WO1999020905A1 - Oscillateur fluidique a fente prolongee - Google Patents

Oscillateur fluidique a fente prolongee Download PDF

Info

Publication number
WO1999020905A1
WO1999020905A1 PCT/FR1998/002182 FR9802182W WO9920905A1 WO 1999020905 A1 WO1999020905 A1 WO 1999020905A1 FR 9802182 W FR9802182 W FR 9802182W WO 9920905 A1 WO9920905 A1 WO 9920905A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
obstacle
fluidic oscillator
fluid
jet
Prior art date
Application number
PCT/FR1998/002182
Other languages
English (en)
Inventor
Andrew John Carver
Ibné Soreefan
Original Assignee
Schlumberger Industries, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Industries, S.A. filed Critical Schlumberger Industries, S.A.
Priority to BR9812907-4A priority Critical patent/BR9812907A/pt
Priority to EP98947645A priority patent/EP1025366B1/fr
Priority to US09/529,298 priority patent/US6321790B1/en
Priority to JP2000517194A priority patent/JP2001521105A/ja
Priority to KR1020007004067A priority patent/KR20010024516A/ko
Priority to PL98339807A priority patent/PL339807A1/xx
Priority to DE69821965T priority patent/DE69821965T2/de
Priority to CA002306923A priority patent/CA2306923C/fr
Priority to HU0004903A priority patent/HUP0004903A3/hu
Priority to AU94488/98A priority patent/AU745657B2/en
Publication of WO1999020905A1 publication Critical patent/WO1999020905A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C1/00Circuit elements having no moving parts
    • F15C1/22Oscillators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C1/00Circuit elements having no moving parts
    • F15C1/02Details, e.g. special constructional devices for circuits with fluid elements, such as resistances, capacitive circuit elements; devices preventing reaction coupling in composite elements ; Switch boards; Programme devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C4/00Circuit elements characterised by their special functions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3227Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using fluidic oscillators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2185To vary frequency of pulses or oscillations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2224Structure of body of device

Definitions

  • the invention relates to a fluidic oscillator symmetrical with respect to a longitudinal plane of symmetry P, comprising, an opening allowing the fluid to enter a so-called oscillation chamber in the form of a two-dimensional fluid jet oscillating transversely by with respect to said plane of symmetry P, an obstacle occupying the major part of said oscillation chamber and having a front wall provided with a cavity located opposite said opening and which is swept by the jet of fluid in oscillation .
  • Fluid oscillators are widely known and document WO9322627 gives an example which is shown in plan view in FIG. 1.
  • This oscillator 1, symmetrical with respect to a longitudinal plane of symmetry P, comprises an oscillation chamber 3 and a obstacle 5 housed inside it.
  • the obstacle 5 has a front wall 7 in which a so-called front cavity 9 is formed opposite an opening 11.
  • This opening 11 defines a fluid inlet in the oscillation chamber 3 and is capable of forming a two-dimensional jet of fluid oscillating transversely with respect to the longitudinal plane of symmetry P of the oscillator.
  • main vortices Tl, T2 are formed on either side of the jet (fig.l ) and are alternately strong and weak, in phase opposition and in relation to the oscillation of the jet.
  • the vortex Tl occupies a space much greater than that of the frontal cavity of the obstacle and the pressure of this vortex is such that the jet is tilted in an extreme position despite the presence of the other vortex T2 located between the front wall 7 of the obstacle 5 adjacent to the cavity and the wall 13 opposite the oscillation chamber connected to the opening 11.
  • the jet thus oscillates from one extreme position to the other and the detection of the frequency of the oscillation of the jet makes it possible to determine the flow rate of the fluid, the frequency being considered as proportional to the flow rate.
  • the oscillation frequency / flow ratio should not vary too much depending on the flow regime.
  • transition regime that is to say for Reynolds numbers calculated for the flow located at the right of the opening 11, located around 300
  • the Applicant has been able to note the appearance of a high pressure zone (vortex T3) near the base of the fluid jet on the side where the vortex Tl is located, as well as other vortices located opposite the front wall under the vortices Tl and T3 in FIG. 1 .
  • the present invention aims to remedy this problem by proposing a fluidic oscillator symmetrical with respect to a longitudinal plane of symmetry P, comprising, an opening allowing the fluid to enter a so-called oscillation chamber in the form of a jet of two-dimensional fluid oscillating transversely with respect to said plane of symmetry P, an obstacle occupying most of said oscillation chamber and having a front wall provided with a cavity situated opposite said opening and which is swept by the swinging fluid jet, characterized in that two side walls extend on either side of the opening and form a nozzle inside the oscillation chamber, in the direction of the obstacle, along a longitudinal dimension less than the distance between the opening and the front wall of the obstacle.
