WO1999022900A1 - Apparatus and method for breaking solid insulator with electric pulse - Google Patents

Apparatus and method for breaking solid insulator with electric pulse Download PDF

Info

Publication number
WO1999022900A1
WO1999022900A1 PCT/JP1998/004964 JP9804964W WO9922900A1 WO 1999022900 A1 WO1999022900 A1 WO 1999022900A1 JP 9804964 W JP9804964 W JP 9804964W WO 9922900 A1 WO9922900 A1 WO 9922900A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid insulator
pulse
electrodes
pulse voltage
electrode
Prior art date
Application number
PCT/JP1998/004964
Other languages
French (fr)
Japanese (ja)
Inventor
Albert Martunovich ADAM
Grigoryevich Sergey BOEV
Vladislav Fedorovich VAJOV
Dmitreii Vladimirovich JGUN
Boris Sergeevich LEVCHENKO
Vasilii Mihaylovich MURATOV
Samuil Semenovich PELTSMAN
Original Assignee
Itac Ltd.
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itac Ltd., Komatsu Ltd. filed Critical Itac Ltd.
Publication of WO1999022900A1 publication Critical patent/WO1999022900A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the electric pulse destruction apparatus and method according to the present invention relate to an apparatus and a method for destroying natural solid insulators such as rock and rock and other artificial solid insulators such as ceramics and concrete by electric pulse discharge. . Background art
  • the parameter of the pulse voltage is the rising part of the pulse voltage when the pulse high voltage is applied to the electrode system, and the solid insulator is between 100 [ns] or less after the pulse voltage rise. Is selected so that electrical breakdown of Some other destructive parameters are also the rising part of the pulse voltage, and the electrical breakdown of the solid insulator during the period of 100 ns or less from the rise of the pulse voltage Is chosen to occur.
  • a force placed on the surface of the solid insulator by the pair of electrodes or Placed in a pre-defined hole.
  • the contact point between the solid insulator and the electrode is submerged in a liquid such as water.
  • a high voltage is applied to the high-potential electrode, and the solid insulator is destroyed by electric discharge. Destroyed debris is removed regularly.
  • the present inventors have found that it is better to cause electrical breakdown at the falling part of the pulse voltage applied to the high potential electrode than to cause the electrical breakdown at the rising part of the pulse voltage applied to the high potential electrode. Voltage loss due to water or other liquid that covers the contact point with the battery.
  • the present invention has been made based on this fact, and the gist of the present invention is to adjust the parameters of the pulse voltage so that electrical breakdown occurs in the falling part of the pulse voltage. In particular, electrical breakdown should occur at least 250 [ns] after the rise of the pulse voltage.
  • the electric pulse destruction device of the present invention includes a pulse voltage generator, one end connected to the pulse voltage generator, and the other end contacting the solid insulator.
  • An electrode portion wherein a contact point between the solid insulator and the electrode portion is covered with a liquid, and a pulse voltage is applied to the electrode portion to destroy the solid insulator.
  • An electric pulse destruction device wherein the pulse voltage generation parameter of the pulse voltage generator is adjusted to cause electric pulse destruction in a falling part of the pulse voltage.
  • the present invention is an electric pulse destruction device adjusted so as to cause electric pulse destruction at least 250 [ns] after the rise of the pulse voltage.
  • the electric pulse destruction method of the present invention uses the electric pulse destruction method of the present invention to cause an electric pulse destruction in a falling part of a pulse voltage to destroy the solid insulator. is there.
  • the method is an electric pulse destruction method in which electric pulse destruction occurs at least 250 [ns] after the rise of the pulse voltage to destroy the solid insulator.
  • the electrodes connected to the pulse voltage generator must be so designed that the total resistance of the electrode section in the liquid to the wave impedance of the pulse voltage generator is 7 times or more. It is good to select the number of children. In particular, it is desirable to select the number of electrodes connected to the pulse voltage generator so that the number becomes eight times or more.
  • the solid insulator has a conductive reinforcing material layer inside, in addition to the above-described configuration, a low-potential electrode connected to the conductive reinforcing material, and a plurality of contacts in contact with the solid insulator.
  • a plurality of said high-potential electrodes are arranged on the surface of said solid insulator in a direction along said conductive reinforcing material layer. It is desirable to fix the relative positions of the tips of the plurality of high-potential electrodes so that the distance from the tips of the tips to the layer of the scavenger in the solid insulator is the same.
  • the electrode portion is provided with a plurality of electrodes that are in contact with the solid insulator, and a distance between the electrodes having different polarities is provided. It is advisable to open a hole having a depth of 1/3 or more in advance on the surface of the solid insulator, and insert electrodes having different polarities into holes adjacent to each other.
  • a low potential electrode connected to the conductive reinforcing material;
  • One or a plurality of high-potential electrodes disposed movably at a constant velocity V [cm / s] on the surface of the electrode, the distance between the high-potential electrodes and the low-potential electrode layer
  • L is [cm]
  • F repetition rate
  • a layered conductive material is provided on one surface of the solid insulator, and the low potential of the electrode portion is provided on this layer.
  • FIG. 1 is a conceptual diagram showing an electric pulse destruction device for destroying a solid insulator used in Embodiment 1
  • FIG. 2 is a diagram showing that electric destruction of concrete in a pulse voltage descending part according to the present invention is performed.
  • Fig. 3 shows a typical voltage waveform when it occurs and a typical voltage waveform in the open circuit of the pulse generator.
  • Fig. 4 is a table showing the results of Experiment 1, and Fig. 4 is a conceptual diagram showing an electric pulse destruction device for destroying solid insulators used in Embodiment 2, and Fig. 5 shows the results of Experiment 2.
  • 6 (a) and 6 (b) are conceptual diagrams showing an electric pulse destruction device for destroying a solid insulator used in Embodiment 3, and FIG. FIG. 8 is a conceptual diagram showing an electric pulse destruction device for destroying a solid insulator used in Embodiment 4, and FIGS. 8 (a) and 8 (b) show the solid insulator used in Embodiment 5;
  • Fig. 9 is a conceptual diagram showing an electric pulse destruction device for destruction, Fig.
  • FIG. 9 is a conceptual diagram showing an electric pulse destruction device for destroying other solid insulators used in Embodiment 5, and Fig. 10 is FIG. 11 is a table showing the results of Experiment 5, and FIG. 11 shows the breakdown of the solid insulator used in Embodiment 6.
  • FIG. 12 is a conceptual diagram showing an electric pulse destruction device for destroying other solid insulators used in Embodiment 6, and
  • FIG. 13 is a conceptual diagram showing an electric pulse destruction device for Fig. 14 (a) is a table showing the results of Experiment 6;
  • Fig. 14 (a) is a diagram showing a typical voltage waveform in an open circuit of a conventional pulse generator; This is a typical voltage waveform when an electrical breakdown occurs in the solid insulator in the voltage rising section.
  • FIG. 1 is a conceptual diagram showing an electric pulse breaking device for breaking a solid insulator used in the first embodiment.
  • the electric pulse destruction device 1 of the present invention includes a pulse voltage generator 2, an electrode portion 3 having one end connected to the pulse voltage generator 2, and the other end contacting a solid insulator 5, 5 and a liquid 4 covering a contact point 5a between the electrode portion 3 and the electrode portion 3.
  • the pulse voltage generator 2 includes a high voltage generator 9 that adjusts a voltage from a power supply to increase the voltage to a high voltage, and a pulse generator that outputs the high voltage obtained by the high voltage generator 9 in a pulsed manner.
  • the pulse voltage generation parameter in the pulse voltage generator 2 is adjusted so as to cause an electric pulse destruction at least 250 [ns] after the rise of the pulse voltage, which is a falling portion of the pulse voltage.
  • a plurality of discharge spheres 6 facing each other at a predetermined distance as shown in FIG. 1 are connected in parallel with each other before the discharge spheres 6 generate a discharge, and are connected in series when the discharge spheres 6 discharge.
  • the rising portion of the pulse voltage until it reaches the first maximum value is called a rising portion
  • the portion after the first maximum value is called a falling portion.
  • the electrode section 3 includes one low-potential electrode 3a and three high-potential electrodes 3b, each of which is formed of a steel rod and a polyethylene insulating material covering the rod.
  • the electrodes 3a and 3b are separated by a distance and are solid insulators. 5 are placed on the surface.
  • the low potential side 3a is grounded.
  • the number of the low potential electrodes and the number of the high potential electrodes are not limited to one each, and can be arbitrarily determined as needed.
  • the solid insulator 5 is placed in a metal tank 10, and the metal tank 10 is filled with a liquid 4 that covers a contact point 5 a between the solid insulator 5 and the electrode unit 3.
  • a pulse voltage is applied to the electrode unit 3 by the pulse voltage generator 2. As shown in FIG. 2, electric pulse destruction occurs at least in the falling part of the pulse voltage and at least 250 [ns] after the rise of the pulse voltage. Broken debris should be removed regularly.
  • the solid insulator is a concrete specimen
  • curve A is a typical voltage waveform in the open circuit of the pulse voltage generator 2
  • curve B is an electrical breakdown at the falling part of the pulse voltage. This is a typical voltage waveform in the case of occurrence of the following. Electrical breakdown occurs at 900 [ns].
  • FIG. 14 (a) shows a typical voltage waveform in the open circuit of a pulse voltage generator using a conventional electric pulse destruction device.
  • FIG. 14 (b) shows a typical voltage waveform in the case of the above. Electrical breakdown occurs at 100 [ns].
  • the electric pulse destruction apparatus and method of the present invention in which the electric breakdown is caused in the pulse voltage falling part as described above, the voltage loss due to the liquid such as water covering the contact point between the solid insulator and the electrode is small and lower. This allows the use of a low-voltage pulse generator that generates pulses at the output voltage. Low-voltage pulse generators have a long life and, as a result, contribute to reducing the cost of electrical pulse destruction.
  • FIG. 4 is a conceptual diagram showing an electric pulse destroyer 11 for destroying a solid insulator used in the second embodiment.
  • the number of the electrodes 3a, 3b, 3c, and 3d of the electrode unit 3 of the electric pulse destruction device shown in the first embodiment is determined by the wave impedance Zg of the pulse voltage generator 2 and the number of electrodes 3 in the liquid of the electrode unit 3.
  • the total resistance Z1 at was selected to be 7 times or more. In particular, it is preferable to select the number of the electrodes of the electrode unit 3 so as to be eight times or more.
  • the voltage amplitude drop rate becomes very close to 1.
