導体装置は X軸に平行な方向に長辺を有 しており、 この長辺においてアドレス信号の入力される端子は、 データ 信号入出力端子よりも Y軸に近く配置することもできる。  If it is desired to increase the capacity of a high-speed storage device, fifth and sixth semiconductor devices having the same configuration as the second and third semiconductor devices are further provided, and the fifth and sixth semiconductor devices are replaced by Y. The semiconductor devices are arranged so as to be line-symmetric with respect to the axis, and the fifth and sixth semiconductor devices have long sides in a direction parallel to the X-axis. Terminals can be arranged closer to the Y-axis than the data signal input / output terminals.
例えば、 第 5および第 6の半導体装置は、 第 2および第 3の半導体装 置が配置される基板面と同一の基板面に配置され、 かつ、 第 1および第 4の半導体装置の間に配置されている。 すなわち、 これらのメモリ装置 は第 1および第 4の半導体装置の間にあり、 マトリ ックス状に配置され る。  For example, the fifth and sixth semiconductor devices are disposed on the same substrate surface as the substrate surface on which the second and third semiconductor devices are disposed, and are disposed between the first and fourth semiconductor devices. Have been. That is, these memory devices are located between the first and fourth semiconductor devices and arranged in a matrix.
他の例では、 第 5および第 6の半導体装置は、 第 2および第 3の半導 体装置が配置される基板面と反対の基板面に配置され、 かつ、 基板に対 して第 2および第 3の半導体装置と面対称になるように配置されている。 この例は前の例よりも配線長が短くできるが、 装置厚さが厚くなる。 典型的な例では、 第 2、 第 3、 第 5、 第 6の半導体装置は、 1 6ビッ トのデータバスを有する半導体メモリ、 例えばシンクロナス D R A Mで ある。  In another example, the fifth and sixth semiconductor devices are arranged on a substrate surface opposite to the substrate surface on which the second and third semiconductor devices are arranged, and the second and third semiconductor devices are arranged with respect to the substrate. It is arranged so as to be plane-symmetric with the third semiconductor device. In this example, the wiring length can be shorter than in the previous example, but the device thickness becomes thicker. In a typical example, the second, third, fifth, and sixth semiconductor devices are semiconductor memories having a 16-bit data bus, for example, synchronous DRAM.
また、 エミュレー夕、 ク口ック発振回路、 入出力ポ一ト、 シリァルイ ンターフェイス、 および割込回路のうちの少なく とも一種を周辺モジュ —ルとして備え、 第 1の半導体装置の第 1から第 3の辺以外の辺に配置 される端子と周辺モジュールを接続することができる。 これらの装置で はそれほどの高速性を要求しないためである。 また、 第 2および第 3の 半導体装置とは異なる種類の半導体メモリを備え、 前記第 1の半導体装 置の第 1から第 3の辺以外の辺に配置される端子とそれらの半導体メモ リを接続することもできる。 Also, at least one of an emulator, a clock oscillator, an input / output port, a serial interface, and an interrupt circuit is provided as a peripheral module, and the first to the first semiconductor devices are provided. Terminals located on sides other than side 3 can be connected to peripheral modules. With these devices Does not require such a high speed. In addition, a semiconductor memory of a type different from the second and third semiconductor devices is provided, and terminals arranged on sides other than the first to third sides of the first semiconductor device and the semiconductor memories are provided. You can also connect.
第 4の半導体装置としては、 動画像データ処理用の半導体装置、 その 他のコプロセッサが考えられる。  As the fourth semiconductor device, a semiconductor device for processing moving image data and other coprocessors can be considered.
また、 他の発明の態様では、 マイクロコンピュータと 2つの半導体メ モリを基板上に配置して構成した情報処理装置であって、 マイクロコン ピュー夕の第 1の辺に平行な方向に 2つの半導体メモリが並べて配置さ れ、 マイクロコンピュータと半導体メモリの間はクロックバス、 ァドレ スバス、 データバスで接続され、 マイクロコンピュータの第 1の辺に配 置された端子にクロックバスが接続されている。  According to another aspect of the present invention, there is provided an information processing apparatus including a microcomputer and two semiconductor memories arranged on a substrate, wherein the two semiconductor memories are arranged in a direction parallel to a first side of the microcomputer. The memories are arranged side by side, and the microcomputer and the semiconductor memory are connected by a clock bus, an address bus, and a data bus, and the clock bus is connected to a terminal arranged on the first side of the microcomputer.
マイクロコンピュータの第 1の辺を挟む第 2の辺と第 3の辺に配置さ れた端子のうちデータバスに接続される端子の割合は、 第 1の辺に配置 された端子のうちデータバスに接続される端子の割合よりも大きいこと が望ましい。 また、 マイクロコンピュータの第 1の辺に配置された端子 にァドレスバスが接続されていることも望ましい。  The proportion of the terminals connected to the data bus among the terminals arranged on the second side and the third side sandwiching the first side of the microcomputer is the data bus among the terminals arranged on the first side. It is desirable that the ratio be larger than the ratio of terminals connected to the terminal. It is also desirable that an address bus is connected to a terminal arranged on the first side of the microcomputer.
このとき、 2つの半導体メモリの長辺がマイクロコンピュータの第 1 の辺に平行であり、 長辺に配置された端子にァドレスバスとデータバス が接続され、 2つの半導体メモリの対向する辺に近い端子にアドレスバ スが接続されていることが望ましい。  At this time, the long sides of the two semiconductor memories are parallel to the first side of the microcomputer, the address bus and the data bus are connected to the terminals arranged on the long sides, and the terminals near the opposite sides of the two semiconductor memories are connected. It is desirable that an address bus is connected to the server.
さらに 2つの半導体メモリの長辺の、 ァドレスバスが接続された端子 とデータバスが接続された端子の間の端子に、 クロックバスが接続され ていることも望ましい。  It is also desirable that a clock bus be connected to a terminal on the long side of the two semiconductor memories between the terminal connected to the address bus and the terminal connected to the data bus.
さらに他の態様では、 直方体形状を有する第 1のデータ処理装置、 第 In still another aspect, the first data processing device having a rectangular parallelepiped shape,
2のデータ処理装置、 複数の記憶装置、 およびこれらを搭載する基板を 有する情報処理装置であって、 基板面上に互いに直交する X軸と Y軸を 想定した場合、 Y軸上に第 1および第 2のデータ処理装置が配置され、 Y軸に線対称に複数の記憶装置が配置され、 かつ、 X軸に線対称に複数 の記憶装置が配置され、 かつ、 複数の記憶装置を挟んで第 1および第 2 のデータ処理装置が配置されている。 Two data processing devices, multiple storage devices, and a board on which they are mounted. Assuming an X-axis and a Y-axis orthogonal to each other on the substrate surface, the first and second data processing devices are arranged on the Y-axis and a plurality of A storage device is arranged, a plurality of storage devices are arranged line-symmetrically with respect to the X axis, and first and second data processing devices are arranged with the plurality of storage devices interposed therebetween.
典型的には第 1のデータ処理装置と第 2のデータ処理装置の対向する 面の間をクロック信号を供給する配線が接続しており、 配線の両側に複 数の記憶装置が分かれて配置されている。  Typically, a wiring for supplying a clock signal is connected between opposing surfaces of the first data processing device and the second data processing device, and a plurality of storage devices are separately arranged on both sides of the wiring. ing.
さらに、 好ましくは第 1または第 2のデータ処理装置の Y軸の右側に ある面にある端子と、 記憶装置のうち Y軸の右側にある記憶装置がデー 夕バスで接続され、 第 1または第 2のデータ処理装置の Y軸の左側にあ る面にある端子と、 記憶装置のうち Y軸の左側にある記憶装置がデ一夕 バスで接続されていることを特徴とする。  Further, a terminal on a surface on the right side of the Y axis of the first or second data processing device and a storage device on the right side of the Y axis among the storage devices are preferably connected by a data bus, and The terminal on the left-hand side of the Y-axis of the second data processor and the storage device on the left-hand side of the Y-axis among the storage devices are connected by a data bus.
また、 他の態様では直方体形状を有する第 1のデータ処理装置、 第 2 のデータ処理装置、 複数の記憶装置、 およびこれらを搭載する基板を有 する情報処理装置であって、 基板面を挟んで第 1および第 2のデータ処 理装置が配置され、 第 1のデータ処理装置の入力あるいは出力端子が、 第 2のデータ処理装置の出力あるいは入力端子と向き合う位置に配置さ れていることを特徴とする。 さらに、 基板面を挟んで前記複数の記憶装 置が配置され、 該記憶装置のクロック入力端子、 アドレス入力端子、 デ 一夕入力端子がそれぞれ向き合う位置に配置されていることも配線長を 短縮することに有効である。  In another aspect, there is provided a first data processing device having a rectangular parallelepiped shape, a second data processing device, a plurality of storage devices, and an information processing device having a board on which the first and second data processing apparatuses are mounted. The first and second data processing devices are arranged, and the input or output terminal of the first data processing device is arranged at a position facing the output or input terminal of the second data processing device. And Further, the plurality of storage devices are disposed with the substrate surface interposed therebetween, and the clock input terminal, the address input terminal, and the data input terminal of the storage device are disposed at positions facing each other, thereby shortening the wiring length. It is especially effective.
このように、本発明は基板上に複数のチップやモジュールを配置して、 互いを結合し、 高速で動作するシステムを提供できる。  As described above, the present invention can provide a system in which a plurality of chips or modules are arranged on a substrate and are connected to each other to operate at high speed.
第 2の課題を解決するため、 半導体制御装置のパッケージの裏面に 2 次元のアレイ上に配置されたピン (半田ボール) を有するパッケージに 実装された半導体制御装置において、 内側のピンに電源とグランドを配 置して、 パッケージ内のチップのボンディ ング PADからパッケージの裏 面のピンまでの距離を最短にし、 ハ°ッケージ内の電源とグランドのィン ダクタンスを小さく して、 半導体制御装置の出力バッファの切り替えノ ィズを低減したものである。 In order to solve the second problem, a package with pins (solder balls) arranged in a two-dimensional array on the back of the package of the semiconductor control device has been developed. In the mounted semiconductor control device, power and ground are placed on the inner pins to minimize the distance from the bonding PAD of the chip in the package to the pins on the back of the package, and the power supply and ground in the package are connected. By reducing the inductance of the ground, the switching noise of the output buffer of the semiconductor control device is reduced.
さらに、 半導体制御装置のパッケージの裏面に 2次元のァレイ上に配 置されたピン (半田ボール) を有するパッケージに実装された半導体制 御装置において、 最内側にグランドを配置し、 内側から 2列目に電源ピ ンを配置して、 パッケージ内のチップのボンディ ング PADからパッケ一 ジの裏面のピンまでの距離を最短にし、 パッケージ内のグランドのイン ダクタンスを特に小さく して、 半導体制御装置の出力バッファの切り替 ぇノィズを低減したものである。  Furthermore, in the semiconductor control device mounted on a package having pins (solder balls) arranged on a two-dimensional array on the back surface of the package of the semiconductor control device, the ground is arranged on the innermost side and two rows from the inner side. A power supply pin is placed in the eye to minimize the distance from the bonding pad of the chip in the package to the pin on the back side of the package. Output buffer switching ぇ Noise is reduced.
また、 10 (入出力回路)用の電源電圧と内部論理用の電源電圧とが別々 の電圧で動作する半導体制御装置において、 10用の電源およびグランド ピンより、 内部論理用の電源およびグランドピンより多く して、 出力切 り替えノイズを低減したものである。  In a semiconductor control device in which the power supply voltage for 10 (input / output circuit) and the power supply voltage for internal logic operate at different voltages, the power supply and ground pins for 10 and the power supply and ground pins for internal logic In most cases, the output switching noise has been reduced.
このように、 本発明によれば、 マイコンや論理 LSI等の半導体制御装 置において、 半導体制御装置の出力バッファの切り替えノイズを低減す るピン配置を実現することにより、 高速な外部バスによる出力バッファ の切り替えノイズを低減でき、 高速なデータの入出力を可能にできる。 また、 アレイ上にピン配置されたパッケージにおいて、 このようにパ ッケージの内側のピンに電源/グランドビンを配置したので、 ノ、。ッケ一 ジの外側のピンを信号線に配置でき、 信号線をパッケージの外に引き出 すときに、 ピンとピンの間に信号線を 1本通せる実装ルールであれば、 プリ ント基板上のスルーホールを使わずに、 信号線を引き出せるので、 高速バスを実現する場合に、 スルーホールによる抵抗を除去でき、 配線 のィンピ一ダンスの調整や引き回しも簡単になり、 高速外部バスの実装 を容易にできる。 As described above, according to the present invention, in a semiconductor control device such as a microcomputer or a logic LSI, by realizing a pin arrangement for reducing switching noise of an output buffer of the semiconductor control device, a high-speed output buffer using an external bus is realized. Switching noise can be reduced, and high-speed data input / output can be achieved. In a package with pins arranged on an array, power / ground bins are placed on pins inside the package in this way. Pins on the outside of the package can be placed on the signal line, and if the mounting rule allows one signal line to pass between pins when the signal line is drawn out of the package, it can be placed on the printed circuit board. Since the signal lines can be drawn out without using through holes, the resistance due to through holes can be eliminated when implementing a high-speed bus. The adjustment and routing of the impedance can be simplified, and the implementation of a high-speed external bus can be facilitated.