  • This nozzle forms a protective screen for the fluid jet against the vortices located in the high pressure zone near the base of said jet and which contribute to bending the latter excessively.
  • the fluid jet is therefore less subject to the influence of these disturbing vortices than in the prior art.
  • the fluidic oscillator according to the invention has an increased oscillation frequency in transition regime compared to that of the fluidic oscillator of the prior art.
  • the side walls are substantially parallel to one another.
  • the longitudinal dimension Le of the side walls is between 0.75 and lb, where b denotes the transverse dimension or width of the opening.
  • the longitudinal dimension Le of the side walls is substantially equal to b.
  • the front wall of the obstacle comprises two essentially flat front surfaces framing the cavity of said obstacle, the plane of each of said surfaces being substantially perpendicular to the longitudinal plane of symmetry P.
  • the oscillation chamber has two portions of walls located on either side of the opening and comprising two surfaces respectively arranged opposite the front surfaces of the obstacle and being substantially parallel thereto.
  • the cavity is defined by a surface which has, in the plane of oscillation of the fluid jet, on the one hand, two straight portions substantially parallel to the plane of longitudinal symmetry P at the places where said surface joins each of said front surfaces and, on the other hand, a semi-circular portion connected to said straight portions.
  • the part of the cavity furthest from the opening is situated at a distance Lo from the front wall of the obstacle between 2.2b and 2.5b, where b denotes the transverse dimension or width of the opening.
  • the distance L between the opening and the front wall of the obstacle is between 2.8 and 3.2b, where b denotes the transverse dimension or width of the opening.
  • the fluidic oscillator comprises at least two sensors for detecting variations in the speed or the pressure of the flow of the fluid.
  • the sensors for detecting variations in the speed of the fluid flow are arranged near the end of the nozzle.
  • FIG. 1 is a top view of a fluidic oscillator of the prior art
  • FIG. 2 is a top view of a fluidic oscillator according to the invention
  • FIG. 3 is a top view of the fluidic oscillator of FIG. 2 in which the main vortices Tl, T2 have been shown for an extreme position of the fluid jet,
  • FIG. 4 is a graph showing the linearity curves of the fluidic oscillator shown in FIG. 2 with and without the nozzle 38.
  • a fluidic oscillator is used in relation to a gas flow in order to determine the flow rate and the volume of the gas having passed through said oscillator.
  • the fluidic oscillator 20 is symmetrical with respect to a longitudinal plane of symmetry P along which an inlet opening 22 is aligned allowing the flow to enter a so-called oscillation chamber 24 in the middle of which is positioned an obstacle 26 which occupies the major part of this chamber and an outlet opening 28 for the evacuation of the gas flow out of the oscillation chamber.
  • the oscillation chamber is delimited by two walls 30, 32 which are symmetrical with respect to the plane P and which connect the inlet and outlet openings therebetween.
  • the inlet opening 22 is produced in the form of a slit of transverse dimension, or width, constant b and the largest dimension of which, its height, is contained in a plane perpendicular to the plane of FIG. 2.
  • This slot is extended in the longitudinal direction which corresponds to the direction of alignment of the inlet 22 and outlet 28 openings by two side walls 34, 36 parallel to each other and which form a nozzle 38.
  • These side walls extend to the interior of the oscillation chamber 24, respectively from each wall 30, 32 of the oscillation chamber, on either side of the inlet opening over the entire height thereof.
  • This nozzle transforms the gas flow which passes through it and which is indicated by the arrow F into a two-dimensional jet of fluid (the jet of fluid remains more or less the same in the direction parallel to the height of the slot) which oscillates transversely with respect to the longitudinal plane of symmetry P.
  • the oscillation chamber 24 defines by its walls 30 and 32 with the walls of the obstacle 26 two channels C1 and C2 which allow the gas flow to escape alternately through one or the other channel towards the output 28 of the fluidic oscillator.
  • the obstacle 26 has a front wall 40 in which is formed a cavity 42 located opposite the nozzle 38 and which is swept by the gas jet during its oscillation movement.
  • the front wall 40 of the obstacle 26 also includes two surfaces, called front surfaces 44 and 46, which are located symmetrically on either side of the cavity 42 and which are essentially planar.
  • the plane in which these front surfaces are arranged is substantially perpendicular to the longitudinal plane of symmetry P and to the direction of flow in line with the slot 22.
  • the oscillation chamber 24 also comprises two portions of walls 30a and 32a which are arranged symmetrically on either side of the slit 22 facing the front surfaces 44 and 46.
  • the portions of walls 30a and 32a have surfaces which are parallel to the front surfaces 44 and 46.
  • the vortices which will form on either side of the jet will be positioned in the two free spaces located between the front surfaces 44 and 46 and the respective corresponding surfaces of the wall portions 30a and 32a. These vortices will thus develop almost freely between these surfaces.