  • the effect of the change in the ratio Zl / Zg between the total resistance Zl of the electrode part 3 in the liquid and the wavy impedance Zg of the pulse voltage generator on the pulse voltage amplitude was investigated.
  • the ratio K UlZUos was taken as a basic parameter indicating the voltage amplitude drop.
  • U1 is the load voltage
  • Uos is the open circuit voltage of the pulse voltage generator.
  • the ratio ZlZZg between the total resistance Z1 of the electrode part 3 in the liquid and the wavy impedance Zg of the pulse voltage generator is determined by changing the number of high-potential electrodes 3a, 3c, 3d connected in parallel at the electrode part 3. Was changed.
  • a concrete test piece was used as the solid insulator 5.
  • the pulse voltage generation parameters in the pulse voltage generator 2 are adjusted so as to cause electrical breakdown at the falling part of the pulse voltage, and the falling part of the pulse voltage is at least 250 [ns] from the rise of the pulse voltage. After the above, electric pulse destruction occurred.
  • FIG. 6 (a) and 6 (b) are conceptual diagrams showing an electric pulse destruction device 12 for destructing a solid insulator used in Embodiment 3.
  • FIG. This electric pal The breaker 12 is suitable for a solid insulator 5 having a conductive material layer 5b therein.
  • the solid insulator 5 is a substantially rectangular parallelepiped as shown in FIG. 6 (b).
  • the conductive reinforcing material layer 5b is embedded so as to extend horizontally from the upper surface of the solid insulator 5 at a depth L.
  • the low-potential electrode 3a of the electrode section 3 of the electric pulse destruction device shown in Embodiment 2 is connected to the conductive reinforcing material layer 5b, and the plurality of high-potential electrodes 3a, 3b, 3c are connected.
  • 3d, 3e, 3f, and 3g are horizontally arranged on the upper surface of the solid insulator 5 so as to be along the conductive reinforcing material layer 5b.
  • each of the high potential electrodes 3a, 3b, 3c, 3d, 3e Since the conductive reinforcing material layer 5b is embedded so as to extend horizontally from the surface of the solid insulator 5 at a depth L, each of the high potential electrodes 3a, 3b, 3c, 3d, 3e, The distance from the tip 13 of 3f, 3g to the reinforcing material layer 5b in the solid insulator 5 is all L [cm].
  • the relative positions of the tips 13 of the plurality of high potential electrodes 3a, 3b, 3c, 3d, 3e, 3f, 3g are fixed.
  • the distance from the tip 13 of each of the high-potential electrodes 3a, 3b, 3c, 3d, 3e, 3f, 3g to the reinforcing material layer 5b in the solid insulator 5 is made equal.
  • Electrode section with multiple high-potential electrodes that can move up and down
  • Each electrode consisted of a 12 mm diameter conductive steel rod and a polyethylene insulator covering it to a diameter of 38 mm.
  • the electrode sections 2) and 3) consisted of two high-potential electrode rows, and each row had three high-potential electrode rows. Furthermore, the relative positions of the tips of multiple electrodes are set so that the distance from the tip of each high-potential electrode to the reinforcing material layer buried in the reinforced concrete specimen is the same for the electrode part in 3). was fixed.
  • the area of the reinforced concrete test piece was 450 ⁇ 600 [sq mm], and the thickness was 300 [cited].
  • a single-layer test piece in which the reinforcement layer is embedded horizontally at a depth of 150 mm inside the reinforced concrete test piece, and a reinforcement layer of 100 [200] and 200 [200] in the test piece Two types of specimens were used, two-layer specimens embedded horizontally at a depth of].
  • the mesh size of the reinforcing material was 150 ⁇ 150 [sq mm].
  • the reinforced concrete test piece 5 was placed in a stainless steel tank 10 filled with tap water 4 completely covering the test piece 5. Water was not circulated.
  • the high-potential electrode of the electrode part 3 was placed on the surface of a reinforced concrete test piece submerged in water.
  • the low-potential electrode 3a of the electrode part 3 was connected to the reinforcing material layer 5b of the reinforced concrete test piece 5. Here, the low potential electrode side was grounded.
  • the pulse voltage generation parameters were adjusted so that electrical breakdown occurred in the falling part of the pulse voltage 250 to 950 [ns] after the pulse voltage started to rise.
  • a pulse voltage of 500 [kv] was applied to the high potential electrode by the pulse voltage generator 2. After the pulse voltage was applied, electrical breakdown occurred 250 to 950 [ns] after the pulse voltage started to rise, and in the falling part of the pulse voltage.
  • the reinforced concrete specimen was broken well. However, it took a lot of time to move the electrode along the surface of the reinforced concrete specimen before the reinforced concrete specimen was completely destroyed. In addition, there remains a problem that it is difficult to predict how deeply the electric breakdown has penetrated into the reinforced concrete specimen.
  • Electrodes where the relative positions of the tips of a plurality of high-potential electrodes are fixed. Because the relative positions of the tips 13 of the plurality of high-potential electrodes are fixed so that the distance L to the reinforcing material layer 5b is the same, only one high-potential electrode is The first problem is that the pulse voltage generating circuit is short-circuited before the destruction by the other nearby high-potential electrode is completed. In addition, it has made it possible to destroy not only the surface layer of the reinforced concrete specimen but also the concrete below the reinforcement layer. And it is no longer necessary to turn over the reinforced concrete specimen to completely destroy the reinforced concrete. As a result, when electrodes with fixed relative positions of the tips of multiple high-potential electrodes were used, destruction was achieved with high efficiency, and energy consumption was reduced by a factor of 1.6 or more. [Embodiment 4]
  • FIG. 7 is a conceptual diagram showing an electric pulse breaking device 14 for breaking a solid insulator used in the fourth embodiment.
  • the electric pulse destruction device 14 is suitable for efficiently causing a discharge inside the solid insulator 5 having no conductive reinforcing material layer 5b inside.
  • Holes 15 having a depth D of 1/3 or more of the distance L between the electrodes having different polarities are opened in advance on the surface of the solid insulator 5 by the number of the electrodes 3a and 3b, and the electrodes having different polarities are formed. 3a and 3b are inserted into the holes so that they are adjacent to each other.
  • the device shown in FIG. 7 shows the case where the electric pulse destruction device shown in Embodiment 1 having one high-potential electrode 3b and one low-potential electrode 3a is used.
  • the plurality of holes are provided in a staggered lattice pattern, and the high potential electrode and the low potential electrode are arranged adjacent to each other.
  • Each specimen was provided with multiple vertical holes with a diameter of 40 [mm] and a depth D of up to 200 [mm].
  • a plurality of vertical holes were provided by varying the distance between the vertical holes, ie, the distance L between the mutual electrodes, from 100 [mm] to 300 [mm].
  • the electrodes were formed from a conductive steel rod with a diameter of 12 [hidden] and a polyethylene insulator covering it to a diameter of 38 [mm]. Electrodes having different polarities were placed in adjacent holes. Here, the low potential side was grounded. And each hole was filled with water.
  • the pulse voltage generation parameters were adjusted so that electrical breakdown occurred in the falling part of the pulse voltage 250 to 950 [ns] after the pulse voltage started to rise.
  • 8 (a) and 8 (b) are conceptual diagrams showing an electric pulse destruction device 16 for destructing a solid insulator used in the fifth embodiment.
  • the solid insulator 5 is a substantially rectangular parallelepiped as shown in FIG. 8 (b).
  • the conductive material layer 5b is embedded so as to extend horizontally from the upper surface of the solid insulator 5 at a depth L [cm].
  • one high-potential electrode 3b of the electrode unit 3 of the electric pulse destruction apparatus shown in the first embodiment is electrically connected to the corner of the surface of the solid insulator 5 at a constant speed V [cm / s]. It is arranged to be movable in the direction along the elastic reinforcing material layer 5b.
  • the high potential electrodes 3b are arranged in a direction perpendicular to the moving direction.
  • a wire mesh, metal hole or plate 5b is attached to the lower surface of the solid insulator 5 with a high-potential electrode. It is good to provide along the moving direction of 3b.
  • the low-potential electrode 3a is connected to the wire mesh, metal rod, plate, or the like 5b, and one or more high-potential electrodes 3b are connected to a corner of the upper surface of the solid insulator 5 at a constant speed V. Arrange so that it can move with [cm / s]. Therefore, the thickness of the solid insulator 5 is the distance L [cm] between the mutual electrodes between different polarities.
  • the reinforced concrete test piece has a single-layer reinforcing material 5a at a depth of 10 [cm] from the surface thereof. Therefore, the distance L [cm] between the mutual electrodes between different polarities is 10 [cm]. ]Met.
  • FIG. 11 is a conceptual diagram showing an electric pulse breaking device 18 for breaking a solid insulator used in the sixth embodiment.
  • the device itself is the same as the electric pulse destruction device shown in the first embodiment, but the distance Lc [cm] between the mutual electrodes between different polarities is set by the following equation.
  • H [cra] is a desired depth from the surface layer of the solid insulator 5.
  • a desired depth H [cm] can be obtained from the surface layer of the solid insulator 5.
  • the solid insulator 5 has a conductive reinforcing material layer 5b extending in the horizontal direction at a position of a depth L [cm] from the upper surface
  • the high-potential electrode 3b of the electrode section 3 of the electric pulse destruction device is disposed on the surface of the solid insulator 5, and the low-potential electrode 3a is connected to the conductive layer 5b.
  • the low potential side is grounded. Since the conductive reinforcing material layer 5b is embedded so as to extend horizontally from the surface of the solid insulator 5 at a depth L [cm], the distance between the mutual electrodes between different polarities is L [cm].
  • the number of the high-potential electrodes and the number of the low-potential electrodes are not limited to one, and are selected as needed.
  • a granite specimen with an area of 900 X 1200 [sq mm] and a thickness of 600 [ ⁇ ] was used as the solid insulator 5.
  • the tank was filled with water until it was 100 [hidden] above the surface of the granite specimen.
  • the pair of positive and negative electrodes 3b and 3a are separated from the previous position by half the distance between the mutual electrodes. Moved to a new location. This process was repeated until the entire surface of the test piece was destroyed.
  • Table 13 shows the results of this experiment when the coefficient 6.1 was adopted.
  • the last row of the table shows the experimental depth Hexp.
  • the desired depth of fracture, H, and the experimental depth, Hexp are in good agreement. In particular, the greater the distance Lc between the mutual electrodes, the better the agreement.
  • the electric pulse breaking equipment and method of the present invention can be used in the field of mining and drilling holes having a high precision diameter. Similarly, it can be used in the civil engineering industry, such as dismantling old reinforced concrete blocks and rebuilding roads and runways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Disintegrating Or Milling (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