本願発明の典型的な例を示すと、 半導体チップと、 半導体チップを内 蔵するパッケージと、 パッケージの表面に配置される複数の端子とを有 する半導体装置であって、 複数の端子は、 半導体チップに対する電源ま たはグラウンドを供給する第 1の種類の複数の端子と、 半導体チップに 信号を入力あるいは半導体チップから信号を出力する第 2の種類の複数 の端子を含み、  A typical example of the present invention is a semiconductor device having a semiconductor chip, a package containing the semiconductor chip, and a plurality of terminals arranged on the surface of the package. A plurality of terminals of a first type for supplying power or ground to the chip, and a plurality of terminals of a second type for inputting signals to or outputting signals from the semiconductor chip;
半導体チップの外縁と第 1の種類の端子それぞれの外縁との最短距離 の集合 Aを A1〜AN (ただし Nは第 1の種類の端子の数) とし、  The set A of the shortest distance between the outer edge of the semiconductor chip and the outer edge of each of the first type terminals is A1 to AN (where N is the number of the first type terminals),
半導体チップの外縁と第 2の種類の端子それぞれの外縁との最短距離 の集合 Bを B1〜BM (ただし Mは第 2の種類の端子の数) としたとき、 集合 Bのうち最小のものが、 集合 Aのうちの最大のものと同じかそれ 以上であることを特徴とする。 このように、 電源及び接地電位の配線長 を優先的に短くするようにピンを配置するものである。  When the set B of the shortest distance between the outer edge of the semiconductor chip and the outer edge of each of the second type terminals is B1 to BM (where M is the number of the second type terminals), the smallest one of the set B is , Which is equal to or greater than the largest one of the set A. In this way, the pins are arranged so that the wiring lengths of the power supply and the ground potential are preferentially reduced.
このときに、 端子はパッケージの外形を形成する平面のうち最大面積 の平面にマトリックス状に配置されており、この最大面積の平面が矩形、 通常は正方形である。 この矩形形状の平面の外縁と第 1の種類の端子そ れぞれの外縁との最短距離の集合 AXを AX1〜AXN (ただし Nは第 1の種類 の端子の数) とし、 上記矩形形状の平面の外縁と上記第 2の種類の端子 それぞれの外縁との最短距離の集合 BXを BX1 ~ BXM (ただし Mは第 2の種 類の端子の数) としたとき、 集合 BXのうち最大のものが、 集合 AXのう ちの最小のものと同じかそれ以上であることを特徴とする。 要するに、 端子配置面の外縁に近い方に信号ピンを配置し、 遠い方に電源ピンを配 置するものである。  At this time, the terminals are arranged in a matrix on the plane having the largest area among the planes forming the outer shape of the package, and the plane having the largest area is a rectangle, usually a square. The set AX of the shortest distance between the outer edge of this rectangular planar surface and the outer edge of each of the first type terminals is AX1 to AXN (where N is the number of the first type terminals). If the shortest distance BX between the outer edge of the plane and the outer edge of each of the above-mentioned second type terminals is BX1 to BXM (where M is the number of the second type terminals), the largest of the set BX Is greater than or equal to the smallest of the sets AX. In short, the signal pins are located closer to the outer edge of the terminal placement surface, and the power pins are located farther away.
あるいは、 半導体チップと、 半導体チップを内蔵するパッケージと、 パッケージの表面に互いに等間隔でマトリックス配置される複数の端子 とを有する半導体装置であって、 マトリ ックス配置された端子のうち最 外縁の端子を第 1のグループとし、 第 1のグループの端子と最短距離に ある端子を第 2のグループとし、 第 2のグループの端子と最短距離にあ る端子で第 1のグループに属していない端子を第 3のグループとしたと きに、 第 3のグループにおける信号入出力端子以外の端子の割合が、 第 1のグループにおけるそれよりも大きいことを特徴とする。 Alternatively, a semiconductor chip, a package containing the semiconductor chip, A semiconductor device having a plurality of terminals arranged in a matrix at equal intervals on the surface of a package, wherein the outermost terminal among the terminals arranged in the matrix is a first group, and a terminal in the first group is When the terminal located at the shortest distance is defined as the second group, and the terminal located at the shortest distance from the second group and not belonging to the first group is defined as the third group, the third group is obtained. The ratio of terminals other than the signal input / output terminals in the first group is larger than that in the first group.
さらに望ましくは、 第 3のグループにおける信号入出力端子以外の端 子の割合が、 第 2のグループにおけるそれよりも大きい。 また、 第 3の グループの端子と最短距離にある端子で第 2のグループに属していない 端子を第 4のグループとしたときに、 第 4のグループにおける信号入出 力端子以外の端子の割合が、 第 1のグループにおけるそれよりも大きい ことを特徴とする。  More desirably, the ratio of terminals other than the signal input / output terminals in the third group is larger than that in the second group. Further, when a terminal which is the shortest distance from the terminal of the third group and which does not belong to the second group is a fourth group, the ratio of terminals other than the signal input / output terminals in the fourth group is as follows. It is larger than that in the first group.
すなわち、 後に第 8図などで詳細に説明するように、 4周 (円配列で も矩形配列でもよい) にわたつてマトリ ックス配置された内側の 2周に ついて電源または接地ピンを優先的に配置し、 外側の 2周について信号 ピンを配置する。 信号ピンは場合により多数準備する必要があるが、 そ のときは適宜内側の 2周に信号ピンを設定しても良い。  In other words, as will be described in detail later with reference to Fig. 8, etc., the power supply or ground pins are preferentially arranged for the inner two circuits that are arranged in a matrix over four circuits (either circular or rectangular). Then, the signal pins are arranged for the outer two rounds. In some cases, it is necessary to prepare a large number of signal pins, but in that case, signal pins may be appropriately set in the inner two turns.
ここで、 信号入出力端子以外の端子として、 半導体チップ内に形成さ れた論理回路 (例えば M O Sで形成された種々のゲート、 ラッチ等であ る) を駆動するための第 1及び第 2の電位を供給するための端子を含む ことはいうまでもない。 電源を複数種類設ける場合には、 さらに、 半導 体チップ内に形成された論理回路を駆動するための第 3及び第 4の電位 を供給するための端子をさらに含んでもよい。例えば、内部論理回路と、 周辺入出力回路部では別々の電源を用いることがある。  Here, as terminals other than signal input / output terminals, first and second terminals for driving logic circuits formed in the semiconductor chip (for example, various gates and latches formed by MOS) are used. Needless to say, a terminal for supplying a potential is included. When a plurality of types of power supplies are provided, the power supply may further include a terminal for supplying third and fourth potentials for driving a logic circuit formed in the semiconductor chip. For example, separate power supplies may be used for the internal logic circuit and the peripheral input / output circuit unit.
電源ピンの配置としては、 半導体チップ内に形成された特定の論理ゲ 一トを駆動するための第 1及び第 2の電位を供給するための端子の対が、 第 3及び第 4のグループに属する端子に分かれて配置されていることが 望ましい。 また、 半導体チップ内に形成された特定の論理ゲ一卜を駆動 するための第 2及び第 3の電位を供給するための端子が、 第 3及び第 4 のグループに属する端子に分かれて配置されていることも望ましい。 特に、 これらの 1対の電源と接地電位は隣接して第 3及び第 4のグル —プ配置されている端子とすることが好ましい。 The arrangement of the power supply pins depends on the specific logic gate formed in the semiconductor chip. It is preferable that a pair of terminals for supplying the first and second potentials for driving the gate is divided into terminals belonging to the third and fourth groups. Also, terminals for supplying second and third potentials for driving a specific logic gate formed in the semiconductor chip are arranged separately in terminals belonging to the third and fourth groups. It is also desirable that In particular, it is preferable that the pair of the power supply and the ground potential be terminals arranged adjacently in the third and fourth groups.
パッケージはプリン卜基板上に配置されており、 第 1及び第 2のグル ープに属する端子からは基板表面に沿って配線が引き出され、 第 3及び 第 4のグループに属する端子からは基板を貫通するスルーホールを通し て配線が引き出されていることとすると電源に対するノイズの影響が低 減でき好適である。  The package is placed on the printed circuit board, wiring is drawn out from the terminals belonging to the first and second groups along the surface of the substrate, and the circuit board is drawn from the terminals belonging to the third and fourth groups. It is preferable that the wiring be drawn out through the through hole that penetrates, because the influence of noise on the power supply can be reduced.
入出力端子は、 半導体チップ内に形成された論理回路によって処理さ れるべき入力信号、 あるいは、 半導体チップ内に形成された論理回路に よって処理された出力信号を伝達するものとすることができる。  The input / output terminal may transmit an input signal to be processed by a logic circuit formed in the semiconductor chip or an output signal processed by a logic circuit formed in the semiconductor chip.
また、 本発明の別の態様では、 半導体チップと、 半導体チップを内蔵 するパッケージと、 ノ、。ッケ一ジの表面に配置される複数の導体ピンと、 半導体チップのパッ ドと上記導体ピンを電気的に接続するリードフレー ムを有する半導体装置であって、 複数のピンは半導体チップに形成され た能動素子を駆動するための少なく とも 2つの電位を供給する第 1の種 類の複数のピンと、 半導体チップの能動素子で変調される信号を入力あ るいは半導体チップの能動素子で変調された信号を出力する第 2の種類 の複数のピンを含み、 第 1の種類のピンとパッ ドの間の配線長の最大の ものが、 第 2の種類のピンとパッ ドの間の配線長の最小のものを越えな いことを特徴とする。 ピンの配置としては、 第 1の種類の複数のピンは 半導体チップの外縁を取り囲むように配置され、 第 2の種類のピンは第 1の種類の複数のピンを取り囲むように配置させることができる。 According to another aspect of the present invention, there is provided a semiconductor chip, a package including the semiconductor chip, and a semiconductor chip. A semiconductor device comprising: a plurality of conductor pins arranged on a surface of a package; and a lead frame for electrically connecting a pad of the semiconductor chip and the conductor pins, wherein the plurality of pins are formed on the semiconductor chip. A plurality of pins of the first kind for supplying at least two potentials for driving the active element, and a signal modulated by the active element of the semiconductor chip or modulated by the active element of the semiconductor chip Including a plurality of pins of the second type that output signals, the longest wiring between the first type of pins and the pad is the shortest of the wiring between the second type of pins and the pad It is characterized by not exceeding things. Regarding the pin arrangement, a plurality of pins of the first type are arranged so as to surround an outer edge of the semiconductor chip, and a plurality of pins of the second type are It can be arranged to surround a plurality of pins of one type.
パッケージはプリ ント基板上に配置されており、 第 2の種類の複数の ピンの大部分からは基板表面に沿って配線が引き出され、 第 1の種類の 複数のピンの大部分からは基板を貫通するスルーホールを通して配線が 引き出されていることが望ましい。 理想的には全ての第 1の種類のピン は配線長を短くするためにスルーホールを用いるのが良いが、大部分( 8 0パーセント程度がスルーホールを用いても効果は得られる) 。  The package is placed on a printed circuit board, with most of the pins of the second type leading out of the wiring along the board surface and most of the pins of the first type leaving the board out of the pins. It is desirable that the wiring be drawn through a through hole that penetrates. Ideally, all pins of the first type should use through-holes to reduce wiring length, but in most cases (about 80% use of through-holes is also effective).
(効果)  (Effect)
以上説明したように、 本発明によれば、 マイコンを適用した制御シス テムにおいて、 外部バスに適したマイコンのピン配置を提供し、 マイコ ンなどの論理 LSI と外部メモリや周辺チップとの接続に必要な信号線の 配線を最短にでき、 高速外部バスによるデータ転送を可能にするので、 高速バスが必要なァミュ一ズメント装置、 情報機器を実現する場合にそ の効果が大きい。  As described above, according to the present invention, in a control system to which a microcomputer is applied, a pin arrangement of the microcomputer suitable for an external bus is provided to connect a logic LSI such as a microcomputer with an external memory or a peripheral chip. Necessary signal lines can be minimized, and data can be transferred via a high-speed external bus. This has a great effect when implementing amusement equipment and information equipment that require a high-speed bus.
また、 本発明により、 チップ間の配線が短くなり配線のインダクタン スが小さくなるので、 電磁波妨害ノィズの削減にも効果がある。  Further, according to the present invention, the wiring between the chips is shortened, and the inductance of the wiring is reduced, so that it is effective in reducing electromagnetic interference noise.