  • the distance L between the front surfaces 44 and 46 and the surfaces of the wall portions 30a and 32a must not be too small in order to leave sufficient free space for the development of the vortices.
  • the distance L is too small, for example less than 2.8b, then problems can arise in laminar regime because the pressure of the vortices increases too quickly and thus the jet rocks too quickly.
  • the distance L is for example equal to 3b.
  • the cavity 42 has, in the plane of FIG. 2, a surface whose profile makes it possible to guide the gas jet in said cavity during its oscillation and to prevent any creation of a recirculation phenomenon inside this cavity.
  • the surface of the cavity is defined by two straight portions 42a, b which are substantially parallel to the longitudinal plane of symmetry P and which respectively join the two front surfaces 44, 46 at the opening of the cavity .
  • the surface of the cavity is also delimited by a semicircular portion 42c which is connected to the straight portions and which thus forms the bottom of the cavity.
  • the surface profile could be parabolic.
  • the fact that the surfaces of the wall portions 30a and 32a are parallel to the front surfaces 44, 46 and that the flow leaving the cavity 42 has a direction substantially perpendicular to these surfaces makes it possible not to communicate with the flow which meets said surfaces of wall portions 30a and 32a at an angle of incidence too far from the normal to these surfaces regardless of the flow rate. Indeed, an angle of incidence too far from the normal to these surfaces would have the consequence of modifying the size of the vortex positioned between one of these front surfaces and the corresponding facing surface of the wall portion 30a and 32a. It should also be noted that the cavity is deeper than that of the prior art fluidic oscillator shown in FIG.
  • the width Ro of the cavity 42 at the right of its opening between the two straight portions 42a, 42b is between 3.4b and 3.8b, and is for example equal to 3.6b.
  • the jet is more "folded" in its free part than in the prior art and it is thus seen that the jet is folds back opposite the front surface 44 in the direction of the corresponding surface of the wall portion 30a, which leaves less room for the vortex T2 to develop.
  • the longitudinal dimension Le of the side walls 34, 36 must be strictly less than the distance L so that said walls are not too close to the cavity 42 which will be completely occupied by one of the vortices Tl while the other vortex T2 will be located in the free space located between the front surface 44 and the facing surface of the wall portion 30a (Fig.3).
  • the dimension Le is between 0.75b and lb and is for example equal to 0.9b. .
  • the side walls 34, 36 of the nozzle 38 have a constant thickness along their longitudinal dimension Le, except at the connection between said side walls and the wall portions 30a, 32a where the surface of the side walls forms a slight concavity. It is important that these side walls take up as little space as possible so as not to hinder the development of the main vortices Tl and T2.
  • the side walls 34, 36 can take the form of two very thin straight blades which would suffice to guide the jet of fluid and protect it against disturbances.
  • the configuration of the fluidic oscillator previously described makes it possible to obtain a morphology of the vortices Tl and T2 which varies little as a function of the flow regime, which ensures good metrology.
  • the fluidic oscillator of FIG. 2 allows the measurement of the gas flow which passes through it by means of two pressure taps situated at the extreme scanning points of the gas jet inside the cavity 42. These pressure taps are connected to known devices which make it possible to measure the frequency of oscillation of the jet. A preliminary calibration makes it possible to link the frequency to the flow.
  • Thermal or ultrasonic sensors may also be suitable for detecting variations in the speed of the jet flow and therefore for measuring the oscillation frequency of the j and.
  • These sensors can also be placed between the nozzle 38 and the obstacle 26 in the upper wall (not shown in FIG. 2) which forms a cover for the fluidic oscillator, or even in the lower wall of said fluidic oscillator (which forms the background in Figure 2).
  • the location of such sensors 48, 50 is indicated by circles in FIG. 2. It should be noted that in the plane of FIG. 2, the sensors 48, 50 are advantageously placed in front of the end of the nozzle 38 and are spaced apart by a distance less than or equal to the spacing of the side walls 34, 36 in order to be arranged in the fluid flow. At low speed, a boundary layer develops along the internal surfaces of the side walls 34, 36 which gives the jet at the outlet of the nozzle 38 a speed gradient more pronounced than that obtained at the base of the jet located at the level of the opening 11 in FIG. 1 and therefore the signal detected by the sensors is stronger than in the prior art. Thus, the detection of the frequency of oscillation of the low-flow fluid jet by means of the sensors 48, 50 placed in front of the nozzle 38 is made easier than in the fluidic oscillator of the prior art.