An electric pulse breaking apparatus comprises a pulse voltage generator, and an electrode part having one end connected with the pulse voltage generator and the other end in contact with a solid insulator. The contact point between the solid insulator and the electrode part is covered with a liquid, and a pulse voltage is applied to the electrode part, to break the solid insulator. The pulse generation parameters of the pulse voltage generator are so adjusted as to cause the breaking at a timing in the fall of the pulse voltage, especially after at least 250 ns from the rise of the pulse voltage. The number of electrodes to be connected with the pulse voltage generator is desirably determined such that the net resistance of the portion in the liquid of the electrode part is eight times or more as high as the waving impedance of the pulse voltage generator.

Description

明 細 書  Specification
電気パルスにより固体絶縁物を破壊する装置及び方法 技術分野  Apparatus and method for breaking solid insulator by electric pulse
本発明の電気パルス破壊装置及び方法は、 電気パルス放電によって、 岩盤、 岩石等の天然固体絶縁物やその他セラミ ックス、 コンクリートの ような人工の固体絶縁物を破壊するための装置及ぴ方法に係わる。 背景技術  The electric pulse destruction apparatus and method according to the present invention relate to an apparatus and a method for destroying natural solid insulators such as rock and rock and other artificial solid insulators such as ceramics and concrete by electric pulse discharge. . Background art
電気パルス放電による岩の破壊の方法が既に存在していることは知ら れている ( 「ソビエト大百科事典」 、 モスクワ、 1978年, v. 30,p58 参照 ) 。 この方法において、 接地パイプとその接地パイプの中で回転可能な 高電位電極とから成る穴加工へッドが使用される。 高電圧が前記高電位 電極にかけられ、 電気放電によって岩を破壊する。  It is known that methods of rock destruction by electric pulse discharge already exist (see The Soviet Encyclopedia, Moscow, 1978, v. 30, p. 58). In this method, a drilling head consisting of a grounded pipe and a high potential electrode rotatable within the grounded pipe is used. A high voltage is applied to the high-potential electrodes, destroying the rock by electric discharge.
また、 B. V. Siomkin, A. F, Usov, V. N. Kurets 等による電気パルス放電 による岩と人工固体物の破壊や、 モスクワ、 ナウ力出版、 1995年, p. 7- 11 , 20-23, 34-62, 220-224, 240- 243に記載の固体絶縁物の電気パルス 破壊等の従来の方法によれば、 正負一対の相互電極間距離が数 10 [讓]以 内にある電極が用いられる。  Also, BV Siomkin, A. F., Usov, VN Kurets et al. Destruction of rocks and artificial solids by electric pulse discharge, Moscow, Now Power Press, 1995, p. 7-11, 20-23, 34-62 , 220-224, 240-243, according to a conventional method such as electric pulse destruction of a solid insulator, an electrode having a distance between a pair of positive and negative mutual electrodes within a range of several tens of cascades is used.
パルス電圧のパラメータは、 パルス高電圧が電極システムに適用され た時、 パルス電圧の上昇部分であって、 パルス電圧の立ち上げ時から 10 0 [ns] の間もしくはそれ以下の間に固体絶縁物の電気破壊が生じるよう に選ばれる。 いくつかの他の破壊のためのパラメータも同様にパルス電 圧の上昇部分であって、 パルス電圧の立ち上げ時から 100 [ns] の間もし くはそれ以下の間に固体絶縁物の電気破壊が生じるように選ばれる。 そして、 前記一対の電極が、 固体絶縁物の表面に置かれる力 或いは 、 前もって設けられた穴の中に置かれる。 次に、 固体絶縁物と電極との 接触点は、 水等の液体の中に沈められる。 そして、 高電圧が前記高電位 電極にかけられ、 電気放電によって固体絶縁物を破壊する。 破壊された 破片は、 定期的に除去される。 The parameter of the pulse voltage is the rising part of the pulse voltage when the pulse high voltage is applied to the electrode system, and the solid insulator is between 100 [ns] or less after the pulse voltage rise. Is selected so that electrical breakdown of Some other destructive parameters are also the rising part of the pulse voltage, and the electrical breakdown of the solid insulator during the period of 100 ns or less from the rise of the pulse voltage Is chosen to occur. And a force placed on the surface of the solid insulator by the pair of electrodes or , Placed in a pre-defined hole. Next, the contact point between the solid insulator and the electrode is submerged in a liquid such as water. Then, a high voltage is applied to the high-potential electrode, and the solid insulator is destroyed by electric discharge. Destroyed debris is removed regularly.
しかしながら、 上記従来の方法によれば、 相互電極間距離が数 10 [mm] と狭いことから、 相互電極間距離が数 10 [cm]と広い場合の破壊効率が低 いという問題を有していた。 これを補うために、 正負一対の相互電極間 距離が数 10 [隨]以内の電極を複数用意し固体絶縁物の表裏に設けること がしばしば行われていたが、 エネルギー消費が大きくなるという問題を 有していた。 発明の開示  However, according to the above-mentioned conventional method, since the distance between the mutual electrodes is as small as several tens [mm], there is a problem that the breaking efficiency is low when the distance between the mutual electrodes is as large as several tens [cm]. Was. In order to compensate for this, it has often been practiced to prepare a plurality of electrodes with a distance between a pair of positive and negative mutual electrodes within several tens [arbitrarily] and to provide them on the front and back of a solid insulator. Had. Disclosure of the invention
本発明の目的はパルス電圧のパラメータ等の電気破壊のためのパラメ —タを最適に設定することによつて破壊効率を改善することにある。 相 互電極間距離が数 10 [cm]と広レ、場合であっても本発明の装置及び方法に よれば、 従来の破壊効率より 1. 6 から 1. 8 倍良くなる。  SUMMARY OF THE INVENTION It is an object of the present invention to improve the breakdown efficiency by setting parameters for electrical breakdown such as the pulse voltage parameters optimally. Even if the distance between the mutual electrodes is as large as several tens of cm, according to the apparatus and method of the present invention, the breaking efficiency is 1.6 to 1.8 times better than the conventional breaking efficiency.
本発明者らは高電位極にかけられるパルス電圧の上昇部で電気破壊を 起こさせるよりも、 高電位極にかけられるパルス電圧の下降部で電気破 壊を起こさせた方が、 固体絶縁物と電極との接触点を覆う水等の液体に よる電圧損失が少ないことを見いだした。 本発明はこの事実に基づきな されたものであり、 本発明の要旨とするところは、 パルス電圧の下降部 分で電気破壊が起きるようにパルス電圧のパラメータを調節することに ある。 とりわけ、 パルス電圧の立ち上げ時から少なくとも 250 [ns] 経過 後に電気破壊が起きるようにする。  The present inventors have found that it is better to cause electrical breakdown at the falling part of the pulse voltage applied to the high potential electrode than to cause the electrical breakdown at the rising part of the pulse voltage applied to the high potential electrode. Voltage loss due to water or other liquid that covers the contact point with the battery. The present invention has been made based on this fact, and the gist of the present invention is to adjust the parameters of the pulse voltage so that electrical breakdown occurs in the falling part of the pulse voltage. In particular, electrical breakdown should occur at least 250 [ns] after the rise of the pulse voltage.
具体的には、 本発明の電気パルス破壊装置は、 パルス電圧発生器と、 該パルス電圧発生機に一端側が接続され、 他端側が固体絶縁物に接触さ せられる電極部とを備え、 前記固体絶縁物と前記電極部との接触点を液 体で覆レ、、 前記電極部にパルス電圧をかけることによつて前記固体絶縁 物を破壊する電気パルス破壊装置であり、 更に、 前記パルス電圧発生機 のパルス電圧発生パラメータを、 パルス電圧の下降部分で電気パルス破 壊を起こさせるように調節した電気パルス破壊装置である。 とりわけ、 前記パルス電圧の立ち上げ時から少なくとも 250 [ns] 経過後に電気パル ス破壊を起こさせるように調節した電気パルス破壊装置である。 そし て、 本発明の電気パルス破壊方法は、 前記本発明の電気パルス破壊装置 を用いて、 パルス電圧の下降部分で電気パルス破壊を起こさせて前記固 体絶縁物を破壊する電気パルス破壊方法である。 とりわけ、 前記パルス 電圧の立ち上げ時から少なくとも 250 [ns] 経過後に電気パルス破壊を起 こさせて前記固体絶縁物を破壊する電気パルス破壊方法である。 加え て、 更に高い破壊効率を達成するには、 パルス電圧発生機の波状インピ 一ダンスに対して電極部の液体中における総抵抗が 7倍以上となるよう に、 パルス電圧発生機に接続する電極子の本数を選択するとよい。 とり わけ、 8倍以上となるように、 パルス電圧発生機に接続する電極子の本 数を選択するのが望ましい。 Specifically, the electric pulse destruction device of the present invention includes a pulse voltage generator, one end connected to the pulse voltage generator, and the other end contacting the solid insulator. An electrode portion, wherein a contact point between the solid insulator and the electrode portion is covered with a liquid, and a pulse voltage is applied to the electrode portion to destroy the solid insulator. An electric pulse destruction device, wherein the pulse voltage generation parameter of the pulse voltage generator is adjusted to cause electric pulse destruction in a falling part of the pulse voltage. In particular, the present invention is an electric pulse destruction device adjusted so as to cause electric pulse destruction at least 250 [ns] after the rise of the pulse voltage. The electric pulse destruction method of the present invention uses the electric pulse destruction method of the present invention to cause an electric pulse destruction in a falling part of a pulse voltage to destroy the solid insulator. is there. In particular, the method is an electric pulse destruction method in which electric pulse destruction occurs at least 250 [ns] after the rise of the pulse voltage to destroy the solid insulator. In addition, in order to achieve even higher breakdown efficiency, the electrodes connected to the pulse voltage generator must be so designed that the total resistance of the electrode section in the liquid to the wave impedance of the pulse voltage generator is 7 times or more. It is good to select the number of children. In particular, it is desirable to select the number of electrodes connected to the pulse voltage generator so that the number becomes eight times or more.
また、 固体絶縁物が、 導電性の補強材層を内部に有する場合は、 前記 構成に加えて、 前記導電性の補強材に接続される低電位電極子と、 前記 固体絶縁物と接触する複数の高電位電極子を前記電極部に備えさせ、 前 記複数の高電位電極子を、 前記導電性の補強材層に沿う方向に前記固体 絶縁物の表面に配匱し、 それぞれの高電位電極子の先端から前記固体絶 縁物内の捕強材層への距離が同一となるように、 複数の高電位電極子の 先端の相対位置を固定することが望ましレ、。  Further, when the solid insulator has a conductive reinforcing material layer inside, in addition to the above-described configuration, a low-potential electrode connected to the conductive reinforcing material, and a plurality of contacts in contact with the solid insulator. A plurality of said high-potential electrodes are arranged on the surface of said solid insulator in a direction along said conductive reinforcing material layer. It is desirable to fix the relative positions of the tips of the plurality of high-potential electrodes so that the distance from the tips of the tips to the layer of the scavenger in the solid insulator is the same.
このように複数の高電位電極子の先端の相対位置を固定すると、 ある 一つの高電位電極子だけが補強材に最初に到達し、 近くの他の高電位電 極子による破壊が完了するまでに電圧発生回路を短絡させてしまうとい うことがなく、 効率良く破壊することができる。 When the relative positions of the tips of the plurality of high-potential electrodes are fixed in this way, only one high-potential electrode reaches the reinforcement first, and another high-potential electrode nearby. The voltage generation circuit is not short-circuited until the destruction by the pole is completed, and the destruction can be performed efficiently.
