WO1999021962A1 - Modified microcarriers and their use in cell cryoconservation - Google Patents

Modified microcarriers and their use in cell cryoconservation Download PDF

Info

Publication number
WO1999021962A1
WO1999021962A1 PCT/EP1998/006713 EP9806713W WO9921962A1 WO 1999021962 A1 WO1999021962 A1 WO 1999021962A1 EP 9806713 W EP9806713 W EP 9806713W WO 9921962 A1 WO9921962 A1 WO 9921962A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcarriers
microcarrier
cells
osmotic
biological material
Prior art date
Application number
PCT/EP1998/006713
Other languages
German (de)
French (fr)
Inventor
Nikolaos Dimoudis
Ingo Heschel
Julia Pasch
Günter RAU
Original Assignee
Roche Diagnostics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics Gmbh filed Critical Roche Diagnostics Gmbh
Priority to AU13356/99A priority Critical patent/AU1335699A/en
Publication of WO1999021962A1 publication Critical patent/WO1999021962A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/0231Chemically defined matrices, e.g. alginate gels, for immobilising, holding or storing cells, tissue or organs for preservation purposes; Chemically altering or fixing cells, tissue or organs, e.g. by cross-linking, for preservation purposes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the invention relates to improved microcarriers and their use for the cryopreservation of cells or cell assemblies.
  • the immobilization of tissue or cells on microcarriers is used to a large extent and advantageously in connection with the cultivation of cells in vitro and for the production of transplant material from autologous or allogeneic cells, in particular in dermatology.
  • Canadian patent CA-A 1215922 describes, for example, the microencapsulation of tissue or individual cells using a polymer which contains polylysine groups with a molecular weight between 10 and 30,000 Da. These microcapsules are immobilized on a biocompatible polymeric material that carries negatively charged groups.
  • S.T. Boyce describes in Surgery 103 (1988) 421-431 the coupling of cultured human epidermal keratinocytes to an insoluble carrier consisting of collagen and chondroitin-6-sulfate.
  • a skin transplant material is known from WO 89/03228, which consists of epidermal cells which are immobilized on a collagen carrier.
  • EP-A 0 333 328 describes a method for skin grafting in which the cells to be transplanted are also immobilized on microcarriers.
  • EP-A 0 242 305 preferably uses placental collagen type I and or type III carriers as such carriers.
  • M.L. Williams describes in J. Cellular Physiology 136 (1988) 103-110 the cultivation of immobilized keratinocytes.
  • WO 93/23088 describes biotherapeutically usable cell-coated microparticles in which epidermal cells are bound to conventional microcarriers.
  • WO 96/12510 describes an improved method and a biomaterial which contains epithelial cells immobilized to a large extent on microcarriers.
  • microcarriers coated with biological material are sensitive to freezing and thawing and that a considerable part of the biological material can be observed when thawing.
  • the object of the invention is to eliminate this disadvantage and to provide an improved method and improved microcarrier which are largely insensitive to cryopreservation and show a reduced detachment of biological material immobilized thereon when thawed after freezing.
  • the object is achieved by a method for immobilizing biological material, in particular cells or cell assemblies on microcarriers, which is characterized in that the volume of the microcarrier to be coated is reduced by changing the osmotic conditions surrounding the said microcarrier (osmotic pretreatment) and then the microcarrier pretreated in this way is coated with the biological material in the usual way.
  • the volume reduction of the microcarriers results in a partial cross-linking of the carrier material, which makes it difficult for the microcarrier to swell again.
  • the volume reduction is essentially largely irreversible.
  • crosslinking substances such as glutardialdehyde or hexamethylene dioisocyanate or by other crosslinking processes, such as radiation, a further undesired increase in volume of the microcarrier pretreated by contraction can be reduced even further after water addition (chemical crosslinking of the microcarrier) after the osmotic pretreatment. .
  • microcarriers pretreated in this way are substantially less than if microcarriers not pretreated according to the invention are used.
  • the microcarriers which are preferably suitable for immobilizing cells and cell groups, usually have a water content of more than 60%, preferably more than 90%, it proves expedient to reduce the volume by removing water, preferably 50% or more of the water contained in the microcarriem to carry out.
  • dehydration can be achieved by conventional methods for changing the osmotic conditions, such as, for example, the addition of dehydrating substances, the partial freezing of the solution containing the microcarriers or freeze drying (lyophilization).
  • the volume reduction can preferably be achieved by adding salt solution with at least 15% by weight of salt, preferably alkali metal halides or alkaline earth metal halides.
  • An approximately 32% by weight sodium bromide solution (concentration in the total solution) is particularly preferably used for volume reduction, as a result of which maximum shrinkage of the microcarrier can be achieved.
  • preferred additives are e.g. B. lithium bromide, sodium chloride or magnesium chloride.
  • Organic additives which change the osmotic conditions according to the invention, dissolve in water in high concentrations but do not directly denature the microcarriers are also suitable. Such substances are, for example, dimethyl sulfoxide, acetone, methanol or ethanol.
  • a substance is added after the osmotic pretreatment (preferably shortly after shrinking, preferably after about two minutes), which chemical crosslinking within the microcarrier (Crosslinking of the carrier material).
  • Glutardialdehyde solution is preferably added to the microcarrier suspension.
  • the concentration of the glutardialdehyde solution in the total suspension is preferably 0.01% by weight - 0.5% by weight. It is further preferred to incubate the microcarrier for a longer time in this solution before further use, temperatures between 0 and 10 ° C., preferably 4 ° C., being advantageous. A period of around 24 hours has also proven to be advantageous.
  • any free aldehyde groups present are saturated, for example by adding sodium borohydride. It is further preferred to prepare the pretreated microcarriers for the coating by washing with buffer solutions or cell culture media (e.g. keratinocyte medium and / or centrifugation) before the microcarriers are populated by cells or cell assemblies.
  • buffer solutions or cell culture media e.g. keratinocyte medium and / or centrifugation
  • microcarriers usually have no more than 40% of their initial diameter. It has been shown that according to the invention all microcarriers can be used advantageously, the volume of which is preferably reduced by at least 50%. Such microcarriers only change their volume after coating with cells during the freezing process only insignificantly.
  • Another object of the invention is therefore the use of microcarriem with a water content of at most 50%, preferably at most 30%, particularly preferably at most 25% for immobilizing biological material, in particular cells.
  • the water content of the microcarriers pretreated according to the invention fluctuates as a function of the initial water content. If, for example, the initial water content is above 90% and about 50% of the water is removed, the microcarriers pretreated according to the invention have a water content of about 40-50%. In the case of microcarriem, which have an untreated water content of approximately 60%, the water content can be significantly lower after the pretreatment according to the invention. Likewise, the reduction in water content can be varied by the duration of the incubation with the dehydrating agent and by the concentration of the dehydrating agent.