  • FIG. 4 shows three linearity curves of fluidic oscillators having three distinct configurations: curve A corresponds to that of the oscillator of FIG. 2 without the nozzle 38, curves B and C are those of the oscillator of FIG. 2 for two different lengths of the nozzle 38, one of length 0.5b (curve B) and the other of length 0.9b (curve C).
  • curve A corresponds to that of the oscillator of FIG. 2 without the nozzle 38
  • curves B and C are those of the oscillator of FIG. 2 for two different lengths of the nozzle 38, one of length 0.5b (curve B) and the other of length 0.9b (curve C).
  • the width b of the slot 22 is equal to 19mm and the other dimensions are those which have been defined previously as a function of this width b.
  • the presence of a nozzle inside the oscillation chamber has the effect of increasing the oscillation frequency of the jet in transition regime and therefore of correcting the linearity curve of the fluidic oscillator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Reciprocating Pumps (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

L'invention est relative à un oscillateur fluidique symétrique par rapport à un plan de symétrie longitudinal (P), comprenant, une ouverture (22) permettant au fluide d'entrer dans une chambre (24) dite d'oscillation sous la forme d'un jet de fluide bidimensionnel oscillant transversalement par rapport audit plan de symétrie (P), un obstacle (26) occupant la majeure partie de ladite chambre d'oscillation et possédant une paroi frontale (40) pourvue d'une cavité (42) située en vis-à-vis de ladite ouverture et qui est balayée par le jet de fluide en oscillation, caractérisé en ce que deux parois latérales (34, 36) parallèles entre elles s'étendent de part et d'autre de l'ouverture (22) et forment une buse à l'intérieur de la chambre d'oscillation, en direction de l'obstacle, suivant une dimension longitudinale inférieure à la distance entre l'ouverture et la paroi frontale de l'obstacle.

Description

OSCILLATEUR FLUIDIQUE A FENTE PROLONGEE
L'invention est relative à un oscillateur fluidique symétrique par rapport à un plan de symétrie longitudinal P, comprenant, une ouverture permettant au fluide d'entrer dans une chambre dite d'oscillation sous la forme d'un jet de fluide bidimensionnel oscillant transversalement par rapport audit plan de symétrie P, un obstacle occupant la majeure partie de ladite chambre d'oscillation et possédant une paroi frontale pourvue d'une cavité située en vis-à-vis de ladite ouverture et qui est balayée par le jet de fluide en oscillation.
Les oscillateurs fiuidiques sont largement connus et le document WO9322627 en donne un exemple qui est représenté en vue de dessus sur la figure 1. Cet oscillateur 1, symétrique par rapport à un plan de symétrie longitudinal P, comprend une chambre d'oscillation 3 et un obstacle 5 logé à l'intérieur de celle-ci. L'obstacle 5 possède une paroi frontale 7 dans laquelle une cavité dite frontale 9 est pratiquée en vis-à-vis d'une ouverture 11.
Cette ouverture 11 définit une entrée de fluide dans la chambre d'oscillation 3 et est apte à former un jet de fluide bidimensionnel oscillant transversalement par rapport au plan de symétrie longitudinal P de l'oscillateur. Lors du fonctionnement de l'oscillateur fluidique, lorsque le jet de fluide rencontre la cavité frontale 9 et balaye celle-ci au cours de son oscillation, des tourbillons principaux Tl, T2 se forment de part et d'autre du jet (fig.l) et sont alternativement forts et faibles, en opposition de phase et en relation avec l'oscillation du jet. Sur la figure 1 le tourbillon Tl occupe un espace largement supérieur à celui de la cavité frontale de l'obstacle et la pression de ce tourbillon est telle que le jet est basculé dans une position extrême malgré la présence de l'autre tourbillon T2 localisé entre la paroi frontale 7 de l'obstacle 5 adjacente à la cavité et la paroi 13 en regard de la chambre d'oscillation raccordée à l'ouverture 11.
Lorsque le jet de fluide est dans cette position une partie de l'écoulement issu du jet est dirigé vers l'aval de l'obstacle et une autre partie revient alimenter le tourbillon T2 qui grossit de plus en plus et dont la pression s'accroît jusqu'au moment où la pression est suffisante pour faire basculer le jet de l'autre coté, dans la position extrême opposée.
Le jet oscille ainsi d'une position extrême à l'autre et la détection de la fréquence de l'oscillation du jet permet de déterminer le débit du fluide, la fréquence étant considérée comme proportionnelle au débit.
Pour réduire les erreurs sur la détermination du débit de fluide, le rapport fréquence d'oscillation / débit, ne doit pas trop varier en fonction du régime de l'écoulement. Or , en régime dit de transition, c'est-à-dire pour des nombres de Reynolds calculés pour l'écoulement situé au droit de l'ouverture 11, situés aux environs de 300, la Demanderesse a pu constater l'apparition d'une zone de haute pression (tourbillon T3) à proximité de la base du jet de fluide du côté où se trouve le tourbillon Tl, ainsi que d'autres tourbillons localisés en regard de la paroi frontale sous les tourbillons Tl et T3 sur la figure 1.
Ces tourbillons renforcent l'action du tourbillon Tl et, de ce fait, il faut plus de temps au tourbillon T2 pour qu'il acquiert suffisamment de force afin de contrebalancer les pressions exercées par Tl et T3, ce qui diminue la fréquence d'oscillation et donc introduit des erreurs dans la détermination du débit de fluide.
La présente invention vise à remédier à ce problème en proposant un oscillateur fluidique symétrique par rapport à un plan de symétrie longitudinal P, comprenant, une ouverture permettant au fluide d'entrer dans une chambre dite d'oscillation sous la forme d'un jet de fluide bidimensionnel oscillant transversalement par rapport audit plan de symétrie P, un obstacle occupant la majeure partie de ladite chambre d'oscillation et possédant une paroi frontale pourvue d'une cavité située en vis-à-vis de ladite ouverture et qui est balayée par le jet de fluide en oscillation, caractérisé en ce que deux parois latérales s'étendent de part et d'autre de l'ouverture et forment une buse à l'intérieur de la chambre d'oscillation, en direction de l'obstacle, suivant une dimension longitudinale inférieure à la distance entre l'ouverture et la paroi frontale de l'obstacle.
Cette buse forme un écran de protection pour le jet de fluide contre les tourbillons situés dans la zone de haute pression à proximité de la base dudit jet et qui contribuent à plier celui-ci de manière excessive. Le jet de fluide est donc moins soumis à l'influence de ces tourbillons perturbateurs que dans l'art antérieur.
Ainsi, l'oscillateur fluidique selon l'invention présente une fréquence d'oscillation augmentée en régime de transition par rapport à celle de l'oscillateur fluidique de l'art antérieur. Selon une caractéristique, les parois latérales sont sensiblement parallèles entre elles. Préférentiellement, la dimension longitudinale Le des parois latérales est comprise entre 0,75 et lb, où b désigne la dimension transversale ou largeur de l'ouverture. Par exemple, la dimension longitudinale Le des parois latérales est sensiblement égale à b. Avantageusement, la paroi frontale de l'obstacle comporte deux surfaces frontales essentiellement planes encadrant la cavité dudit obstacle, le plan de chacune desdites surfaces étant sensiblement perpendiculaire au plan de symétrie longitudinal P. De manière avantageuse, la chambre d'oscillation possède deux portions de parois situées de part et d'autre de l'ouverture et comportant deux surfaces respectivement disposées en regard des surfaces frontales de l'obstacle et étant sensiblement parallèles à celles-ci. Selon une caractéristique de l'invention, la cavité est définie par une surface qui possède, dans le plan d'oscillation du jet de fluide, d'une part, deux portions droites sensiblement parallèles au plan de symétrie longitudinal P aux endroits où ladite surface rejoint chacune desdites surfaces frontales et, d'autre part, une portion de forme semi-circulaire raccordée auxdites portions droites. De préférence, la partie de la cavité la plus éloignée de l'ouverture est située à une distance Lo de la paroi frontale de l'obstacle comprise entre 2,2b et 2,5b, où b désigne la dimension transversale ou largeur de l'ouverture.
Selon une autre caractéristique de l'invention, la distance L entre l'ouverture et la paroi frontale de l'obstacle est comprise entre 2,8 et 3,2b, où b désigne la dimension transversale ou largeur de l'ouverture.
Selon une caractéristique de l'invention, l'oscillateur fluidique comprend au moins deux capteurs de détection des variations de la vitesse ou de la pression de l'écoulement du fluide.
Avantageusement, les capteurs de détection des variations de la vitesse de l'écoulement du fluide sont disposés à proximité de l'extrémité de la buse.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue de dessus d'un oscillateur fluidique de l'art antérieur, - la figure 2 est une vue de dessus d'un oscillateur fluidique selon l'invention,
- la figure 3 est une vue de dessus de l'oscillateur fluidique de la figure 2 sur laquelle les tourbillons principaux Tl, T2 ont été représentés pour une position extrême du jet de fluide,
- la figure 4 est un graphique montrant les courbes de linéarité de l'oscillateur fluidique représenté à la figure 2 avec et sans la buse 38.
Comme représenté à la figure 2 et désigné par la référence générale notée 20, un oscillateur fluidique est utilisé en relation avec un écoulement de gaz afin de déterminer le débit et le volume du gaz ayant traversé ledit oscillateur. L'oscillateur fluidique 20 est symétrique par rapport à un plan de symétrie longitudinal P suivant lequel sont alignées une ouverture d'entrée 22 permettant à l'écoulement de pénétrer dans une chambre dite d'oscillation 24 au milieu de laquelle est positionné un obstacle 26 qui occupe la majeure partie de cette chambre et une ouverture de sortie 28 pour l'évacuation de l'écoulement de gaz hors de la chambre d'oscillation.
La chambre d'oscillation est délimitée par deux parois 30, 32 symétriques par rapport au plan P et qui raccordent entre elles les ouvertures d'entrée et de sortie.
L'ouverture d'entrée 22 est réalisée sous la forme d'une fente de dimension transversale, ou largeur, constante b et dont la plus grande dimension, sa hauteur, est contenue dans un plan perpendiculaire au plan de la figure 2.
Cette fente est prolongée suivant la direction longitudinale qui correspond à la direction d'alignement des ouvertures d'entrée 22 et de sortie 28 par deux parois latérales 34, 36 parallèles entre elles et qui forment une buse 38. Ces parois latérales s'étendent à l'intérieur de la chambre d'oscillation 24, respectivement à partir de chaque paroi 30, 32 de la chambre d'oscillation, de part et d'autre de l'ouverture d'entrée sur toute la hauteur de celle-ci. Cette buse transforme l'écoulement de gaz qui la traverse et qui est repéré par la flèche F en un jet de fluide bidimensionnel (le jet de fluide reste à peu près le même suivant la direction parallèle à la hauteur de la fente) qui oscille transversalement par rapport au plan de symétrie longitudinal P.
La chambre d'oscillation 24 définit par ses parois 30 et 32 avec les parois de l'obstacle 26 deux canaux Cl et C2 qui permettent à l'écoulement de gaz de s'échapper alternativement par l'un ou l'autre canal vers la sortie 28 de l'oscillateur fluidique.
L'obstacle 26 possède une paroi frontale 40 dans laquelle est pratiquée une cavité 42 située en vis-à-vis de la buse 38 et qui est balayée par le jet de gaz au cours de son mouvement d'oscillation.
La paroi frontale 40 de l'obstacle 26 comprend également deux surfaces, appelées surfaces frontales 44 et 46, qui sont situées symétriquement de part et d'autre de la cavité 42 et qui sont essentiellement planes.
Le plan dans lequel sont disposées ces surfaces frontales est sensiblement perpendiculaire au plan de symétrie longitudinal P et à la direction de l'écoulement au droit de la fente 22.
La chambre d'oscillation 24 comprend également deux portions de parois 30a et 32a qui sont disposées symétriquement de part et d'autre de la fente 22 en vis-à-vis des surfaces frontales 44 et 46. Les portions de parois 30a et 32a possèdent des surfaces qui sont parallèles aux surfaces frontales 44 et 46. Ainsi, les tourbillons qui vont se former de part et d'autre du jet vont être positionnés dans les deux espaces libres situés entre les surfaces frontales 44 et 46 et les surfaces correspondantes respectives des portions de parois 30a et 32a. Ces tourbillons vont ainsi se développer de manière quasi libre entre ces surfaces. II n'est pas nécessaire que la dimension transversale, ou largeur, Fo des surfaces frontales 44, 46 soit grande pour que lesdites surfaces remplissent leur fonction et une largeur Fo comprise entre 0,8b et 1,4b et par exemple égale à 1,2b convient tout à fait.
La distance L entre les surfaces frontales 44 et 46 et les surfaces des portions de parois 30a et 32a ne doit pas être trop faible afin de laisser un espace libre suffisant au développement des tourbillons.
En effet, si la distance L est trop faible, par exemple inférieure à 2,8b, alors des problèmes peuvent survenir en régime laminaire car la pression des tourbillons augmente trop rapidement et ainsi le jet bascule trop vite La distance L est par exemple égale à 3b.
La cavité 42 présente, dans le plan de la figure 2, une surface dont le profil permet de guider le jet de gaz dans ladite cavité au cours de son oscillation et d'empêcher toute création d'un phénomène de recirculation à l'intérieur de cette cavité. Dans le plan de la figure 2, la surface de la cavité est délimitée par deux portions droites 42a, b qui sont sensiblement parallèles au plan de symétrie longitudinal P et qui rejoignent respectivement les deux surfaces frontales 44, 46 à l'ouverture de la cavité.
La surface de la cavité est également délimitée par une portion de forme semi- circulaire 42c qui est raccordée aux portions droites et qui forme ainsi le fond de la cavité. Ainsi les écoulements provenant du jet qui s'est séparé en rencontrant la surface de la cavité et qui sont guidés par ladite surface possèdent une direction sensiblement parallèle au plan P au sortir de ladite cavité.
Toutefois, d'autres formes conviennent également pourvu qu'elles remplissent les fonctions citées ci-dessus. Par exemple, le profil de la surface pourrait être parabolique.
En outre, le fait que les surfaces des portions de parois 30a et 32a soient parallèles aux surfaces frontales 44, 46 et que l'écoulement sortant de la cavité 42 ait une direction sensiblement perpendiculaire à ces surfaces permet de ne pas communiquer à l'écoulement qui rencontre lesdites surfaces des portions de parois 30a et 32a un angle d'incidence trop éloigné de la normale à ces surfaces quel que soit le débit d'écoulement. En effet, un angle d'incidence trop éloigné de la normale à ces surfaces aurait pour conséquence de modifier la taille du tourbillon positionné entre l'une de ces surfaces frontales et la surface en regard correspondante de la portion de paroi 30a et 32a. Il convient également de noter que la cavité est plus profonde que celle de l'oscillateur fluidique de l'art antérieur représenté à la figure 1 afin de permettre de fixer la morphologie du tourbillon principal Tl quel que soit le régime d'écoulement (laminaire, transition, turbulent). Ainsi, même à très bas débit, c'est-à-dire pour des nombres de Reynolds d'environ 50, un tourbillon peut se développer similairement à celui du régime turbulent, dans cette cavité. Ceci permet donc de mesurer également une fréquence d'oscillation du jet pour des nombres de Reynolds d'environ 50 ce qui n'est pas possible avec la cavité de l'oscillateur de la figure 1. La partie de la cavité qui est la plus éloignée de la fente 22 est située à une distance Lo des surfaces frontales 44, 46 qui sont dans le plan de l'ouverture de ladite cavité, Lo étant comprise entre 2,2b et 2,5b et par exemple égale à 2,4b. En effet, la cavité 42 ne doit pas être trop profonde (par exemple Lo = 3b) afin de ne pas renforcer l'action du tourbillon Tl sur le jet à bas débits car ceci diminuerait considérablement la fréquence d'oscillation dudit jet.
La largeur Ro de la cavité 42 au droit de son ouverture entre les deux portions droites 42a, 42b est comprise entre 3,4b et 3,8b, et est par exemple égale à 3,6b. En allongeant la fente 22 grâce à la buse 38, lorsque le jet de fluide est plié dans une position telle que celle représentée à la figure 3, le jet est isolé de l'action perturbatrice des tourbillons situés entre la surface frontale 46 et la surface correspondante de la portion de paroi 32a dans sa partie canalisée par les parois 34, 36. Le jet se trouve ainsi rigidifié à sa base ce qui lui permet de résister à l'action perturbatrice de ces tourbillons parasites et donc d'avoir une fréquence d'oscillation plus élevée que celle de l'art antérieur (Fig.l) en régime de transition. En outre, avec la configuration de l'oscillateur fluidique selon l'invention et représenté aux figures 2 et 3, le jet est davantage "plié" dans sa partie libre que dans l'art antérieur et l'on voit ainsi que le jet se replie en regard de la surface frontale 44 en direction de la surface correspondante de la portion de paroi 30a, ce qui laisse moins de place au tourbillon T2 pour se développer.
Ceci explique que le tourbillon T2 va être alimenté plus rapidement en pression que dans l'art antérieur, la pression exercée par Tl va donc être compensée plus rapidement ce qui va faire basculer le jet plus vite. La dimension longitudinale Le des parois latérales 34, 36 doit être strictement inférieure à la distance L afin que lesdites parois ne soient pas trop proches de la cavité 42 qui va être totalement occupée par l'un des tourbillons Tl tandis que l'autre tourbillon T2 sera localisé dans l'espace libre situé entre la surface frontale 44 et la surface en regard de la portion de paroi 30a (Fig.3).
En effet, des parois latérales trop longues (par exemple Le = 2b) gêneraient le développement du tourbillon Tl et donc affecteraient l'oscillation du jet. Le développement du tourbillon T2 serait également modifié car le jet resterait alors à l'intérieur de la cavité, contraignant ainsi T2 à s'amplifier dans un espace restreint. Avantageusement, la dimension Le est comprise entre 0,75b et lb et est par exemple égale à 0,9b. .
En outre, la présence de ces parois isole la base du jet de fluide des écoulements de retour qui peuvent provoquer des erreurs dans la détection de la fréquence d' oscillation du j et.
Comme représenté à la figure 2, les parois latérales 34, 36 de la buse 38 ont une épaisseur constante suivant leur dimension longitudinale Le, excepté au niveau du raccord entre lesdites parois latérales et les portions de parois 30a, 32a où la surface des parois latérales forme une légère concavité. Il est important que ces parois latérales prennent le moins de place possible afin de ne pas gêner le développement des tourbillons principaux Tl et T2.