また、 固体絶縁物が、 導電性の補強材層を有しない場合、 前記電極部 に、 前記固体絶縁物と接触する複数の電極子を備えさせ、 そして、 異な る極性を有する電極子間距離の 1/3 以上の深さを有する穴を前もって前 記固体絶縁物の表面に開けておき、 異なる極性を有する電極子をそれぞ れ互いに隣り合う穴に挿入すると良レ、。  Further, when the solid insulator does not have a conductive reinforcing material layer, the electrode portion is provided with a plurality of electrodes that are in contact with the solid insulator, and a distance between the electrodes having different polarities is provided. It is advisable to open a hole having a depth of 1/3 or more in advance on the surface of the solid insulator, and insert electrodes having different polarities into holes adjacent to each other.
このような構成にすると、 前記固体絶縁物内での放電率が向上し、 破 壊効率が良くなる。  With such a configuration, the discharge rate in the solid insulator is improved, and the destruction efficiency is improved.
加えて、 固体絶縁物が導電性の補強材層を内部に有する場合、 更に高 レ、破壊効率を得るために、 前記導電性の補強材に接続される低電位電極 子と、 前記固体絶縁物の表面に一定の速度 V [cm/s] を持って移動可能に 配置される一つ又は複数の高電位電極子を前記電極部に備えさせ、 前記 高電位電極子と前記低電位極層間距離が L [cm]の時、 繰り返し割合 F= ( l . 0〜1. 2) 2V/L [pps] で高電圧パルスを電極部にかけると良い。 また、 固 体絶縁物が導電性の捕強材層を内部に有しない場合であっても前記固体 絶縁物の一表面に層状の導電性材料を設け、 この層に前記電極部の低電 位電極子を接続して低電位極層を形成し、 前記低電位極層と前記電極部 の高電位電極子との間に前記固体絶縁物を挟むようにして前記高電位電 極子を前記固体絶縁物の他の表面に一定の速度 V [cm/s] で低電位極層に 沿う方向に移動可能に配置すると良い。 そして、 前記高電位電極子と前 記低電位極層間距離が L [cm] の時、 繰り返し割合?= (1. 0〜1. 2) 2 /し[卯3 ] で高電圧パルスを電極部にかける  In addition, when the solid insulator has a conductive reinforcing material layer inside, in order to obtain higher resilience and destruction efficiency, a low potential electrode connected to the conductive reinforcing material; One or a plurality of high-potential electrodes disposed movably at a constant velocity V [cm / s] on the surface of the electrode, the distance between the high-potential electrodes and the low-potential electrode layer When L is [cm], a high voltage pulse should be applied to the electrode at a repetition rate F = (l. 0 to 1.2) 2V / L [pps]. Further, even when the solid insulator does not have a conductive scavenger layer inside, a layered conductive material is provided on one surface of the solid insulator, and the low potential of the electrode portion is provided on this layer. An electrode is connected to form a low-potential electrode layer, and the high-potential electrode is formed of the solid insulator so as to sandwich the solid insulator between the low-potential electrode layer and the high-potential electrode of the electrode section. It is desirable to arrange it on the other surface so that it can move at a constant speed V [cm / s] in the direction along the low potential pole layer. Then, when the distance between the high-potential electrode and the low-potential electrode layer is L [cm], a high-voltage pulse is applied at a repetition rate? = (1.0 to 1.2) 2 / [3]. Put on
更に、 固体絶縁物の表面層から所望の深さ H [cm] の破壊を得るために 、 互いに異なる極性間の相互電極間距離 Lc [cm] を下記式によって調節 すると良い。 Lc = (6. 1 〜6. 4) H —2. 4 [cm] 図面の簡単な説明 Further, in order to obtain a desired depth H [cm] from the surface layer of the solid insulator, the distance Lc [cm] between the mutually different polarities may be adjusted by the following equation. Lc = (6.1 to 6.4) H —2.4 [cm] Brief description of drawings
第 1 図は、 実施形態 1 で使用する固体絶縁物を破壊するための電気パ ルス破壊装置を示す概念図であり、 第 2 図は、 本発明によるパルス電圧 下降部でのコンクリートに電気破壊が生じた場合の典型的な電圧波形と パルス発生機のオープン回路での典型的な電圧の波形であり、 第 3 図は FIG. 1 is a conceptual diagram showing an electric pulse destruction device for destroying a solid insulator used in Embodiment 1, and FIG. 2 is a diagram showing that electric destruction of concrete in a pulse voltage descending part according to the present invention is performed. Fig. 3 shows a typical voltage waveform when it occurs and a typical voltage waveform in the open circuit of the pulse generator.
、 実験 1 の結果を示す表であり、 第 4 図は実施形態 2 で使用する固体絶 縁物を破壊するための電気パルス破壊装置を示す概念図であり、 第 5 図 は、 実験 2 の結果を示す表であり、 第 6 図(a) 及び第 6 図(b) は実施形 態 3 で使用する固体絶縁物を破壊するための電気パルス破壊装置を示す 概念図であり、 第 7 図は実施形態 4 で使用する固体絶縁物を破壊するた めの電気パルス破壊装置を示す概念図であり、 第 8 図(a) 及び第 8 図(b ) は実施形態 5 で使用する固体絶縁物を破壊するための電気パルス破壊 装置を示す概念図であり、 第 9 図は実施形態 5 で使用する他の固体絶縁 物を破壊するための電気パルス破壊装置を示す概念図であり、 第 10図は 、 実験 5 の結果を示す表であり、 第 11図は実施形態 6 で使用する固体絶 縁物を破壊するための電気パルス破壊装置を示す概念図であり、 第 12図 は実施形態 6 で使用する他の固体絶縁物を破壊するための電気パルス破 壊装置を示す概念図であり、 第 13図は、 実験 6 の結果を示す表であり、 第 14図(a) は、 従来のパルス発生機のオープン回路での典型的な電圧波 形を示す図であり、 第 14 (b) は、 従来のパルス電圧上昇部で固体絶縁物 に電気破壊が生じた場合の典型的な電圧波形である。 発明を実施するための最良の形態 Fig. 4 is a table showing the results of Experiment 1, and Fig. 4 is a conceptual diagram showing an electric pulse destruction device for destroying solid insulators used in Embodiment 2, and Fig. 5 shows the results of Experiment 2. 6 (a) and 6 (b) are conceptual diagrams showing an electric pulse destruction device for destroying a solid insulator used in Embodiment 3, and FIG. FIG. 8 is a conceptual diagram showing an electric pulse destruction device for destroying a solid insulator used in Embodiment 4, and FIGS. 8 (a) and 8 (b) show the solid insulator used in Embodiment 5; Fig. 9 is a conceptual diagram showing an electric pulse destruction device for destruction, Fig. 9 is a conceptual diagram showing an electric pulse destruction device for destroying other solid insulators used in Embodiment 5, and Fig. 10 is FIG. 11 is a table showing the results of Experiment 5, and FIG. 11 shows the breakdown of the solid insulator used in Embodiment 6. FIG. 12 is a conceptual diagram showing an electric pulse destruction device for destroying other solid insulators used in Embodiment 6, and FIG. 13 is a conceptual diagram showing an electric pulse destruction device for Fig. 14 (a) is a table showing the results of Experiment 6; Fig. 14 (a) is a diagram showing a typical voltage waveform in an open circuit of a conventional pulse generator; This is a typical voltage waveform when an electrical breakdown occurs in the solid insulator in the voltage rising section. BEST MODE FOR CARRYING OUT THE INVENTION
本発明を図面を参照しつつ説明する。 [実施形態 1] The present invention will be described with reference to the drawings. [Embodiment 1]
第 1 図は、 実施形態 1 で使用する固体絶縁物を破壊するための電気パ ルス破壊装置を示す概念図である。  FIG. 1 is a conceptual diagram showing an electric pulse breaking device for breaking a solid insulator used in the first embodiment.
最初に、 本発明の電気パルス破壊装置 1 の主な構成を説明する。 本発 明の電気パルス破壊装置 1 は、 パルス電圧発生機 2 と、 前記パルス電圧 発生機 2 に一端側が接続され、 他端側が固体絶縁物 5 に接触させられる 電極部 3 と、 前記固体絶縁物 5 と前記電極部 3 との接触点 5aを覆う液体 4 とを有している。  First, the main configuration of the electric pulse destruction device 1 of the present invention will be described. The electric pulse destruction device 1 of the present invention includes a pulse voltage generator 2, an electrode portion 3 having one end connected to the pulse voltage generator 2, and the other end contacting a solid insulator 5, 5 and a liquid 4 covering a contact point 5a between the electrode portion 3 and the electrode portion 3.
前記パルス電圧発生機 2 は、 電源からの電圧を調整して高電圧まで昇 圧する高電圧発生部 9 と、 高電圧発生部 9 によって得られた高電圧をパ ルス状に出力するパルス発生部とを有している。 このパルス電圧発生機 2 内のパルス電圧発生パラメータは、 パルス電圧の下降部分であって、 前記パルス電圧の立ち上げ時から少なくとも 250 [ns] 以上経過後に電気 パルス破壊を起こさせるように調節されている。 例えば、 第 1 図に示す ような所定距離にて対向する複数の放電球 6 と、 前記放電球 6 に放電が 発生する前は互いに並列に接続され且つ前記放電球 6 が放電したときに は直列に接続される複数のコンデンサ 7 と、 前記複数のコンデンサ 7 並列状態のときに各コンデンサ 7 を結ぶ複数のインダクタンス 8 素子と 力 ら構成されている場合、 パルス電圧の下降部分であって、 前記パルス 電圧の立ち上げ時から少なくとも 250 [ns] 以上経過後に電気パルス破壊 を起こさせるように、 それらの静電容量、 インダクタンス、 ギャップ間 距離等を調節する。 ここにおいて、 パルス電圧が立ち上がり、 最初の極 大値を迎えるまでを上昇部とし、 最初の極大値以後を下降部と呼ぶ。 電極部 3 は、 一つの低電位電極子 3aと一^ 3の高電位電極子 3bとからな り、 それぞれは、 鋼鉄性ロッドとそれを覆うポリエチレン絶縁材とから 形成されている。 前記電極子 3a,3b は、 距離し だけ離されて固体絶縁物 5 の表面に配置されている。 ここでは、 低電位側 3aは接地されている。 また、 低電位電極子と高電位電極子の数はそれぞれ一つに限られず、 必 要に応じて任意に定めることができる。 The pulse voltage generator 2 includes a high voltage generator 9 that adjusts a voltage from a power supply to increase the voltage to a high voltage, and a pulse generator that outputs the high voltage obtained by the high voltage generator 9 in a pulsed manner. have. The pulse voltage generation parameter in the pulse voltage generator 2 is adjusted so as to cause an electric pulse destruction at least 250 [ns] after the rise of the pulse voltage, which is a falling portion of the pulse voltage. I have. For example, a plurality of discharge spheres 6 facing each other at a predetermined distance as shown in FIG. 1 are connected in parallel with each other before the discharge spheres 6 generate a discharge, and are connected in series when the discharge spheres 6 discharge. A plurality of capacitors 7 connected to a plurality of capacitors 7 and a plurality of inductances 8 elements connecting the respective capacitors 7 in a parallel state. Adjust their capacitance, inductance, gap distance, etc. so that electric pulse destruction occurs at least 250 [ns] after the voltage rises. Here, the rising portion of the pulse voltage until it reaches the first maximum value is called a rising portion, and the portion after the first maximum value is called a falling portion. The electrode section 3 includes one low-potential electrode 3a and three high-potential electrodes 3b, each of which is formed of a steel rod and a polyethylene insulating material covering the rod. The electrodes 3a and 3b are separated by a distance and are solid insulators. 5 are placed on the surface. Here, the low potential side 3a is grounded. Further, the number of the low potential electrodes and the number of the high potential electrodes are not limited to one each, and can be arbitrarily determined as needed.
前記固体絶緣物 5 は金属槽 10の中に置かれており、 金属槽 10の中に前 記固体絶縁物 5 と前記電極部 3 との接触点 5aを覆う液体 4 が満たされて いる。  The solid insulator 5 is placed in a metal tank 10, and the metal tank 10 is filled with a liquid 4 that covers a contact point 5 a between the solid insulator 5 and the electrode unit 3.
次に、 本発明の電気パルス破壊装置による破壊方法を説明する。 前記 パルス電圧発生機 2 によって前記電極部 3 にパルス電圧をかける。 第 2 図に示すように、 パルス電圧の下降部分であって、 前記パルス電圧の立 ち上げ時から少なくとも 250 [ns] 後に電気パルス破壊を起こさせる。 破 壊された破片は、 定期的に除去する。  Next, a destruction method using the electric pulse destruction device of the present invention will be described. A pulse voltage is applied to the electrode unit 3 by the pulse voltage generator 2. As shown in FIG. 2, electric pulse destruction occurs at least in the falling part of the pulse voltage and at least 250 [ns] after the rise of the pulse voltage. Broken debris should be removed regularly.