  • the volume reduction it is preferred to carry out the volume reduction to such an extent that no significant volume reduction (for example at most by 10%) can be observed during the freezing process.
  • a suitability according to the invention can therefore be readily determined by freezing the pretreated microcarriers, even without they being coated with cells. If the volume reduction during the freezing process is only slight (see above), it can also be assumed that the volume does not increase significantly (i.e. cell-detaching) when water is added. Due to the low water content, the microcarriers are volume-stabilized compared to dehydrating processes such as lyophilization and / or freezing / thawing cycles. Accordingly, the invention further relates to microcarriers which change (decrease) their volume by at most 10% after freezing and thawing.
  • the addition of antifreezing agents alone when freezing is not suitable to prevent the detachment of the cells.
  • the microcarriers must be treated by the cells before coating.
  • microcarriers shrunk by osmotic pretreatment or lyophilization when they are in aqueous solutions such as e.g. phosphate buffered saline (PBS), do not swell significantly again. It is advantageous that the microcarriers are treated for a long time to shrink. It has proven to be advantageous if the microcarrier treatment time is more than 10 hours, preferably more than 20 hours (eg 24 hours). An additional stabilization of the volume is achieved.
  • aqueous solutions such as e.g. phosphate buffered saline (PBS)
  • the microcarriers are coated after the osmotic pretreatment with substances which impart cell adhesion.
  • substances are, for example, soluble collagen, fibronectin or similar substances.
  • the pretreated microcarriers are coated in accordance with the prior art, a method as in WO 96/12510 is preferably used, since this enables the microcarriers to be coated to a particularly high degree by cells or biological material.
  • Cells and cell assemblies such as Langerhans islands are suitable as biological material for coating the microcarriers.
  • the coating is preferably carried out with epithelial cells, such as, for example, keratinocytes, fibroblasts, hepatocytes, islet cells or endothelial cells.
  • epithelial cells such as, for example, keratinocytes, fibroblasts, hepatocytes, islet cells or endothelial cells.
  • Such cells are preferably proliferating cells and particularly preferably non-confluent cells which have the properties of basal cells.
  • Such keratinocytes are described, for example, in WO 96/12510 and by S.T. Boyce, Surgery 103 (1988) 421-431, K.A. Hawboldt, J. Biotechnol. 34 (1994) 133-147, J.S. Tang, Clin. Orotope. 300 (1994) 254-258, N.A. Mufifty, Biotechnol. Proc
  • Coating in the sense of the invention is not only to be understood as an immobilization of the cells or cell assemblies on the surface of the microcarrier, but also any type of immobilization of such cells and cell assemblies by microcarriers. If the microcarriers have a porous structure and the cells are correspondingly small, the cells can be, at least partially, embedded in the structure of the microcarriers. All microcarriers which contain liquid, preferably water, can be used as the microcarrier in the sense of the invention.
  • Such microcarriers usually consist of crosslinked materials, preferably organic compounds, such as crosslinked polysaccharide, collagen, polymers of hyaluronic acid or hyaluronic acid esters (ethyl or benzyl ester) (Andreassi, L., et al., Wounds 3 (1991) 116-126 ; Myers, SR, et al., Abstract No. 85 in 5 th Annual Meeting of the European Tissue Repair Society (March 1995), Padua), HYAFF-11 ® from FIDIA Advanced Biopolymeres, Abano T., Italy) fibrin-binding polypeptides, Dextran, gelatin, silicone, etc., or from a suitable mixture of different biocompatible materials.
  • crosslinked materials preferably organic compounds, such as crosslinked polysaccharide, collagen, polymers of hyaluronic acid or hyaluronic acid esters (ethyl or benzyl ester) (Andreassi, L., et al.
  • Cytodex 3 ® cross-linked dextran matrix with a denatured collagen layer, 100-230 ⁇ m, Pharmacia AB, Sweden
  • Cellgen ® Korean Co., Japan
  • Cultispher-G ® macroporous microcarrier made from gelatin, Greiner, Germany
  • the size of the microcarrier after pretreatment is in the range between 10 ⁇ m and 2000 ⁇ m.
  • the microcarriers have a diameter of 50 - 500 ⁇ m.
  • Microcarriers with a diameter of less than 10 ⁇ m are so small that they usually cannot be sufficiently coated with cells or other biological material.
  • Microcarriers with a size of more than 2000 ⁇ m are so large that it is difficult to achieve a high coating rate.
  • such microcarriers, particularly when used for transplantation are not optimally suited. Large microcarriers cannot be optimally distributed evenly over a wound, and the detachment of the cells is also not uniform.
  • the cells which are used to coat the microcarrier can be allogeneic cells, autologous cells, mixtures thereof or groups of cells, preferably adherent cells such as keratinocytes, fibroblasts, endothelial cells, hepatocytes or islet cells.
  • the microcarriers are coated with cell adhesion-promoting substances, such as fibronectin or collagen, before coating, but preferably after the pretreatment according to the invention for shrinking. Coating with whole cells or fragments, such as membranes thereof, is also possible. Such a pre-coating is described for example in DE-A 26 51 685 and in WO 96/12510.
  • cell adhesion-promoting substances such as fibronectin or collagen
  • FIG. 1 shows the typical course of the shrinkage of microcarriem with increasing salt concentration (sodium bromide)
  • FIG. 2 shows the shrinkage behavior of the microcarriers as a function of the crosslinking time (salt: sodium bromide).
  • Figure 3 shows the reduction in diameter, surface area and volume of the microcarriers with increasing salt concentration.
  • Figure 4 shows the temporal development of the degree of settlement of untreated, pretreated and collagen-coated beads. The degree of colonization was determined by counting the populated beads under the microscope at the appropriate time.
  • FIG. 5 shows the degree of colonization of beads before freezing and after
  • the degree of colonization indicates the percentage to which a bead is colonized.
  • the degree of settlement was determined by counting under the microscope. Is the degree of settlement e.g. 30%, this means that the bead surface is covered on average by 30% with cells.
  • Figure 6 shows the proportion of colonization before freezing and after thawing.
  • Settlement percentage indicates the percentage of beads that generally have a settlement, regardless of the degree of settlement.
  • a colonization proportion of, for example, 60% means that 60% of the beads present are colonized with at least one cell. example
  • the carrier suspension at approx. 250 g for 10 min. centrifuged and the supernatant aspirated and replaced with 20 ml PBS. This step is repeated a total of three times, with the last step adding only 5 ml of PBS instead of 20 ml of PBS.
  • 500 ⁇ l of soluble collagen (Collagen S, Boehringer Mannheim GmbH, DE) are added to this suspension and this solution mixture is placed in the refrigerator overnight. The microcarriers are then centrifuged as described above and washed twice with the culture medium which is used to colonize the cells.
  • the carriers Based on their original diameter, the carriers have a diameter reduced by about 60% after this osmotic pretreatment.
  • the addition of glutardialdehyde can be dispensed with.
  • FIGS. 1 to 3 The change in the shrinking behavior of the microcarriers as a function of the salt concentration and thus of the osmotic conditions is shown in FIGS. 1 to 3.
  • FIGS. 4 to 6 show the degree of colonization and the proportion of colonization of the microcarriers as a function of time or as a function of freezing and thawing. Reference list