また、 本発明によれば、 出力バッファの切り替えノイズに強いマイコ ンゃ論理 LSI等の半導体制御装置のピン配置を提供し、 高速外部バスに よるノイズを低減するので、 高速外部バスが必要なアミユーズメン卜装 置、 画像処理装置、 情報機器を実現する場合にその効果が大きい。 図面の簡単な説明  Further, according to the present invention, a pin arrangement of a semiconductor control device such as a microcomputer logic LSI which is resistant to switching noise of an output buffer is provided, and noise due to a high-speed external bus is reduced. The effect is great when realizing a mobile device, an image processing device, and an information device. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1実施例のマイコン制御装置の構成を示す平面 図。 第 2図は、 本発明の第 2実施例のマイコン制御装置の構成を示す平 面図。 第 3図は、 本発明の第 3実施例のマイコン制御装置の構成を示す 平面図。 第 4図は、 本発明の第 4実施例のマイコン制御装置の構成を示 す平面図。 第 5図は、 本発明のマイコンとメモリの接続を示す平面図。 第 6図は、 メモリの信号名の説明を示す表図。 第 7図は、 本発明のマイ コンと周辺チップの実装の断面図。 第 8図は、 本発明の BGAパッケージ のピン配置図。 第 9図は、 本発明の BGAと QFPのパッケージのピンの説 明を示す表図。 第 1 0図は、 本発明の BGAと QFPのパッケージのピンの 説明を示す表図。 第 1 1図は、 本発明の実施例の QFPパッケージのピン 配置図の左半分の平面図。 第 1 2図は、 本発明の実施例の QFPパッケ一 ジのピン配置図の右半分の平面図。 第 1 3図は、 本発明の半導体制御装 置のパッケージのピン配置の構成を示す平面図。 第 1 4図は本発明の図 1のパッケージの A断面図。 第 1 5図は、 本発明の半導体制御装置のパ ッケージの内部の実装の一例を示す模式図。 第 1 6図は、 本発明の半導 体制御装置のパッケージのピン配置の構成図の他の実施例平面図。 第 1 7図は、 本発明のパッケージのプリント基板への実装断面図。 第 1 8図 は、 本発明の第 1図の Bの部分の拡大平面図。 第 1 9図は、 本発明のパ ッケージを実装するフッ 卜パターンの構成を示す平面図である。 発明を実施するための最良の形態 FIG. 1 is a plan view showing a configuration of a microcomputer control device according to a first embodiment of the present invention. FIG. 2 is a plan view showing a configuration of a microcomputer control device according to a second embodiment of the present invention. FIG. 3 is a plan view showing a configuration of a microcomputer control device according to a third embodiment of the present invention. FIG. 4 shows a configuration of a microcomputer control device according to a fourth embodiment of the present invention. FIG. FIG. 5 is a plan view showing the connection between the microcomputer and the memory according to the present invention. FIG. 6 is a table showing explanations of signal names of a memory. FIG. 7 is a cross-sectional view of the mounting of the microcomputer and the peripheral chip of the present invention. FIG. 8 is a pin layout diagram of the BGA package of the present invention. FIG. 9 is a table showing the description of the pins of the BGA and QFP packages of the present invention. FIG. 10 is a table showing the pin descriptions of the BGA and QFP packages of the present invention. FIG. 11 is a plan view of the left half of the pin arrangement diagram of the QFP package according to the embodiment of the present invention. FIG. 12 is a plan view of the right half of the pin layout of the QFP package according to the embodiment of the present invention. FIG. 13 is a plan view showing a configuration of a pin arrangement of a package of the semiconductor control device of the present invention. FIG. 14 is a sectional view of the package A of FIG. 1 of the present invention. FIG. 15 is a schematic diagram showing an example of mounting inside a package of the semiconductor control device of the present invention. FIG. 16 is a plan view of another embodiment of the configuration of the pin arrangement of the package of the semiconductor control device of the present invention. FIG. 17 is a sectional view of mounting the package of the present invention on a printed circuit board. FIG. 18 is an enlarged plan view of a portion B in FIG. 1 of the present invention. FIG. 19 is a plan view showing the configuration of a foot pattern for mounting the package of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図に本発明の第 1の実施例を示す。 半導体メモリ 2 0、 2 1、 2 2、 2 3はマイコン 1 0と周辺チップ 3 0の間に置かれる。 第 1図の例 では、マイコン 1 0と周辺チップ 3 0の配置される方向に延在し、かつ、 マイコン 1 0と周辺チップの中央を通る軸を Y軸としたときに、 この Y 軸の両側に半導体メモリ 2 0〜 2 3が Y軸に対して線対称に配置されて いる。  FIG. 1 shows a first embodiment of the present invention. The semiconductor memories 20, 21, 22, and 23 are placed between the microcomputer 10 and the peripheral chip 30. In the example of FIG. 1, when the axis extending in the direction in which the microcomputer 10 and the peripheral chip 30 are arranged and passing through the center of the microcomputer 10 and the peripheral chip is the Y axis, the Y axis Semiconductor memories 20 to 23 are arranged on both sides in line symmetry with respect to the Y axis.
各々の半導体メモリは、 アドレスピン (ADR- A、 ADR-B) を内側、 デ一 夕ピンを外側 (D[ 0- 15 ] ) にして、 横置きに配置される。 すなわち、 各半 導体メモリは、 Y軸に直交する軸を X軸方向とするときに、 X軸方向に長辺が一致する ように配置されており、 各半導体メモリのァドレスピンはデータピンよ りも Υ軸に近い位置に配置されるようになっている。 Each semiconductor memory is placed horizontally with the address pins (ADR-A, ADR-B) inside and the data pins outside (D [0-15]). That is, each semiconductor memory is When the axis orthogonal to the Y axis is set to the X axis direction, the long sides are arranged in the X axis direction so that the address pins of each semiconductor memory are arranged closer to the Υ axis than the data pins. It has become so.
ここで、半導体メモリは、同期型の高速データ転送を実現できる SDRAM (シンクロナスダイナミ ック RAM) として説明するが、 他の種のメモリ、 例えばシンクロナス SRAMや通常の SRAM、 DRAMでもよい。  Here, the semiconductor memory is described as an SDRAM (synchronous dynamic RAM) capable of realizing a synchronous high-speed data transfer, but may be another type of memory, for example, a synchronous SRAM, a normal SRAM, or a DRAM.
マイコン 1 0および周辺チップ 3 0は 6 4 ビッ トデータバスである。 半導体メモリ 2 0、 2 1、 2 2、 2 3は 1 6 ビッ トのデータバスとし、 4チップの半導体メモリにより、 6 4 ビッ 卜のバスを実現するものとす る。  The microcomputer 10 and the peripheral chip 30 are a 64-bit data bus. The semiconductor memories 20, 21, 22, and 23 have a 16-bit data bus, and a 64-bit bus is realized by a 4-chip semiconductor memory.
マイコン 1 0からクロック 1 0 4、 ァドレスバス 1 0 5、 1 0 6、 制 御信号 1 0 7、 1 0 8、 1 0 9、 データバス 1 0 0、 1 0 1、 1 0 2、 1 0 3を出力し、 半導体メモリ 2 0、 2 1、 2 2、 2 3および周辺チッ プ 3 0を制御する。  Microcontroller 10 to clock 10 4, address bus 10 5, 10 6, control signal 10 7, 10 8, 10 9, data bus 10 0, 10 1, 10 2, 10 3 To control the semiconductor memories 20, 21, 22, 23 and the peripheral chip 30.
クロック 1 04は、 マイコン 1 0の下辺 (メモリに近い方の辺) に配 置するピンの中心から出力され、 半導体メモリ 2 0、 2 1、 2 2、 2 3 および周辺チップ 3 0の動作クロックとして使用される。 すなわち、 第 1図の例ではクロックはマイコン 1 0から周辺チップへ Y軸に沿って配 線され、 途中で左右に分岐してメモリ 2 0〜2 3に供給される。  The clock 104 is output from the center of the pin located on the lower side of the microcomputer 10 (the side closer to the memory), and the operation clock of the semiconductor memories 20, 21, 22, 23, and the peripheral chip 30 Used as That is, in the example of FIG. 1, the clock is routed from the microcomputer 10 to the peripheral chip along the Y-axis, branched right and left on the way, and supplied to the memories 20 to 23.
アドレスバス 1 0 5、 1 0 6は、 マイコン 1 0のクロック出力を中心 として、 左右に配置され出力される。 1 0 5は半導体メモリのァドレス の下位ビッ 卜 (例えば、 AOから A6)、 1 0 6は半導体メモリのァドレス の上位ビッ 卜 (例えば、 A7から A17) とし、 半導体メモリ 2 0、 2 1、 2 2、 2 3のァドレスおよび周辺チップ 3 0に入力される。第 1図では、 アドレス 1 0 5のみ周辺チップ 3 0に入力しているが、 周辺チップ 3 0 内にマッピングされるァドレス空間が広い場合には、 アドレス 1 0 6も 周辺チップ 3 0に入力してもよい。 The address buses 105 and 106 are arranged and output on the left and right around the clock output of the microcomputer 10. 105 is the lower bit (for example, AO to A6) of the address of the semiconductor memory, and 106 is the upper bit (for example, A7 to A17) of the address of the semiconductor memory. Input to address 23 and peripheral chip 30. In FIG. 1, only the address 105 is input to the peripheral chip 30. However, if the address space mapped in the peripheral chip 30 is large, the address 106 is also input. It may be input to the peripheral chip 30.
制御信号 1 0 7 (右側のメモリへのライ トストローブ) 、 1 0 8 (左 側のメモリへのライ トストローブ) 、 1 0 9 (チップセレク ト、 読み出 し/書き込み切り替え信号、 RASス トロ一ブ、 CASス 卜ローブ) は、 マイ コン 1 0のァ ドレスのさらに外側から出力され、 左右の半導体メモリに 共通の制御信号 1 0 9は、 半導体メモリ 2 0、 2 1、 2 2、 2 3 と周辺 チップ 3 0に出力される。制御信号 1 0 7は、右側の半導体メモリ 2 1、 2 3および周辺チップ 3 0に出力され、 制御信号 1 0 8は、 左側の半導 体メモリ 2 0、 2 2および周辺チップ 3 0に出力される。  Control signals 107 (write strobe to right memory), 108 (write strobe to left memory), 109 (chip select, read / write switching signal, RAS strobe) And the CAS strobe) are output from the outside of the address of the microcomputer 10, and the control signal 109 common to the left and right semiconductor memories is output from the semiconductor memories 20, 21, 22, 22. 3 and output to peripheral chip 30. The control signal 107 is output to the right semiconductor memories 21 and 23 and the peripheral chip 30.The control signal 108 is output to the left semiconductor memories 20 and 22 and the peripheral chip 30. Is done.
データバス 1 0 0、 1 0 1、 1 0 2、 1 0 3は、 1 6 ビッ ト単位のデ 一夕バスで、 例えば、 1 0 0が DOから D15、 1 0 1が D16から D31、 1 0 2が D32から D47、 1 0 2が D48から D63とする。 各々力 、 マイコン 1 0の左右側から出力され、 半導体メモリ 2 0、 2 1、 2 2、 2 3および 周辺チップ 3 0に接続される。  Data buses 100, 101, 102, and 103 are overnight data buses in 16-bit units.For example, 100 is DO to D15, 101 is D16 to D31, 1 02 is from D32 to D47, and 102 is from D48 to D63. Each force is output from the left and right sides of the microcomputer 10 and connected to the semiconductor memories 20, 21, 22, 23 and the peripheral chip 30.
このように、 マイコン 1 0と半導体メモリ 2 0、 2 1、 2 2、 2 3、 周辺チップ 3 0を接続する場合に、 出力の負荷容量が重い (メモリ 4個 と周辺チップ 1個に接続すると、各チップ当たり 5 pFから 7 pFなので、 負荷容量は 2 5 pFから 3 5 pFとなる) クロック、 ア ドレス、 制御信号 ピンをマイコン 1 0の下辺側に集め、 半導体メモリ 2 0、 2 1、 2 2、 2 3のァドレスバスが内側 (マイコン 1 0の中心と周辺チップ 3 0の中 心を結んだ線 (Y軸) に近い方向) になるように横置きに配置すること により、 これらの信号線が、 半導体 2 0、 2 1、 2 2、 2 3と周辺チッ プ 3 0の間を最短で通るように配線される。  In this way, when connecting the microcomputer 10 to the semiconductor memories 20, 21, 22, 23, and the peripheral chip 30, the load capacity of the output is heavy (when connected to four memories and one peripheral chip, The load capacitance is 25 pF to 35 pF because each chip is 5 pF to 7 pF.) The clock, address, and control signal pins are collected on the lower side of the microcomputer 10 and the semiconductor memory 20, 21, By arranging these signals horizontally so that the address buses 23 and 23 are located inside (in the direction near the line (Y axis) connecting the center of the microcomputer 10 and the center of the peripheral chip 30), these signals are The wires are routed so as to pass the shortest distance between the semiconductors 20, 21, 22, 23 and the peripheral chip 30.
特にクロック信号 1 04は、 他の信号線よりも動作周波数が高く (通 常 2倍以上) 、 配線のインピーダンスのマッチングおよび遅延に関する 対策を行う必要があるため、 下辺の中心に置くことにする。 また、 制御 信号 1 0 7.と制御信号 1 0 8に関しては、 右側の半導体メモリ 2 1、 2 3に接続する制御信号 1 0 7は右側に、 左側の半導体メモリに接続する 制御信号 1 0 8信号は左側に配置して、 それぞれの配線長が短くなるよ うにする。 In particular, the clock signal 104 has an operating frequency higher than that of other signal lines (usually twice or more), and it is necessary to take measures against wiring impedance matching and delay. Also control Regarding the signal 107 and the control signal 108, the control signal 107 connected to the semiconductor memories 21 and 23 on the right side is on the right, and the control signal 108 connected to the semiconductor memory on the left is on the left. So that the length of each wiring is short.
データバスは、 負荷容量が軽いので (メモリ 1個と周辺チップ 1個に 接続すると、 各チップ当たり 5 pFから 7 pFなので、 負荷容量は 1 0 pF から 1 4 pFとなる)、上記ァドレス等の信号線よりも多少配線が長くな つても遅延時間が大きくならないので、 マイコン 1 0の左右に配置し、 半導体メモリ 2 0、 2 1、 2 2、 2 3に接続後、 周辺チップ 3 0に達す るように配置する。 データバスは 6 4ビッ トとバス幅が広いので、 3 2 ビッ トずつ分け左右の辺に配置するようにする。  Since the data bus has a light load capacity (when connected to one memory and one peripheral chip, the load capacity is 5 pF to 7 pF for each chip, the load capacity is 10 pF to 14 pF). Since the delay time does not increase even if the wiring is slightly longer than the signal line, arrange them on the left and right of the microcomputer 10, connect to the semiconductor memories 20, 21, 22, 23 and reach the peripheral chip 30 So that Since the data bus is as wide as 64 bits, the data bus is divided into 32 bits and placed on the left and right sides.