第 2 図において、 固体絶縁物はコンクリート試験片であり、 曲線 A は 、 パルス電圧発生機 2 のオープン回路での典型的な電圧の波形であり、 曲線 B は、 パルス電圧の下降部で電気破壊が生じた場合の典型的な電圧 波形である。 電気破壊は、 900 [ns] で生じている。  In FIG. 2, the solid insulator is a concrete specimen, curve A is a typical voltage waveform in the open circuit of the pulse voltage generator 2, and curve B is an electrical breakdown at the falling part of the pulse voltage. This is a typical voltage waveform in the case of occurrence of the following. Electrical breakdown occurs at 900 [ns].
参考として従来の電気パルス破壊装置によるパルス電圧発生機のォ一 プン回路での典型的な電圧波形を第 14図(a) に示し、 従来のパルス電圧 上昇部で固体絶縁物に電気破壊が生じた場合の典型的な電圧波形を第 14 図(b) に示す。 電気破壊は 100 [ns] で生じている。  For reference, a typical voltage waveform in the open circuit of a pulse voltage generator using a conventional electric pulse destruction device is shown in Fig. 14 (a). FIG. 14 (b) shows a typical voltage waveform in the case of the above. Electrical breakdown occurs at 100 [ns].
上記のようなパルス電圧下降部で電気破壊を起こさせるという本発明 の電気パルス破壊装置及び方法によると、 固体絶縁物と電極との接触点 を覆う水等の液体による電圧損失が少なく、 より低い出力電圧でパルス を発生させる低電圧パルス発生器の使用が可能になる。 低電圧パルス発 生器はその寿命が長いので、 結果として、 電気パルス破壊のコス トの低 減に寄与することになる。  According to the electric pulse destruction apparatus and method of the present invention in which the electric breakdown is caused in the pulse voltage falling part as described above, the voltage loss due to the liquid such as water covering the contact point between the solid insulator and the electrode is small and lower. This allows the use of a low-voltage pulse generator that generates pulses at the output voltage. Low-voltage pulse generators have a long life and, as a result, contribute to reducing the cost of electrical pulse destruction.
実験 1) 固体絶縁物の破壊時期を変えることによる固体絶縁物と電極との接触 点を覆う液体による電圧損失の変化を考察した。 固体絶縁物としてコン クリート試験片を用いた。 コンクリート試験片を金属槽の中に置き、 前 記コンクリート試験片全体を覆ように前記槽を水道水で満たした。 この実験の結果を表にして第 3 図に示す。 第 3 図の表において、 L は 異なる極性間の相互電極間距離 [cm]、 Tbr はパルス電圧立ち上げ時から 破壊までの時間 [ns]、 Ubr はコンクリート試験片の破壊電圧 [kV]であり 、 Udは水の有限の導電性による降下電圧 [kV]である。 Experiment 1) The change in the voltage loss due to the liquid covering the contact point between the solid insulator and the electrode due to changing the breakdown time of the solid insulator was considered. Concrete test pieces were used as solid insulators. The concrete test piece was placed in a metal tank, and the tank was filled with tap water so as to cover the entire concrete test piece. The results of this experiment are tabulated in FIG. In the table in Fig. 3, L is the distance between the electrodes between different polarities [cm], Tbr is the time from the start of the pulse voltage to the break [ns], and Ubr is the breakdown voltage of the concrete specimen [kV]. Ud is the voltage drop [kV] due to the finite conductivity of water.
第 3 図の表から降下電圧 Udにおいて、 パルス電圧の下降部分での電気 破壊は、 パルス電圧の上昇部分での電気破壊よりも 1. 7 倍以上減少して いることがわかる。 これは、 パルス電圧の下降部分で電気破壊を生じる ようにパルス電圧発生機のパラメータを調節することによって、 有限の 高レ、導電性を有する水におけるェネルギ一の損失が、 顕著に減少された ことを示している。  From the table in Fig. 3, it can be seen that at the voltage drop Ud, the electrical breakdown at the falling part of the pulse voltage is more than 1.7 times smaller than the electrical breakdown at the rising part of the pulse voltage. This means that by adjusting the parameters of the pulse voltage generator to cause electrical breakdown in the falling part of the pulse voltage, the energy loss in finite, high-conductivity water has been significantly reduced. Is shown.
[実施形態 2] [Embodiment 2]
第 4 図は、 実施形態 2 で使用する固体絶縁物を破壊するための電気パ ルス破壊装置 11を示す概念図である。 ここでは、 実施形態 1 で示した電 気パルス破壊装置の電極部 3 の電極子 3a,3b, 3c,3d の本数をパルス電圧 発生機 2 の波状インピーダンス Zgに対して、 電極部 3 の液体中における 総抵抗 Z1が 7 倍以上となるように選択した。 とりわけ、 8 倍以上となる ように電極部 3 の電極子の本数を選択することが好ましい。  FIG. 4 is a conceptual diagram showing an electric pulse destroyer 11 for destroying a solid insulator used in the second embodiment. Here, the number of the electrodes 3a, 3b, 3c, and 3d of the electrode unit 3 of the electric pulse destruction device shown in the first embodiment is determined by the wave impedance Zg of the pulse voltage generator 2 and the number of electrodes 3 in the liquid of the electrode unit 3. The total resistance Z1 at was selected to be 7 times or more. In particular, it is preferable to select the number of the electrodes of the electrode unit 3 so as to be eight times or more.
このように構成すると、 電圧振幅降下率 (負荷電圧 U1と、 パルス電圧 発生機 2 のオープン回路電圧 Uos との比 K=Ul/Uos) 力 S i に近くなる。 特 に、 8 倍以上にすると電圧振幅降下率が非常に 1 に近くなる。 その結果 更に高レ、破壊効率が得られる。 実験 2) With this configuration, the voltage amplitude drop rate (the ratio K = Ul / Uos between the load voltage U1 and the open circuit voltage Uos of the pulse voltage generator 2) is close to the force S i. In particular, when the value is more than 8 times, the voltage amplitude drop rate becomes very close to 1. As a result, higher resilience and destruction efficiency can be obtained. Experiment 2)
電極部 3 の液体中における総抵抗 Zlとパルス電圧発生機の波状インピ 一ダンス Zgとの比 Zl/Zgの変化によるパルス電圧振幅への影響を調べた 。 電圧振幅の降下を示す基本的なパラメータとして、 比 K=UlZUos がと られた。 ここで、 U1は負荷電圧であり、 Uos はパルス電圧発生機のォー プン回路電圧である。  The effect of the change in the ratio Zl / Zg between the total resistance Zl of the electrode part 3 in the liquid and the wavy impedance Zg of the pulse voltage generator on the pulse voltage amplitude was investigated. The ratio K = UlZUos was taken as a basic parameter indicating the voltage amplitude drop. Here, U1 is the load voltage, and Uos is the open circuit voltage of the pulse voltage generator.
電極部 3 の液体中における総抵抗 Z1とパルス電圧発生機の波状インピ 一ダンス Zgとの比 ZlZZgは、 電極部 3 において並列につないだ高電位電 極子 3a, 3c, 3dの本数を変えることによってを変化させた。  The ratio ZlZZg between the total resistance Z1 of the electrode part 3 in the liquid and the wavy impedance Zg of the pulse voltage generator is determined by changing the number of high-potential electrodes 3a, 3c, 3d connected in parallel at the electrode part 3. Was changed.
固体絶縁物 5 としてコンクリート試験片を用いた。 パルス電圧の下降 部分で電気破壊を生じさせるようにパルス電圧発生機 2 内のパルス電圧 発生パラメータを調節し、 パルス電圧の下降部分であって、 前記パルス 電圧の立ち上げ時から少なくとも 250 [ns] 以上経過後に電気パルス破壊 を起こさせた。  A concrete test piece was used as the solid insulator 5. The pulse voltage generation parameters in the pulse voltage generator 2 are adjusted so as to cause electrical breakdown at the falling part of the pulse voltage, and the falling part of the pulse voltage is at least 250 [ns] from the rise of the pulse voltage. After the above, electric pulse destruction occurred.
得られた結果を、 表にして第 5 図に示す。 第 5 図の表からパルス電圧 発生機 2 の波状インピーダンス Zgに対して、 電極部 3 の液体中における 総抵抗 Z1が 7 倍以上となるように選択すると、 電圧振幅降下率 Kが 1に 近くなることが判る。 とりわけ、 8 倍以上となるように電極部 3 の電極 子の本数を選択すると非常に 1に近くなる。 この場合、 電圧降下は無視 できる。 電極部 3 の液体中における総抵抗 Z1とパルス電圧発生機の波状 インピーダンス Zgとの比 ZlZZgの変化によるパルス電圧上昇時間への影 響も調べてみたが同様のデータが得られた。  The results obtained are tabulated in Figure 5. From the table in Fig. 5, if the total resistance Z1 in the liquid of the electrode part 3 is selected to be 7 times or more with respect to the wave impedance Zg of the pulse voltage generator 2, the voltage amplitude drop rate K becomes close to 1. You can see that. In particular, if the number of the electrodes of the electrode unit 3 is selected so as to be eight times or more, it becomes very close to one. In this case, the voltage drop can be ignored. The effect of the change in the ratio ZlZZg between the total resistance Z1 of the electrode part 3 in the liquid and the ripple impedance Zg of the pulse voltage generator on the pulse voltage rise time was examined, but similar data was obtained.
[実施形態 3] [Embodiment 3]
第 6 図(a) 及び第 6 図 (b) は、 実施形態 3 で使用する固体絶縁物を破 壊するための電気パルス破壊装置 12を示す概念図である。 この電気パル ス破壊装置 12は、 導電性の捕強材層 5bを内部に有する固体絶縁物 5 に適 している。 6 (a) and 6 (b) are conceptual diagrams showing an electric pulse destruction device 12 for destructing a solid insulator used in Embodiment 3. FIG. This electric pal The breaker 12 is suitable for a solid insulator 5 having a conductive material layer 5b therein.
前記固体絶縁物 5 は第 6 図(b) に示すように、 略直方体である。 導電 性の補強材層 5bは前記固体絶縁物 5 の上表面から深さ L の位置で水平方 向延びるように埋め込まれている。 ここで、 実施形態 2 で示した電気パ ルス破壊装置の電極部 3 の低電位電極子 3aを前記導電性の捕強材層 5bに 接続し、 前記複数の高電位電極子 3a, 3b, 3c, 3d, 3e, 3f, 3gを前記導電性の 補強材層 5bに沿うように、 前記固体絶縁物 5 の上表面に水平に並べて配 置する。 前記導電性の補強材層 5bが固体絶縁物 5 の表面から深さ L の位 置で水平方向延びるように埋め込まれているので、 それぞれの高電位電 極子 3a, 3b, 3c, 3d, 3e, 3f, 3gの先端 13から前記固体絶縁物 5 内の補強材層 5bへの距離は全て L [cm] となる。 前記複数の高電位電極子 3a, 3b, 3c, 3d, 3e, 3f, 3gの先端 13の相対位置を固定する。 このように、 それぞれの高電 位電極子 3a, 3b, 3c, 3d, 3e, 3f, 3gの先端 13から前記固体絶縁物 5 内の捕強 材層 5bへの距離が同一となるように、 複数の高電位電極子 3a, 3b, 3c, 3d, 3e, 3f, 3gの先端 13の相対位置を固定すると、 ある一つの高電位電極子だ けが捕強材に最初に到達し、 近くの他の高電位電極子による破壊が完了 するまでに電圧発生回路を短絡させてしまうとレヽうことがなく、 効率良 く破壊することができる。  The solid insulator 5 is a substantially rectangular parallelepiped as shown in FIG. 6 (b). The conductive reinforcing material layer 5b is embedded so as to extend horizontally from the upper surface of the solid insulator 5 at a depth L. Here, the low-potential electrode 3a of the electrode section 3 of the electric pulse destruction device shown in Embodiment 2 is connected to the conductive reinforcing material layer 5b, and the plurality of high-potential electrodes 3a, 3b, 3c are connected. , 3d, 3e, 3f, and 3g are horizontally arranged on the upper surface of the solid insulator 5 so as to be along the conductive reinforcing material layer 5b. Since the conductive reinforcing material layer 5b is embedded so as to extend horizontally from the surface of the solid insulator 5 at a depth L, each of the high potential electrodes 3a, 3b, 3c, 3d, 3e, The distance from the tip 13 of 3f, 3g to the reinforcing material layer 5b in the solid insulator 5 is all L [cm]. The relative positions of the tips 13 of the plurality of high potential electrodes 3a, 3b, 3c, 3d, 3e, 3f, 3g are fixed. Thus, the distance from the tip 13 of each of the high-potential electrodes 3a, 3b, 3c, 3d, 3e, 3f, 3g to the reinforcing material layer 5b in the solid insulator 5 is made equal. When the relative positions of the tips 13 of the plurality of high-potential electrodes 3a, 3b, 3c, 3d, 3e, 3f, and 3g are fixed, only one high-potential electrode arrives at the capturing material first, and other If the voltage generating circuit is short-circuited before the destruction by the high-potential electrode is completed, the destruction can be performed efficiently without causing a problem.
実験 3)  Experiment 3)
固体絶縁物 5 として鉄筋コンクリート試験片を採用し、 次の 3個の異 なった種類の高電位電極子を有する電極部による破壊効率をそれぞれに ついて考察した。  Reinforced concrete specimens were used as the solid insulator 5, and the breakdown efficiencies of the electrodes with the following three different types of high-potential electrodes were examined.
1) 単一の高電位電極子を有する電極部  1) Electrode section with single high-potential electrode
2) 上下方向に移動可能な複数の高電位電極子を有する電極部 2) Electrode section with multiple high-potential electrodes that can move up and down
3) 複数の高電位電極子の先端の相対位置が固定されている電極部 3) Electrodes where the relative positions of the tips of multiple high-potential electrodes are fixed
0 いずれの電極子も、 直径 12mmの導電性鋼鉄ロッドと、 それを直径 38mm にまで被覆するポリエチレン絶縁体とから構成された。 2)及び 3)の電極 部については、 2つの高電位電極子列からなり、 各々の列は 3個の高電 位電極子を有していた。 更に、 3)の電極部については、 それぞれの高電 位電極子の先端から鉄筋コンクリート試験片内に埋められている補強材 層への距離が同一となるように、 複数の電極の先端の相対位置を固定し た。 0 Each electrode consisted of a 12 mm diameter conductive steel rod and a polyethylene insulator covering it to a diameter of 38 mm. The electrode sections 2) and 3) consisted of two high-potential electrode rows, and each row had three high-potential electrode rows. Furthermore, the relative positions of the tips of multiple electrodes are set so that the distance from the tip of each high-potential electrode to the reinforcing material layer buried in the reinforced concrete specimen is the same for the electrode part in 3). Was fixed.
前記鉄筋コンクリート試験片の面積は 450 X 600 [sq mm]であり、 厚さ は 300 [誦] であった。 そして、 補強材層が鉄筋コンクリート試験片の内 部に 150 [mm] の深さで水平方向に埋め込まれている一層試験片と、 補強 材層が試験片の内部に 100 [讓] 及び 200 [謹] の深さで水平方向に埋め込 まれている二層試験片との 2種の試験片を使用した。 捕強材の網目サイ ズは、 150 X 150 [sq mm]であった。  The area of the reinforced concrete test piece was 450 × 600 [sq mm], and the thickness was 300 [cited]. A single-layer test piece in which the reinforcement layer is embedded horizontally at a depth of 150 mm inside the reinforced concrete test piece, and a reinforcement layer of 100 [200] and 200 [200] in the test piece Two types of specimens were used, two-layer specimens embedded horizontally at a depth of]. The mesh size of the reinforcing material was 150 × 150 [sq mm].
鉄筋コンクリート試験片 5 は、 完全にこの試験片 5 を覆う水道水 4 で 満たされたステンレス製の槽 10の中に置かれた。 水は循環させなかった 。 水に沈められた鉄筋コンクリート試験片の表面に前記電極部 3 の高電 位電極子を置いた。 電極部 3 の低電位電極子 3aは、 鉄筋コンクリート試 験片 5 の補強材層 5bに接続された。 ここでは、 低電位電極側は、 接地さ れた。 パルス電圧が立ち上がり始めてから 250 〜950 [ns] 経過後であつ てパルス電圧の下降部分に電気破壊が起きるようにパルス電圧発生パラ メータを調節した。  The reinforced concrete test piece 5 was placed in a stainless steel tank 10 filled with tap water 4 completely covering the test piece 5. Water was not circulated. The high-potential electrode of the electrode part 3 was placed on the surface of a reinforced concrete test piece submerged in water. The low-potential electrode 3a of the electrode part 3 was connected to the reinforcing material layer 5b of the reinforced concrete test piece 5. Here, the low potential electrode side was grounded. The pulse voltage generation parameters were adjusted so that electrical breakdown occurred in the falling part of the pulse voltage 250 to 950 [ns] after the pulse voltage started to rise.
パルス電圧発生機 2 によって 500 [kv] のパルス電圧が、 高電位電極子 にかけられた。 パルス電圧が与えられた後、 パルス電圧が立ち上がり始 めてから 250 〜950 [ns] 経過後であってパルス電圧の下降部分に電気破 壊が起きた。  A pulse voltage of 500 [kv] was applied to the high potential electrode by the pulse voltage generator 2. After the pulse voltage was applied, electrical breakdown occurred 250 to 950 [ns] after the pulse voltage started to rise, and in the falling part of the pulse voltage.
実験の結果を下記に示す。 1) 単一の高電位電極子を有する電極部 The results of the experiment are shown below. 1) Electrode section with single high-potential electrode
鉄筋コンクリート試験片をよく破壊した。 しかしながら、 鉄筋コン クリート試験片を完全に破壊するまでに、 鉄筋コンクリート試験片の表 面に沿って電極部を移動するために多くの時間を要した。 また、 電気破 壊が鉄筋コンクリート試験片の中にどの程度深く浸透しているのかの予 測がしにくいという問題が残った。  The reinforced concrete specimen was broken well. However, it took a lot of time to move the electrode along the surface of the reinforced concrete specimen before the reinforced concrete specimen was completely destroyed. In addition, there remains a problem that it is difficult to predict how deeply the electric breakdown has penetrated into the reinforced concrete specimen.
2) 上下方向に移動可能な複数の高電位電極子を有する電極部 鉄筋コンクリート試験片の表面の効率的な破壊が可能であった。 し かしながら、 鉄筋コンクリート試験片の中の電気破壊による貫入の速度 は異なっており、 ある一つの高電位の電極子が補強材に最初に到達する と、 近くの他の高電位の電極子による破壊が完了するまでに、 パルス電 圧発生回路を短絡させてしまった。 短絡回路の電圧はゼ口であるから破 壊工程は停止してしまった。  2) Electrodes with multiple high-potential electrodes that can move up and down. The surface of the reinforced concrete specimen could be efficiently destroyed. However, the rate of penetration due to electrical breakdown in reinforced concrete specimens is different, and when one high-potential electrode reaches the reinforcement first, the other high-potential electrode nearby Before the destruction was completed, the pulse voltage generation circuit was short-circuited. Since the voltage of the short circuit is zero, the destruction process has stopped.
3) 複数の高電位電極子の先端の相対位置が固定されている電極部 それぞれの高電位電極子 3b, 3c, 3d, 3e, 3f, 3g の先端 13から鉄筋コン クリート試験片内に埋められている捕強材層 5bへの距離 L が同一となる ように、 複数の高電位電極子の先端 13の相対位置を固定しているので、 ある一つの高電位電極子だけが捕強材層に最初に到達し、 近くの他の高 電位電極子による破壊が完了するまでにパルス電圧発生回路を短絡させ てしまうという前記問題を回避することができた。 更に、 それは、 鉄筋 コンクリート試験片の表面層だけでなく補強材層の下方のコンクリート を破壊することをも可能にした。 そして、 完全な鉄筋コンクリートの破 壊をするために鉄筋コンクリート試験片をひつく り返す必要がなくなつ た。 その結果、 複数の高電位電極子の先端の相対位置が固定されている 電極部を使用すると、 高効率で破壊の実現でき、 エネルギー消費は、 1. 6 倍以上低くなつた。 [実施形態 4] 3) Electrodes where the relative positions of the tips of a plurality of high-potential electrodes are fixed. Because the relative positions of the tips 13 of the plurality of high-potential electrodes are fixed so that the distance L to the reinforcing material layer 5b is the same, only one high-potential electrode is The first problem is that the pulse voltage generating circuit is short-circuited before the destruction by the other nearby high-potential electrode is completed. In addition, it has made it possible to destroy not only the surface layer of the reinforced concrete specimen but also the concrete below the reinforcement layer. And it is no longer necessary to turn over the reinforced concrete specimen to completely destroy the reinforced concrete. As a result, when electrodes with fixed relative positions of the tips of multiple high-potential electrodes were used, destruction was achieved with high efficiency, and energy consumption was reduced by a factor of 1.6 or more. [Embodiment 4]
第 7 図は、 実施形態 4 で使用する固体絶縁物を破壊するための電気パ ルス破壊装置 14を示す概念図である。 この電気パルス破壊装置 14は、 導 電性の補強材層 5bを内部に有しない固体絶縁物 5 の内部に効率良く放電 を起こさせるのに適している。  FIG. 7 is a conceptual diagram showing an electric pulse breaking device 14 for breaking a solid insulator used in the fourth embodiment. The electric pulse destruction device 14 is suitable for efficiently causing a discharge inside the solid insulator 5 having no conductive reinforcing material layer 5b inside.
異なる極性を有する電極子間距離 L の 1/3 以上の深さ D を有する穴 15 を電極子 3a, 3b の数だけ前もって前記固体絶縁物 5 の表面に開けておき 、 異なる極性を有する電極子 3a, 3b がそれぞれ互いに隣り合うように、 穴に挿入したものである。 第 7 図に示した装置は、 高電位電極子 3b及び 低電位電極子 3aをそれぞれ一つづ有している実施形態 1 で示した電気パ ルス破壊装置を用いた場合を示しているが、 高電位電極子及び低電位電 極子をそれぞれ複数有している場合は、 千鳥格子状に前記複数の穴を設 け、 高電位電極子と低電位電極子とを隣合うように配置する。  Holes 15 having a depth D of 1/3 or more of the distance L between the electrodes having different polarities are opened in advance on the surface of the solid insulator 5 by the number of the electrodes 3a and 3b, and the electrodes having different polarities are formed. 3a and 3b are inserted into the holes so that they are adjacent to each other. The device shown in FIG. 7 shows the case where the electric pulse destruction device shown in Embodiment 1 having one high-potential electrode 3b and one low-potential electrode 3a is used. When a plurality of potential electrodes and a plurality of low potential electrodes are provided, the plurality of holes are provided in a staggered lattice pattern, and the high potential electrode and the low potential electrode are arranged adjacent to each other.
このような構成にすると、 前記固体絶縁物内での放電率が向上し、 破 壊効率が良くなる。  With such a configuration, the discharge rate in the solid insulator is improved, and the destruction efficiency is improved.
実験 4)  Experiment 4)
固体絶縁物として、 コンクリート試験片と花こう岩試験片を用いて、 固体絶縁物に設けられた穴の深さ D と、 異なる極性を有する電極子間距 離し との関係を考察した。  Using concrete specimens and granite specimens as solid insulators, the relationship between the depth D of holes formed in the solid insulators and the distance between electrodes having different polarities was examined.
それぞれの試験片に、 直径が 40 [mm]で、 深さ D が 200 [mm] までの様々 な縦型穴を複数設けた。 縦型穴間の距離、 即ち、 相互電極子間距離 L を 100 [mm] から 300 [mm] の間で様々に変化させて縦型穴を複数設けた。 電 極は、 直径 12 [隱]の導電性鋼鉄ロッドと、 それを直径 38 [mm]にまで被覆 するポリェチレン絶縁体とから形成された。 異なる極性を有する電極子 は、 それぞれ隣合う穴に置かれた。 ここでは、 低電位側は接地された。 そして、 それぞれの穴は水で満たされた。 パルス電圧が立ち上がり始め てから 250 〜950 [ns] 経過後であってパルス電圧の下降部分に電気破壊 が起きるようにパルス電圧発生パラメータを調節した。 Each specimen was provided with multiple vertical holes with a diameter of 40 [mm] and a depth D of up to 200 [mm]. A plurality of vertical holes were provided by varying the distance between the vertical holes, ie, the distance L between the mutual electrodes, from 100 [mm] to 300 [mm]. The electrodes were formed from a conductive steel rod with a diameter of 12 [hidden] and a polyethylene insulator covering it to a diameter of 38 [mm]. Electrodes having different polarities were placed in adjacent holes. Here, the low potential side was grounded. And each hole was filled with water. The pulse voltage generation parameters were adjusted so that electrical breakdown occurred in the falling part of the pulse voltage 250 to 950 [ns] after the pulse voltage started to rise.
そして、 高電位のパルス電圧が、 高電位の電極子に適用された。 その 結果を以下に示す。  Then, a high potential pulse voltage was applied to the high potential electrodes. The results are shown below.
相互電極子間距離 (縦型穴間の距離) L の 1/3 より浅い深さを持つ縦 型穴に電極子が沈められると、 表面に沿ってパッと電気が光ったが、 試 験片内部の放電の数は、 僅かであった。  Distance between mutual electrodes (distance between vertical holes) When the electrodes were submerged in a vertical hole having a depth of less than 1/3 of L, electricity flashed along the surface. The number of internal discharges was small.