Abstract

The invention relates to a method for immobilizing biological material, especially cells and unions of cells on microcarriers, characterized in that the volume of the microcarriers to be coated is irreversibly reduced by modifying the osmotic conditions surrounding the microcarriers and the pretreated microcarriers are subsequently coated with the biological material in the usual manner. According to the invention, a substantially improved adherence of the biological material on the microcarriers is achieved.

Description

Modifizierte Microcarrier und deren Verwendung zur Kryokonservierung von Zellen Modified microcarriers and their use for cryopreservation of cells
Die Erfindung betrifft verbesserte Microcarrier und deren Verwendung zur Kryokonservierung von Zellen oder Zellverbänden.The invention relates to improved microcarriers and their use for the cryopreservation of cells or cell assemblies.
Die Immobilisierung von Gewebe oder Zellen auf Microcarriern wird in weitem Umfang und vorteilhaftem Zusammenhang mit der Kultivierung von Zellen in vitro und zur Herstellung von Transplantationsmaterial aus autologen oder allogenen Zellen, insbesondere in der Dermatologie, verwendet.The immobilization of tissue or cells on microcarriers is used to a large extent and advantageously in connection with the cultivation of cells in vitro and for the production of transplant material from autologous or allogeneic cells, in particular in dermatology.
Aus dem kanadischen Patent CA-A 1215922 ist beispielsweise die Mikroverkapselung von Gewebe oder individuellen Zellen, unter Verwendung eines Polymeren, welches Polylysin- gruppen mit einem Molekulargewicht zwischen 10 und 30.000 Da enthält, beschrieben. Diese Mikrokapseln werden an ein biokompatibles polymeres Material, welches negativ geladene Gruppen trägt, immobilisiert. S.T. Boyce beschreibt in Surgery 103 (1988) 421 - 431 die Kopplung von kultivierten humanen epidermalen Keratinozyten an einen unlöslichen Träger, bestehend aus Collagen und Chondroitin-6-sulfat. Aus der WO 89/03228 ist ein Hauttransplantationsmaterial bekannt, welches aus epidermalen Zellen, welche an einen Collagenträger immobilisiert sind, besteht. Mit der EP-A 0 333 328 wird ein Verfahren zur Hauttransplantation beschrieben, bei dem ebenfalls die zu transplantierenden Zellen auf Microcarriern immobilisiert sind. In der EP-A 0 242 305 werden als solche Träger vorzugsweise Träger aus placentualem Collagen Typ I und oder Typ III verwendet. M.L. Williams beschreibt in J. Cellular Physiology 136 (1988) 103 - 110 die Kultivierung von immobilisierten Keratinozyten. In der WO 93/23088 werden biotherapeutisch verwendbare zellbeschichtete Micropartikel beschrieben, bei denen epidermale Zellen an üblichen Microcarriern gebunden sind. Mit der WO 96/12510 wird ein verbessertes Verfahren und ein Biomaterial, welches epitheliale Zellen in großem Umfang immobilisiert an Microcarriern enthält, beschrieben.Canadian patent CA-A 1215922 describes, for example, the microencapsulation of tissue or individual cells using a polymer which contains polylysine groups with a molecular weight between 10 and 30,000 Da. These microcapsules are immobilized on a biocompatible polymeric material that carries negatively charged groups. S.T. Boyce describes in Surgery 103 (1988) 421-431 the coupling of cultured human epidermal keratinocytes to an insoluble carrier consisting of collagen and chondroitin-6-sulfate. A skin transplant material is known from WO 89/03228, which consists of epidermal cells which are immobilized on a collagen carrier. EP-A 0 333 328 describes a method for skin grafting in which the cells to be transplanted are also immobilized on microcarriers. EP-A 0 242 305 preferably uses placental collagen type I and or type III carriers as such carriers. M.L. Williams describes in J. Cellular Physiology 136 (1988) 103-110 the cultivation of immobilized keratinocytes. WO 93/23088 describes biotherapeutically usable cell-coated microparticles in which epidermal cells are bound to conventional microcarriers. WO 96/12510 describes an improved method and a biomaterial which contains epithelial cells immobilized to a large extent on microcarriers.
Aus der US-A 4,415,668 ist bekannt, daß Mikrocarrier dann, wenn sie mit organischen Lösungsmitteln in Kontakt gebracht werden, in ihrer Oberfläche um bis zu 25 % schrumpfen. Dadurch wird das Cell-Mikrocarrier-Interface zerstört und die Analyse durch Elektronenmikroskopie unmöglich gemacht. Um dies zu vermeiden, wird in der US-A 4,415,668 vorge- schlagen, die Mikrocamer zu hydrophobisieren, um diese Nachteile zu vermeiden. Solche Mikrocarrier halten ihr Volumen auch in Gegenwart von 70 % Ethanol. Aus der britischen Patentanmeldung GB-A 2059991 sind wasserquellbare Mikrocarrier zur Zellkultivierung bekannt. Es wird ausgeführt, daß die Quellkapazität und die Dichte der Partikel in wassergequollenem Zustand für unterschiedliche Mikrocarrier unterschiedlich ist und auch durch Vernetzung und dabei durch Art des Vernetzungsgrads der Vernetzung variiert werden kann.From US-A 4,415,668 it is known that microcarriers, when brought into contact with organic solvents, shrink in their surface by up to 25%. This destroys the cell microcarrier interface and makes analysis by electron microscopy impossible. In order to avoid this, US Pat. No. 4,415,668 proposes suggest hydrophobizing the microcamer to avoid these disadvantages. Such microcarriers maintain their volume even in the presence of 70% ethanol. British patent application GB-A 2059991 discloses water-swellable microcarriers for cell cultivation. It is stated that the swelling capacity and the density of the particles in the water-swollen state are different for different microcarriers and can also be varied by crosslinking and thereby by the type of degree of crosslinking of the crosslinking.
Die Probleme, die sich beim Lyophilisieren bzw. der Kryokonservierang von solchen Microcarriem, an welche Zellen oder biologisches Material gebunden sind, ergeben, werden im Stand der Technik nicht diskutiert. Es hat sich jedoch gezeigt, daß mit biologischem Material beschichtete Microcarrier gegen Einfrieren und Wiederauftauen empfindlich sind und beim Auftauen die Ablösung eines beträchtlichen Teils des biologischen Materials zu beobachten ist. Aufgabe der Erfindung ist es, diesen Nachteil zu beseitigen und ein verbessertes Verfahren und verbesserte Microcarrier zur Verfügung zu stellen, die weitgehend gegen Kryokon- servierung unempfindlich sind und eine verminderte Ablösung von daran immobilisiertem biologischem Material beim Auftauen nach Einfrieren zeigen.The problems that arise during lyophilization or the cryopreservation of such microcarriers to which cells or biological material are bound are not discussed in the prior art. However, it has been shown that microcarriers coated with biological material are sensitive to freezing and thawing and that a considerable part of the biological material can be observed when thawing. The object of the invention is to eliminate this disadvantage and to provide an improved method and improved microcarrier which are largely insensitive to cryopreservation and show a reduced detachment of biological material immobilized thereon when thawed after freezing.