高速動作の必要の無い信号は、 マイコンの上辺(メモリに遠い方の辺) に配置し、 各種ィンタフェースおよびコネクタに接続するようにする。 これにより高速な外部バスを実現できる。  Signals that do not require high-speed operation should be placed on the upper side of the microcomputer (the side farther from the memory) and connected to various interfaces and connectors. Thereby, a high-speed external bus can be realized.
第 2図に本発明の第 2の実施例を示す。本発明は、半導体メモリ 2 0、 2 1をプリント基板の裏面に配置するものである。 裏面に実装したメモ リは点線で示す。 また、 裏面へのメモリの配線も点線で示す。 これによ り、 半導体メモリ 2 0、 2 1が半導体メモリ 2 2、 2 3の背面に置かれ るので、 マイコン 1 0と、 半導体メモリ 2 0、 2 1、 2 2、 2 3と周辺 チップ 3 0の配線がさらに短くできる。 裏面への配線は、 プリント基板 を貫通するような配線を設けることによって容易に達成することができ る。  FIG. 2 shows a second embodiment of the present invention. In the present invention, the semiconductor memories 20 and 21 are arranged on the back surface of a printed circuit board. The memory mounted on the back is indicated by the dotted line. Also, the wiring of the memory on the back surface is shown by a dotted line. As a result, the semiconductor memories 20 and 21 are placed on the back of the semiconductor memories 22 and 23, so that the microcomputer 10 and the semiconductor memories 20 and 21 and the peripheral chips 3 The wiring of 0 can be further shortened. Wiring to the back surface can be easily achieved by providing wiring that penetrates the printed circuit board.
第 3図に本発明の第 3の実施例を示す。本発明は、半導体メモリ 4 0、 4 1がそれぞれ、 3 2ビッ トバスのメモリである。 3 2ビッ トバスのメ モリを使用することにより、 クロック、 アドレス、 制御信号の負荷容量 を最大 3以下 (メモリ 2個と周辺チップ 1に接続すると、 各チップ当た り 5 pFから 7 pFなので、 負荷容量は 1 5 pFから 2 1 pFとなる) にす ることができるので、 プリ ント基板上の配線遅延が小さくなる。 通常、 1ナノ秒 / 1 0 pF程度送れるので、 3 2ビッ トバスのメモリを使用する ことにより、 0. 5ナノ秒程度配線遅延を改善でき、 さらに、 高速な外部 バスシステムを実現できる。 FIG. 3 shows a third embodiment of the present invention. In the present invention, each of the semiconductor memories 40 and 41 is a 32-bit bus memory. 3 By using 2-bit bus memory, the load capacity of clock, address, and control signals can be reduced to 3 or less (when two memories and peripheral chip 1 are connected, Since the load capacitance can be reduced from 15 pF to 21 pF, the wiring delay on the printed board is reduced. Normally, it can send about 1 nanosecond / 10 pF, so using a 32-bit bus memory can improve wiring delay by about 0.5 nanosecond and realize a high-speed external bus system.
第 4図に本発明の第 4の実施例を示す。 本発明は、 周辺チップ 3 0を マイコン 1 0とピン対称にして、 周辺チップ 3 0をマイコン 1 0の背面 に配置するものである。 プリ ント基板の裏面に配置した周辺チップ 3 0 は点線で示してある。  FIG. 4 shows a fourth embodiment of the present invention. In the present invention, the peripheral chip 30 is pin-symmetrical to the microcomputer 10 and the peripheral chip 30 is arranged on the back surface of the microcomputer 10. The peripheral chip 30 arranged on the back surface of the print substrate is indicated by a dotted line.
第 7図にピン対称実装の実装例を示し、 具体的に説明する。 マイコン 1 0および周辺チップ 3 0は共に BGA (ボールグリ ッ トアレイ) とする。 プリ ント基板 2 0 0は 4層基板で配線層、 グランド層、 電源層、 配線層 から構成されている。 マイコン 1 0 と周辺チップ 3 0のピンは外側が信 号ピン 2 0 1、 内側が電源ピン 2 0 2とグランドピン 2 0 3とする。 信 号ピン 2 0 1は、 マイコン 1 0と周辺チップ 3 0でピン対称になってい るので、 それぞれの信号をプリ ント基板内のスルーホールで接続する。 電源ピン 2 0 2とグランドピン 2 0 3は、 マイコン 1 0と周辺チップ 3 0でピン対称になっているので、 スルーホールで接続すると同時に、 そ れぞれ、 内層の電源層、 グランド層と接続する。  FIG. 7 shows a mounting example of pin symmetric mounting, which will be specifically described. The microcomputer 10 and the peripheral chip 30 are both BGA (ball grid array). The print substrate 200 is a four-layer substrate and includes a wiring layer, a ground layer, a power supply layer, and a wiring layer. The pins of the microcomputer 10 and the peripheral chip 30 are signal pins 201 on the outside and the power supply pins 202 and ground pins 203 on the inside. Since the signal pin 201 is pin-symmetrical between the microcomputer 10 and the peripheral chip 30, each signal is connected via a through-hole in the printed circuit board. The power supply pin 202 and the ground pin 203 are pin-symmetrical between the microcomputer 10 and the peripheral chip 30 so that they can be connected with through holes and at the same time can be connected to the inner power supply layer and the ground layer, respectively. Connecting.
これにより、 マイコン 1 0と周辺チップ 3 0間の配線は、 プリ ント基 板の配線層と配線層をスルーホールで結べるので、配線長をほぼゼロ(プ リ ン ト基板の厚さ分) にすることができる。  As a result, the wiring between the microcomputer 10 and the peripheral chip 30 can be connected to the wiring layers of the printed circuit board by through holes, so that the wiring length is almost zero (the thickness of the printed circuit board). can do.
第 4図を用いて、 高速動作の要求の小さい信号に関して説明する。 こ れらの信号に接続される周辺モジュール 7 0は、 マイコンの上辺 (メモ リ 4 0、 4 1から一番遠い辺) に配置する。 具体的には、 エミュレータ 7 1、 クロック発振回路 7 2、 10ポ一 卜 7 3、 シリァルインタフヱース 7 4、 割り込み回路 7 5等がある。 これらの回路は制御信号 1 1 0 ( CTRL-D) で接続される。 制御信号 1 1 0は、 低速の信号 (数十 MHz程 度) なので、 プリ ン卜基板上の配線も長くてよく、 マイコン 1 0の出力 ノくッファも低速のバッファでよい。 With reference to FIG. 4, a description will be given of a signal requiring a low speed operation. The peripheral module 70 connected to these signals is placed on the top side of the microcomputer (the side farthest from the memories 40 and 41). Specifically, emulator 71, clock oscillator 72, 10-port 73, serial interface 74, interrupt circuit 75, etc. These circuits are connected by control signal 110 (CTRL-D). Since the control signal 110 is a low-speed signal (about several tens of MHz), the wiring on the printed circuit board may be long, and the output buffer of the microcomputer 10 may be a low-speed buffer.
また、 アドレス 1 1 1 ( ADR- C) は、 アドレスバスの上位のピッ ト ( A18-A25 ) で、 比較的低速なアクセス時間が 1 0 0ナノ秒以上の SRAM や ROMとの接続にのみ用いるので、 プリ ント基板上の配線が長くなって も問題ないので、 マイコン 1 0の上辺に配置することができる。  Address 111 (ADR-C) is the upper pit of the address bus (A18-A25), and is used only for connection to SRAM or ROM with a relatively slow access time of 100 nanoseconds or more. Therefore, since there is no problem even if the wiring on the printed board becomes long, it can be arranged on the upper side of the microcomputer 10.
第 8図に BGA (ボールグリ ッ ドアレイ) ノ、 °ッケージのマイコンのピン 配の実施例を示す。  Fig. 8 shows an example of the pin arrangement of a microcomputer of a BGA (ball grid array).
第 1 1図、 第 1 2図には、 QFP (フラッ トパケージ) のピン配置図を示 す。 第 1 1図が左半分で、 第 1 2図が右半分である。 このフラッ トパッ ケージはリ一ドフレームに搭載され、 これらをボールグリ ッ ドアレイノ、。 ッケージが内蔵することとした。 フラッ 卜パッケージとボールグリ ツ ド アレイパッケージのピンは、 リー ドフレームにより接続される。  Fig. 11 and Fig. 12 show the pin layout of QFP (flat package). Fig. 11 is the left half and Fig. 12 is the right half. This flat package is mounted on a lead frame, and these are mounted on a ball grid array. The package is built-in. The pins of the flat package and ball grid array package are connected by a lead frame.
第 9図、 第 1 0図に、 第 1 1図、 第 1 2図に示したマイコンのピンの 説明図を示す。 BGAも QFPも下辺が半導体メモリ との間の配線長を短く する信号線であり、 左右がデ一タバスになっている。  9 and 10 are explanatory diagrams of the pins of the microcomputer shown in FIGS. 11 and 12. In both BGA and QFP, the lower side is a signal line that shortens the wiring length between the semiconductor memory and the left and right sides are data buses.
第 5図に BGAパッケージのマイコン 1 0と半導体メモリとの接続例を 示す。 この図は、 第 1図のマイコン 1 0とメモリ 2 0との接続部分を拡 大した図である。 メモリ としては、 SDRAM (シンクロナスダイナミ ック RAM) を用いている。  Figure 5 shows an example of connection between the microcomputer 10 in a BGA package and semiconductor memory. This figure is an enlarged view of the connection between the microcomputer 10 and the memory 20 in FIG. SDRAM (synchronous dynamic RAM) is used as the memory.
第 6図は第 5図で示した SDRAMのピンを説明する図である。 SDRAM 2 0はァドレスピンを内側して横置きに実装する。 以下、 マイコン 1 0と メモリ 2 0間の配線に関して説明する。 まず、 クロック 1 0 4 ( CKI0) を優先配線する。次に、 ァ ドレスバス 1 0 5 ( A3-A6 ) 、 1 0 6 (A7-A14) を接続する。 ここで、 A13と A14はメモリ 2 0の背面を通して接続する。 制御信号 1 0 8は、 接続するメモリによって機能が異なる信号なので、 SDRAMの場合には、 WE1#/CAS1#/DQMK WE0#/CAS0#/DQM0信号の擊、 DQM1 の機能を選択し、 メモリ 2 0の UDQM、 LDQMに接続する。 LDQMの配線は メモリ 2 0の背面を通す。 また、 制御信号 1 0 9に関しては、 CS2#は、 メモリ 2 0の CS# (チップセレク ト) に接続し、 RAS#は、 メモリ 2 0の RAS#と接続する。 RD#/CASS#/FRAME#は、 接続するメモリによって機能が 異なる信号なので、 SDRAMの場合には、 CASS#機能を選択し、 メモリ 2 0 の CAS#と接続する。 RD/WR#はメモリ 2 0の WE#と接続する。 FIG. 6 is a diagram for explaining the pins of the SDRAM shown in FIG. The SDRAM 20 is mounted horizontally with the address pins inside. Hereinafter, the wiring between the microcomputer 10 and the memory 20 will be described. First, the clock 104 (CKI0) is prioritized. Next, address bus 105 (A3-A6), 106 (A7-A14) Connect. Here, A13 and A14 are connected through the back of the memory 20. The control signal 1 08 has a different function depending on the memory to be connected. Connect to UDQM, LDQM of 0. The LDQM wiring passes through the back of the memory 20. As for the control signal 109, CS2 # is connected to CS # (chip select) of memory 20 and RAS # is connected to RAS # of memory 20. Since RD # / CASS # / FRAME # has different functions depending on the connected memory, in the case of SDRAM, select CASS # function and connect to CAS # of memory 20. RD / WR # is connected to WE # of memory 20.
データバス 1 0 0は、 1 6ビッ トのデータバスをマイコン 1 0とメモ リ 2 0間でそれぞれ一対一に接続する。 ここで、 D8 D15はメモリ 2 0と 表面の配線層で接続し、 DO - D7は、 メモリ 2 0の背面を通してメモリの データピンと接続する。  The data bus 100 connects the 16-bit data bus between the microcomputer 10 and the memory 20 one-to-one. Here, D8 and D15 are connected to the memory 20 via a wiring layer on the surface, and DO-D7 is connected to the data pins of the memory through the back of the memory 20.
このように接続することにより、 マイコン 1 0とメモリ 2 0間の配線 を最短にできる。 同時にほとんどの配線を表面の配線層だけでできるの で、 スルーホールの数も少なくなり、 配線のインピーダンスの調整を容 易にし、 電源グランド層の強化にもつながる。  With such a connection, the wiring between the microcomputer 10 and the memory 20 can be minimized. At the same time, since most of the wiring can be done only on the top wiring layer, the number of through-holes is reduced, making it easier to adjust the wiring impedance and strengthening the power ground layer.
同様にして、 他のメモリ 2 1 、 2 2、 2 3も同様に最短接続可能であ る。 本実施例では、 SDRAMに関して説明したが、 他の高速メモリに関し ても適用可能である。  Similarly, the other memories 21, 22 and 23 can be similarly connected in the shortest possible manner. Although the present embodiment has been described with reference to the SDRAM, the present invention is also applicable to other high-speed memories.
将来さらに LS Iの集積度が上がれば、 マイコン 1 0と半導体メモリ 2 0、 2 1 、 2 2、 2 3と周辺チップ 3 0の各モジュールを 1チップにす ることが可能となるが、 その場合にも、 ここで示した実施例の配置を用 いることにより、 高速動作可能のモジュール間の配線を実現することが 可能となる。  If the degree of integration of the LSI further increases in the future, each module of the microcomputer 10, the semiconductor memories 20, 21, 22, 23, and the peripheral chip 30 can be integrated into one chip. Also in this case, it is possible to realize high-speed operation wiring between modules by using the arrangement of the embodiment shown here.
本発明は、 アミユーズメン卜装置、 画像処理装置、 携帯情報機器に特 定するものではなく、 家庭用電気製品、 情報通信機器、 制御装置に適用 可能である。 The present invention relates to an amusement device, an image processing device, and a portable information device. It is not limited, and can be applied to household electrical appliances, information and communication equipment, and control devices.
第 1 3図で本発明の半導体制御装置のパッケージの一実施例を説明す る。第 1 3図はパッケージを裏面から見た図である。 、。ッケージとして、 2 5 6 ピンの BGA (ボールグリ ッ ドアレイ) パッケージを例として説明 する。 °ッケージ 3 1 0のチップの裏側にピン (ボール) 3 2 0が 2 5 6個配置されている。 ピン 3 2 0は、 縦 2 0個、 横 2 0個の配置になつ ており、 すべて実装されれば、 4 0 0個のピンを持つことになるが、 こ こに示す 2 5 6ピンのパッケージ 3 1 0の場合には、 内側の 1 4 4個力 実装されておらず、 外側の 4列にピンが実装されている。 最外周は縦 2 0、 横 2 0個、 その内側が縦 1 8、 横 1 8個、 さらにその内側が縦 1 6 横 1 6個、 実装される最内周は縦 1 4、 横 1 4個である。 この実施例で はパッケージの外形は約 2 7 m m四方である。  An embodiment of the package of the semiconductor control device of the present invention will be described with reference to FIG. FIG. 13 is a view of the package as viewed from the back. ,. An example of the package is a 256-pin BGA (ball grid array) package. ° There are 256 pins (balls) 320 on the back side of the package 310 chip. Pins 320 are arranged in 20 vertical rows and 20 horizontal rows.If all of them are mounted, they will have 400 pins. In the case of package 310, the inner 144 pins are not mounted, and the outer four rows of pins are mounted. The outermost circumference is 20 vertical and 20 horizontal, the inside is 18 vertical and 18 horizontal, and the inner is 16 vertical 16 horizontal and the innermost mounted is 14 vertical and 14 horizontal. Individual. In this embodiment, the outer shape of the package is about 27 mm square.
第 1 4図に第 1 3図の Aでのパッケージ 3 1 0の断面図を示し、 ハ°ッ ケージ 3 1 0の内部の構成を説明する。 、。ッケージ 3 1 0の内部には、 論理 LSIチップ 7 0、 リー ドフレーム 9 0が実装されており、 論理 LSI チップ 7 0上に作成されているボンディ ング PAD 7 1 とリー ドフレーム 9 0は、 各ピン毎にボンディ ングワイヤ 8 0で接続されている。  FIG. 14 is a cross-sectional view of the package 310 at A in FIG. 13 to explain the internal configuration of the package 310. ,. The logic LSI chip 70 and the read frame 90 are mounted inside the package 310, and the bonding PAD 71 and the read frame 90 created on the logic LSI chip 70 are Each pin is connected by a bonding wire 80.
リー ドフレーム 9 0とピン 3 2 0は、 各ピン毎にスルーホールで接続 されている。 最内側のピン 3 4 0は、 ボンディ ングワイヤ 8 0とリー ド フレーム 9 0の接点からすぐ近くに配置されているので、 リ一ドフレー ム 9 0のインダクタンスはほとんどなく、 ワイヤボンディ ング 8 0のィ ンダクタンスしか見えてこない。 一方、 外側のピン 2 1は、 ワイヤボン ディ ング 8 0とリー ドフレーム 9 0の接点からさらにピン 2 1まで距離 があるので、 リー ドフレーム 9 0のインダクタンスの影響が出てくる。 このため、 最内側のピン 3 4 0は、 他のピンよりもィンダクタンスが小 さくなり、 電源 Zグランドピンとして使用するのに適している。 The lead frame 90 and the pin 320 are connected by through holes for each pin. The innermost pin 340 is located very close to the point of contact between the bonding wire 80 and the lead frame 90, so there is little inductance in the lead frame 90 and the wire bonding 80 You can only see the conductance. On the other hand, since the outer pin 21 is further away from the contact point between the wire bonding 80 and the lead frame 90 to the pin 21, the influence of the inductance of the lead frame 90 appears. Therefore, the innermost pin 340 has smaller inductance than the other pins. Suitable for use as a power supply Z ground pin.
第 1 5図にパッケージ 3 1 0の内部の概略図およびを示し、 さらに詳 細に説明する。 ここでは、 図を簡略化するために、 論理 LSIチップ 7 0 上のボンディ ング PAD 7 1の数は 4 0個 (各辺 1 0個) 、 ピン 3 2 0の 総数は 4 0個で、 外側と内側の 2列構成で、 外側は各辺 5個、 内側は各 辺 5とする。  FIG. 15 shows a schematic diagram of the inside of the package 310, which will be described in more detail. Here, to simplify the figure, the number of bonding pads 71 on the logic LSI chip 70 is 40 (10 on each side), and the total number of pins 320 is 40. The inner side is composed of 5 rows, the outer side is 5 sides, and the inner side is 5 sides.
論理 LSIチップ 7 0は、 10用電源 5 1 と内部論理用電源 5 0の 2電源 構成で動作するものとする。 ここでは、 内部論理用電源 5 0は、 チップ の消費電力を下げるために、通常 10用電源 5 1 よりも低い電圧であると する。 また、 10用電源 5 1のピンを 4本、 10用グランド 6 1のピンを 8 本、 内部論理用電源 5 0のピンを 4本、 内部論理用グランド 6 0のピン を 4本としている。  It is assumed that the logic LSI chip 70 operates with a two-power supply configuration of a power supply 51 for 10 and a power supply 50 for internal logic. Here, it is assumed that the internal logic power supply 50 has a lower voltage than the normal 10 power supply 51 in order to reduce the power consumption of the chip. In addition, there are four 10 power supply 51 pins, eight 10 ground 61 pins, four internal logic power supply 50 pins, and four internal logic ground 60 pins.
まず、 論理 LSIチップ 7 0の内部の構成を簡単に説明する。 論理 LSI チップ 7 0は、 10電源 5 1で動作する領域 7 3と内部論理用電源 5 0で 動作する領域 7 4から構成される。 10電源動作領域 7 3は、 主にボンデ ィ ング PAD 7 1、入出力回路および内部電源の電圧レベルから 10電源の 電圧レベルに変換するレベル変換回路 7 2から構成され、 外部回路との 入出力を制御する。 ただし、 10用の電源電圧と内部論理用の電源電圧の 電圧が同じ場合にはレベル変換回路は必要ない。 内部電源動作領域 7 4 には、 マイコンや論理 LSIの主要な機能が実装されている。  First, the internal configuration of the logic LSI chip 70 will be briefly described. The logic LSI chip 70 includes an area 73 operated by the power supply 51 and an area 74 operated by the power supply 50 for the internal logic. The 10 power supply operation area 73 mainly consists of a bonding pad 71, an input / output circuit, and a level conversion circuit 72 that converts the voltage level of the internal power supply to the voltage level of the 10 power supply. Control. However, when the power supply voltage for 10 and the power supply voltage for internal logic are the same, the level conversion circuit is not required. The internal power supply operation area 74 contains the main functions of microcomputers and logic LSIs.
次に、 ノ、 °ッケージ 3 1 0上のピン 3 2 0とリ一 ドフレーム 9 0の構成 について説明する。 電源とグランドビンのィンダクタンスを下げるため に、 電源とグランドピンは内側のピン、 信号線は外側のピンに割り付け てある。 論理 LSIチップ 7 0上のボンディ ング PAD 7 1 とリ一ドフレー ム 9 0を接続するボンディ ングワイヤ 8 0の長さは信号ピンも電源 /グ ランドビンもほぼ同じである。 電源/グランドピンのリ一ドフレームの 配線長は、 外側の信号線のリー ドフレームの配線長の約 1 / 2から 1 7 3と短くなり、 電源/グランドビンのリ一ドフレームのィンダク夕ンス が小さくなつている。 Next, the configuration of the pins 320 on the package 310 and the lead frame 90 will be described. To reduce the inductance of the power and ground bins, the power and ground pins are assigned to the inner pins, and the signal lines are assigned to the outer pins. The length of the bonding wire 80 connecting the bonding PAD 71 and the lead frame 90 on the logic LSI chip 70 is almost the same for both the signal pin and the power supply / ground bin. Power / ground pin lead frame The wiring length is reduced to about 1/2 to 1733 of the wiring length of the outer signal line lead frame, and the inductance of the power / ground bin lead frame is reduced.
第 1 6図で 10用電源 5 1 と内部論理用電源 5 0の 2電源構成で動作 する 2 5 6 ピンのピンのピン配置の構成を説明する。 ここでは、 10電源 が 3. 3V、 内部電源が 1. 8Vとする。 内部論理用電源 5 0 (図では、 黒の ピンで示す) と内部論理用グランド 6 0 (図では、 黒のピンで示す) 、 10用電源 5 1 と 10用グランド 6 1を、 最内側と、 内側から 2列目のピ ンに割り付ける。 内部論理用電源 5 0とグランド 6 0は、 出力バッファ のノイズとは関係ないので、そのピン数は内部論理の消費電力で決まる。 一般的には、 プラスチックパッケージに実装できる LSIチップの消費電 力は 1 ヮッ 卜から 1. 5ヮッ ト程度なので、 10用の電源/グランドピンよ り内部電  FIG. 16 illustrates the configuration of the pin arrangement of the 256 pins, which operates in a dual power supply configuration of 10 power supply 51 and internal logic power supply 50. Here, it is assumed that 10 power supplies are 3.3V and the internal power supply is 1.8V. The internal logic power supply 50 (shown by black pins in the figure), the internal logic ground 60 (shown by black pins in the figure), the power supply 51 for 10 and the ground 61 for 10 , Assign to the second row of pins from the inside. The internal logic power supply 50 and ground 60 have nothing to do with the noise of the output buffer, so the number of pins is determined by the power consumption of the internal logic. In general, the power consumption of an LSI chip that can be mounted on a plastic package is about 1 to 1.5 bits.
源の電源 5 0とグランド 6 0のピンの方が、 少なくてよい。 ここでは、 内部電源 5 0とグランド 6 0は、 各辺 2本ずつ割り当ててある。 それ以 外を 10用の電源 5 1、 10用グランド 6 1に割り当てればよい。 The power supply 50 and ground 60 pins need less. Here, two internal power supplies 50 and two grounds 60 are assigned to each side. The rest can be assigned to the power supply 51 for 10 and the ground 61 for 10.
第 1 7図にプリ ント基板 1 1 0上での電源/グランドおよび、 デカツ プリ ングコンデンサ 4 0 0の実装の実施例を示す。 ここで、 グランドピ ンを最内側のピン 3 4 0、 電源ピンを内側から 2列目のピン 3 3 0に割 り付けてある。 プリ ント基板は 4層基板であり、 1層目が配線層、 2層 目がグランド層、 3層目が、 電源層、 4層目が配線層である。  FIG. 17 shows an embodiment in which the power supply / ground and the decapping capacitor 400 are mounted on the printed circuit board 110. Here, the ground pin is assigned to the innermost pin 340, and the power supply pin is assigned to the second row of pins 340 from the inside. The print substrate is a four-layer substrate, the first layer is a wiring layer, the second layer is a ground layer, the third layer is a power supply layer, and the fourth layer is a wiring layer.
ノ、。ッケージ 3 1 0の裏面のピンの実装をしていない 1層目 4 0 1をプ リ ント基板 1 1 0上でグランドプレーン 4 0 1にして、 このグランドプ レーン 4 0 1 とグランドビンの配線長を最短にしている。 これにより、 プリ ント基板 1 1 0上でもグランド配線のィンダクタンス成分を小さく することが可能となる。 また、 電源ピンとグンランドビン間に実装するデカップリ ングコンデ ンサ 4 0 0は、 電源ピンとグランドビンの近くからスルーホールで 4層 目に配線し、 最短の配線で実装できるようになる。 これにより、 プリ ン 卜基板 1 1 0上の電源ズグラン ドの配線長を最短にでき、 さらにチカッ プリ ングコンデンサ 4 0 0も最短の位置に配置できる。 これにより、 出 カバッファの切り替えノイズを抑えることが可能となる。 No ,. The package on the back side of the package 3 10 is not mounted with the first layer 4 0 1 is the ground plane 4 0 1 on the printed circuit board 1 1 0, and the wiring length between this ground plane 4 0 1 and the ground bin Is the shortest. This makes it possible to reduce the inductance component of the ground wiring even on the print substrate 110. In addition, the decoupling capacitor 400 mounted between the power supply pin and the ground bin can be mounted on the fourth layer with a through hole near the power supply pin and the ground bin, and can be mounted with the shortest wiring. As a result, the wiring length of the power supply ground on the printed circuit board 110 can be minimized, and the chip coupling capacitor 400 can also be arranged at the shortest position. This makes it possible to suppress the switching noise of the output buffer.
次に信号線のプリ ン卜基板上での配線について説明する。  Next, wiring of signal lines on a printed circuit board will be described.
第 1 8図に第 1 3図の Bの部分を拡大したピン配置の構成図を示す。 ピン 3 2 0の大きさは、 0. 75mm, ピン 3 2 0の間隔が 1. 27匪であるとす る。  FIG. 18 shows a configuration diagram of a pin arrangement in which a portion B in FIG. 13 is enlarged. The size of the pin 320 is 0.75 mm, and the distance between the pins 320 is 1.27.
第 1 9図ではこのパッケージを実装するときのプリ ント基板の構成図 を示す。 ピン 3 2 0と半田で接続するためのプリ ント基板上のフッ トパ ターン 1 0 2の大きさを 0. 95mmとすると、フッ トパターン 1 0 2間の間 隔は 0. 3mmとなり、この間隔で引き出せる信号線 5 5は、配線幅を 0. lmm、 フッ 卜パターン間の間隔 0. lmmの信号線 1本である。 信号線は、 外側 2 列のピンに割り付けられているので、 最外側と外側から 2列目の信号線 はすべて、 チップの外に引き出せることになる。 これにより、 スルーホ —ルを使用しないで、 信号線をパッケージの外側に引き出せるので、 ノ、。 ッケージの裏面のプリ ント基板に信号線のスルーホールが不要になり、 スルーホールによる内層の電源層ノグランドブレ一ンの面積の削減を抑 えることができ、 電源層 Zグランド層を強化できる。 この結果、 パッケ —ジ 3 1 0からの信号線は、 外部のチップやコネクタと接続が容易であ る。  Fig. 19 shows the configuration of the printed circuit board when this package is mounted. Assuming that the size of the foot pattern 102 on the printed circuit board to be connected to the pin 320 by solder is 0.95 mm, the spacing between the foot patterns 102 is 0.3 mm. The signal line 55 that can be drawn out by the above is one signal line having a wiring width of 0.1 mm and an interval between foot patterns of 0.1 mm. Since the signal lines are assigned to the outer two rows of pins, all the outermost and outermost signal lines can be pulled out of the chip. This allows the signal line to be drawn out of the package without using a through hole. The printed circuit board on the back of the package does not require through-holes for signal lines, so that the through-holes can be used to reduce the area of the inner power ground plane ground plane, and the power ground plane can be strengthened. As a result, the signal line from the package 310 can be easily connected to an external chip or connector.
第 8図にマイコンのピン配置の実施例を示す。 また、 第 9図、 第 1 0 図は上記マイコンの信号ピンの役割を説明するための図表である。 この ハ°ッケージの例は、 BGA (ボールグリ ッ ドパッケージ) である。 最内側に グランド、 最内側から 2列目に電源を配置するピン割り付けになってい る。 10用の電源数は 3 0本、 10用のグランド数は 3 2本、 内部論理用の 電源数は 8本、 内部論理用のグランド数は 8本である。 また、 10用の電 源/グランドの数は、 出力信号線 4本に 1ペアの構成になっている。 高 速のメモリ とのインタフェースに必要な、 デ一夕バス(DO - D63)、 ァ ドレ スバス(A2- A 17)、 制御信号 (CK I 0、 CS2#、 CS3#、 RASせ、 R /CASS#/FRAME#、 WEn#/CASn#/DQMn(n= 0 - 7 ) ) 等は、 必ず外側の 2列に割り付けてある。 外 側の 2列では信号線の本数が不足する場合には、 内側の 2列にも信号線 を一部割り付けてもよい。 FIG. 8 shows an embodiment of the pin arrangement of the microcomputer. FIG. 9 and FIG. 10 are tables for explaining the role of the signal pins of the microcomputer. An example of this package is a BGA (Ball Grid Package). Inside The pins are assigned to place the power supply in the second row from the innermost ground. The number of power supplies for 10 is 30, the number of grounds for 10 is 32, the number of power supplies for internal logic is 8, and the number of grounds for internal logic is 8. The number of power supplies / grounds for 10 is one pair for four output signal lines. Data buses (DO-D63), address buses (A2-A17), control signals (CK I0, CS2 #, CS3 #, RAS, R / CASS) required for interfacing with high-speed memory # / FRAME #, WEn # / CASn # / DQMn (n = 0-7)), etc. are always assigned to the outer two columns. If the number of signal lines is not sufficient in the two outer rows, some signal lines may be assigned to the two inner rows.
以上説明したように、 マイコンゃ論理 LS I等の半導体制御装置のパッ ケージのピン配置において、 内側に電源 グラン ドを配置することによ り、出カバッファの切り替えノィズに強い半導体制御装置を提供できる。 本発明は、 BGAパッケージだけでなく、 同じようにチップの裏面にボ ールを配置した、 PGA (ピングリ ッ ドアレイ) パッケージ、 CSP (チップ サイズパッケージ) にも適用可能である。  As described above, by arranging the power supply ground inside the pins of the package of the semiconductor control device such as the microcomputer and the logic LSI, it is possible to provide a semiconductor control device that is resistant to output buffer switching noise. . The present invention can be applied not only to a BGA package but also to a PGA (Pingled Array) package and a CSP (Chip Size Package) in which a ball is similarly arranged on the back surface of a chip.
パッケージの裏面にアレイ上 2次元に配置されたピン配置のパッケ一 ジに実装された半導体制御装置において、 内側のピンに電源とグランド を配置し、 外側のピンに信号線を配置したことを特徴とする半導体制御 最内側のピンにグランドを配置し、 内側から 2列目のピンに電源ピン を配置することを特徴とする半導体制御装置。  In a semiconductor control device mounted on a package with two-dimensionally arranged pins on the array on the back of the package, power and ground are arranged on inner pins, and signal lines are arranged on outer pins. A semiconductor control device comprising: a ground disposed on an innermost pin; and a power supply pin disposed on a second row of pins from the inner side.
10用の電源と内部論理用の電源の 2電源で動作し、 10用の電源および グランドビンが、 内部論理用の電源およびグランドビンより多いことを 特徴とする半導体制御装置。  A semiconductor control device that operates on two power supplies, a power supply for 10 and a power supply for internal logic, and has more power supplies and ground bins for 10 than for internal logic.
半導体チップと、 半導体チップを内蔵するパッケージと、 パッケージ の表面に配置される複数の端子とを有する半導体装置であって、 複数の 端子は、 半導体チップに対する電源またはグラウンドを供給する第 1の 種類の複数の端子と、 半導体チップに信号を入力あるいは半導体チップ から信号を出力する第 2の種類の複数の端子を含み、 半導体チップの外 縁と第 1の種類の端子それぞれの外縁との最短距離の集合 Aを A 1〜AN (ただし Nは第 1の種類の端子の数) とし、 半導体チップの外縁と第 2 の種類の端子それぞれの外縁との最短距離の集合 Bを B1〜BM (ただし M は第 2の種類の端子の数) としたとき、 集合 Bのうち最小のものが、 集 合 Aのうちの最大のものと同じかそれ以上であることを特徴とする半導 体装置。 A semiconductor device, comprising: a semiconductor chip; a package containing the semiconductor chip; and a plurality of terminals disposed on a surface of the package. The terminals include a first plurality of terminals for supplying power or ground to the semiconductor chip, and a second plurality of terminals for inputting signals to or outputting signals from the semiconductor chip. The set A of the shortest distance between the outer edge and the outer edge of each of the first type terminals is A 1 to AN (where N is the number of the first type terminals), and the outer edge of the semiconductor chip and the second type terminal When the set B of the shortest distance from each outer edge is B1 to BM (where M is the number of terminals of the second type), the smallest set B is the largest set A and the largest set A A semiconductor device characterized by being the same or more.
複数の端子はパッケージの外形を形成する平面のうち最大面積の平面 にマトリ ックス状に配置されており、最大面積の平面が矩形形状であり、 矩形形状の平面の外縁と第 1の種類の端子それぞれの外縁との最短距離 の集合 AXを AX1〜AXN (ただし Nは第 1の種類の端子の数) とし、矩形形 状の平面の外縁と上記第 2の種類の端子それぞれの外縁との最短距離の 集合 BXを BX1〜BXM (ただし Mは第 2の種類の端子の数) としたとき、 集合 BXのうち最大のものが、 集合 AXのうちの最小のものと同じかそ れ以上であることを特徴とする半導体装置。  The plurality of terminals are arranged in a matrix on a plane having the largest area among the planes forming the outer shape of the package, the plane having the largest area is rectangular, and the outer edge of the rectangular plane and the first type of terminal are arranged. The set of the shortest distances from the outer edges AX is AX1 to AXN (where N is the number of terminals of the first type), and the shortest distance between the outer edge of the rectangular planar surface and the outer edges of the terminals of the second type is If the set of distances BX is BX1 to BXM (where M is the number of terminals of the second type), the largest of the set BX must be equal to or greater than the smallest of the set AX A semiconductor device characterized by the above-mentioned.
半導体チップと、 半導体チップを内蔵するパッケージと、 ッケージ の表面に互いに等間隔でマトリックス配置される複数の端子とを有する 半導体装置であって、 マトリックス配置された端子のうち最外縁の端子 を第 1のグループとし、 第 1のグループの端子と最短距離にある端子を 第 2のグループとし、 上記第 2のグループの端子と最短距離にある端子 で第 1のグループに属していない端子を第 3のグループとしたときに、 第 3のグループにおける信号入出力端子以外の端子の割合が、 第 1のグ ループにおけるそれよりも大きいことを特徴とする半導体装置。  A semiconductor device comprising: a semiconductor chip; a package containing the semiconductor chip; and a plurality of terminals arranged in a matrix at equal intervals on the surface of the package, wherein the outermost terminal among the terminals arranged in a matrix is a first terminal. The terminal that is the shortest distance from the terminal of the first group is the second group, and the terminal that is the shortest distance from the terminal of the second group and does not belong to the first group is the third group. A semiconductor device, wherein when grouped, the proportion of terminals other than the signal input / output terminals in the third group is larger than that in the first group.
第 3のグループにおける信号入出力端子以外の端子の割合が、 第 2の グループにおけるそれよりも大きいことを特徴とする半導体装置。 The ratio of terminals other than signal input / output terminals in the third group A semiconductor device characterized by being larger than that of the group.
第 3のグループの端子と最短距離にある端子で第 2のグループに属し ていない端子を第 4のグループとしたときに、 第 4のグループにおける 信号入出力端子以外の端子の割合が、 第 1のグループにおけるそれより も大きいことを特徴とする半導体装置。  When the terminals that are the shortest distance from the terminals of the third group and do not belong to the second group are the fourth group, the ratio of terminals other than the signal input / output terminals in the fourth group is the first group. A semiconductor device that is larger than that of the semiconductor device group.
信号入出力端子以外の端子には、 半導体チップ内に形成された論理回 路を駆動するための第 1及び第 2の電位を供給するための端子を含むこ とを特徴とする半導体装置。  A semiconductor device, characterized in that the terminals other than the signal input / output terminals include terminals for supplying first and second potentials for driving a logic circuit formed in the semiconductor chip.
信号出力端子以外の端子には、 半導体チップ内に形成された論理回路 を駆動するための第 3及び第 4の電位を供給するための端子をさらに含 むことを特徴とする半導体装置。  A semiconductor device, characterized in that terminals other than the signal output terminal further include terminals for supplying third and fourth potentials for driving a logic circuit formed in the semiconductor chip.
半導体チップ内に形成された特定の論理ゲ一トを駆動するための第 1 及び第 2の電位を供給するための端子が、 第 3及び第 4のグループに属 する端子に分かれて配置されていることを特徴とする半導体装置。  Terminals for supplying first and second potentials for driving a specific logic gate formed in the semiconductor chip are divided into terminals belonging to third and fourth groups, and A semiconductor device.
半導体チップ内に形成された特定の論理ゲートを駆動するための第 3 及び第 4の電位を供給するための端子が、 第 3及び第 4のグループに属 する端子に分かれて配置されていることを特徴とする半導体装置。 第 3及び第 4のグループに属する端子に分かれて配置されている端子 は、 最も近い位置に配置されている端子であることを特徴とする半導体 パッケージはプリン卜基板上に配置されており、 第 1及び第 2のグル —プに属する端子からは基板表面に沿って配線が引き出され、 第 3及び 第 4のグループに属する端子からは基板を貫通するスルーホールを通し て配線が引き出されていることを特徴とする半導体装置。  Terminals for supplying the third and fourth potentials for driving specific logic gates formed in the semiconductor chip are arranged separately in terminals belonging to the third and fourth groups A semiconductor device characterized by the above-mentioned. The terminals separately arranged in the terminals belonging to the third and fourth groups are terminals arranged at the closest positions.The semiconductor package is arranged on a printed circuit board. Wiring is drawn out from the terminals belonging to the first and second groups along the board surface, and wiring is drawn out from the terminals belonging to the third and fourth groups through through holes penetrating the board. A semiconductor device characterized by the above-mentioned.
信号入出力端子は、 半導体チップ内に形成された論理回路によって処 理されるべき入力信号、 あるいは、 半導体チップ内に形成された論理回 路によって処理された出力信号を伝達することを特徴とする導体装置。 半導体チップと、 半導体チップを内蔵するパッケージと、 パッケージ の表面に配置される複数の導体ピンと、 半導体チップのパッ ドと導体ピ ンを電気的に接続するリ一ドフレームを有する半導体装置であって、 複 数のピンは、 半導体チップに形成された能動素子を駆動するための少な く とも 2つの電位を供給する第 1の種類の複数のピンと、 半導体チップ の能動素子で変調される信号を入力あるいは半導体チップの能動素子で 変調された信号を出力する第 2の種類の複数のピンを含み、 第 1の種類 のピンとパッ ドの間の配線長の最大のものが、 第 2の種類のピンとパッ ドの間の配線長の最小のものを越えないことを特徴とする半導体装置。 第 1の種類の複数のピンは半導体チップの外縁を取り囲むように配置 され、 第 2の種類のピンは第 1の種類の複数のピンを取り囲むように配 置されていることを特徴とする半導体装置。 The signal input / output terminal is an input signal to be processed by a logic circuit formed in the semiconductor chip or a logic circuit formed in the semiconductor chip. A conductor device for transmitting an output signal processed by a path. A semiconductor device comprising: a semiconductor chip; a package containing the semiconductor chip; a plurality of conductor pins arranged on a surface of the package; and a lead frame for electrically connecting the semiconductor chip pad and the conductor pin. The plurality of pins receive a first type of pins for supplying at least two potentials for driving active elements formed on the semiconductor chip and a signal modulated by the active element of the semiconductor chip. Alternatively, the semiconductor device includes a plurality of pins of a second type for outputting a signal modulated by an active element of a semiconductor chip, and the longest wiring length between the first type of pins and the pad is the second type of pins. A semiconductor device characterized by not exceeding a minimum wiring length between pads. A semiconductor wherein the plurality of pins of the first type are arranged so as to surround the outer edge of the semiconductor chip, and the pins of the second type are arranged so as to surround the plurality of pins of the first type. apparatus.
パッケージはプリント基板上に配置されており、 第 2の種類の複数の ピンの大部分からは基板表面に沿って配線が引き出され、 第 1の種類の 複数のピンの大部分からは基板を貫通するスルーホールを通して配線が 引き出されていることを特徴とする半導体装置。  The package is placed on a printed circuit board, and most of the pins of the second type lead out along the surface of the board, and most of the pins of the first type penetrate the board A semiconductor device characterized in that wiring is drawn out through a through hole.

Claims

請 求 の 範 囲 The scope of the claims
1 . マイコンと周辺制御半導体装置と複数の半導体メモリ とから構成さ れるマイコン制御装置において、 マイコンと周辺半導体装置との間に複 数の半導体メモリを配置したことを特徴とするマイコン制御装置。  1. A microcomputer control device comprising a microcomputer, a peripheral control semiconductor device, and a plurality of semiconductor memories, wherein a plurality of semiconductor memories are arranged between the microcomputer and the peripheral semiconductor device.
2 . 前記マイコンの前記半導体メモリ との位置が最も近い辺の中央から クロック信号を出力し、 そのクロック出力の左右からァドレス信号を出 力し、 そのアドレス出力のさらに外側から制御信号を出力し、 前記マイ コンと前記半導体メモリ との位置が次に近い辺からデータバスを出力す ることを特徴とする請求項 1のマイコン制御装置。 2. A clock signal is output from the center of the side of the microcomputer closest to the semiconductor memory, an address signal is output from the left and right of the clock output, and a control signal is output from outside the address output. 2. The microcomputer control device according to claim 1, wherein a data bus is output from a side of the microcomputer and the semiconductor memory next to each other.
3 . 前記マイコンと周辺制御半導体装置との間に配置された半導体メモ リカ アドレスピンを内側にし、 データピンを外側にし、 横置きに配置 されたことを特徴とする請求項 1または 2に記載のマイコン制御装置。  3. The semiconductor memory device according to claim 1, wherein the semiconductor memory device disposed between the microcomputer and the peripheral control semiconductor device is arranged horizontally with the address pins being inside, the data pins being outside, and being arranged horizontally. Microcomputer control device.
4 . 前記マイコンと周辺制御半導体装置とのピン配置が線対称になるこ とを特徴とする請求項 1乃至 3のうちいずれかに記載のマイコン制御装 置 o 4. The microcomputer control device according to any one of claims 1 to 3, wherein the pin arrangement of the microcomputer and the peripheral control semiconductor device is axisymmetric.
5 . 前記マイコンは、 裏面にアレイ状 2次元に配置されたピン配置のパ ッケージを有しており、 該ピン配置は、 内側に電源のピンとグランドの ピンを配置し外側に信号線のピンを配置していることを特徴とする請求 項 1乃至 3のうちいずれかに記載のマイコン制御装置。  5. The microcomputer has a package of two-dimensionally arranged pins arranged in an array on the back surface, with the power supply pins and ground pins arranged inside and the signal line pins arranged outside. 4. The microcomputer control device according to claim 1, wherein the microcomputer control device is arranged.
6 . 前記マイコンのパッケージにおいて、 最内側にグランドピンを配置 し、 内側から 2列目に電源ピンを配置していることを特徴とする請求項 5記載のマイコン制御装置。  6. The microcomputer control device according to claim 5, wherein, in the microcomputer package, a ground pin is arranged on an innermost side, and a power supply pin is arranged in a second row from the inner side.
7 . 前記マイコンと前記周辺制御半導体装置と前記複数の半導体メモリ とを 1チップ化したことを特徴とする請求項 1乃至 4のうちいずれかに 記載のマイコン制御装置。  7. The microcomputer control device according to claim 1, wherein the microcomputer, the peripheral control semiconductor device, and the plurality of semiconductor memories are integrated into one chip.
8 . 演算機能を備える第 1の半導体装置と、 記憶機能を備える第 2およ び第 3の半導体装置とを有し、 上記第 1の半導体装置を通る軸を Y軸と 想定したときに、 上記第 2および第 3の半導体装置が Y軸に対して線対 称の配置になるように配置され、 上記第 1の半導体装置の上記第 2およ び第 3の半導体装置に近い辺にクロック信号を出力するクロック信号端 子を有し、 該クロック信号端子からクロック信号が上記第 2および第 3 の半導体装置に供給されている情報処理装置。 8. The first semiconductor device with an arithmetic function and the second and And a third semiconductor device, wherein the axis passing through the first semiconductor device is assumed to be the Y axis, and the second and third semiconductor devices are arranged in line symmetry with respect to the Y axis. And a clock signal terminal for outputting a clock signal on a side of the first semiconductor device close to the second and third semiconductor devices. The clock signal terminal receives the clock signal from the clock signal terminal. Information processing equipment supplied to the second and third semiconductor devices.
9 . 前記 Y軸に直交する X軸を想定したときに、 前記第 2および第 3の 半導体装置は上記 X軸の方向に沿って並んでいる請求項 8記載の情報処 1 0 . 前記 Y軸の上に、 演算機能を備える第 4の半導体装置を有し、 該 第 4の半導体装置と前記第 1の半導体装置との間に前記第 2および第 3 の半導体装置が配置され、 前記第 1の半導体装置から供給されるクロッ ク信号が、 上記第 4の半導体装置の上記第 2および第 3の半導体装置に 近い辺に配置されたクロック信号入力端子に入力されている請求項 9記 載の情報処理装置。  9. The information processing apparatus according to claim 8, wherein the second and third semiconductor devices are arranged along the direction of the X axis when an X axis orthogonal to the Y axis is assumed. A fourth semiconductor device having an arithmetic function, wherein the second and third semiconductor devices are arranged between the fourth semiconductor device and the first semiconductor device; 10. The clock signal input terminal according to claim 9, wherein the clock signal supplied from the third semiconductor device is input to a clock signal input terminal of the fourth semiconductor device which is arranged on a side of the fourth semiconductor device close to the second and third semiconductor devices. Information processing device.
1 1 . 前記クロック信号を伝達する配線が、 前記第 2および第 3の半導 体装置の間を通っている請求項 1 0記載の情報処理装置。  11. The information processing apparatus according to claim 10, wherein the wiring for transmitting the clock signal passes between the second and third semiconductor devices.
1 2 . 前記第 1の半導体装置のクロック端子の左右にァドレス信号端子 を有し、 該ァドレス信号端子からァドレス信号が上記第 2および第 3の 半導体装置に供給されている請求項 1 1記載の情報処理装置。  12. The device according to claim 11, further comprising an address signal terminal on the left and right of the clock terminal of the first semiconductor device, wherein an address signal is supplied to the second and third semiconductor devices from the address signal terminal. Information processing device.
1 3 . 前記第 1の半導体装置は、 裏面にアレイ状 2次元に配置されたピ ン配置のパッケージを有しており、 該ピン配置は、 内側に電源のピンと グランドのピンを配置し外側に信号線のピンを配置していることを特徴 とする請求項 8乃至 1 2のうちいずれかに記載の情報処理装置。  13. The first semiconductor device has a package having a pin arrangement arranged two-dimensionally in an array on the back surface, wherein the pin arrangement includes a power supply pin and a ground pin arranged inside and a pin arranged outside. 13. The information processing apparatus according to claim 8, wherein pins of the signal line are arranged.
1 4 . 前記第 1の半導体装置のパッケージにおいて、 最内側にグランド ピンを配置し、 内側から 2列目に電源ピンを配置していることを特徴と する請求項.1 3記載の情報処理装置。 14. The package of the first semiconductor device, wherein a ground pin is arranged on the innermost side, and a power supply pin is arranged on the second column from the inner side. 13. The information processing apparatus according to claim 13.
1 5 . 前記第 1の半導体装置のクロック信号端子のある辺を第 1の辺と し、 該第 1の辺の両側の辺を第 2および第 3の辺としたときに、 各辺に 配置される端子の数に対するデータ信号入出力端子の数の割合は、 第 1 の辺における割合よりも、 第 2または第 3の辺における割合の方が大き く設定されている請求項 1 2記載の情報処理装置。  15. When the side of the first semiconductor device where the clock signal terminal is located is the first side, and the sides on both sides of the first side are the second and third sides, the arrangement is made on each side. The ratio of the number of data signal input / output terminals to the number of terminals to be set is set so that the ratio on the second or third side is larger than the ratio on the first side. Information processing device.
1 6 . 前記第 2および第 3の半導体装置は前記 X軸に平行な方向に長辺 を有しており、 該長辺において上記ァドレス信号の入力される端子は、 データ信号入出力端子よりも Y軸に近く配置されている請求項 1 5記載 の情報処理装置。  16. The second and third semiconductor devices have long sides in a direction parallel to the X-axis, and the terminal to which the address signal is input is longer than the data signal input / output terminal on the long side. 16. The information processing device according to claim 15, wherein the information processing device is arranged near the Y axis.
1 7 . 前記第 4の半導体装置のクロック信号入力端子のある辺と同じ辺 にァ ドレス信号入力端子を有し、 該ァドレス信号入力端子に前記第 1の 半導体装置からのァドレス信号を入力する請求項 1 6記載の情報処理装  17. An address signal input terminal is provided on the same side as a side of the fourth semiconductor device where a clock signal input terminal is provided, and an address signal from the first semiconductor device is input to the address signal input terminal. Information processing equipment described in Item 16
1 8 . 前記第 4の半導体装置のクロック信号入力端子のある辺を第 1の 辺とし、 該第 1の辺の両側の辺を第 2および第 3の辺としたときに、 各 辺に配置される端子の数に対するデータ信号入出力端子の数の割合は、 第 1の辺における割合よりも、 第 2または第 3の辺における割合の方が 大きく設定されている請求項 1 7記載の情報処理装置。 18. A side where the clock signal input terminal of the fourth semiconductor device is located is defined as a first side, and both sides of the first side are defined as second and third sides. The information according to claim 17, wherein the ratio of the number of data signal input / output terminals to the number of terminals to be set is set to be larger in the second or third side than in the first side. Processing equipment.
1 9 . 前記第 2および第 3の半導体装置と同様の構成の第 5および第 6 の半導体装置を有し、 該第 5および第 6の半導体装置が Y軸に対して線 対称の配置になるように配置され、 かつ、 上記第 5および第 6の半導体 装置は前記 X軸に平行な方向に長辺を有しており、 該長辺におけるァド レス信号の入力される端子は、 データ信号入出力端子よりも前記第 1の 半導体装置のクロック信号端子に近く配置されている請求項 1 8記載の 情報処理装置。 1 9. Fifth and sixth semiconductor devices having the same configuration as the second and third semiconductor devices are provided, and the fifth and sixth semiconductor devices are arranged symmetrically with respect to the Y axis. And the fifth and sixth semiconductor devices have a long side in a direction parallel to the X-axis, and a terminal to which an address signal is input on the long side is a data signal. 19. The information processing device according to claim 18, wherein the information processing device is arranged closer to a clock signal terminal of the first semiconductor device than an input / output terminal.
2 0 . 前記.第 5および第 6の半導体装置は、 前記第 2および第 3の半導 体装置が配置される基板面と同一の基板面に配置され、 かつ、 前記第 1 および第 4の半導体装置の間に配置されている請求項 1 9記載の情報処 20. The fifth and sixth semiconductor devices are arranged on the same substrate surface as the substrate surface on which the second and third semiconductor devices are arranged, and the first and fourth semiconductor devices are arranged on the same substrate surface. The information processing apparatus according to claim 19, which is arranged between semiconductor devices.
2 1 . 前記第 5および第 6の半導体装置は、 前記第 2および第 3の半導 体装置が配置される基板面と反対の基板面に配置され、 かつ、 該基板に 対して前記第 2および第 3の半導体装置と面対称になるように配置され ている請求項 1 9記載の情報処理装置。 21. The fifth and sixth semiconductor devices are arranged on a substrate surface opposite to the substrate surface on which the second and third semiconductor devices are arranged, and the second and third semiconductor devices are arranged on the second semiconductor device with respect to the substrate. 10. The information processing device according to claim 19, wherein the information processing device is arranged so as to be plane-symmetric with the third semiconductor device.
2 2 . 前記第 2、 第 3、 第 5、 第 6の半導体装置は、 1 6 ビッ 卜のデ一 夕バスを有する半導体メモリである請求項 2 0または 2 1記載の情報処  22. The information processor according to claim 20 or 21, wherein said second, third, fifth, and sixth semiconductor devices are semiconductor memories having a 16-bit data bus.
2 3 . エミユレ一夕、 クロック発振回路、 入出力ポート、 シリアルイン 夕一フェイス、 および割込回路のうちの少なく とも一種を周辺モジュ一 ルとして備え、 前記第 1の半導体装置の第 1から第 3の辺以外の辺に配 置される端子と上記周辺モジュールを接続する請求項 1 3乃至 2 2のう ちのいずれかに記載の情報処理装置。 23. At least one of an Emiure, a clock oscillation circuit, an input / output port, a serial interface, and an interrupt circuit is provided as a peripheral module, and the first to the first semiconductor devices of the first semiconductor device are provided. The information processing device according to any one of claims 13 to 22, wherein a terminal arranged on a side other than the side (3) is connected to the peripheral module.
2 4 . 前記第 2および第 3の半導体装置とは異なる種類の半導体メモリ を備え、 前記第 1の半導体装置の第 1から第 3の辺以外の辺に配置され る端子と上記半導体メモリを接続する請求項 2 3記載の情報処理装置。 2 5 . 前記第 4の半導体装置が、 画像データ処理用の半導体装置である 請求項 1 0乃至 2 4のうちいずれかに記載の情報処理装置。  24. A semiconductor memory different from the second and third semiconductor devices is provided, and terminals arranged on sides other than the first to third sides of the first semiconductor device are connected to the semiconductor memory. 23. The information processing apparatus according to claim 23, wherein 25. The information processing device according to any one of claims 10 to 24, wherein the fourth semiconductor device is a semiconductor device for processing image data.
2 6 . 前記第 4の半導体装置は、 裏面にアレイ状 2次元に配置されたピ ン配置のパッケージを有しており、 該ピン配置は、 内側に電源のピンと グランドのピンを配置し外側に信号線のピンを配置していることを特徴 とする請求項 1 0乃至 2 5のうちいずれかに記載の情報処理装置。  26. The fourth semiconductor device has a two-dimensionally arranged pin-shaped package arranged in an array on the back surface, with the power supply pin and the ground pin arranged inside and the pin arrangement outside. 26. The information processing apparatus according to claim 10, wherein pins of signal lines are arranged.
2 7 . 前記第 4の半導体装置のパッケージにおいて、 最内側にグランド ピンを配置し、 内側から 2列目に電源ピンを配置していることを特徴と する請求項 2 6記載の情報処理装置。 27. In the package of the fourth semiconductor device, the innermost ground 27. The information processing apparatus according to claim 26, wherein pins are arranged, and power pins are arranged in a second row from the inside.
2 8 . マイクロコンピュータと 2つの半導体メモリを基板上に配置して 構成した情報処理装置であって、 上記マイクロコンピュータの第 1の辺 に平行な方向に上記 2つの半導体メモリが並べて配置され、 上記マイク 口コンピュータと半導体メモリの間はクロックバス、 アドレスバス、 デ 一夕バスで接続され、 上記マイクロコンピュー夕の第 1の辺に配置され た端子に上記ク口ックバスが接続されている情報処理装置。  28. An information processing apparatus comprising a microcomputer and two semiconductor memories arranged on a substrate, wherein the two semiconductor memories are arranged side by side in a direction parallel to the first side of the microcomputer. Microcomputer and semiconductor memory are connected by a clock bus, address bus, and data bus, and information processing in which the computer bus is connected to a terminal located on the first side of the microcomputer apparatus.
2 9 . 前記マイクロコンピュータは、 裏面にアレイ状 2次元に配置され たピン配置のパッケージを有しており、 該ピン配置は、 内側に電源のピ ンとグランドのピンを配置し外側に信号線のピンを配置していることを 特徴とする請求項 2 8記載の情報処理装置。  29. The microcomputer has a package having a pin arrangement arranged two-dimensionally in an array on the back surface, with a power supply pin and a ground pin arranged inside and a signal line outside. 29. The information processing apparatus according to claim 28, wherein the pins are arranged.
3 0 . 前記マイクロコンピュータのパッケージにおいて、 最内側にグラ ンドビンを配置し、 内側から 2列目に電源ピンを配置していることを特 徴とする請求項 2 9記載の情報処理装置。  30. The information processing apparatus according to claim 29, wherein in the microcomputer package, a ground bin is arranged on the innermost side, and a power supply pin is arranged in a second row from the inner side.
3 1 . 前記マイクロコンピュー夕の第 1の辺を挟む第 2の辺と第 3の辺 とに配置された端子のうち上記データバスに接続される端子の割合は、 上記第 1の辺に配置された端子のうち上記データバスに接続される端子 の割合よりも大きい請求項 2 8記載の情報処理装置。  31. Among the terminals arranged on the second side and the third side sandwiching the first side of the microcomputer, the ratio of the terminal connected to the data bus is equal to the ratio of the terminal connected to the first side. 29. The information processing apparatus according to claim 28, wherein the ratio of the terminals connected to the data bus is larger than the ratio of the terminals arranged.
3 2 . 上記マイクロコンピュータの第 1の辺に配置された端子に上記ァ ドレスバスが接続されている請求項 2 8または 3 1記載の情報処理装置。 3 3 . 前記 2つの半導体メモリの長辺が前記マイクロコンピュータの第 1の辺に平行であり、 該長辺に配置された端子に上記ァドレスバスとデ —夕バスが接続され、 上記 2つの半導体メモリの対向する辺に近い端子 に上記ァドレスバスが接続されている請求項 2 8乃至 3 2のうちいずれ かに記載の情報処理装置。 32. The information processing apparatus according to claim 28 or 31, wherein the address bus is connected to a terminal arranged on a first side of the microcomputer. 33. The long sides of the two semiconductor memories are parallel to the first side of the microcomputer, and the address bus and the data bus are connected to terminals arranged on the long sides. 33. The information processing apparatus according to claim 28, wherein the address bus is connected to a terminal near an opposite side of the information bus.
3 4 . 前記 2つの半導体メモリの長辺の、 前記ア ドレスバスが接続され た端子とデータバスが接続された端子の間の端子に、 前記ク口ックバス が接続されている請求項 3 3記載の情報処理装置。 34. The computer bus is connected to a terminal on a long side of the two semiconductor memories, between a terminal connected to the address bus and a terminal connected to the data bus. Information processing device.
3 5 . 直方体形状を有する第 1のデータ処理装置、 第 2のデータ処理装 置、 複数の記憶装置、 およびこれらを搭載する基板を有する情報処理装 置であって、上記基板面上に互いに直交する X軸と Y軸を想定した場合、 Y軸上に上記第 1および第 2のデータ処理装置が配置され、 上記 Y軸に 線対称に上記複数の記憶装置が配置され、 かつ、 X軸に線対称に上記複 数の記憶装置が配置され、 かつ、 上記複数の記憶装置を挟んで上記第 1 および第 2のデータ処理装置が配置されていることを特徴とする情報処 35. A first data processing device having a rectangular parallelepiped shape, a second data processing device, a plurality of storage devices, and an information processing device including a board on which the first and second data processing devices are mounted. Assuming the X axis and the Y axis, the first and second data processing devices are arranged on the Y axis, the plurality of storage devices are arranged in line symmetry with the Y axis, and the X axis is An information processing apparatus, wherein the plurality of storage devices are arranged symmetrically with each other, and the first and second data processing devices are arranged with the plurality of storage devices interposed therebetween.
3 6 . 前記第 1のデータ処理装置と第 2のデータ処理装置の対向する面 の間をクロック信号を供給する配線が接続しており、 該配線の両側に前 記複数の記憶装置が分かれて配置されていることを特徴とする請求項 3 5記載の情報処理装置。 36. Wiring for supplying a clock signal is connected between opposing surfaces of the first data processing device and the second data processing device, and the plurality of storage devices are divided on both sides of the wiring. The information processing device according to claim 35, wherein the information processing device is arranged.
3 7 . 前記第 1または第 2のデータ処理装置の Y軸の右側にある面にあ る端子と、 前記記憶装置のうち Y軸の右側にある記憶装置がデータバス で接続され、 前記第 1または第 2のデータ処理装置の Y軸の左側にある 面にある端子と、 前記記憶装置のうち Y軸の左側にある記憶装置がデ一 夕バスで接続されていることを特徴とする請求項 3 6記載の情報処理装 置。  37. A terminal on a surface on the right side of the Y-axis of the first or second data processing device and a storage device on the right side of the Y-axis among the storage devices are connected by a data bus, Alternatively, a terminal on a surface on the left side of the Y-axis of the second data processing device and a storage device on the left side of the Y-axis among the storage devices are connected by a data bus. 36. Information processing device according to 6.
3 8 . 直方体形状を有する第 1のデータ処理装置、 第 2のデータ処理装 置、 複数の記憶装置、 およびこれらを搭載する基板を有する情報処理装 置であって、 上記基板面を挟んで上記第 1および第 2のデータ処理装置 が配置され、 上記第 1のデータ処理装置の入力あるいは出力端子が、 第 38. A first data processing device having a rectangular parallelepiped shape, a second data processing device, a plurality of storage devices, and an information processing device including a board on which the first and second data processing devices are mounted. First and second data processing devices are arranged, and the input or output terminal of the first data processing device is connected to the first or second data processing device.
2のデータ処理装置の出力あるいは入力端子と向き合う位置に配置され ていることを特徴とする情報処理装置。 2 is located at the position facing the output or input terminal of the data processing device. An information processing apparatus, comprising:
3 9 . 前記基板面を挟んで前記複数の記憶装置が配置され、 該記憶装置 のクロック入力端子、 ア ドレス入力端子、 データ入力端子がそれぞれ向 き合う位置に配置されていることを特徴とする請求項 3 8記載の情報処  39. The plurality of storage devices are arranged with the substrate surface interposed therebetween, and a clock input terminal, an address input terminal, and a data input terminal of the storage device are arranged at positions facing each other. Claims 3 8 Information processing
PCT/JP1998/004928 1997-11-06 1998-10-30 Information processor WO1999024896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000519828A JP3896250B2 (en) 1997-11-06 1998-10-30 Information processing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/303912 1997-11-06
JP9/303913 1997-11-06
JP30391397 1997-11-06
JP30391297 1997-11-06

Publications (1)

Publication Number Publication Date
WO1999024896A1 true WO1999024896A1 (en) 1999-05-20

Family

ID=26563687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004928 WO1999024896A1 (en) 1997-11-06 1998-10-30 Information processor

Country Status (3)

Country Link
JP (1) JP3896250B2 (en)
TW (1) TW436730B (en)
WO (1) WO1999024896A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528473B2 (en) 2004-03-19 2009-05-05 Renesas Technology Corp. Electronic circuit, a semiconductor device and a mounting substrate
JP2011096268A (en) * 2010-12-06 2011-05-12 Renesas Electronics Corp Multi-chip module
WO2020179110A1 (en) * 2019-03-05 2020-09-10 アイシン・エィ・ダブリュ株式会社 Semiconductor module and semiconductor device
US12027492B2 (en) 2019-03-05 2024-07-02 Aisin Corporation Semiconductor module and semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200349984A1 (en) * 2019-05-01 2020-11-05 Western Digital Technologies, Inc. Semiconductor package configuration for reduced via and routing layer requirements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193694A (en) * 1984-10-15 1986-05-12 松下電器産業株式会社 Ic device
JPH01220498A (en) * 1988-02-29 1989-09-04 Oki Electric Ind Co Ltd Processor mounting circuit
JPH04273470A (en) * 1991-02-28 1992-09-29 Hitachi Ltd Ultra-miniature electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193694A (en) * 1984-10-15 1986-05-12 松下電器産業株式会社 Ic device
JPH01220498A (en) * 1988-02-29 1989-09-04 Oki Electric Ind Co Ltd Processor mounting circuit
JPH04273470A (en) * 1991-02-28 1992-09-29 Hitachi Ltd Ultra-miniature electronic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528473B2 (en) 2004-03-19 2009-05-05 Renesas Technology Corp. Electronic circuit, a semiconductor device and a mounting substrate
JP2011096268A (en) * 2010-12-06 2011-05-12 Renesas Electronics Corp Multi-chip module
WO2020179110A1 (en) * 2019-03-05 2020-09-10 アイシン・エィ・ダブリュ株式会社 Semiconductor module and semiconductor device
JP2020145259A (en) * 2019-03-05 2020-09-10 アイシン・エィ・ダブリュ株式会社 Semiconductor module and semiconductor device
US12027492B2 (en) 2019-03-05 2024-07-02 Aisin Corporation Semiconductor module and semiconductor device

Also Published As

Publication number Publication date
TW436730B (en) 2001-05-28
JP3896250B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US6842347B2 (en) Data processing system and associated control chip and printed circuit board
US8064222B2 (en) Semiconductor integrated circuit device
US20090073647A1 (en) Apparatus and methods for a physical layout of simultaneously sub-accessible memory modules
KR20100125745A (en) Semiconductor package
JP2005141741A (en) Memory system and method
US20140110832A1 (en) Co-support circuit panel and microelectronic packages
KR20150131184A (en) Reconfigurable POP
US9293444B2 (en) Co-support for XFD packaging
KR20150132523A (en) In-package fly-by signaling
US10026467B2 (en) High-bandwidth memory application with controlled impedance loading
JP5574539B2 (en) Semiconductor device and electronic device
US9928883B2 (en) TFD I/O partition for high-speed, high-density applications
US7902651B2 (en) Apparatus and method for stacking integrated circuits
US8493765B2 (en) Semiconductor device and electronic device
US6662250B1 (en) Optimized routing strategy for multiple synchronous bus groups
WO1999024896A1 (en) Information processor
US20030067082A1 (en) Apparatus and methods for stacking integrated circuit devices with interconnected stacking structure
JP6185995B2 (en) Common support system and microelectronic assembly
US11848278B2 (en) Package device comprising electrostatic discharge protection element
US20230299051A1 (en) Semiconductor package having ordered wire arrangement between differential pair connection pads
US6601125B1 (en) Minimizing signal stub length for high speed busses
US9595511B1 (en) Microelectronic packages and assemblies with improved flyby signaling operation
Crisp DIMM-in-a-PACKAGE memory device technology for mobile applications
JPH1167954A (en) Semiconductor device
WO1998038680A1 (en) Memory module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase