WO1999024109A2 - Cuff electrode and method for manufacturing the same - Google Patents

Cuff electrode and method for manufacturing the same Download PDF

Info

Publication number
WO1999024109A2
WO1999024109A2 PCT/DE1998/003328 DE9803328W WO9924109A2 WO 1999024109 A2 WO1999024109 A2 WO 1999024109A2 DE 9803328 W DE9803328 W DE 9803328W WO 9924109 A2 WO9924109 A2 WO 9924109A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
arrangement according
electrode
electrode arrangement
nerve
Prior art date
Application number
PCT/DE1998/003328
Other languages
German (de)
French (fr)
Other versions
WO1999024109A3 (en
Inventor
Johann W. Bartha
Hans-Werner Bothe
Jürgen CHLEBEK
Original Assignee
Bartha Johann W
Bothe Hans Werner
Chlebek Juergen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bartha Johann W, Bothe Hans Werner, Chlebek Juergen filed Critical Bartha Johann W
Priority to AU20454/99A priority Critical patent/AU2045499A/en
Priority to DE19881702T priority patent/DE19881702D2/en
Publication of WO1999024109A2 publication Critical patent/WO1999024109A2/en
Publication of WO1999024109A3 publication Critical patent/WO1999024109A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • A61N1/0556Cuff electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes

Definitions

  • the invention relates to an arrangement of electrodes according to the preamble of claim 1 for use in the biological and medical field.
  • the electrodes known today for stimulating or measuring electrical signals in the human body consist either of individual wires which are introduced into the tissue or of flat metal plates manually embedded between silicon layers (selfsizing cuff electrodes, Claude Verrat et al “Selective Control of Muscle Activation with a Multipolar Nerve Cuff Electrode ", IEEE Transaction of Biomedical Engineering, Vol. 40 No 7, July 93).
  • the variant proposed by Grill, Creasey, Ksienski, Verrart and Mortimer represents a further development of the above-mentioned manually produced cuff electrodes (WO 93/20887).
  • the electrodes are produced on a film of polymer material using thin-film technology.
  • the advantage here is that the electrode structures can be produced with much higher precision than in the manually manufactured variant. In order for this electrode to be placed around the nerve, it must be just like the manually made variant embedded between two elastomer sheets (preferably silicone), a certain tensile stress being generated in a sheet before the stack is glued by well-defined stretching.
  • a nerve cranial nerve, spinal cord nerve or peripheral nerve
  • the aim of every stimulation must be to selectively select individual nerve fibers of an overall nerve to irritate without damaging the cell structure of the nerve
  • Individual nerve fibers of a nerve differ in terms of their location in the nerve and in terms of their fiber diameter Until now it was only possible to selectively stimulate with regard to fiber diameter or fiber localization, but not to consider both selection criteria at the same time.
  • the object of the invention is to provide electrode arrangements with a higher number of electrical poles, well-defined electrode areas, precise spacing of the electrodes from one another and from the tissue, in order to be able to carry out simultaneous location- and parameter-selective stimulation in the ⁇ m range.
  • Another requirement for the electrode is that it should be very thin-walled ( ⁇ 100 ⁇ m).
  • Such electrode arrangements can be used, for example, to stimulate spinal nerves or the optic nerve.
  • Another object of the invention is to control different electrodes in a short time sequence in such a way that the sum potential of axons remote from electrodes becomes above threshold without activating axons near the electrodes.
  • a polymer carrier on which a conductor structure has been applied, has to be formed into a "sleeve" with a diameter corresponding to the nerve size in the range from a few millimeters to a few tenths of a millimeter. It has to wrap around a nerve without “squeezing” it , but also be firm enough to prevent movement relative to the nerve.
  • a special feature with regard to the requirements for this “cuff” is that the shape of the nerve does not necessarily have to be circular, but that it should be adapted to the profile of the nerve cross section. A method for this is described below.
  • the novel cuff electrode is produced by connecting two polymer films with a high modulus of elasticity via an intermediate layer. standing from an elastomer with a low modulus of elasticity in the desired final shape, as described in claim 1.
  • Fig. 1 Schematic arrangement of the application of a system with 8 dual-selective scanner electrodes around nerve roots.
  • Fig. 2a Execution of a dual-selective scanner electrode.
  • Fig. 2b Scheme of a 3-polar axial / 6-polar radial electrode.
  • Carrier foil (2) and electronics (4) are not shown for illustration.
  • Electrode. Fig. 4 Perspective-schematic representation of a novel cuff electrode. The electrode openings or contact openings in the inner passivation layer are not shown. To represent the
  • the scanner electrode is to be implanted together with the control and evaluation electronics as a system (Fig. 1) in order to create sensitive and motorized biotechnical connections (bladder control, standing and walking apparatus) in patients with interrupted stimulus conduction (e.g. cross-sectional damage).
  • An overall system consists of several dual-selective electrodes. (Fig. 2a, 2b), which are each arranged on a bandage of flexible carrier films 2, which are wrapped around the nerves 3. In this way, in connection with the electronics 4 arranged decentrally on the carriers, local detection of sensory signals and local stimulation of the tissue can be achieved.
  • each carrier For this purpose, an arrangement of several electrodes that read or stimulate independently of one another must be arranged on each carrier (FIG. 2b, example for 3-polar axial / 6-polar radial arrangement).
  • the 3-polar axial arrangement remains the same for all applications, while the radial arrangement of the electrodes can be multiplied for higher spatial resolutions.
  • a flexible plastic eg polyimide or silicone
  • a metal conductor structure 2b is produced on this film via additive or subtractive structure transfer (see, for example, SM Sze, VLSI Technology McGraw-Hill, 1988).
  • a thin, biocompatible insulating film (a passivation layer, 2c) is applied over this metal conductor structure.
  • the passivation 2c of the metallization is carried out, for example, by spinning on liquid silicone, which is structured after the crosslinking reaction has taken place, for example using laser ablation or photolithography and dry etching techniques, in order to expose the electrodes 5a and the contact points 5b to the electronics 4.
  • a second polyimide film 2f is applied to the still uncrosslinked silicone of the first film and this
  • the entire subsystem is encapsulated with liquid silicone 10.
  • the individual subsystems are connected by covered wires 9.
  • the stimulation pattern applied via the scanner electrodes is adapted to the individual situation of the patient via a neural network integrated in the electronics 4, 11.
  • newly developed multitrapezoidal current impulses with the setting parameters stimulus form, stimulus distance, stimulus frequency, stimulation current and
  • Stimulus rhythm (on-off phases) used.

Abstract

The purpose of this invention is to provide electrode configurations with a large number of electric poles, well-defined electrode surfaces and a precise distance between the different electrodes as well as between the electrodes and the tissues. To this end, the method implies the special use and the perfecting of micro-structure and micro-system techniques on bio-compatible and flexible materials such as polyimide and silicone. This method comprises forming and encapsulating metallic electrodes and inter-connection tracks on bio-compatible materials according to the thin-film techniques. The new Cuff electrode is manufactured by joining two polymer sheets (2a, 2f) having a high E modulus on an intermediate elastomer layer (2d) having a low E modulus so as to obtain the desired final shape.

Description

CUFF-ELEKTRODE UND VERFAHREN ZU DEREN HERSTELLUNG CUFF ELECTRODE AND METHOD FOR THE PRODUCTION THEREOF
Die Erfindung betrifft eine Anordnung von Elektroden entsprechend dem Ober- begriff in Anspruch 1 zur Anwendung im biologischen und medizinischen Bereich.The invention relates to an arrangement of electrodes according to the preamble of claim 1 for use in the biological and medical field.
Die heute bekannten, zur Stimulation oder zur Messung elektrischer Signale im menschlichen Körper eingesetzten Elektroden bestehen entweder aus einzelnen Drähten, die in das Gewebe eingebracht werden, oder aus manuell zwischen Silikonschichten eingebetteten, flächigen Metallplättchen (selfsizing Cuff-electrodes, Claude Verrat et al "Selective Control of Muscle Activation with a Multipolar Nerve Cuff Electrode", IEEE Transaction of Biomedical Engineering, Vol. 40 No 7, July 93).The electrodes known today for stimulating or measuring electrical signals in the human body consist either of individual wires which are introduced into the tissue or of flat metal plates manually embedded between silicon layers (selfsizing cuff electrodes, Claude Verrat et al "Selective Control of Muscle Activation with a Multipolar Nerve Cuff Electrode ", IEEE Transaction of Biomedical Engineering, Vol. 40 No 7, July 93).
Die einzelnen, im Gewebe plazierten Drahtelektroden führen zu einer Verletzung des Nervengewebes, was über eine starke Vernarbung zunächst zu einer schlechteren Versorgung und letztlich zum Absterben der entsprechenden Nervenzellen führt. Dieser Nachteil wird bei Verwendung von Cuff-Elektroden, die in Silikon- plättchen eingelagert sind und sich um den Nerv herumlegen, vermieden. Andererseits begrenzt die manuelle Herstellung der Cuff-Elektroden (manuelles Ausschneiden der Platinelektroden, manuelle Positionierung zwischen Silikon- Schichten) die Plazierungsgenauigkeit, die Reproduzierbarkeit der Elektrodenflächen und die Anzahl der Elektroden. Dadurch ist ihre Verwendung im medizi- nischen Bereich stark eingeschränkt.The individual wire electrodes placed in the tissue lead to damage to the nerve tissue, which initially leads to poorer care and ultimately to the death of the corresponding nerve cells due to severe scarring. This disadvantage is avoided when using cuff electrodes, which are embedded in silicon plates and wrap around the nerve. On the other hand, the manual production of the cuff electrodes (manual cutting out of the platinum electrodes, manual positioning between silicone layers) limits the placement accuracy, the reproducibility of the electrode areas and the number of electrodes. This severely limits their use in the medical field.
Eine Weiterentwicklung der o.g. manuell gefertigten Cuff-Elektroden stellt die von Grill, Creasey, Ksienski, Verrart und Mortimer vorgeschlagene Variante dar (WO 93/20887). Hier werden die Elektroden auf einer Folie aus Polymer-Material mit Hilfe der Dünnschichttechnik erzeugt. Der Vorteil ist hier, das die Elektrodenstrukturen mit wesentlich höherer Präzision erzeugt werden können als in der manuell gefertigten Variante. Damit diese Elektrode um den Nerv herum angelegt werden kann, muß sie ebenso wie die manuell hergestellte Variante zwischen zwei Elastomerplattchen (vorzugsweise Silikon) eingebettet werden, wobei bei einem Plattchen vor dem Verkleben des Stapels durch wohldefiniertes Recken eine bestimmte Zugspannung erzeugt wird Nach Entspannen des Stapels rollt sich dieser zu einer zylindrischen Rolle auf, wobei der sich ergebende Durchmesser der Rolle von der Dicke der Plattchen, dem Elastizitätsmodul der verwendeten Materialien, sowie der zuvor eingestellten Zugspannung abhangt Die o g Autoren der Veröffentlichung WO 93/20887 schlagen auch weitere Verfahren vor, die alle darauf hinauslaufen, bei den (die eingebettete Tragerfolie bedeckenden) Polymerplattchen, innen eine Zugspannung und/oder außen eine Druckspannung zu erzeugen Diese Art der Cuff-Elektrodenherstellung wird auch in WO 96/08290 von Stieglitz und Meyer erwähnt Alternativ schlagen Stieglitz und Meyer die Verwendung von Formgedachtnislegierungen (Shape Memory Alloy) vor Die technische Realisierbarkeit mit Hilfe von Formgedachtnislegierungen erscheint jedoch zweifelhaftThe variant proposed by Grill, Creasey, Ksienski, Verrart and Mortimer represents a further development of the above-mentioned manually produced cuff electrodes (WO 93/20887). Here the electrodes are produced on a film of polymer material using thin-film technology. The advantage here is that the electrode structures can be produced with much higher precision than in the manually manufactured variant. In order for this electrode to be placed around the nerve, it must be just like the manually made variant embedded between two elastomer sheets (preferably silicone), a certain tensile stress being generated in a sheet before the stack is glued by well-defined stretching. After relaxing the stack, it rolls up into a cylindrical roll, the resulting diameter of the roll depending on the thickness of the plates, the modulus of elasticity of the materials used, and the previously set tensile stress. The above-mentioned authors of publication WO 93/20887 also propose other methods, all of which boil down to the tensile stress on the polymer plates (covering the embedded carrier film) and / or generating a compressive stress externally. This type of cuff electrode production is also mentioned in WO 96/08290 by Stieglitz and Meyer. Alternatively, Stieglitz and Meyer suggest the use of shape memory alloys (Shape Memory Alloy). The technical feasibility with the help of shape memory alloys creates unites, however, doubtful
Bis heute ist nach unserer Kenntnis eine technische Realisierung einer Cuff- Elektrode entsprechend den genannten Beschreibungen WO 93/20887 und WO 96/08290 nicht erfolgt Der Grund hierfür ist möglicherweise, daß für die eingebettete Polymerfolie nur Materialien (PI, PE, PTFE, ) mit einem verhaltnisma- ßig hohen E-Modul m Frage kommen, für die äußeren Elastomer-Plattchen, aufTo our knowledge, a technical implementation of a cuff electrode according to the descriptions WO 93/20887 and WO 96/08290 has not yet taken place. The reason for this may be that only materials (PI, PE, PTFE,) are used for the embedded polymer film a relatively high modulus of elasticity come into question for the outer elastomer plates
Grund der Biokompatibi tat jedoch nur Silikon mit seinem sehr niedrigen E- Modul in Frage kommt Hieraus ergibt sich, daß die notwendige Dicke der gereckten Si konplatte sehr groß sein muß, und die praktische Emsetzbarkeit der gesamten Cuff-Elektrode m Frage gestellt wirdBecause of the biocompatibility, however, only silicone with its very low modulus of elasticity comes into question. It follows that the necessary thickness of the stretched silicon plate must be very large, and the practical applicability of the entire cuff electrode is questioned
Weiterhin ist mit bisher zur Verfugung stehenden Elektrodenanordnungen nicht gleichzeitig eine ortsspezifische und nervendurchmesserspezifische Stimulation möglich Da ein Nerv (Hirnnerv, Ruckenmarksnerv oder peripherer Nerv) aber aus vielen Tausend einzelnen Nervenfasern besteht, muß es Ziel jeder Stimulati- on sein, möglichst selektiv einzelne Nervenfasern eines Gesamtnerven zu reizen, ohne die Zellstruktur des Nerven zu verletzen Einzelne Nervenfasern eines Nerven unterscheiden sich hinsichtlich ihrer Lokalisation im Nerv und hinsichtlich ihres Faserdurchmessers Bisher war es nur möglich, selektiv zu stimulieren hinsichtlich des Faserdurchmessers oder hinsichtlich der Faserlokalisation, aber nicht gleichzeitig beide Selektionskriterien zu berücksichtigen.Furthermore, location-specific and nerve-diameter-specific stimulation is not possible at the same time with the electrode arrangements available to date. However, since a nerve (cranial nerve, spinal cord nerve or peripheral nerve) consists of many thousands of individual nerve fibers, the aim of every stimulation must be to selectively select individual nerve fibers of an overall nerve to irritate without damaging the cell structure of the nerve Individual nerve fibers of a nerve differ in terms of their location in the nerve and in terms of their fiber diameter Until now it was only possible to selectively stimulate with regard to fiber diameter or fiber localization, but not to consider both selection criteria at the same time.
Aufgabe der Erfindung ist es, Elektrodenanordnungen mit höherer Anzahl elek- frischer Pole, gut definierten Elektrodenflächen, präzisem Abstand der Elektroden untereinander sowie zum Gewebe bereitzustellen, um eine gleichzeitige orts- und diameterselektive Stimulation im μm-Bereich durchführen zu können. Eine weitere Anforderung an die Elektrode ist, daß sie in ihrer Ausführung sehr dünnwandig (<100μm) sein sollte. Solche Elektrodenanordnungen können bei- spielsweise zur Stimulation von Spinalnerven oder des Sehnervs eingesetzt werden.The object of the invention is to provide electrode arrangements with a higher number of electrical poles, well-defined electrode areas, precise spacing of the electrodes from one another and from the tissue, in order to be able to carry out simultaneous location- and parameter-selective stimulation in the μm range. Another requirement for the electrode is that it should be very thin-walled (<100μm). Such electrode arrangements can be used, for example, to stimulate spinal nerves or the optic nerve.
Eine weitere Aufgabe der Erfindung ist es, in kurzer zeitlicher Reihenfolge unterschiedliche Elektroden in solcher Weise anzusteuern, daß das Summenpoten- tial elektrodenferner Axone überschwellig wird, ohne daß elektrodennahe Axone aktiviert werden.Another object of the invention is to control different electrodes in a short time sequence in such a way that the sum potential of axons remote from electrodes becomes above threshold without activating axons near the electrodes.
Hierzu muß ein Polymerträger, auf dem eine Leiterzugstruktur aufgebracht wurde, zu einer „Manschette" mit einem der Nervengröße entsprechenden Durchmesser im Bereich von einigen Millimetern bis zu einigen zehntel Millimetern geformt werden. Sie muß sich um einen Nerven herumwickeln, ohne diesen zu „quetschen", aber auch fest genug sein um eine Bewegung relativ zum Nerven zu verhindern. Eine Besonderheit bezüglich der Anforderungen an diese „Manschette" ist, das der Nervenform entsprechend, diese nicht zwangsläufig kreisrund sein muß, sondern dem Profil des Nervenquerschnitts angepaßt sein sollte. Ein Verfahren hierzu wird im Folgenden beschrieben.For this purpose, a polymer carrier, on which a conductor structure has been applied, has to be formed into a "sleeve" with a diameter corresponding to the nerve size in the range from a few millimeters to a few tenths of a millimeter. It has to wrap around a nerve without "squeezing" it , but also be firm enough to prevent movement relative to the nerve. A special feature with regard to the requirements for this “cuff” is that the shape of the nerve does not necessarily have to be circular, but that it should be adapted to the profile of the nerve cross section. A method for this is described below.
Die Aufgabe wird durch eine spezielle Anwendung und Weiterentwicklung von Mikrostrukturtechniken und Mikrosystemtechnik auf biokompatible, flexible Materialien (Polyimide, Silikon) gelöst. Hierbei werden Metallelektroden undThe task is solved by a special application and further development of microstructure techniques and microsystem technology on biocompatible, flexible materials (polyimides, silicone). Here metal electrodes and
Leiterzüge in Dünnschichttechnik auf biokompatiblen Materialien erzeugt und verkapselt. Die Erzeugung der neuartigen Cuff-Elektrode erfolgt durch Verbinden von zwei Polymerfolien mit hohem E-Modul über eine Zwischenschicht be- stehend aus einem Elastomer mit niedrigem E-Modul in der gewünschten Endform, entsprechend der Beschreibung in Anspruch 1.Conductor tracks created and encapsulated using thin-film technology on biocompatible materials. The novel cuff electrode is produced by connecting two polymer films with a high modulus of elasticity via an intermediate layer. standing from an elastomer with a low modulus of elasticity in the desired final shape, as described in claim 1.
Vorteile der Erfindung sind:Advantages of the invention are:
- Ermöglichung extrem dünnwandiger Elektroden (Eine Wandstärken < 100 μm wurde schon verwirklicht!)- Enabling extremely thin-walled electrodes (a wall thickness <100 μm has already been achieved!)
- Adaption des Elektrodenträgers auch an nicht zylindersymmetrische Gewebeformen- Adaption of the electrode carrier also to non-cylindrical symmetrical tissue shapes
- Gute Anpassung des Elektrodenaufbaus an die Materialeigenschaften geeigneter biokompatibler Werkstoffe (Polyimide, Silikon) - Gleichzeitige orts- und diameterselektive Stimulation des Nerven mit extrem präziser Plazierung der Elektrodenflächen zum Nervengewebe- Good adaptation of the electrode structure to the material properties of suitable biocompatible materials (polyimide, silicone) - Simultaneous location- and parameter-selective stimulation of the nerve with extremely precise placement of the electrode surfaces to the nerve tissue
- Aktivierung elektrodenferner Axone über temporale Summation unterschwelliger Reize unterschiedlicher Elektrodenansteuerungen- Activation of axons remote from electrodes via temporal summation of subliminal stimuli from different electrode controls
- Möglichkeit zur Fertigung in hohen Stückzahlen (Batchprozessierung) ver- bunden mit Kostenreduzierung.- Possibility of manufacturing in large numbers (batch processing) combined with cost reduction.
Im folgenden werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung erläutert. Die Figuren der Zeichnung zeigen:Exemplary embodiments of the invention are explained below with reference to a drawing. The figures in the drawing show:
Fig. 1: Schematische Anordnung der Applikation eines Systems mit 8 dualselektiven Scannerelektroden um Nervenwurzeln. Fig. 2a: Ausführung einer dualselektiven Scannerelektrode.Fig. 1: Schematic arrangement of the application of a system with 8 dual-selective scanner electrodes around nerve roots. Fig. 2a: Execution of a dual-selective scanner electrode.
Fig. 2b: Schema einer 3-polar axial / 6-polar radialen Elektrode. Zur Veranschaulichung sind Trägerfolie (2) sowie Elektronik (4) nicht mit darge- stellt.Fig. 2b: Scheme of a 3-polar axial / 6-polar radial electrode. Carrier foil (2) and electronics (4) are not shown for illustration.
Fig. 3: Schematischer Verfahrensablauf zur Herstellung einer neuartigen Cuff-3: Schematic process sequence for producing a new type of cuff
Elektrode. Fig. 4: Perspektivisch-schematische Darstellung einer neuartigen Cuff- Elektrode. Die Elektrodenöffnungen bzw. Kontaktöffnungen in der inne- ren Passivierungsschicht sind nicht mit dargestellt. Zur Darstellung desElectrode. Fig. 4: Perspective-schematic representation of a novel cuff electrode. The electrode openings or contact openings in the inner passivation layer are not shown. To represent the
Schichtaufbaus sind die Schichtdicken stark überhöht! Eine höhere Windungszahl als die dargestellte ist ebenfalls möglich. Die Scannerelektrode soll zusammen mit Ansteuer- und Auswerteelektronik als System (Fig.1) implantiert werden, um bei Patienten mit unterbrochener Reizleitung (z.B. Querschnittsverletzung) sensible wie motorische biotechnische Verbindungen (Blasensteuerung, Steh- und Gangapparat) herzustellen. Ein Gesamtsystem besteht aus mehreren dualselektiven Elektroden. (Fig. 2a, 2b), die jeweils auf einem Verband flexibler Trägerfolien 2 angeordnet sind, welche um die Nerven 3 gewickelt werden. Dadurch kann, in Verbindung mit der dezentral auf den Trägern angeordnete Elektronik 4, eine lokale Erfassung von sensorischen Signalen und eine lokale Stimulation des Gewebes erreicht werden.Layer structure, the layer thicknesses are greatly increased! A higher number of turns than that shown is also possible. The scanner electrode is to be implanted together with the control and evaluation electronics as a system (Fig. 1) in order to create sensitive and motorized biotechnical connections (bladder control, standing and walking apparatus) in patients with interrupted stimulus conduction (e.g. cross-sectional damage). An overall system consists of several dual-selective electrodes. (Fig. 2a, 2b), which are each arranged on a bandage of flexible carrier films 2, which are wrapped around the nerves 3. In this way, in connection with the electronics 4 arranged decentrally on the carriers, local detection of sensory signals and local stimulation of the tissue can be achieved.
Hierzu muß auf jeweils einen Träger eine Anordnung mehrerer, unabhängig voneinander auslesenden bzw. stimulierenden Elektroden (Fig. 2b, Beispiel für 3- polare axiale/6-polare radiale Anordnung) angeordnet werden. Dabei bleibt die 3- polare axiale Anordnung für alle Anwendungen gleich, während für höhere Orts- auflösungen die radiale Anordnung der Elektroden vervielfacht werden kann.For this purpose, an arrangement of several electrodes that read or stimulate independently of one another must be arranged on each carrier (FIG. 2b, example for 3-polar axial / 6-polar radial arrangement). The 3-polar axial arrangement remains the same for all applications, while the radial arrangement of the electrodes can be multiplied for higher spatial resolutions.
Die Herstellung der Elektroden (schematischer Ablauf siehe Fig. 3) wird durch Anwendung und Weiterentwicklung von Dünnschichttechniken u.a. auf organische, biokompatible Materialen (Polyimide, Silikon) vorgenommen:The manufacture of the electrodes (for a schematic procedure, see Fig. 3) is carried out through the application and further development of thin-film techniques, among others. made on organic, biocompatible materials (polyimides, silicone):
Als Ausgangsträgerfolie 2a wird ein flexibler Kunststoff (z.B. Poyimid oder Silikon) verwendet, der als Folie zur besseren Handhabung auf einem festen, ebenen Träger aufgebracht wird. Auf dieser Folie wird über additive oder subtraktive Strukturübertragung eine Metalleiterzugstruktur 2b erzeugt (siehe z.B. S. M. Sze, VLSI Technolgy McGraw-Hill, 1988). Über dieser Metalleiterzugstruktur wird ein dünner, biokompatibler isolierender Film (eine Passivierungsschicht, 2c) aufgebracht. Die Passivierung 2c der Metallisierung wird beispielsweise durch Aufspinnen von Flüssigsilikon vorgenommen, das nach Ablauf der Vernetzungsreaktion beispielsweise mit Hilfe von Laserablation oder Fotolithographie und Trockenätztechniken strukturiert wird, um die Elektroden 5a sowie die Kontaktstellen 5b zur Elektronik 4 frei zu legen. Zur Passivierung der Folienrückseite wird diese vom Träger gelöst, gewendet, erneut auf einem ebenen Träger befestigt und ebenfalls beispielsweise durch Aufspinnen von Silikon (2d in der Darstellung vor der Vernetzungsreaktion) beschichtet. Zur Formung der Ausgangsträgerfolie wird eine zweite Polyimidfolie 2f auf das noch unvernetzte Silikon der ersten Folie aufgebracht und diesesA flexible plastic (eg polyimide or silicone) is used as the starting carrier film 2a, which is applied as a film for better handling on a firm, flat carrier. A metal conductor structure 2b is produced on this film via additive or subtractive structure transfer (see, for example, SM Sze, VLSI Technology McGraw-Hill, 1988). A thin, biocompatible insulating film (a passivation layer, 2c) is applied over this metal conductor structure. The passivation 2c of the metallization is carried out, for example, by spinning on liquid silicone, which is structured after the crosslinking reaction has taken place, for example using laser ablation or photolithography and dry etching techniques, in order to expose the electrodes 5a and the contact points 5b to the electronics 4. To passivate the back of the film, it is detached from the carrier, turned, attached again to a flat carrier and also coated, for example, by spinning on silicone (2d in the illustration before the crosslinking reaction). To form the initial carrier film, a second polyimide film 2f is applied to the still uncrosslinked silicone of the first film and this
„Sandwich" aufgerollt und in seiner endgültigen Form fixiert. Die Rückseite der zweiten Folie wurde zuvor ebenfalls beispielsweise durch Aufspinnen von Silikon 2g passiviert. Nach dem Vernetzen der Silikonzwischenlage 2e bleibt die „Manschette" bzw. die neuartige Cuff-Elektrode in der Form erhalten, in der sie während der Vernetzungsreaktion fixiert war. Es lassen sich also auch nichtzylindrische Querschnitte erzeugen. Andererseits ermöglicht das „weiche" Elastomer zwischen den „harten" Polyimidfolie n auch das federnde Abwickeln der Elektrode, um diese am Nerv zu applizieren. Sich selbst überlassen schnappt die Elektrode wieder in ihre Ausgangsform zurück."Sandwich" rolled up and fixed in its final shape. The back of the second film was also previously passivated, for example by spinning on silicone 2g. After the silicone intermediate layer 2e has been crosslinked, the "sleeve" or the novel cuff electrode is retained in the shape, in which it was fixed during the crosslinking reaction. It is therefore also possible to produce non-cylindrical cross sections. On the other hand, the "soft" elastomer between the "hard" polyimide films also enables the electrode to be springily unwound in order to apply it to the nerve. Left alone, the electrode snaps back into its original shape.
Nach Verbinden von Elektronik 4 und Trägerfolienverbund 2, beispielsweise in flip-chip-Technik, wird das gesamte Subsystem mit Ausnahme der Elektroden 5a mit Flüssigsilikon 10 gekapselt. Die einzelnen Subsysteme werden durch ummantelte Drähte 9 verbunden.After the electronics 4 and the carrier film assembly 2 have been connected, for example using flip-chip technology, the entire subsystem, with the exception of the electrodes 5a, is encapsulated with liquid silicone 10. The individual subsystems are connected by covered wires 9.
Nach Implantation des Gesamtsystems erfolgt über ein in die Elektronik 4, 11 integriertes neuronales Netz eine Anpassung der über die Scannerelektroden applizierten Stimulationsmuster an die individuelle Situation des Patienten. Zur Stimulation werden dabei neu entwickelte multitrapezoidale Stromimpulse mit den Einstellparametern Reizform, Reizabstand, Reizfrequenz, Reizstrom undAfter implantation of the overall system, the stimulation pattern applied via the scanner electrodes is adapted to the individual situation of the patient via a neural network integrated in the electronics 4, 11. For the stimulation, newly developed multitrapezoidal current impulses with the setting parameters stimulus form, stimulus distance, stimulus frequency, stimulation current and
Reizrhythmus (on-off Phasen) eingesetzt. Stimulus rhythm (on-off phases) used.