Die Aufgabe wird gelöst durch ein Verfahren zur Immobilisierung von biologischem Material, insbesondere von Zellen oder Zellverbänden auf Microcarriem, welches dadurch gekennzeichnet ist, daß das Volumen des zu beschichtenden Microcarriers durch Veränderung der den genannten Microcarrier umgebenden osmotischen Bedingungen (osmotische Vorbehandlung) reduziert wird und anschließend der so vorbehandelte Microcarrier mit dem biologischen Material in üblicher Weise beschichtet wird.The object is achieved by a method for immobilizing biological material, in particular cells or cell assemblies on microcarriers, which is characterized in that the volume of the microcarrier to be coated is reduced by changing the osmotic conditions surrounding the said microcarrier (osmotic pretreatment) and then the microcarrier pretreated in this way is coated with the biological material in the usual way.
Durch die Volumenreduktion der Microcarrier kommt es zu einer partiellen Vernetzung des Trägermaterials, wodurch ein Wiederanschwellen des Microcarriers erschwert wird. Die Volumenreduktion ist also im wesentlichen weitestgehend irreversibel. Durch Zugabe von vernetzenden Substanzen, wie beispielsweise Glutardialdehyd oder Hexamethylendioiso- cyanat oder durch andere vernetzende Verfahren, wie beispielsweise Bestrahlung, läßt sich vorzugsweise nach der osmotischen Vorbehandlung eine erneute unerwünschte Volumenzunahme der durch Schmmpfung vorbehandelten Microcarrier bei Wasserzugabe noch weiter vermindern (chemische Vernetzung der Microcarrier).The volume reduction of the microcarriers results in a partial cross-linking of the carrier material, which makes it difficult for the microcarrier to swell again. The volume reduction is essentially largely irreversible. By adding crosslinking substances, such as glutardialdehyde or hexamethylene dioisocyanate or by other crosslinking processes, such as radiation, a further undesired increase in volume of the microcarrier pretreated by contraction can be reduced even further after water addition (chemical crosslinking of the microcarrier) after the osmotic pretreatment. .
Es hat sich gezeigt, daß im Verlauf einer Kryokonservierung die Ablösung von biologischem Material von derartig vorbehandelten Microcarriem wesentlich geringer ist, als wenn nicht erfindungsgemäß vorbehandelte Microcarrier verwendet werden. Da die vorzugsweise zur Immobilisierung von Zellen und Zellverbänden geeigneten Microcarrier üblicherweise einen Wassergehalt von über 60 %, vorzugsweise über 90 % haben, erweist es sich als zweckmäßig, die Reduktion des Volumens durch Wasserentzug, vorzugsweise von 50 % oder mehr des in den Microcarriem enthaltenen Wassers, durchzuführen. Ein solcher Wasserentzug kann durch übliche Verfahren zur Veränderung der osmotischen Bedingungen, wie beispielsweise die Zugabe von wasserentziehenden Substanzen, das partielle Gefrieren der die Microcarrier enthaltenden Lösung oder die Gefriertrocknung (Lyophilisation), erreicht werden.It has been shown that in the course of cryopreservation, the detachment of biological material from microcarriers pretreated in this way is substantially less than if microcarriers not pretreated according to the invention are used. Since the microcarriers, which are preferably suitable for immobilizing cells and cell groups, usually have a water content of more than 60%, preferably more than 90%, it proves expedient to reduce the volume by removing water, preferably 50% or more of the water contained in the microcarriem to carry out. Such dehydration can be achieved by conventional methods for changing the osmotic conditions, such as, for example, the addition of dehydrating substances, the partial freezing of the solution containing the microcarriers or freeze drying (lyophilization).
Vorzugsweise kann die Volumenreduktion durch Zugabe von Salzlösung mit mindestens 15 Gew.-% Salz, vorzugsweise Alkalihalogenide oder Erdalkalihalogenide, erreicht werden. Besonders bevorzugt wird zur Volumenreduktion eine etwa 32 Gew.-%ige Natriumbro- midlösung (Konzentration in der Gesamtlösung) verwendet, wodurch sich eine maximale Schrumpfung der Microcarrier erzielen läßt. Ebenfalls bevorzugte Zusatzstoffe sind z. B. Lithiumbromid, Natriumchlorid oder Magnesiumchlorid. Auch organische Zusatzstoffe, welche die osmotischen Bedingungen erfindungsgemäß ändern, sich in hoher Konzentration in Wasser lösen, aber keine direkte Denaturierung der Microcarrier bewirken, sind ebenfalls geeignet. Derartige Substanzen sind beispielsweise Dimethylsulfoxid, Aceton, Methanol oder Ethanol.The volume reduction can preferably be achieved by adding salt solution with at least 15% by weight of salt, preferably alkali metal halides or alkaline earth metal halides. An approximately 32% by weight sodium bromide solution (concentration in the total solution) is particularly preferably used for volume reduction, as a result of which maximum shrinkage of the microcarrier can be achieved. Also preferred additives are e.g. B. lithium bromide, sodium chloride or magnesium chloride. Organic additives which change the osmotic conditions according to the invention, dissolve in water in high concentrations but do not directly denature the microcarriers are also suitable. Such substances are, for example, dimethyl sulfoxide, acetone, methanol or ethanol.
In einer bevorzugten Ausfuhrungsform wird, um das Wiederanschwellen der Microcarrier weitestgehend zu verhindern bzw. noch weiter zu vermindern, nach der osmotischen Vorbehandlung (vorzugsweise kurz nach der Schrumpfung, vorzugsweise nach ca. zwei Minuten) eine Substanz zugesetzt, welche eine chemische Vernetzung innerhalb der Microcarrier (Vernetzung des Trägermaterials) bewirkt. Bevorzugt wird Glutardialdehydlösung zu der Microcarriersuspension zugesetzt. Die Konzentration der Glutardialdehydlösung beträgt vorzugsweise in der Gesamtsuspension 0,01 Gew.-% - 0,5 Gew.-%. Es ist weiter bevorzugt, vor einer weiteren Benutzung der Microcarrier diese längere Zeit in dieser Lösung zu inkubieren, wobei Temperaturen zwischen 0 und 10°C, vorzugsweise 4°C, vorteilhaft sind. Ein Zeitraum von etwa 24 Stunden hat sich ebenfalls als vorteilhaft erwiesen. Es ist weiter vorteilhaft, wenn vor Beschichtung der Microcarrier mit Zellen oder Zellverbänden gegebenenfalls vorliegende freie Aldehydgruppen abgesättigt werden, beispielsweise durch Zugabe von Natriumborhydrid. Es ist weiter bevorzugt, vor der Besiedelung der Microcarrier durch Zellen oder Zellverbände die vorbehandelten Microcarrier durch Waschen mit Pufferlösungen oder Zellkulturmedien (z. B. Keratinozytenmedium und/oder Zentrifugieren) für die Beschichtung vorzubereiten.In a preferred embodiment, in order to largely prevent or further reduce the swelling of the microcarrier, a substance is added after the osmotic pretreatment (preferably shortly after shrinking, preferably after about two minutes), which chemical crosslinking within the microcarrier (Crosslinking of the carrier material). Glutardialdehyde solution is preferably added to the microcarrier suspension. The concentration of the glutardialdehyde solution in the total suspension is preferably 0.01% by weight - 0.5% by weight. It is further preferred to incubate the microcarrier for a longer time in this solution before further use, temperatures between 0 and 10 ° C., preferably 4 ° C., being advantageous. A period of around 24 hours has also proven to be advantageous. It is further advantageous if, before coating the microcarrier with cells or cell groups, any free aldehyde groups present are saturated, for example by adding sodium borohydride. It is further preferred to prepare the pretreated microcarriers for the coating by washing with buffer solutions or cell culture media (e.g. keratinocyte medium and / or centrifugation) before the microcarriers are populated by cells or cell assemblies.
Solche vorbehandelten Microcarrier besitzen üblicherweise nicht mehr als 40 % ihres Ausgangsdurchmessers. Es hat sich gezeigt, daß erfindungsgemäß alle Microcarrier vorteilhaft einsetzbar sind, deren Volumen vorzugsweise um mindestens 50 % reduziert ist. Solche Microcarrier ändern ihr Volumen nach Beschichtung mit Zellen während des Einfrierens nur noch in unerheblicher Weise.Such pretreated microcarriers usually have no more than 40% of their initial diameter. It has been shown that according to the invention all microcarriers can be used advantageously, the volume of which is preferably reduced by at least 50%. Such microcarriers only change their volume after coating with cells during the freezing process only insignificantly.
Ein weiterer Gegenstand der Erfindung ist deshalb die Verwendung von Microcarriem mit einem Wassergehalt von höchstens 50 %, vorzugsweise höchstens 30 %, besonders bevorzugt höchstens 25 % zur Immobilisierung von biologischem Material, insbesondere von Zellen. Der Wassergehalt der erfindungsgemäß vorbehandelten Microcarrier schwankt in Abhängigkeit vom Ausgangswassergehalt. Wenn der Ausgangswassergehalt beispielweise über 90 % liegt und etwa 50 % des Wassers entzogen werden, so haben die erfindungsgemäß vorbehandelten Microcarrier etwa einen Wassergehalt von 40 - 50 %. Bei Microcarriem, die unbehandelt bereits einen Wassergehalt von etwa 60 % haben, kann der Wassergehalt nach der erfindungsgemäßen Vorbehandlung noch deutlich geringer sein. Ebenso kann die Verringerung des Wassergehalts durch die Dauer der Inkubation mit dem wasserentziehenden Mittel und durch Konzentration des wasserentziehenden Mittels variiert werden. Es ist bevorzugt, die Volumenreduktion soweit vorzunehmen, daß beim Einfriervorgang keine wesentliche Volumenreduktion (z. B. höchstens um 10 %) zu beobachten ist. Es kann also durch einen Einfriervorgang der vorbehandelten Microcarrier, auch ohne daß sie mit Zellen beschichtet sind, ohne weiteres ihre erfindungsgemäße Eignung festgestellt werden. Dann, wenn die Volumenreduktion beim Einfriervorgang nur noch gering ist (siehe oben), kann auch davon ausgegangen werden, daß bei Zugabe von Wasser das Volumen nicht mehr wesentlich (d.h. zellablösend) zunimmt. Durch den geringen Wassergehalt sind die Microcarrier gegenüber wasserentziehenden Verfahren, wie Lyophilisation und/oder Einfrier- /Auftauzyklen volumenstabilisiert. Ein weiterer Gegenstand der Erfindung sind demnach Microcarrier, die nach Einfrieren und Auftauen ihr Volumen um höchstens 10% verändern (vermindern).Another object of the invention is therefore the use of microcarriem with a water content of at most 50%, preferably at most 30%, particularly preferably at most 25% for immobilizing biological material, in particular cells. The water content of the microcarriers pretreated according to the invention fluctuates as a function of the initial water content. If, for example, the initial water content is above 90% and about 50% of the water is removed, the microcarriers pretreated according to the invention have a water content of about 40-50%. In the case of microcarriem, which have an untreated water content of approximately 60%, the water content can be significantly lower after the pretreatment according to the invention. Likewise, the reduction in water content can be varied by the duration of the incubation with the dehydrating agent and by the concentration of the dehydrating agent. It is preferred to carry out the volume reduction to such an extent that no significant volume reduction (for example at most by 10%) can be observed during the freezing process. A suitability according to the invention can therefore be readily determined by freezing the pretreated microcarriers, even without they being coated with cells. If the volume reduction during the freezing process is only slight (see above), it can also be assumed that the volume does not increase significantly (i.e. cell-detaching) when water is added. Due to the low water content, the microcarriers are volume-stabilized compared to dehydrating processes such as lyophilization and / or freezing / thawing cycles. Accordingly, the invention further relates to microcarriers which change (decrease) their volume by at most 10% after freezing and thawing.
Die Zugabe von Gefrierschutzmitteln allein beim Einfrieren (wie z.B. Glycerin-Ethylengly- col, Hydroxyethylstärke) ist, im Gegensatz zu dem erfindungsgemäßen Verfahren, nicht geeignet, die Ablösung der Zellen zu verhindern. Die Behandlung der Microcarrier muß vor Beschichtung durch die Zellen erfolgen.In contrast to the method according to the invention, the addition of antifreezing agents alone when freezing (such as glycerol-ethylene glycol, hydroxyethyl starch) is not suitable to prevent the detachment of the cells. The microcarriers must be treated by the cells before coating.
Überraschenderweise hat sich gezeigt, daß die durch osmotische Vorbehandlung bzw. Lyophilisation geschrumpften Microcarrier sich dann, wenn sie in wäßrige Lösungen, wie z.B. phosphate buffered saline (PBS) gebracht werden, nicht wieder wesentlich anschwellen. Dabei ist es vorteilhaft, daß die Microcarrier zur Schrumpfung längere Zeit behandelt werden. Es hat sich als vorteilhaft erwiesen, wenn die Behandlungsdauer der Microcarrier mehr als 10 Stunden, vorzugsweise mehr als 20 Stunden (z. B. 24 Stunden) beträgt. Damit wird eine zusätzliche Stabilisierung des Volumens erreicht.Surprisingly, it has been shown that the microcarriers shrunk by osmotic pretreatment or lyophilization, when they are in aqueous solutions such as e.g. phosphate buffered saline (PBS), do not swell significantly again. It is advantageous that the microcarriers are treated for a long time to shrink. It has proven to be advantageous if the microcarrier treatment time is more than 10 hours, preferably more than 20 hours (eg 24 hours). An additional stabilization of the volume is achieved.
In einer weiteren bevorzugten Ausführungsform werden zur Verbesserung der Beschichtung der Microcarrier durch Zellen (Beschichtungsgrad) die Microcarrier nach der osmotischen Vorbehandlung mit Substanzen, welche eine Zelladhäsion vermitteln, beschichtet. Solche Substanzen sind beispielsweise lösliches Collagen, Fibronectin oder ähnliche Substanzen.In a further preferred embodiment, to improve the coating of the microcarriers by cells (degree of coating), the microcarriers are coated after the osmotic pretreatment with substances which impart cell adhesion. Such substances are, for example, soluble collagen, fibronectin or similar substances.
Die Beschichtung der vorbehandelten Microcarrier erfolgt gemäß dem Stand der Technik, vorzugsweise wird ein Verfahren wie in der WO 96/12510 verwendet, da dadurch eine besonders hohe Beschichtung der Microcarrier durch Zellen oder biologisches Material erfolgen kann.The pretreated microcarriers are coated in accordance with the prior art, a method as in WO 96/12510 is preferably used, since this enables the microcarriers to be coated to a particularly high degree by cells or biological material.
Als biologisches Material zur Beschichtung der Microcarrier sind Zellen, Zellverbände, wie Langerhanssche Inseln geeignet. Vorzugsweise erfolgt die Beschichtung mit epithelialen Zellen, wie beispielsweise Keratinozyten, Fibroblasten, Hepatozyten, Inselzellen oder endothelialen Zellen. Solche Zellen sind vorzugsweise proliferierende Zellen und besonders bevorzugt nichtkonfluente Zellen, die die Eigenschaften von Basalzellen haben. Derartige Keratinozyten sind beispielsweise beschrieben in der WO 96/12510 und von S.T. Boyce, Surgery 103 (1988) 421 - 431, K.A. Hawboldt, J. Biotechnol. 34 (1994) 133 - 147, J.S. Tang, Klin. Orotop. 300 (1994) 254 - 258, N.A. Mufifty, Biotechnol. Proc. 11 (1995) 659 - 663.Cells and cell assemblies such as Langerhans islands are suitable as biological material for coating the microcarriers. The coating is preferably carried out with epithelial cells, such as, for example, keratinocytes, fibroblasts, hepatocytes, islet cells or endothelial cells. Such cells are preferably proliferating cells and particularly preferably non-confluent cells which have the properties of basal cells. Such keratinocytes are described, for example, in WO 96/12510 and by S.T. Boyce, Surgery 103 (1988) 421-431, K.A. Hawboldt, J. Biotechnol. 34 (1994) 133-147, J.S. Tang, Clin. Orotope. 300 (1994) 254-258, N.A. Mufifty, Biotechnol. Proc. 11 (1995) 659-663.
Unter Beschichtung im Sinne der Erfindung ist nicht nur eine Immobilisierung der Zellen oder Zellverbände an der Oberfläche der Microcarrier zu verstehen, sondern jede Art der Immobilisierung von solchen Zellen und Zellverbänden durch Microcarrier. Weisen die Microcarrier eine poröse Struktur auf und sind die Zellen entsprechend klein, so können die Zellen in die Struktur der Microcarrier, zumindest teilweise, eingebettet sein. Als Microcarrier im Sinne der Erfindung können alle Microcarrier eingesetzt werden, welche Flüssigkeit, vorzugsweise Wasser, enthalten. Solche Microcarrier bestehen üblicherweise aus vernetzten Materialien, vorzugsweise organische Verbindungen, wie vernetzten- Poly- saccharid, Collagen, Polymere aus Hyaluronsäure oder Hyaluronsäureestem (Ethyl- oder Benzylester) (Andreassi, L., et al., Wounds 3 (1991) 116 - 126; Myers, S.R., et al., Abstract No. 85 in 5th Annual Meeting of the European Tissue Repair Society (August 1995), Padua), HYAFF-11® von FIDIA Advanced Biopolymeres, Abano T., Italien) fibrinbindende Polypeptide, Dextran, Gelatine, Silikone usw., oder aus einer geeigneten Mischung von verschiedenen biokompatiblen Materialien. Beispielsweise kann verwendet werden Cytodex 3® (vernetzte Dextranmatrix mit einer denaturierten Collagenschicht, 100-230 μm, Pharmacia AB, Schweden). Weiter geeignet ist Cellgen® (Koken Co., Japan), ein rekonstituiertes und vemetztes Collagen aus Rinderhaut, mit einem Durchmesser von 200 - 500 μm oder Cultispher-G® (makroporöser Microcarrier aus Gelatine, Greiner, Deutschland), basierend auf Gelatine.Coating in the sense of the invention is not only to be understood as an immobilization of the cells or cell assemblies on the surface of the microcarrier, but also any type of immobilization of such cells and cell assemblies by microcarriers. If the microcarriers have a porous structure and the cells are correspondingly small, the cells can be, at least partially, embedded in the structure of the microcarriers. All microcarriers which contain liquid, preferably water, can be used as the microcarrier in the sense of the invention. Such microcarriers usually consist of crosslinked materials, preferably organic compounds, such as crosslinked polysaccharide, collagen, polymers of hyaluronic acid or hyaluronic acid esters (ethyl or benzyl ester) (Andreassi, L., et al., Wounds 3 (1991) 116-126 ; Myers, SR, et al., Abstract No. 85 in 5 th Annual Meeting of the European Tissue Repair Society (August 1995), Padua), HYAFF-11 ® from FIDIA Advanced Biopolymeres, Abano T., Italy) fibrin-binding polypeptides, Dextran, gelatin, silicone, etc., or from a suitable mixture of different biocompatible materials. For example, Cytodex 3 ® (cross-linked dextran matrix with a denatured collagen layer, 100-230 μm, Pharmacia AB, Sweden) can be used. Also suitable is Cellgen ® (Koken Co., Japan), a reconstituted and cross-linked collagen made from bovine skin with a diameter of 200 - 500 μm or Cultispher-G ® (macroporous microcarrier made from gelatin, Greiner, Germany), based on gelatin.
Es ist bevorzugt, daß die Größe der Microcarrier nach Vorbehandlung im Bereich zwischen 10 μm und 2000 μm liegt. Üblicherweise haben die Microcarrier jedoch einen Durchmesser von 50 - 500 μm. Microcarrier mit einem Durchmesser unter 10 μm sind so klein, daß sie üblicherweise nicht ausreichend mit Zellen oder anderem biologischem Material beschichtet werden können. Microcarrier mit einer Größe von über 2000 μm sind so groß, daß es schwierig ist, eine hohe Beschichtungsrate zu erreichen. Außerdem sind solche Microcarrier, insbesondere bei einer Verwendung zur Transplantation, nicht optimal geeignet. Große Microcarrier lassen sich nicht optimal gleichmäßig über eine Wunde verteilen, und die Ablösung der Zellen erfolgt ebenfalls nicht gleichmäßig.It is preferred that the size of the microcarrier after pretreatment is in the range between 10 μm and 2000 μm. Usually the microcarriers have a diameter of 50 - 500 μm. Microcarriers with a diameter of less than 10 μm are so small that they usually cannot be sufficiently coated with cells or other biological material. Microcarriers with a size of more than 2000 μm are so large that it is difficult to achieve a high coating rate. In addition, such microcarriers, particularly when used for transplantation, are not optimally suited. Large microcarriers cannot be optimally distributed evenly over a wound, and the detachment of the cells is also not uniform.
Bei den Zellen, welche zur Beschichtung der Microcarrier verwendet werden, kann es sich um allogene Zellen, autologe Zellen, Gemische davon oder Verbände von Zellen, vorzugsweise um adhärente Zellen wie Keratinozyten, Fibroblasten, Endothelzellen, Hepatozyten oder Inselzellen handeln.The cells which are used to coat the microcarrier can be allogeneic cells, autologous cells, mixtures thereof or groups of cells, preferably adherent cells such as keratinocytes, fibroblasts, endothelial cells, hepatocytes or islet cells.
In einer bevorzugten Ausi hrungsform werden die Microcarrier vor Beschichtung, aber vorzugsweise nach der erfindungsgemäßen Vorbehandlung zur Schrumpfung mit zellad- häsionsvermittelnden Substanzen, wie beispielsweise Fibronektin oder Collagen, beschichtet. Ebenfalls möglich ist eine Beschichtung mit ganzen Zellen oder Fragmenten, wie Membranen davon. Eine solche Vorbeschichtung ist beispielsweise in der DE-A 26 51 685 sowie in der WO 96/12510 beschrieben. Die folgenden Beispiele, Publikationen und Abbildungen erläutern die Erfindung, deren Schutzumfang sich aus den Patentansprüchen ergibt, weiter. Die beschriebenen Verfahren sind als Beispiele zu verstehen, die auch noch nach Modifikationen den Gegenstand der Erfindung beschreiben.In a preferred embodiment, the microcarriers are coated with cell adhesion-promoting substances, such as fibronectin or collagen, before coating, but preferably after the pretreatment according to the invention for shrinking. Coating with whole cells or fragments, such as membranes thereof, is also possible. Such a pre-coating is described for example in DE-A 26 51 685 and in WO 96/12510. The following examples, publications and illustrations further illustrate the invention, the scope of which is evident from the patent claims. The described methods are to be understood as examples which describe the subject matter of the invention even after modifications.
Alle Prozentangaben sind, wenn nicht anders vermerkt, Angaben in Gewichtsprozenten.Unless otherwise noted, all percentages are percentages by weight.
Figur 1 zeigt den typischen Verlauf der Schrumpfung von Microcarriem mit zunehmender Salzkonzentration (Natriumbromid)FIG. 1 shows the typical course of the shrinkage of microcarriem with increasing salt concentration (sodium bromide)
Figur 2 zeigt das Sclrrumpfverhalten der Microcarrier in Abhängigkeit von der Vernetzungszeit (Salz : Natriumbromid).FIG. 2 shows the shrinkage behavior of the microcarriers as a function of the crosslinking time (salt: sodium bromide).
Figur 3 zeigt die Reduktion von Durchmesser, Oberfläche und Volumen der Microcarrier mit zunehmender Salzkonzentration.Figure 3 shows the reduction in diameter, surface area and volume of the microcarriers with increasing salt concentration.
Figur 4 zeigt die zeitliche Entwicklung des Besiedlungsgrads von unbehandelten, vorbehandelten und kollagenbeschichteten Beads. Der Besiedlungsgrad wurde durch Auszählen der besiedelten Beads unter dem Mikroskop zu dem entsprechenden Zeitpunkt bestimmt.Figure 4 shows the temporal development of the degree of settlement of untreated, pretreated and collagen-coated beads. The degree of colonization was determined by counting the populated beads under the microscope at the appropriate time.
Figur 5 zeigt den Besiedlungsgrad von Beads vor dem Einfrieren und nach demFIG. 5 shows the degree of colonization of beads before freezing and after
Auftauen. Der Besiedlungsgrad gibt an, zu welchem Prozentsatz ein Bead besiedelt ist. Bestimmt wurde der Besiedlungsgrad durch Auszählen unter dem Mikroskop. Ist der Besiedlungsgrad z.B. 30%, so bedeutet dies, daß die Beadoberfläche durchschnittlich zu 30% mit Zellen bedeckt ist.Thawing. The degree of colonization indicates the percentage to which a bead is colonized. The degree of settlement was determined by counting under the microscope. Is the degree of settlement e.g. 30%, this means that the bead surface is covered on average by 30% with cells.
Figur 6 zeigt den Besiedlungsanteil vor dem Einfrieren und nach dem Auftauen. DerFigure 6 shows the proportion of colonization before freezing and after thawing. The
Besiedlungsanteil gibt den Prozentsatz der Beads an, die generell eine Besiedlung aufweisen, unabhängig vom Besiedlungsgrad. Ein Besiedlungsanteil von z.B. 60%o besagt, daß 60%> der vorhandenen Beads mit mindestens einer Zelle besiedelt sind. BeispielSettlement percentage indicates the percentage of beads that generally have a settlement, regardless of the degree of settlement. A colonization proportion of, for example, 60% means that 60% of the beads present are colonized with at least one cell. example
Durchführung der Schrumpfung und Vernetzung von MicrocarriernImplementation of the shrinking and networking of microcarriers
5 ml einer Suspension von Microcarriem (Koken Ltd., JP) (entsprechend ca. 1 Mio. Microcarrier) werden bei Raumtemperatur in ein steriles Röhrchen gegeben. 20 ml einer 40%igen NaBr-Lösung in PBS (phosphate buffered saline) werden zugegeben (Endkonzentration: 32% NaBr bei Raumtemperatur). Nach ca. 1-2 min. werden 50,1 μl 25%iges Glutardialdehyd hinzugefügt (Endkonzentration: 0,05% Glutardialdehyd). Das Lösungsgemisch wird zur homogenen Durchmischung kurz geschüttelt und über Nacht für ca. 16 h in den Kühlschrank gestellt (4°C).5 ml of a suspension of Microcarriem (Koken Ltd., JP) (corresponding to approximately 1 million microcarriers) are placed in a sterile tube at room temperature. 20 ml of a 40% NaBr solution in PBS (phosphate buffered saline) are added (final concentration: 32% NaBr at room temperature). After approx. 1-2 min. 50.1 μl of 25% glutardialdehyde are added (final concentration: 0.05% glutardialdehyde). The homogeneous mixture is briefly shaken for homogeneous mixing and placed in the refrigerator overnight at about 16 h (4 ° C).
Danach wird die Carriersuspension bei ca. 250 g für 10 min. zentrifügiert und der Überstand abgesaugt und durch 20 ml PBS ersetzt. Dieser Schritt wird insgesamt dreimal wiederholt, wobei beim letzten Schritt statt 20 ml PBS nur 5 ml PBS hinzugefügt werden. Zur besseren Besiedelbarkeit der so vorbehandelten Microcarrier werden zu dieser Suspension 500 μl lösliches Collagen (Collagen S, Boehringer Mannheim GmbH, DE) hinzugegen und dieses Lösungsgemisch über Nacht in den Kühlschrank gestellt. Danach werden die Microcarrier wie oben beschrieben zentrifügiert und zweimal mit dem Kulturmedium, das zur Besiedelung der Zellen verwendet wird, gewaschen.Then the carrier suspension at approx. 250 g for 10 min. centrifuged and the supernatant aspirated and replaced with 20 ml PBS. This step is repeated a total of three times, with the last step adding only 5 ml of PBS instead of 20 ml of PBS. To improve the settability of the microcarriers pretreated in this way, 500 μl of soluble collagen (Collagen S, Boehringer Mannheim GmbH, DE) are added to this suspension and this solution mixture is placed in the refrigerator overnight. The microcarriers are then centrifuged as described above and washed twice with the culture medium which is used to colonize the cells.
Bezogen auf ihren ursprünglichen Durchmesser besitzen die Carrier nach dieser osmotischen Vorbehandlung einen um ca. 60% verringerten Durchmesser. Optional kann auf die Zugabe von Glutardialdehyd verzichtet werden.Based on their original diameter, the carriers have a diameter reduced by about 60% after this osmotic pretreatment. Optionally, the addition of glutardialdehyde can be dispensed with.
Die Veränderung des Schrumpfverhaltens der Microcarrier in Abhängigkeit von der Salzkonzentration und damit von den osmotischen Bedingungen zeigen die Figuren 1 bis 3.The change in the shrinking behavior of the microcarriers as a function of the salt concentration and thus of the osmotic conditions is shown in FIGS. 1 to 3.
Die Figuren 4 bis 6 zeigen Besiedlungsgrad und Besiedlungsanteil der Microcarrier in zeitlicher Abhängigkeit bzw. in Abhängigkeit von Einfrieren und Auftauen. ReferenzlisteFIGS. 4 to 6 show the degree of colonization and the proportion of colonization of the microcarriers as a function of time or as a function of freezing and thawing. Reference list
5th Annual Meeting of the European Tissue Repair Society (August 1995), Padua5 th Annual Meeting of the European Tissue Repair Society (August 1995), Padua
Andreassi, L., et al., Wounds 3 (1991) 116 - 126Andreassi, L., et al., Wounds 3 (1991) 116-126
Boyce, S.T., Surgery 103 (1988) 421 - 431Boyce, S.T., Surgery 103 (1988) 421-431
CA-A 1215922CA-A 1215922
DE-A 26 51 685DE-A 26 51 685
EP-A 0 242 305EP-A 0 242 305
EP-A 0 333 328EP-A 0 333 328
GB-A 2059991GB-A 2059991
Hawboldt, K.A., J. Biotechnol. 34 (1994) 133 - 147Hawboldt, K.A., J. Biotechnol. 34 (1994) 133-147
Muffty, N.A., Biotechnol. Proc. 11 (1995) 659 - 663Muffty, N.A., Biotechnol. Proc. 11 (1995) 659-663
Tang, J.S., Klin. Orotop. 300 (1994) 254 - 258Tang, J.S., Klin. Orotop. 300 (1994) 254-258
US-A 4,415,668US-A 4,415,668
Williams, M. J., Cellular Physiology 136 (1988) 103 - 110Williams, M.J., Cellular Physiology 136 (1988) 103-110
WO 89/03228WO 89/03228
WO 93/23088WO 93/23088
WO 96/12510 WO 96/12510

Claims

Patentansprüche claims
1. Verfahren zur Immobilisierung von biologischem Material durch Beschichtung auf unlöslichen Microcarriem, dadurch gekennzeichnet, daß das Volumen des zu beschichtenden Microcarriers durch Veränderung der den genannten Microcarrier umgebenden osmotischen Bedingungen (osmotische Vorbehandlung) irreversibel reduziert wird und anschließend die so vorbehandelten Microcarrier mit biologischem Material beschichtet werden.1. A method for immobilizing biological material by coating on insoluble microcarriers, characterized in that the volume of the microcarrier to be coated is irreversibly reduced by changing the osmotic conditions surrounding the said microcarrier (osmotic pretreatment) and then the microcarrier thus pretreated is coated with biological material become.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als biologisches Material Zellen, insbesondere epitheliale Zellen oder Zellverbände verwendet werden.2. The method according to claim 1, characterized in that cells, in particular epithelial cells or cell assemblies, are used as the biological material.
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß durch die osmotische Vorbehandlung das Volumen der Microcarrier soweit reduziert wird, daß bei einem Einfriervorgang keine größere Volumenreduktion mehr erfolgt.3. The method according to claims 1 or 2, characterized in that the volume of the microcarrier is reduced by the osmotic pretreatment to such an extent that there is no greater volume reduction during a freezing process.
4. Verfahren nach den Ansprüchen 1 - 3 dadurch gekennzeichnet, daß die Volumenveränderung durch Wasserentzug erfolgt.4. The method according to claims 1-3, characterized in that the volume change takes place by dehydration.
5. Verfahren nach den Ansprüchen 1 - 4, dadurch gekennzeichnet, daß durch die osmotische Vorbehandlung ein Wasserentzug von mehr als 50 % des ursprünglichen Wassergehalts erfolgt.5. Process according to claims 1-4, characterized in that the osmotic pretreatment results in a water withdrawal of more than 50% of the original water content.
6. Verfahren nach den Ansprüchen 1 - 5, dadurch gekennzeichnet, daß der Microcarrier aus einem vernetzten Polysaccharid, Collagen, Dextran oder Gelatine besteht.6. The method according to claims 1-5, characterized in that the microcarrier consists of a cross-linked polysaccharide, collagen, dextran or gelatin.
7. Verfahren nach den Ansprüchen 1 - 6, dadurch gekennzeichnet, daß die Größe der Microcarrier nach der osmotischen Vorbehandlung zwischen 10 und 2000 μm liegt.7. The method according to claims 1-6, characterized in that the size of the microcarrier after the osmotic pretreatment is between 10 and 2000 microns.
8. Verfahren nach den Ansprüchen 1 - 7, dadurch gekennzeichnet, daß die Microcarrier nach der osmotischen Vorbehandlung einer chemischen Vernetzung unterworfen wird. 8. The method according to claims 1-7, characterized in that the microcarrier is subjected to a chemical crosslinking after the osmotic pretreatment.
9. Verfahren nach den Ansprüchen 1 - 8, dadurch gekennzeichnet, daß die Microcarrier nach der osmotischen Vorbehandlung mit Substanzen, welche eine Zelladhäsion vermitteln, beschichtet werden. 9. The method according to claims 1-8, characterized in that the microcarriers are coated after the osmotic pretreatment with substances which impart cell adhesion.
PCT/EP1998/006713 1997-10-25 1998-10-22 Modified microcarriers and their use in cell cryoconservation WO1999021962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU13356/99A AU1335699A (en) 1997-10-25 1998-10-22 Modified microcarriers and their use in cell cryoconservation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP97118589.7 1997-10-25
EP97118589 1997-10-25

Publications (1)

Publication Number Publication Date
WO1999021962A1 true WO1999021962A1 (en) 1999-05-06

Family

ID=8227522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006713 WO1999021962A1 (en) 1997-10-25 1998-10-22 Modified microcarriers and their use in cell cryoconservation

Country Status (2)

Country Link
AU (1) AU1335699A (en)
WO (1) WO1999021962A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113496A1 (en) * 2006-03-31 2007-10-11 Ge Healthcare Uk Limited Method for cell based assays
CN105454221A (en) * 2016-01-13 2016-04-06 武汉理工大学 Method for utilizing micro-channel for cryopreserving rat islet cells at low temperature

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2059991A (en) * 1979-09-12 1981-04-29 Pharmacia Fine Chemicals Ab Cultivating cells on particulate microcarriers
US4415668A (en) * 1981-04-20 1983-11-15 President And Fellows Of Harvard College Cell culture
EP0239648A1 (en) * 1985-10-03 1987-10-07 Nauchno-Proizvodstvennoe Obiedinenie "Biolar" Method of obtaining microcarriers for cultivation of cells and microcarriers obtained by that method
WO1996012510A1 (en) * 1994-10-25 1996-05-02 Boehringer Mannheim Gmbh Biomaterial containing epithelial cells and use thereof as a transplant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2059991A (en) * 1979-09-12 1981-04-29 Pharmacia Fine Chemicals Ab Cultivating cells on particulate microcarriers
US4415668A (en) * 1981-04-20 1983-11-15 President And Fellows Of Harvard College Cell culture
EP0239648A1 (en) * 1985-10-03 1987-10-07 Nauchno-Proizvodstvennoe Obiedinenie "Biolar" Method of obtaining microcarriers for cultivation of cells and microcarriers obtained by that method
WO1996012510A1 (en) * 1994-10-25 1996-05-02 Boehringer Mannheim Gmbh Biomaterial containing epithelial cells and use thereof as a transplant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIOLOGICAL ABSTRACTS, vol. 88, no. 9, 1989, Philadelphia, PA, US; abstract no. 93827, YANAI N. ET AL: "Cryopreservation of animal cells growing on microcarriers" page AB240; XP002060204 *
INST FERMENT RES COMMUN (OSAKA) 0(4):20-241989 *
SIGMA CELL CULTURE 1994 CATALOGUE SIGMA CHEMIE, BORNEM, BELGIE *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113496A1 (en) * 2006-03-31 2007-10-11 Ge Healthcare Uk Limited Method for cell based assays
JP2009531053A (en) * 2006-03-31 2009-09-03 ジーイー・ヘルスケア・ユーケイ・リミテッド Cell-based assay method
CN105454221A (en) * 2016-01-13 2016-04-06 武汉理工大学 Method for utilizing micro-channel for cryopreserving rat islet cells at low temperature
CN105454221B (en) * 2016-01-13 2018-01-23 武汉理工大学 A kind of method using microchannel cryopreservation rat Islet cells

Also Published As

Publication number Publication date
AU1335699A (en) 1999-05-17

Similar Documents

Publication Publication Date Title
Wang et al. Development of hyaluronic acid-based scaffolds for brain tissue engineering
DE69632313T2 (en) DESORBABLE EXTRACELLULAR MATRIX FOR RECONSTRUCTION OF A CARTILAGE TISSUE
DE69333466T2 (en) PRODUCTION OF TRANSPLANT TISSUE FROM EXTRACELLULAR MATRIX
DE69836491T2 (en) FIBRINE MICROBALLETS AND ITS USES
DE69724780T2 (en) POLYSACCHARID SPONES FOR CELL CULTURE AND TRANSPLANTATION
Thankam et al. Growth and survival of cells in biosynthetic poly vinyl alcohol–alginate IPN hydrogels for cardiac applications
EP1948260B8 (en) Composite material, especially for medical use, and method for producing the same
DE60221938T2 (en) Method of providing a substrate with ready-to-use, uniformly distributed extracellular matrix
DE10196235B4 (en) Using collagen from aquatic animals as carriers for tissue engineering, useful e.g. as skin replacements and in screening for antiaging drugs
DE69534759T2 (en) Polyanionic polysaccharides and hydrophobic bioabsorbable polymer-containing compositions
DE60127983T2 (en) NON-INTERFERING, THREE-DIMENSIONAL SYSTEM FOR CULTIVATION AND HARVESTED ANCHOR-DEPENDENT CELLS
Kawase et al. Application of glutaraldehyde-crosslinked chitosan as a scaffold for hepatocyte attachment
DE69731959T2 (en) IMPLANTABLE ACRYLAMIDE COPOLYMER HYDROGEL FOR THERAPEUTIC APPLICATIONS
DE2633259C3 (en) Method for immobilizing enzymes or enzyme-containing cells
DE69913543T3 (en) Dermal scaffold based on a neutralized chitosan sponge or a neutralized mixed chitosan-collagen sponge
WO2001092477A2 (en) Three-dimensional skin model
Francis et al. Strategies for neurotrophin‐3 and chondroitinase ABC release from freeze‐cast chitosan–alginate nerve‐guidance scaffolds
US20060134158A1 (en) Chitosan/acidic biopolymer hybrid fiber and culture base for animal cells
DE102009036995B4 (en) Collagen-based matrix for use as a restorative material and method of making the same
EP1144592B1 (en) Substrate for cell growth
CH651579A5 (en) METHOD FOR SELECTIVELY DESTRUCTING A PERMEABLE MEMBRANE.
Unal et al. Production and characterization of bacterial cellulose scaffold and its modification with hyaluronic acid and gelatin for glioblastoma cell culture
DE10307925A1 (en) Cell culture carrier and cell culture method
DE4438015A1 (en) Bio-materials for treating skin wounds, e.g. burns, senile ulcers and diabetic wounds
Qi et al. Experimental study on repairing peripheral nerve defects with novel bionic tissue engineering

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase