WO1999020980A1 - Position measurement method for mobile station - Google Patents

Position measurement method for mobile station Download PDF

Info

Publication number
WO1999020980A1
WO1999020980A1 PCT/JP1998/004663 JP9804663W WO9920980A1 WO 1999020980 A1 WO1999020980 A1 WO 1999020980A1 JP 9804663 W JP9804663 W JP 9804663W WO 9920980 A1 WO9920980 A1 WO 9920980A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
angular velocity
dgps
measurement method
attitude angle
Prior art date
Application number
PCT/JP1998/004663
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Takahata
Setsuo Yoshida
Kenji Tokuyama
Makoto Nakase
Akihiro Fukuda
Haruko Matsumoto
Hiromi Iinuma
Masahiro Yoshino
Original Assignee
Churyo Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Churyo Engineering Co., Ltd. filed Critical Churyo Engineering Co., Ltd.
Publication of WO1999020980A1 publication Critical patent/WO1999020980A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]

Definitions

  • the present invention relates to a method for measuring a position of a mobile station using a DGPS (Differentia1G1Oba1PositioIngSystem) and a six-component sensor.
  • GPS Global PositioinngSystem
  • the center frequency subjected to the spread spectrum processing using the pseudo noise code signals from a plurality of satellites is in the L1 band (1575.42 [MHz]).
  • the mobile station receives and demodulates the ranging signals of four satellites.
  • the orbital information and clock information of the four satellites are obtained, and the propagation time of the ranging signal between the four satellites and the mobile station is determined based on the information, thereby calculating the position of the mobile station. be able to.
  • the GPS uses a CZA code signal
  • the measurement accuracy has an error of several meters, and the same accuracy is obtained even when a 6-component sensor is used.
  • a reference position is calculated at a specific time interval by position correction between a base station and a mobile station using DGPS.
  • the accelerations Xa, Ya, and Za in the axial direction of the X and YZ axes obtained by the 6-component sensor mounted on the mobile station, and the angular angular velocity P, pitch angular velocity Q, and Yaw angular velocity R around the axis are obtained.
  • the position of the mobile station is measured by performing position interpolation within the time interval determined by DGPS.
  • the roll angular velocity P, the pitch angular velocity Q, and the single angular velocity R are coordinate-converted by (Equation 1), and the values are integrated. I do.
  • the accelerations Xa, Ya and Za are coordinate-transformed according to (Equation 2), integrated, the speed is obtained, and the speed is integrated to obtain interpolation data. By adding to the obtained value, the interpolation position of the mobile station can be measured.
  • FIG. 1 is a conceptual diagram of the present invention.
  • Fig. 2 (A) shows the equipment configuration of the base station, and (B) shows the equipment configuration of the mobile station.
  • Fig. 3 (A) is an operation block diagram, and (B) is a diagram showing the relationship between the DGPS measured value and the interpolated value at the mobile station.
  • FIG. 4 shows (Equation 1) and (Equation 2).
  • Fig. 5 shows the operation flow.
  • FIG. 1 is a conceptual diagram of the present invention, showing the relationship among four artificial satellites, a base station, and a mobile station.
  • FIG. 2 (A) shows the equipment configuration of the base station
  • FIG. 2 (B) shows the equipment configuration of the mobile station.
  • the base station has a position (X k, Y k, Z k) in the earth coordinate system.
  • the pseudo noise code signal of the L1 band (1575.42 [MHz]) or L2 band (122.7.6 [MHz]) from the artificial satellite is known by GPS.
  • the data is received by the receiving antenna, decoded by the GPS (global 1 positioning system) receiver, and the correction data is sent to the mobile station via the correction data transmitter transmitting antenna.
  • the mobile station in order to measure the position of the mobile station by DGPS (Differentia 1 G 1 oba 1 Positioning System) with the base station, the mobile station is also provided with a GPS receiver and the correction data from the base station is also provided. It has a receiving antenna for correction data and a correction data receiver.
  • DGPS Differentia 1 G 1 oba 1 Positioning System
  • This mobile station is also equipped with a 6-component force sensor, and accelerations Xa, Ya, and Za in the X, ⁇ , and Z directions with respect to the mobile station.
  • the DGPS uses a GPS receiver provided in a base station whose position is accurately determined and a GPS receiver provided in a mobile station to simulate from four satellites.
  • the noise code signal CZA, P code, etc.
  • the variables of the coordinates X, y, X of the positioning 'point and the clock error ⁇ t are obtained.
  • the measurement result of the reference station whose exact position (X k, Y k, Z k) is known is compared, and the difference is transmitted to the mobile station as correction data.
  • the correction is performed on the measurement value obtained by the GPS receiver in the mobile station.
  • This interpolation method uses the accelerations Xa, Ya, and Za of the 6-component force sensor and the values of roll angular velocity P, pitch angular velocity Q, and yaw angular velocity R that are sequentially output within at least 20 ms.
  • the calculation is performed by the CPU for data integration and the CPU for data analysis via the operation block diagram shown in Fig. (A), (Equation 1) (Equation 2) shown in Fig. 4 and the operation flow shown in Fig. 5.
  • equations (1) and (2) are well-known coordinate transformation equations, explanations of the guide equations and the like are omitted.
  • the mobile station is initialized, and a roll attitude angle ( ⁇ ), a pitch attitude angle, and a single attitude angle (0) are input as initial values, and a counter i is initialized (S O).
  • step 5 the value of the position of the mobile station (XEi, YEi, ZEi) is output, and the process proceeds to step 5 (S4).
  • the values of the roll angular velocity P, the pitch angular velocity Q, the yaw angular velocity R, and the roll attitude angle obtained by the 6-component sensor are used to obtain the interpolation data.
  • the roll attitude angle ( ⁇ ) the pitch of which is transformed by (Equation 1)
  • the roll posture angle ( ⁇ ), the pitch posture angle (), and the differential value of the yaw posture angle () are integrated (A), and the mouth posture angle ( ⁇ ) and the pitch posture angle (0i) are integrated.
  • the attitude angle (Yi) is obtained (S6).
  • this integration method includes a method of simply adding data, a trapezoidal method, and the like, which are set based on a sampling cycle and a processing capacity.
  • the interpolation data ( ⁇ Xi, ⁇ yi, ⁇ zi) is added to (Xei, Yei, Zei) obtained in the DGPS, and the position (XEi, YEi, ZEi) in the mobile station is added. ) (S 10).
  • step 1 the position (XEi, YEi, ZEi) of the mobile station between (Xei, Yei, Zei) obtained by DGPS is obtained. It can be obtained with high accuracy.
  • the integrals (A), (B), and (C) are one sampling at 6 t time. However, from the processing power of the 6-component sensor and the CPU, ⁇ 5 t time You can also do it. It goes without saying that the measurement time intervals ⁇ t and ⁇ t are arbitrarily selected depending on the required accuracy.
  • the position of the mobile station (X Ei, Y E and Z Ei) is obtained every ⁇ 5 t, so that it is possible to deal with a high-speed mobile station.
  • the digital calculation is realized as a position measurement program, and the program can be provided by being recorded on a recording medium.
  • the position between the times obtained by the DGPS can be accurately interpolated, so that the moving at a high speed can be achieved. To use for mobile stations that do.

Abstract

A position measurement method for mobile station, wherein reference positions are calculated between a base station and a mobile unit with specific time intervals by position correction by using GDPS and the position correction within the time interval determined by the GDPS is performed by the accelerations Xa, Ya and Za in X-, Y- and Z-axis directions respectively and a rolling angular velocity P, a pitching angular velocity Q and a yawing angular velocity R around those axes which are obtained by a 6-component-of-force sensor mounted on a mobile station.

Description

明 細 書 移動局の位置測定方法 技術分野  Description Mobile station position measurement method Technical field
本発明は、 D G P S ( D i f f e r e n t i a 1 G 1 o b a 1 P o s i t i o n i n g S y s t e m) と 6 分力センサを用いて行う移動局の位置測定方法に関する。 背景技術  The present invention relates to a method for measuring a position of a mobile station using a DGPS (Differentia1G1Oba1PositioIngSystem) and a six-component sensor. Background art
従来、 移動局の位置測定方法と して人工衛星を使用する G P S ( G l o b a l P o s i t i o n i n g S y s t e m) が知 られている。 この G P S システムは、 複数の 衛星か らそれぞれ疑似雑音コ一 ド信号を用いてスぺク ト ラ ム拡散処理された中心周波数が、 L 1 帯 ( 1 5 7 5 . 4 2 [M H z]) 及び L 2 帯 ( 1 2 2 7 . 6 [M H z]) の 2 つの測 距信号を送信する と共に、 移動局側でそのう ち 4つの衛星 の測距信号を受信して復調する こ とによ り 、 4つの衛星の 軌道情報及び時計情報を得て、 これに基づいて 4つの衛星 と当該移動局との測距信号の伝搬時間を知る こ とによ り 、 移動局の位置を算出する こ とができる。  2. Description of the Related Art Conventionally, GPS (Global PositioinngSystem) using an artificial satellite is known as a method for measuring the position of a mobile station. In this GPS system, the center frequency subjected to the spread spectrum processing using the pseudo noise code signals from a plurality of satellites is in the L1 band (1575.42 [MHz]). In addition to transmitting two ranging signals in the L2 band (1227.6 [MHz]), the mobile station receives and demodulates the ranging signals of four satellites. Thus, the orbital information and clock information of the four satellites are obtained, and the propagation time of the ranging signal between the four satellites and the mobile station is determined based on the information, thereby calculating the position of the mobile station. be able to.
又、 移動局に積載して、 その走行時における距離と方角 を測定する 6 分力センサを用いる ものがある。 この 6 分力 センサは、 X, Y , Z軸の軸方向の加速度とその軸回り の 角速度を測定する ものであ り 、 これらの測定値を用いて位 置を測定する。  Others use a six-component force sensor that is loaded on a mobile station and measures the distance and direction during travel. This six-component sensor measures the acceleration in the axial direction of the X, Y, and Z axes and the angular velocity around the axis, and measures the position using these measured values.
しかし、 前記 G P S では、 C Z Aコー ド信号を使用のた め、 測定精度は数メー トルの誤差がある し、 6 分力センサ を使用 しても同様の精度である。 又、 前記 G P S単体での測定では、 細かい時間間隔にお ける正確な走行軌跡を得る こ とは困難であ り 、 例えば、 高 速で走行する移動局においては、 極僅かな時間での走行距 離は長いため、 短時間毎に、 精度のよい測定方法ができる 移動局の位置測定方法を提供する ものである。 発明の開示 However, since the GPS uses a CZA code signal, the measurement accuracy has an error of several meters, and the same accuracy is obtained even when a 6-component sensor is used. In addition, it is difficult to obtain an accurate traveling locus at fine time intervals by the measurement using only the GPS alone. For example, in a mobile station traveling at a high speed, the traveling distance in a very short time is required. Since the separation is long, the present invention provides a method for measuring the position of a mobile station that can perform an accurate measurement method every short time. Disclosure of the invention
本発明は、 先ず、 基地局と移動局との間で D G P S を用 いて位置補正によ り特定時間間隔で基準位置を算出する。  In the present invention, first, a reference position is calculated at a specific time interval by position correction between a base station and a mobile station using DGPS.
そして、 移動局に積載の 6 分力センサで得られる X, Y Z軸の軸方向の加速度 X a 、 Y a 、 Z a とその軸回 り の口 ール角速度 P 、 ピッチ角速度 Q、 ョー角速度 R によって、 D G P S で求める時間間隔内における位置補間を行って、 移動局の位置を測定する ものである。  Then, the accelerations Xa, Ya, and Za in the axial direction of the X and YZ axes obtained by the 6-component sensor mounted on the mobile station, and the angular angular velocity P, pitch angular velocity Q, and Yaw angular velocity R around the axis are obtained. In this method, the position of the mobile station is measured by performing position interpolation within the time interval determined by DGPS.
具体的には、 第 3 図 ( A ) に示す演算ブロ ッ ク図におい て、 ロール角速度 P 、 ピツチ角速度 Q、 ョ一角 ¾度 Rを (式 1 ) によ り座標変換し、 その値を積分する。 又、 加速 度 X a 、 Y a 、 Z a を (式 2 ) によ り座標変換し、 積分し て速度を求め、 その速度を積分する こ とによ り補間データ が得られるので、 D G P S で得られた値に加算する こ とに よって、 移動局の補間位置が測定できる。 図面の簡単な説明  Specifically, in the calculation block diagram shown in Fig. 3 (A), the roll angular velocity P, the pitch angular velocity Q, and the single angular velocity R are coordinate-converted by (Equation 1), and the values are integrated. I do. Also, the accelerations Xa, Ya and Za are coordinate-transformed according to (Equation 2), integrated, the speed is obtained, and the speed is integrated to obtain interpolation data. By adding to the obtained value, the interpolation position of the mobile station can be measured. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の概念図である。 第 2 図 ( A ) は基地局 の機器構成図、 ( B ) は移動局の機器構成図を示す。 第 3 図 ( A ) は演算ブロ ッ ク図、 ( B ) は移動局における D G P S による測定値と補間値の関係を示す図である。 第 4 図 は、 (式 1 ) (式 2 ) を示す。 第 5 図は演算フ ローを示す 図である。 発明を実施するための最良の形態 FIG. 1 is a conceptual diagram of the present invention. Fig. 2 (A) shows the equipment configuration of the base station, and (B) shows the equipment configuration of the mobile station. Fig. 3 (A) is an operation block diagram, and (B) is a diagram showing the relationship between the DGPS measured value and the interpolated value at the mobile station. FIG. 4 shows (Equation 1) and (Equation 2). Fig. 5 shows the operation flow. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよ り詳細に説明するために 、 添付の図面を参照 して説明する。  The present invention will be described in more detail with reference to the accompanying drawings.
第 1 図は 、 本発明の概念図であ り 、 4個の人工衛星、 基 地局及び移動局の関係を示す。 又、 第 2 図 ( A ) は基地局 の機器構成図、 第 2 図 ( B ) は移動局の機器構成図を示す 基地局は、 地球座標系における位置 ( X k、 Y k、 Z k ) が既知であ り 、 人工衛星からの L 1 帯 ( 1 5 7 5 . 4 2 [M H z]) 或いは L 2 帯 ( 1 2 2 7 . 6 [M H z]) の疑似 雑音コー ド信号を G P S受信アンテナで受信し、 G P S ( G l o b a 1 P o s i t i o n i n g S y s t e m) 受信機で解読し、 その補正データ を補正データ送信機 送信アンテナを介して移動局に送る。  FIG. 1 is a conceptual diagram of the present invention, showing the relationship among four artificial satellites, a base station, and a mobile station. FIG. 2 (A) shows the equipment configuration of the base station, and FIG. 2 (B) shows the equipment configuration of the mobile station. The base station has a position (X k, Y k, Z k) in the earth coordinate system. The pseudo noise code signal of the L1 band (1575.42 [MHz]) or L2 band (122.7.6 [MHz]) from the artificial satellite is known by GPS. The data is received by the receiving antenna, decoded by the GPS (global 1 positioning system) receiver, and the correction data is sent to the mobile station via the correction data transmitter transmitting antenna.
又、 基地局とで D G P S ( D i f f e r e n t i a 1 G 1 o b a 1 P o s i t i o n i n g S y s t e m) によって、 移動局の位置を測定するため、 移動局にも G P S 受信機を備える と共に、 前記基地局からの補正データを 受信する補正デ一夕受信アンテナと補正データ受信機を備 えている。  Also, in order to measure the position of the mobile station by DGPS (Differentia 1 G 1 oba 1 Positioning System) with the base station, the mobile station is also provided with a GPS receiver and the correction data from the base station is also provided. It has a receiving antenna for correction data and a correction data receiver.
又、 この移動局には、 6 分力センサを備えていて、 移動 局を基準の X, Υ , Z軸方向の加速度 X a 、 Y a 、 Z a と This mobile station is also equipped with a 6-component force sensor, and accelerations Xa, Ya, and Za in the X, Υ, and Z directions with respect to the mobile station.
□—— レ角 度 P 、 ピッチ角速度 Q、 ョー角速度 R を得る こ とができる □ —— Obtain angle P, pitch angular velocity Q, and yaw angular velocity R
前記 D G P S は、 よ く 知られているよ う に、 位置が正確 に判つている基地局に備えた G P S受信機と、 移動局に備 えた G P S受信機によって、 4個の人工衛星か らの疑似雑 音コー ド信号 ( C Z A、 P コー ド等) によって、 測位'点の 座標 X 、 y 、 X と時計の誤差△ t の変数を求める。 そして、 正確な位置 ( X k、 Y k、 Z k ) が既知である 基準局の前記測定結果を比較し、 その差が補正データ と し て移動局に送信し、 移動局は、 その補正データを、 前記移 動局における G P S受信機によって得られた測定値に対し て補正する ものである。 As is well known, the DGPS uses a GPS receiver provided in a base station whose position is accurately determined and a GPS receiver provided in a mobile station to simulate from four satellites. Using the noise code signal (CZA, P code, etc.), the variables of the coordinates X, y, X of the positioning 'point and the clock error △ t are obtained. Then, the measurement result of the reference station whose exact position (X k, Y k, Z k) is known is compared, and the difference is transmitted to the mobile station as correction data. The correction is performed on the measurement value obtained by the GPS receiver in the mobile station.
従って、 この D G P S によって、 移動局における位置 ( X e i、 Y e i、 Z ei) は、 時間間隔 (本実施例では Δ t ( = 2 0 0 m s ) ) で、 精度よ く 得られる。  Accordingly, the position (Xei, Yei, Zei) at the mobile station can be obtained with high accuracy at time intervals (Δt (= 200 ms) in the present embodiment) by the DGPS.
しかし、 前記における時間間隔で得られるデータでは、 高速移動する移動局においては不充分である。  However, the data obtained at the above time intervals is insufficient for a mobile station moving at high speed.
そこで、 本発明では 6 分力センサを用いて、 前記得られ る時間間隔△ t ( = 2 0 0 m s ) の間における位置を、 δ t ( 2 0 m s ) 毎に、 第 3 図 ( B ) に示す補間値を得る。 この補間方法は、 少なく とも 2 0 m s 以内で逐次出力す る 6 分力センサの加速度 X a 、 Y a 、 Z a とロール角速度 P 、 ピッチ角速度 Q、 ョー角速度 Rの値を用いて、 第 3 図 ( A ) に示す演算ブロ ッ ク図、 第 4 図に示す (式 1 ) (式 2 ) 及び図 5 に示す演算フ ローを介して、 データ集積用 C P U及びデータ解析用 C P Uによって行う。  Therefore, in the present invention, the position during the obtained time interval △ t (= 200 ms) is determined by using a 6-component force sensor at every δt (20 ms), as shown in FIG. To obtain the interpolated value. This interpolation method uses the accelerations Xa, Ya, and Za of the 6-component force sensor and the values of roll angular velocity P, pitch angular velocity Q, and yaw angular velocity R that are sequentially output within at least 20 ms. The calculation is performed by the CPU for data integration and the CPU for data analysis via the operation block diagram shown in Fig. (A), (Equation 1) (Equation 2) shown in Fig. 4 and the operation flow shown in Fig. 5.
尚、 式 ( 1 ) ( 2 ) はよ く 知 られた座標変換式であるた め、 誘導式等の説明を略す。  Since equations (1) and (2) are well-known coordinate transformation equations, explanations of the guide equations and the like are omitted.
次に、 前記 C P Uにおける演算について、 具体的に説明 する。  Next, the operation in the CPU will be specifically described.
先ず、 移動局を初期設定し、 初期値と して、 ロール姿勢 角 ( Φο) 、 ピッチ姿勢角 、 ョ一姿勢角 ( 0) を入力する と共に、 カウ ン夕 i を初期化する ( S O ) 。  First, the mobile station is initialized, and a roll attitude angle (Φο), a pitch attitude angle, and a single attitude angle (0) are input as initial values, and a counter i is initialized (S O).
次に、 カウ ンタ i に 1 を加算し ( S 1 ) 、 カウ ンタ i が 1 0 の倍数であるか否かを判定し ( S 2 ) 、 そのときには 移動局の位置 ( X Ei、 Y Ei、 Z Ei) を前記 「 D G P S」 で 求めた位置 ( X ei、 Y ei、 Z ei) の値とする ( S 3 ) 。 尚、 前記 「 1 0 」 は D G P S の測定間隔が△ t ( = 2 0 0 m s ) であ り 、 補正データを <5 t ( 2 0 m s ) で得るた めの設定である。 Next, 1 is added to the counter i (S 1), and it is determined whether or not the counter i is a multiple of 10 (S 2). At that time, the position of the mobile station (X Ei, Y Ei, Z Ei) with the above “DGPS” The value of the obtained position (Xei, Yei, Zei) is used (S3). Note that “10” is a setting for obtaining the correction data at <5 t (20 ms), where the DGPS measurement interval is Δt (= 200 ms).
そして、 移動局の位置 ( X Ei、 Y Ei、 Z Ei) の値を出力 して、 ステッ プ 5 に進む ( S 4 ) 。  Then, the value of the position of the mobile station (XEi, YEi, ZEi) is output, and the process proceeds to step 5 (S4).
前記ステッ プ 2 でカウンタ i が 1 0 の倍数でないときに は、 補間データ を求めるために、 6 分力センサで求めた、 ロール角速度 P 、 ピッチ角速度 Q、 ョー角速度 Rの値と、 ロール姿勢角 ( φ ί - l) 、 ピッチ姿勢角 ( 0 i - 1) 、 ョ一 姿勢角 ( τ - l) の値を用いて、 (式 1 ) によって、 座標 変換されたロール姿勢角 ( Φ) 、 ピッチ姿勢角 ( 0 ) 、 ョ 一姿勢角 (ゆ) の微分値を得る ( S 5 ) 。  If the counter i is not a multiple of 10 in the above step 2, the values of the roll angular velocity P, the pitch angular velocity Q, the yaw angular velocity R, and the roll attitude angle obtained by the 6-component sensor are used to obtain the interpolation data. Using the values of (φί-l), pitch attitude angle (0 i-1), and unit attitude angle (τ-l), the roll attitude angle (Φ), the pitch of which is transformed by (Equation 1) Obtain the differential values of the attitude angle (0) and the attitude angle (Y) (S5).
尚、 このよ う に、 ロール姿勢角 ( Φ ϊ - 1) 、 ピッチ姿勢 角 ( θ ί - l) 、 ョ ー姿勢角 ( i - 1) を前回に得られた値 を用いても、 精度誤差は殆どない こ とを確認している。  In this way, even if the values of the roll attitude angle (Φϊ-1), pitch attitude angle (θ l-l), and yaw attitude angle (i-1) obtained by using the previously obtained values, the accuracy error can be obtained. Has been confirmed to be almost nonexistent.
そして、 前記ロール姿勢角 ( Φ) 、 ピッチ姿勢角 ( Θ ) 、 ョー姿勢角 ( ) の微分値を積分 ( A ) して、 口一ル姿勢 角 ( φ ί) 、 ピッチ姿勢角 ( 0 i) 、 ョ ー姿勢角 (ゆ i) を 得る ( S 6 ) 。  Then, the roll posture angle (Φ), the pitch posture angle (), and the differential value of the yaw posture angle () are integrated (A), and the mouth posture angle (φί) and the pitch posture angle (0i) are integrated. Then, the attitude angle (Yi) is obtained (S6).
尚、 この積分方法には、 単にデータを加算する方法、 台 形法等があ り 、 サンプリ ング周期と処理能力で設定する。  Note that this integration method includes a method of simply adding data, a trapezoidal method, and the like, which are set based on a sampling cycle and a processing capacity.
次に、 6 分力センサか ら得られる加速度 X a 、 Y a 、 Z a と ロール姿勢角 ( Φ Π 、 ピッチ姿勢角 ( 0 Π 、 ョ一姿 勢角 ( i) とで、 移動局座標系か ら地球座標系に変換す る (式 2 ) によっ 、 X a'、 Y a'、 Z a' を得る ( S 7 ) 。  Next, the acceleration X a, Y a, and Z a obtained from the 6-component sensor and the roll attitude angle (Φ Π, the pitch attitude angle (0 、) Then, Xa ', Ya', and Za 'are obtained from the equation (Equation 2) (S7).
そして、 前記得られた X a'、 Y a'、 Z a'を積分 ( B ) し て、 速度 X v、 Y v 、 Ζ ν を算出する ( S 8 ) 。 尚、 この 積分方法は前記積分 Αと同じ要領で行う。 前記速度 X v 、 Υ ν、 Ζ ν を積分 ( C ) して、 移動局に おける補間データ ( δΧϊ、 5Yi、 δ Z i) を求める ( S 9 ) 。 Then, the obtained Xa ', Ya', and Za 'are integrated (B) to calculate the velocities Xv, Yv, and? V (S8). Note that this integration method is performed in the same manner as the integration Α. The speeds Xv, Υν, and Ζν are integrated (C) to obtain interpolation data (δΧϊ, 5Yi, δZi) at the mobile station (S9).
そこで、 前記 D G P S において求めた ( X ei、 Y ei、 Z ei) に前記補間データ ( δ X i、 δ y i、 δ z i) を加算し て、 移動局における位置 ( X Ei、 Y Ei、 Z Ei) を求める ( S 1 0 ) 。  Therefore, the interpolation data (δXi, δyi, δzi) is added to (Xei, Yei, Zei) obtained in the DGPS, and the position (XEi, YEi, ZEi) in the mobile station is added. ) (S 10).
そして、 前記ステッ プ 1 に戻 り 、 この過程を繰り返すこ とによって、 D G P S で得られる ( X ei、 Y ei、 Z ei) の 間における移動局の位置 ( X E i、 Y E i、 Z Ei) が精度よ く 求める こ とができる。  Then, returning to step 1 and repeating this process, the position (XEi, YEi, ZEi) of the mobile station between (Xei, Yei, Zei) obtained by DGPS is obtained. It can be obtained with high accuracy.
尚、 前記積分 ( A ) ( B ) ( C ) は、 6 t 時間で 1 サン プリ ングであるが、 6 分力センサ及び C P Uの処理能力か ら、 <5 t 時間で複数のサンプリ ングデータによって行う こ と もできる。 又、 測定時間間隔 δ t 、 Δ t は、 求める精度 によって任意に選定する こ とはいう までもない。  The integrals (A), (B), and (C) are one sampling at 6 t time. However, from the processing power of the 6-component sensor and the CPU, <5 t time You can also do it. It goes without saying that the measurement time intervals δ t and Δ t are arbitrarily selected depending on the required accuracy.
以上のよ う に、 本実施の形態においては、 移動局の位置 ( X Ei、 Y Eし Z Ei) は、 <5 t 毎に得られるので、 高速移 動局に対処する こ とができる。 尚、 前記ディ ジタル演算は 位置測定プロ グラム と して実現され、 該プログラムは記録 媒体に記録して提供する こ ともできる。  As described above, in the present embodiment, the position of the mobile station (X Ei, Y E and Z Ei) is obtained every <5 t, so that it is possible to deal with a high-speed mobile station. Note that the digital calculation is realized as a position measurement program, and the program can be provided by being recorded on a recording medium.
産業上の利用可能性 Industrial applicability
以上のよ う に、 本発明は、 D G P S と 6 分力センサを用 いる こ とによ り 、 D G P Sで得られる時刻の間の位置を精 度よ く 補間する こ とができるので、 高速で移動する移動局 に対して用いるのに敵している。  As described above, according to the present invention, by using the DGPS and the 6-component sensor, the position between the times obtained by the DGPS can be accurately interpolated, so that the moving at a high speed can be achieved. To use for mobile stations that do.

Claims

請求の範囲 The scope of the claims
1 . 基地局と移動局との間で D G P S を用いて位置補正 によ り特定時間間隔で基準位置を算出し、 1. Calculate the reference position at specific time intervals by position correction between the base station and mobile station using DGPS,
移動局に 6 分力センサを積載し、 その 6 分力センサで の測定値を用いて、 前記 D G P S で求める時間間隔内にお ける位置補間を行う こ とを特徴とする移動局の位置測定方 法。  A mobile station position measurement method characterized in that a six-component force sensor is mounted on the mobile station and position interpolation is performed within the time interval determined by the DGPS using the measured value of the six-component force sensor. Law.
PCT/JP1998/004663 1997-10-20 1998-10-15 Position measurement method for mobile station WO1999020980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/306439 1997-10-20
JP9306439A JPH11118499A (en) 1997-10-20 1997-10-20 Method of measuring position of mobile station

Publications (1)

Publication Number Publication Date
WO1999020980A1 true WO1999020980A1 (en) 1999-04-29

Family

ID=17957027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004663 WO1999020980A1 (en) 1997-10-20 1998-10-15 Position measurement method for mobile station

Country Status (2)

Country Link
JP (1) JPH11118499A (en)
WO (1) WO1999020980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121828A (en) * 2010-12-21 2011-07-13 浙江大学 Method for estimating body posture angle of humanoid robot in real time

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414912B1 (en) * 2001-01-26 2004-01-13 삼성전자주식회사 Method for detecting position of mobile station in global positioning system
KR100446219B1 (en) * 2002-01-07 2004-08-30 삼성전자주식회사 Apparatus for detecting position of user equipment using global positioning system/dead-reckoning and method thereof
US6907347B2 (en) 2002-11-21 2005-06-14 Ford Global Technologies, Llc Systems and method for estimating speed and pitch sensor errors
FR2888643B1 (en) * 2005-07-18 2009-09-25 Airbus France Sas METHOD AND DEVICE FOR DETERMINING THE GROUND POSITION OF A MOBILE, PARTICULARLY FROM AN AIRCRAFT ON AN AIRPORT
JP5185575B2 (en) * 2007-08-10 2013-04-17 川崎重工業株式会社 Train position detection device, body tilt control system, steering system, active vibration suppression system and semi-active vibration suppression system
JP4888315B2 (en) * 2007-10-01 2012-02-29 株式会社デンソー Acceleration information generator
JP4828504B2 (en) * 2007-10-22 2011-11-30 中菱エンジニアリング株式会社 Mobile station travel trajectory measuring device by single GPS positioning with initial position correction function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666920A (en) * 1992-08-21 1994-03-11 Taisei Corp Apparatus and method for measuring three-dimensional position
JPH075240A (en) * 1993-04-05 1995-01-10 Caterpillar Inc Method and apparatus for improvement of accuracy of estimation of position of gps
JPH08249062A (en) * 1995-03-13 1996-09-27 Fuji Heavy Ind Ltd Running controller for automonous running vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666920A (en) * 1992-08-21 1994-03-11 Taisei Corp Apparatus and method for measuring three-dimensional position
JPH075240A (en) * 1993-04-05 1995-01-10 Caterpillar Inc Method and apparatus for improvement of accuracy of estimation of position of gps
JPH08249062A (en) * 1995-03-13 1996-09-27 Fuji Heavy Ind Ltd Running controller for automonous running vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121828A (en) * 2010-12-21 2011-07-13 浙江大学 Method for estimating body posture angle of humanoid robot in real time

Also Published As

Publication number Publication date
JPH11118499A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
US5828987A (en) Movement detecting device
AU775676B2 (en) System for determining the heading and/or attitude of a body
JP5164546B2 (en) Positioning method
JP6509422B2 (en) Satellite positioning device and train control system
WO1999020980A1 (en) Position measurement method for mobile station
JP2004069536A (en) Data calibration device and method
JPH09126795A (en) Movement detector
JPH0531924B2 (en)
JP2007003461A (en) Apparatus for measuring angle of side slip of mobile station
JPH08304092A (en) Method and system for detecting position of moving body
JP3421706B2 (en) On-board positioning device
JPWO2005017552A1 (en) Information processing apparatus and GPS positioning method
CN105044757A (en) Satellite signal shielding area GNSS differential measurement and inertia measurement combined mapping method
JP2010112759A (en) Mobile body positioning apparatus
JP4262964B2 (en) Mobile station position measurement method
JP2946051B2 (en) Gyro device
CN113884096A (en) Indoor navigation system and method
JPS592870B2 (en) GPS gyroscope
JP3652775B2 (en) GPS navigation system
JPH0949737A (en) Navigation signal outputting method
JPH0836042A (en) Gps receiver and speed deciding means using the gps receiver
JP2002257921A (en) Transponder calibration method
JPH0875479A (en) Radio navigation device
JP3303174B2 (en) On-board positioning device
JP2921355B2 (en) Car navigation system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): GB US