Claims

PATENTANSPRÜCHE PATENT CLAIMS
1. Vielfachanordnung von Elektroden auf flexiblem Träger zur Nutzung im biologisch-medizinischen Bereich, dadurch gekennzeichnet, daß zur Bildung des Trägers zwei dünne Polymerfolien mit hohem E-Modul über eine dünne Zwischenschicht aus einem Elastomer mit niedrigem E- Modul verbunden sind und dieser Folienverbund eine Manschette bildet, deren Form einem beliebigen (auch nicht kreisförmigen) Nervenquerschnitt anpaßbar ist.1. Multiple arrangement of electrodes on a flexible support for use in the biological-medical field, characterized in that two thin polymer films with a high modulus of elasticity are connected via a thin intermediate layer of an elastomer with a low modulus of elasticity to form the support and this film composite Cuff forms, the shape of which can be adapted to any (even non-circular) nerve cross-section.
2. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Elektroden auf dem flexiblen Träger durch Dünn- oder Dickschichttechniken aufgebracht und strukturiert sind.2. Electrode arrangement according to claim 1, characterized in that the electrodes are applied and structured on the flexible carrier by thin or thick film techniques.
3. Elektrodenanordnung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß mehrere radial und axial um den zu stimulierenden Nerv anliegenden Elektroden auf einer gemeinsamen Trägerfolie angeordnet sind (multipolare Anordnung).3. Electrode arrangement according to claim 1 and 2, characterized in that a plurality of electrodes lying radially and axially around the nerve to be stimulated are arranged on a common carrier film (multipolar arrangement).
4. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die4. Electrode arrangement according to claim 1, characterized in that the
Elektroden durch eine aufgesponnene und subtraktiv strukturierte Polyi- mid- oder Siliconschicht passiviert sind.Electrodes are passivated by a spun and subtractively structured polyimide or silicone layer.
5. Elektrodenanordnung nach Anspruch 1 und 4, dadurch gekennzeichnet, daß die Siliconpassivierung mittels Fotolithographie und Trockenätzverfahren oder Laserablation strukturiert ist.5. Electrode arrangement according to claim 1 and 4, characterized in that the silicon passivation is structured by means of photolithography and dry etching or laser ablation.
6. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Kapselung des Elektrodenträgers durch aufgesponnenes Silicon vorgenom- men ist. 6. Electrode arrangement according to claim 1, characterized in that the encapsulation of the electrode carrier is made by spun silicone.
7. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Elektrode durch Hybridtechniken mechanisch und elektrisch mit der Steuer- und Auswerteelektronik verbunden sind.7. Electrode arrangement according to claim 1, characterized in that the electrode is mechanically and electrically connected to the control and evaluation electronics by hybrid techniques.
8. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß mehrere Elektroden elektronisch zu einem System verbunden und synchronisiert ansteuerbar sind.8. Electrode arrangement according to claim 1, characterized in that a plurality of electrodes are electronically connected to a system and can be controlled synchronized.
9. Elektrodenanordnung nach Anspruch 1, gekennzeichnet durch eine Stimu- lation der Elektroden mit multitrapezoiden Signalen.9. Electrode arrangement according to claim 1, characterized by stimulation of the electrodes with multitrapezoid signals.
10. Elektrodenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Stimulationssignale über neuronale Netze postoperativ adaptierbar sind.10. Electrode arrangement according to claim 1, characterized in that the stimulation signals can be adapted postoperatively via neural networks.
11. Elektrodenanordnung nach Anspruchl, dadurch gekennzeichnet, daß durch temporale Summation unterschiedlicher Stimulationssignale eine Aktivierung elektrodenferner Axone möglich wird, ohne eine Aktivierung elektrodennaher Axone zu bewirken. 11. Electrode arrangement according to claim 1, characterized in that an activation of axons remote from electrodes is possible by temporal summation of different stimulation signals without causing activation of axons near electrodes.
PCT/DE1998/003328 1997-11-12 1998-11-11 Cuff electrode and method for manufacturing the same WO1999024109A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU20454/99A AU2045499A (en) 1997-11-12 1998-11-11 Cuff electrode and method for manufacturing the same
DE19881702T DE19881702D2 (en) 1997-11-12 1998-11-11 Cuff electrode and process for its manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1997150043 DE19750043A1 (en) 1997-11-12 1997-11-12 Novel cuff electrode and method for producing it
DE19750043.9 1997-11-12

Publications (2)

Publication Number Publication Date
WO1999024109A2 true WO1999024109A2 (en) 1999-05-20
WO1999024109A3 WO1999024109A3 (en) 1999-08-19

Family

ID=7848440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003328 WO1999024109A2 (en) 1997-11-12 1998-11-11 Cuff electrode and method for manufacturing the same

Country Status (3)

Country Link
AU (1) AU2045499A (en)
DE (2) DE19750043A1 (en)
WO (1) WO1999024109A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527296A (en) * 2006-02-21 2009-07-30 アイエムアイ インテリジェント メディカル インプランツ アクチエンゲゼルシャフト Device with flexible multi-layer system for contacting or electrically stimulating biological tissue cells or nerves
WO2013159136A1 (en) 2012-04-26 2013-10-31 Medizinische Universität Wien Nerve cuff electrode arrangement
US20140188251A1 (en) * 2011-07-20 2014-07-03 Otto Bock Healthcare Gmbh Device with a wall designed to tightly enclose a body part
RU2587967C2 (en) * 2011-07-20 2016-06-27 Отто Бок Хелткэр Гмбх Device with wall made for tight coverage of body

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442431B1 (en) * 1998-07-27 2002-08-27 Axon Engineering, Inc., Device and method for production of visual sensations by optic nerve stimulation
AUPQ202699A0 (en) 1999-08-04 1999-08-26 University Of Melbourne, The Prosthetic device for incontinence
US7831305B2 (en) 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US7672730B2 (en) 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7024247B2 (en) 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US7756584B2 (en) 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7010351B2 (en) 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7221981B2 (en) 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
AU2003268030A1 (en) * 2002-07-25 2004-02-16 The Regents Of The University Of California Reinforcement elements in a silicone electrode array
US7236830B2 (en) 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
US20050075680A1 (en) 2003-04-18 2005-04-07 Lowry David Warren Methods and systems for intracranial neurostimulation and/or sensing
WO2005011805A2 (en) 2003-08-01 2005-02-10 Northstar Neuroscience, Inc. Apparatus and methods for applying neural stimulation to a patient
AU2005275209B2 (en) 2004-07-15 2010-06-24 Advanced Neuromodulation Systems, Inc. Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy
US7565200B2 (en) 2004-11-12 2009-07-21 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US7729773B2 (en) 2005-10-19 2010-06-01 Advanced Neuromodualation Systems, Inc. Neural stimulation and optical monitoring systems and methods
US8929991B2 (en) 2005-10-19 2015-01-06 Advanced Neuromodulation Systems, Inc. Methods for establishing parameters for neural stimulation, including via performance of working memory tasks, and associated kits
US20080027524A1 (en) 2006-07-26 2008-01-31 Maschino Steven E Multi-electrode assembly for an implantable medical device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020887A1 (en) 1992-04-20 1993-10-28 Case Western Reserve University Thin film implantable electrode and method of manufacture
WO1996008290A1 (en) 1994-09-16 1996-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cuff electrode

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341221A (en) * 1980-10-07 1982-07-27 Medtronic, Inc. Shielded recording electrode system
US4662884A (en) * 1984-04-25 1987-05-05 University Of Utah Research Foundation Prostheses and methods for promoting nerve regeneration
US4877029A (en) * 1987-03-30 1989-10-31 Brown University Research Foundation Semipermeable nerve guidance channels
US5031621A (en) * 1989-12-06 1991-07-16 Grandjean Pierre A Nerve electrode with biological substrate
US5092332A (en) * 1990-02-22 1992-03-03 Medtronic, Inc. Steroid eluting cuff electrode for peripheral nerve stimulation
US5388577A (en) * 1990-06-08 1995-02-14 Boston University Electrode array microchip
EP0585933B1 (en) * 1992-09-04 2005-12-21 Matsushita Electric Industrial Co., Ltd. Planar electrode
US5344438A (en) * 1993-04-16 1994-09-06 Medtronic, Inc. Cuff electrode
US5400784A (en) * 1993-10-15 1995-03-28 Case Western Reserve University Slowly penetrating inter-fascicular nerve cuff electrode and method of using
US5505201A (en) * 1994-04-20 1996-04-09 Case Western Reserve University Implantable helical spiral cuff electrode
DE59510409D1 (en) * 1994-07-13 2002-11-07 Fraunhofer Ges Forschung FLEXIBLE ARTIFICIAL NERVOUS PLATE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020887A1 (en) 1992-04-20 1993-10-28 Case Western Reserve University Thin film implantable electrode and method of manufacture
WO1996008290A1 (en) 1994-09-16 1996-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cuff electrode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.VERRAT ET AL.: ""SELECTIVE CONTROL OF MUSCLE ACTIVATION WITH A MULTIPOLAR NERVCUFF ELECTRODE"", IEEE TRANSACTION OF BIOMEDICAL ENGINEERING,, vol. 40, no. 7, July 1993 (1993-07-01)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527296A (en) * 2006-02-21 2009-07-30 アイエムアイ インテリジェント メディカル インプランツ アクチエンゲゼルシャフト Device with flexible multi-layer system for contacting or electrically stimulating biological tissue cells or nerves
US8918186B2 (en) 2006-02-21 2014-12-23 Pixium Vision Sa Device with flexible multilayer system for contacting or electrostimulation of living tissue cells or nerves
US20140188251A1 (en) * 2011-07-20 2014-07-03 Otto Bock Healthcare Gmbh Device with a wall designed to tightly enclose a body part
RU2587967C2 (en) * 2011-07-20 2016-06-27 Отто Бок Хелткэр Гмбх Device with wall made for tight coverage of body
US10292841B2 (en) * 2011-07-20 2019-05-21 Ottobock Se & Co. Kgaa Device with a wall designed to tightly enclose a body part
WO2013159136A1 (en) 2012-04-26 2013-10-31 Medizinische Universität Wien Nerve cuff electrode arrangement

Also Published As

Publication number Publication date
AU2045499A (en) 1999-05-31
WO1999024109A3 (en) 1999-08-19
DE19881702D2 (en) 2002-08-01
DE19750043A1 (en) 1999-05-20

Similar Documents

Publication Publication Date Title
WO1999024109A2 (en) Cuff electrode and method for manufacturing the same
EP0928212B1 (en) Flexible artificial nerve plate
EP0843574B1 (en) Cuff electrode
AT507045B1 (en) IMPLANTABLE, TISSUE-STIMULATING DEVICE
DE602004005066T2 (en) IMPLANTABLE MEDICAL AND MANUFACTURING PROCESS
DE69928234T2 (en) IMPLANTABLE MEDICAL ELECTRODE CONTACTS
DE102011078982B4 (en) Implantable nerve electrode and method of making an implantable nerve electrode
WO2006116968A2 (en) Biostable neuroelectrode
DE69931801T2 (en) HEART ELECTRODE WITH HIGH IMPEDANCE AND LOW POLARIZATION
EP3989800B1 (en) Electrode arrangement for measuring electric voltages
EP1349608A1 (en) Sieve electrode which can be connected to a nerve stump
EP3541469B1 (en) Implantable electric multi-pole connection structure
EP3423148B1 (en) Implantable cuff electrode
DE10028522A1 (en) Biodegradable neuroelectrode for nerve control has electrode/carrier assembly mounted on cuff of biodegradable material
DE112011102764T5 (en) Method of making an MRI-compatible conductive electrode body
DE102019205991A1 (en) Flexible implantable electrode assembly and manufacturing method
Schuettler et al. 18polar hybrid cuff electrodes for stimulation of peripheral nerves
WO2007090655A1 (en) Cochlear electrode
Yu et al. A cable-tie-type parylene cuff electrode for peripheral nerve interfaces
EP2918308A1 (en) Insulation tube for an electrical lead for medical use, and method for producing such a tube
DE102007020377B4 (en) Tissue-sparing instrument for stimulation and / or dissipation of bioelectric signals
EP3884546B1 (en) Implantable electrical connecting device
DE102004012564A1 (en) stimulation electrode
DE102021127732A1 (en) Stretchable electrode assembly
DE102021100688A1 (en) Electromedical Electrode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: KR

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase
REF Corresponds to

Ref document number: 19881702

Country of ref document: DE

Date of ref document: 20020801

WWE Wipo information: entry into national phase

Ref document number: 19881702

Country of ref document: DE