縦型穴の深さが相互電極子間距離 (縦型穴間の距離) L の 1/3 以上で あった時、 パルス電圧はより多くの高いエネルギーが要求されたが、 試 験片内部の放電率は 90% 以上に達し、 最適の結果が得られた。  When the depth of the vertical hole was more than 1/3 of the distance between the mutual electrodes (the distance between the vertical holes) L, the pulse voltage required more high energy, but the inside of the test piece The discharge rate reached more than 90%, and the optimum result was obtained.
[実施形態 5] [Embodiment 5]
第 8 図(a), 第 8 図(b) は、 実施形態 5 で使用する固体絶縁物を破壊 するための電気パルス破壊装置 16を示す概念図である。  8 (a) and 8 (b) are conceptual diagrams showing an electric pulse destruction device 16 for destructing a solid insulator used in the fifth embodiment.
前記固体絶縁物 5 は、 第 8 図(b) に示すように、 略直方体である。 導 電性の捕強材層 5bは前記固体絶縁物 5 の上表面から深さ L [cm] の位置で 水平方向延びるように埋め込まれている。 ここで、 実施形態 1 で示した 電気パルス破壊装置の電極部 3 の一つの高電位電極子 3bを前記固体絶縁 物 5 の表面の角に、 一定の速度 V [cm/s] を持って導電性の補強材層 5bに 沿う方向に移動可能に配置する。 複数の高電位電極子 3bを配置する場合 は、 移動方向と垂直な方向に高電位電極子 3bを配置する。 低電位電極子 3aを前記導電性の補強材層 5bに接続する。 ここでは、 低電位側は接地す る。 前記導電性の捕強材層 5bが固体絶縁物 5 の表面から深さ L [cm]の位 置で水平方向延びるように埋め込まれているので、 異なる極性間の相互 電極間距離は L [cm]となる。 そして、 パルス繰り返し割合?= (1. 0〜1. 2) 2V/L [pps] で高電圧パルスを電極部にかける。 このように、 構成すると 更に高い破壊効率が得られた。 The solid insulator 5 is a substantially rectangular parallelepiped as shown in FIG. 8 (b). The conductive material layer 5b is embedded so as to extend horizontally from the upper surface of the solid insulator 5 at a depth L [cm]. Here, one high-potential electrode 3b of the electrode unit 3 of the electric pulse destruction apparatus shown in the first embodiment is electrically connected to the corner of the surface of the solid insulator 5 at a constant speed V [cm / s]. It is arranged to be movable in the direction along the elastic reinforcing material layer 5b. When arranging a plurality of high potential electrodes 3b, the high potential electrodes 3b are arranged in a direction perpendicular to the moving direction. The low potential electrode 3a is connected to the conductive reinforcing material layer 5b. Here, the low potential side is grounded. Since the conductive scavenger layer 5b is embedded so as to extend horizontally from the surface of the solid insulator 5 at a depth L [cm], the distance between the electrodes of different polarities is L [cm]. ]. And the pulse repetition rate? = (1.0 to 1.2) High voltage pulse is applied to the electrode at 2V / L [pps]. With this configuration, higher destruction efficiency was obtained.
尚、 固体絶縁物 5 内に導電性の補強材を有しない場合は、 第 9 図に示 すように、 固体絶縁物 5 の下面に金網、 金属口ッドまたはプレート等 5b を高電位電極子 3bの移動方向に沿って設けるとよい。 この場合、 低電位 電極子 3aを前記金網、 金属ロッドまたはプレート等 5bに接続し、 一つ又 は複数の高電位電極子 3bを前記固体絶縁物 5 の上側表面の角に一定の速 度 V [cm/s] を持って移動可能に配置する。 従って、 固体絶縁物 5 の厚み が異なる極性間の相互電極間距離 L [cm]となる。  If there is no conductive reinforcing material in the solid insulator 5, as shown in Fig. 9, a wire mesh, metal hole or plate 5b is attached to the lower surface of the solid insulator 5 with a high-potential electrode. It is good to provide along the moving direction of 3b. In this case, the low-potential electrode 3a is connected to the wire mesh, metal rod, plate, or the like 5b, and one or more high-potential electrodes 3b are connected to a corner of the upper surface of the solid insulator 5 at a constant speed V. Arrange so that it can move with [cm / s]. Therefore, the thickness of the solid insulator 5 is the distance L [cm] between the mutual electrodes between different polarities.
実験 5)  Experiment 5)
固体絶縁物 5 として鉄筋コンクリート試験片を用いて、 前記式に従つ てパルス繰り返し割合 F を変化させながら破壊効率を考察した。  Using a reinforced concrete specimen as the solid insulator 5, the fracture efficiency was examined while changing the pulse repetition rate F according to the above equation.
前記鉄筋コンクリ一ト試験片は、 その表面から 10 [cm]の深さに単一層 捕強材 5aを有しており、 従って、 異なる極性間の相互電極間距離 L [cm] は 10 [cm]であった。 補強材 5aの網目サイズは、 50 X 50 [sq 删] であった 。 第 10図に示すような範囲で、 速度と係数を変えて破壊効率を考察した 。 パルス繰り返し割合 F=10〜12 [pps] の範囲で最も高い破壊効率を証し た。  The reinforced concrete test piece has a single-layer reinforcing material 5a at a depth of 10 [cm] from the surface thereof. Therefore, the distance L [cm] between the mutual electrodes between different polarities is 10 [cm]. ]Met. The mesh size of the reinforcing material 5a was 50 × 50 [sq 删]. In the range as shown in Fig. 10, the breaking efficiency was examined by changing the speed and the coefficient. The highest breakdown efficiency was demonstrated in the range of pulse repetition rate F = 10 to 12 [pps].
繰り返し割合 F が 2V/Lより低い場合、 パルスの数は鉄筋コンクリート の試験片の完全な破壊を提供するのに十分ではなく、 破壊されていない エリアがなお残留していた。  When the repetition rate F was lower than 2 V / L, the number of pulses was not enough to provide complete failure of the reinforced concrete specimen, and the unbroken area still remained.
繰り返し割合 F が 1. 2 X 2 - V/L より高い場合、 鉄筋コンクリートの 破壊片は余りに小さくなりすぎ、 そしてエネルギー消費は余りにも高く なった。  When the repetition rate F was higher than 1.2 X 2-V / L, the reinforced concrete fragments became too small and the energy consumption was too high.
[実施形態 6] 第 11図は、 実施形態 6 で使用する固体絶縁物を破壊するための電気パ ルス破壊装置 18を示す概念図である。 装置そのものは、 実施形態 1 で示 された電気パルス破壊装置と同じであるが、 互いに異なる極性間の相互 電極間距離 Lc [cm] を下記式によって設定している。 [Embodiment 6] FIG. 11 is a conceptual diagram showing an electric pulse breaking device 18 for breaking a solid insulator used in the sixth embodiment. The device itself is the same as the electric pulse destruction device shown in the first embodiment, but the distance Lc [cm] between the mutual electrodes between different polarities is set by the following equation.
Lc= (6. 1 〜6. 4) H -2. 4 [cm]  Lc = (6.1 to 6.4) H -2.4 [cm]
ここで、 H [cra] は固体絶縁物 5 の表面層から所望の深さである。  Here, H [cra] is a desired depth from the surface layer of the solid insulator 5.
前記式に従って、 互いに異なる極性間の相互電極間距離 Lc [cm] を決 定すると、 固体絶縁物 5 の表面層から所望の深さ H [cm] の破壊を得るこ とができる。  By determining the distance Lc [cm] between the mutual electrodes having different polarities in accordance with the above equation, a desired depth H [cm] can be obtained from the surface layer of the solid insulator 5.
尚、 前記固体絶縁物 5 、 第 12図に示すように、 上表面から深さ L [cm ] の位置で水平方向延びる導電性の補強材層 5bを有している場合、 実施 形態 1 で示した電気パルス破壊装置の電極部 3 の高電位電極子 3bを前記 固体絶縁物 5 の表面に配置し、 低電位電極子 3aを前記導電性の捕強材層 5bに接続する。 ここでは、 低電位側は接地する。 前記導電性の補強材層 5bが固体絶縁物 5 の表面から深さ L [cm]の位置で水平方向延びるように 埋め込まれているので、 異なる極性間の相互電極間距離は L [cm]となる また、 実施形態 6 において、 高電位電極子及び低電位電極子の数は一 つに限られず必要に応じて選択される。  Incidentally, as shown in FIG. 12, when the solid insulator 5 has a conductive reinforcing material layer 5b extending in the horizontal direction at a position of a depth L [cm] from the upper surface, as shown in Embodiment 1, The high-potential electrode 3b of the electrode section 3 of the electric pulse destruction device is disposed on the surface of the solid insulator 5, and the low-potential electrode 3a is connected to the conductive layer 5b. Here, the low potential side is grounded. Since the conductive reinforcing material layer 5b is embedded so as to extend horizontally from the surface of the solid insulator 5 at a depth L [cm], the distance between the mutual electrodes between different polarities is L [cm]. In addition, in the sixth embodiment, the number of the high-potential electrodes and the number of the low-potential electrodes are not limited to one, and are selected as needed.
実験 6)  Experiment 6)
前記式に従って設定された相互電極間距離 Lc [cm] に対する固体絶縁 物 5 の表面層から実際に破壊された深さ HeXp [cm]を測定した。 Said measured set mutual electrode distance Lc [cm] deep was actually destroyed from the surface layer of the solid insulator 5 for Is He X p [cm] in accordance with equation.
固体絶縁物 5 として面積 900 X 1200 [sq mm]、 厚さ 600 [瞧] を持つ花 こう岩実験片が使用された。 花こう岩実験片の表面より 100 [隱] 高くな るまで槽内に水を満たした。 1 から 3 つのパルスを発振した後、 正負一 対の電極子 3b, 3a を、 相互電極間距離の半分だけ以前の位置から離れた 新しい場所に移動させた。 この工程を繰り返し、 実験片の全表面が破壊 されるまで続けた。 A granite specimen with an area of 900 X 1200 [sq mm] and a thickness of 600 [瞧] was used as the solid insulator 5. The tank was filled with water until it was 100 [hidden] above the surface of the granite specimen. After oscillating 1 to 3 pulses, the pair of positive and negative electrodes 3b and 3a are separated from the previous position by half the distance between the mutual electrodes. Moved to a new location. This process was repeated until the entire surface of the test piece was destroyed.
係数 6. 1 を採用した場合のこの実験の結果を表にして第 13図に示す。 表の最後の行は、 実験によって得られた深さ Hexpを示す。 破壊の所望の 深さ H と実験値の深さ Hexpは、 良い一致を示している。 特に、 相互電極 間距離 Lcが広い程、 良い一致を示している。  Table 13 shows the results of this experiment when the coefficient 6.1 was adopted. The last row of the table shows the experimental depth Hexp. The desired depth of fracture, H, and the experimental depth, Hexp, are in good agreement. In particular, the greater the distance Lc between the mutual electrodes, the better the agreement.
更に、 実験は、 コンクリート試験片、 花こう岩実験片等を用いて相互 電極間距離 Lcが 40 [cm]になるまで行われた。 深さに関する実験値 Hexpは 、 相互電極間距離 Lcが式 Lc= (6. 1 〜6. 4) H -2. 4 [cm] によって決定され る時、 最適に予想された。 係数が 6. 1 より小さい時、 実験値 Hexpは所望 の深さ H を越えた。 係数が 6. 4 より大きい時、 実験値 Hexpは所望の深さ H より小さくなり、 電気破壊を提供するには、 より高い電圧が要求され た。 エネルギー E〜V 2 (Vは、 電圧) 故に、 高い電圧が適用された結 果破壊のエネルギー効率が下がった。 産業上の利用可能性 In addition, experiments were conducted using concrete specimens, granite specimens, etc., until the distance Lc between the electrodes became 40 [cm]. The experimental value Hexp for the depth was optimally predicted when the distance Lc between the mutual electrodes was determined by the equation Lc = (6.1-6.4) H-2.4 [cm]. When the coefficient was smaller than 6.1, the experimental value Hexp exceeded the desired depth H. When the coefficient was greater than 6.4, the experimental value Hexp was less than the desired depth H, and a higher voltage was required to provide electrical breakdown. Energy E~V 2 (V is voltage) therefore, was lowered energy efficiency of a high voltage is applied results destruction. Industrial applicability
本発明の電気パルス破壊装匱及び方法は、 採鉱、 高精度の直径を有す る穴加工分野で使用することができる。 同様に、 古い鉄筋コンクリート ブロックの解体、 道路、 滑走路等の再建といった土木建築産業において も使用することができる。  INDUSTRIAL APPLICABILITY The electric pulse breaking equipment and method of the present invention can be used in the field of mining and drilling holes having a high precision diameter. Similarly, it can be used in the civil engineering industry, such as dismantling old reinforced concrete blocks and rebuilding roads and runways.

Claims

請 求 の 範 囲 The scope of the claims
1 . パルス電圧発生機と、 一端側が該パルス電圧発生機に接続され 他端側が固体絶縁物に接触させられる電極部とを備え、 前記固体絶縁物 と前記電極部との接触点を液体で覆い、 前記電極部にパルス電圧をかけ ることによつて前記固体絶縁物を破壊する電気パルス破壊装置であって 前記パルス電圧の下降部分で電気パルス破壊を起こさせるように、 前 記パルス電圧発生機のパルス電圧発生パラメータが調節された固体絶縁 物を破壊するための電気パルス破壊装置。  1. A pulse voltage generator, and an electrode portion having one end connected to the pulse voltage generator and the other end contacting a solid insulator, and covering a contact point between the solid insulator and the electrode portion with a liquid. An electric pulse destruction device for destructing the solid insulator by applying a pulse voltage to the electrode portion, wherein the pulse generator is configured to cause an electric pulse destruction at a falling part of the pulse voltage. An electric pulse destruction device for destroying solid insulators whose pulse voltage generation parameters are adjusted.
2 . 前記パルス電圧発生機の波状インピーダンスに対して前記電極 部の液体中における総抵抗が、 7 倍以上となるように調節されている請 求の範囲第 1項に記載の固体絶縁物を破壊するための電気パルス破壊装 置。  2. The solid insulator according to claim 1, wherein the total resistance of the electrode portion in the liquid is adjusted to be 7 times or more the wave impedance of the pulse voltage generator. Electrical pulse destruction device for
3 . 前記固体絶縁物は導電性の補強材層を内部に有する固体絶縁物 であり、  3. The solid insulator is a solid insulator having a conductive reinforcing material layer therein,
前記電極部は前記固体絶縁物と接触する複数の高電位電極子と、 導電 性の補強材に接続される低電位電極子を有し、  The electrode unit has a plurality of high-potential electrodes in contact with the solid insulator, and a low-potential electrode connected to a conductive reinforcing material,
それぞれの前記高電位電極子の先端から前記固体絶縁物内の補強材層 への距離が同一となるように、 複数の高電位電極子の先端の相対位置が 固定されている請求の範囲第 1項又は第 2項に記載の固体絶縁物を破壊 するための電気パルス破壊装置。  2. The method according to claim 1, wherein the relative positions of the tips of the plurality of high-potential electrodes are fixed such that the distance from the tips of the high-potential electrodes to the reinforcing material layer in the solid insulator is the same. Item 3. An electric pulse destruction device for destroying a solid insulator according to Item 2.
4 . 前記電極部は複数の電極子を有し、 前記固体絶縁物は、 異なる 極性を有する前記電極子間の相互電極子間距離の 1/3 以上の深さを有す る穴が複数設けられた固体絶縁物であり、  4. The electrode portion has a plurality of electrodes, and the solid insulator has a plurality of holes having a depth of 1/3 or more of a distance between the mutual electrodes between the electrodes having different polarities. Solid insulator,
前記異なる極性を有する電極子は、 それぞれ互いに隣り合う穴に挿入 されている請求の範囲第 1項又は第 2項に記載の固体絶縁物を破壊する ための電気パルス破壊装置。 3. The solid insulator according to claim 1 or 2, wherein the electrodes having different polarities are respectively inserted into holes adjacent to each other. Pulse destruction equipment for.
5 . 前記固体絶縁物は、 内層又は一方の表面に導電性材が設けられ た固体絶縁物であり、  5. The solid insulator is a solid insulator provided with a conductive material on an inner layer or on one surface,
前記電極部は、 低電位極を形成するために前記導電性材に接続される 低電位電極子と、 該低電位極との間に前記固体絶縁物を挟むようにして 前記固体絶縁物の他表面に配置される高電位電極子とを有し、  The electrode portion is a low-potential electrode connected to the conductive material to form a low-potential electrode, and the solid insulator is sandwiched between the low-potential electrode and the other surface of the solid insulator. Having a high potential electrode placed,
前記高電位電極子は前記固体絶縁物の他表面上を一定の速度 V [cm/s] を持って移動可能であり、 異なる電極間の相互電極間距離が L [cm] の時 、 パルス繰り返し割合1^ (1. 0〜1. 2) 2 /し[ 5] で高電圧パルスが電極部 にかけられる請求の範囲第 1項又は第 2項に記載の固体絶縁物を破壊す るための電気パルス破壊装置。 The high-potential electrode can move on the other surface of the solid insulator at a constant speed V [cm / s], and when the distance between different electrodes is L [cm], pulse repetition is performed. A high voltage pulse is applied to the electrode portion at a ratio of 1 ^ (1.0 to 1.2) 2 / [ 5 ]. An electric power for destroying a solid insulator according to claim 1 or claim 2. Pulse destruction device.
6 . 互いに異なる極性間の相互電極間距離 Lc [cm]を下記式によって 調節されている請求の範囲第 1項又は第 2項に記載の固体絶縁物を破壊 するための電気パルス破壊装置。  6. The electric pulse destruction device for destroying a solid insulator according to claim 1 or 2, wherein a distance Lc [cm] between mutual electrodes having different polarities is adjusted by the following equation.
Lc= (6. 1 〜6. 4) H -2. 4 [cm] ここで、 H [cm] は、 電気パルス破壊によって得たい所望の破壊深さであ る。  Lc = (6.1 to 6.4) H -2.4 [cm] where H [cm] is a desired breaking depth to be obtained by electric pulse breaking.
7 . パルス電圧発生機と、 一端側が該パルス電圧発生機に接続され 他端側が固体絶縁物に接触させられる電極部とを備え、 前記固体絶縁物 と前記電極部との接触点が液体で覆われている電気パルス破壊装置を用 いて、 前記電極部にパルス電圧をかけることによって前記固体絶縁物を 破壊する電気パルス破壊方法であって、  7. A pulse voltage generator, and an electrode portion having one end connected to the pulse voltage generator and the other end contacting with a solid insulator, wherein a contact point between the solid insulator and the electrode portion is covered with a liquid. An electric pulse destruction method for destruction of the solid insulator by applying a pulse voltage to the electrode portion using a known electric pulse destruction device,
前記パルス電圧の下降部分で前記固体絶縁物を破壊する電気パルス破 壊方法。  An electric pulse destruction method for destructing the solid insulator at a falling part of the pulse voltage.
8 . 前記パルス電圧発生機の波状インピーダンスに対して前記電極 部の液体中における総抵抗を 7 倍以上にして前記固体絶縁物を破壊する 請求の範囲第 7項に記載の電気パルス破壊方法。 8. The solid resistance is destroyed by increasing the total resistance of the electrode section in the liquid to 7 times or more the wave impedance of the pulse voltage generator. The electric pulse destruction method according to claim 7.
PCT/JP1998/004964 1997-11-04 1998-11-02 Apparatus and method for breaking solid insulator with electric pulse WO1999022900A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU97118216 1997-11-04
RU97118216A RU2142562C1 (en) 1997-11-04 1997-11-04 Method of electric pulse breakage of rocks and artificial materials

Publications (1)

Publication Number Publication Date
WO1999022900A1 true WO1999022900A1 (en) 1999-05-14

Family

ID=20198678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004964 WO1999022900A1 (en) 1997-11-04 1998-11-02 Apparatus and method for breaking solid insulator with electric pulse

Country Status (2)

Country Link
RU (1) RU2142562C1 (en)
WO (1) WO1999022900A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026647A1 (en) * 2007-08-30 2009-03-05 The University Of Queensland Method and apparatus for breaking solid materials
JP2010137146A (en) * 2008-12-10 2010-06-24 Kurosaki Harima Corp Method of disassembling structure
US8109345B2 (en) 2004-11-17 2012-02-07 Schlumberger Technology Corporation System and method for drilling a borehole
CN102696314A (en) * 2012-01-13 2012-10-03 黄强 High-energy liquid blasting farm-oriented material throwing device and throwing method
CN102698918A (en) * 2012-01-13 2012-10-03 黄强 High-energy liquid-explosion material throwing stand-by device
JP2016068020A (en) * 2014-09-30 2016-05-09 太平洋セメント株式会社 Pulverization method of carbon fiber inclusion
US9416594B2 (en) 2004-11-17 2016-08-16 Schlumberger Technology Corporation System and method for drilling a borehole

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524101C2 (en) * 2011-03-23 2014-07-27 Николай Данилович Рязанов Electric pulse well drilling and electric pulse drill tip
CN103111391B (en) * 2012-01-13 2015-07-29 黄强 Material for agriculture stand-by provision is shed in the quick-fried fixed point explosion of High-energy liquid
RU2526947C1 (en) * 2013-05-13 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Multicomponent product destruction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938946A (en) * 1995-07-26 1997-02-10 Hitachi Zosen Corp Apparatus and method for destructing article to be destructed
JPH09119283A (en) * 1995-06-13 1997-05-06 Aitatsuku Kk Breaking method for solid insulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119283A (en) * 1995-06-13 1997-05-06 Aitatsuku Kk Breaking method for solid insulator
JPH0938946A (en) * 1995-07-26 1997-02-10 Hitachi Zosen Corp Apparatus and method for destructing article to be destructed

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109345B2 (en) 2004-11-17 2012-02-07 Schlumberger Technology Corporation System and method for drilling a borehole
US9416594B2 (en) 2004-11-17 2016-08-16 Schlumberger Technology Corporation System and method for drilling a borehole
WO2009026647A1 (en) * 2007-08-30 2009-03-05 The University Of Queensland Method and apparatus for breaking solid materials
JP2010137146A (en) * 2008-12-10 2010-06-24 Kurosaki Harima Corp Method of disassembling structure
CN102696314A (en) * 2012-01-13 2012-10-03 黄强 High-energy liquid blasting farm-oriented material throwing device and throwing method
CN102698918A (en) * 2012-01-13 2012-10-03 黄强 High-energy liquid-explosion material throwing stand-by device
JP2016068020A (en) * 2014-09-30 2016-05-09 太平洋セメント株式会社 Pulverization method of carbon fiber inclusion

Also Published As

Publication number Publication date
RU2142562C1 (en) 1999-12-10

Similar Documents

Publication Publication Date Title
US9010458B2 (en) Pressure pulse fracturing system
US4741405A (en) Focused shock spark discharge drill using multiple electrodes
US7959094B2 (en) Virtual electrode mineral particle disintegrator
Timoshkin et al. Plasma channel miniature hole drilling technology
US8789772B2 (en) Virtual electrode mineral particle disintegrator
AU578159B2 (en) Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
EP1789652B1 (en) Pulsed electric rock drilling, fracturing, and crushing methods and apparatus
US9190190B1 (en) Method of providing a high permittivity fluid
WO1999022900A1 (en) Apparatus and method for breaking solid insulator with electric pulse
RU2083824C1 (en) Rock crushing method
RU69152U1 (en) PULSE DRILL BIT
Yudin et al. Two-section pulse current generator for concrete and rocks destruction by splitting off
RU97118216A (en) ELECTRIC PULSE METHOD OF DESTRUCTION OF ROCKS AND ARTIFICIAL MATERIALS
RU2005111516A (en) METHOD OF DESTRUCTION OF POLYOCTENE
Huang et al. Destruction characteristics of electric pulse discharge
RU2375573C2 (en) Method for breaking of rocks
WO1998007959A1 (en) Method and device for crushing material by discharging pulsed electric energy and method and device for generating high-voltage pulse
RU161599U1 (en) DEVICE FOR DESTRUCTION OF CONCRETE, REINFORCED CONCRETE PRODUCTS AND SOLID MINERAL EDUCATIONS USING ELECTROHYDRAULIC EFFECT WITH VOLTAGE UP TO 1 KV
Yan et al. Study on the influence of the electrode model on discharge characteristics in High-voltage Pulsed Deplugging Technology
RU2232271C1 (en) Method for electric pulse destruction of rocks
RU2250957C2 (en) Cast-in-place pile forming method
Ushakov et al. Destruction and Recycling of Reinforced Concrete Products
RU2003802C1 (en) Gear for destruction of solid dielectric and semiconductor materials
Arsic et al. Numerical and experimental design of vacuum three-electrode spark gap for synthetic test circuits
Zhang et al. Numerical Simulation of Electrode Structure on High Voltage Pulse Discharge Characteristics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09530555

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642