Ainsi, les parois latérales 34, 36 peuvent prendre la forme de deux lames droites très minces qui suffiraient pour guider le jet de fluide et le protéger contre les perturbations.
La configuration de l'oscillateur fluidique précédemment décrit permet d'obtenir une morphologie des tourbillons Tl et T2 qui varie peu en fonction du régime d'écoulement ce qui assure une bonne métrologie.
L'oscillateur fluidique de la figure 2 permet la mesure du débit de gaz qui le traverse grâce à deux prises de pression situées aux points extrêmes de balayage du jet de gaz à l'intérieur de la cavité 42. Ces prises de pression sont reliées à des dispositifs connus qui permettent de mesurer la fréquence d'oscillation du jet. Un étalonnage préalable permet de relier la fréquence au débit.
Des capteurs thermiques ou ultrasonores peuvent également convenir pour détecter les variations de la vitesse de l'écoulement du jet et donc pour mesurer la fréquence d' oscillation du j et.
Ces capteurs peuvent aussi être placés entre la buse 38 et l'obstacle 26 dans la paroi supérieure (non représentée sur la figure 2) qui forme couvercle pour l'oscillateur fluidique, ou même dans la paroi inférieure dudit oscillateur fluidique (qui forme l'arrière plan sur la figure 2).
L'emplacement de tels capteurs 48, 50 est indiqué par des ronds sur la figure 2. Il convient de noter que dans le plan de la figure 2 les capteurs 48, 50 sont placés avantageusement devant l'extrémité de la buse 38 et sont écartés d'une distance inférieure ou égale à Fécartement des parois latérales 34, 36 afin d'être disposés dans l'écoulement de fluide. A bas débit, une couche limite se développe le long des surfaces internes des parois latérales 34, 36 ce qui confère au jet en sortie de la buse 38 un gradient de vitesse plus accentué que celui obtenu à la base du jet située au droit de l'ouverture 11 sur la figure 1 et donc le signal détecté par les capteurs est plus fort que dans l'art antérieur. Ainsi, la détection de la fréquence d'oscillation du jet de fluide à bas débit au moyen des capteurs 48, 50 placés devant la buse 38 est rendue plus aisée que dans l'oscillateur fluidique de l'art antérieur.
En outre, aux débits élevés, les capteurs ainsi positionnés sont protégés des perturbations dues à des écoulements de retour qui risqueraient d'être détectées par lesdits capteurs. La figure 4 montre trois courbes de linéarité d'oscillateurs fluidiques ayant trois configurations distinctes : la courbe A correspond à celle de l'oscillateur de la figure 2 sans la buse 38, les courbes B et C sont celles de l'oscillateur de la figure 2 pour deux longueurs différentes de la buse 38, l'une de longueur 0,5b (courbe B) et l'autre de longueur 0,9b (courbe C). Pour ces oscillateurs, la largeur b de la fente 22 est égale à 19mm et les autres dimensions sont celles qui ont été définies précédemment en fonction de cette largeur b.
Ainsi, la présence d'une buse à l'intérieur de la chambre d'oscillation a pour effet d'augmenter la fréquence d'oscillation du jet en régime de transition et donc de corriger la courbe de linéarité de l'oscillateur fluidique.
En allongeant légèrement la buse cet effet s'accroît également mais il convient toutefois de ne pas trop augmenter sa dimension longitudinale car alors la fréquence de basculement du jet risque d'augmenter considérablement en régime laminaire Un tel oscillateur fluidique peut aussi bien s'appliquer à des gaz qu'à des liquides (eau, carburants pour véhicules ...).

Claims

REVENDICATIONS
1. Oscillateur fluidique symétrique par rapport à un plan de symétrie longitudinal (P), comprenant, une ouverture (22) permettant au fluide d'entrer dans une chambre (24) dite d'oscillation sous la forme d'un jet de fluide bidimensionnel oscillant transversalement par rapport audit plan de symétrie (P), un obstacle (26) occupant la majeure partie de ladite chambre d'oscillation et possédant une paroi frontale (40) pourvue d'une cavité (42) située en vis-à-vis de ladite ouverture et qui est balayée par le jet de fluide en oscillation, caractérisé en ce que deux parois latérales (34, 36) s'étendent de part et d'autre de l'ouverture (22) et forment une buse à l'intérieur de la chambre d'oscillation, en direction de l'obstacle, suivant une dimension longitudinale inférieure à la distance entre l'ouverture et la paroi frontale de l'obstacle.
2. Oscillateur fluidique selon la revendication 1, dans lequel les parois latérales (34, 36) sont sensiblement parallèles entre elles.
3. Oscillateur fluidique selon la revendication 1 ou 2, dans lequel la dimension longitudinale Le des parois latérales (34, 36) est comprise entre 0,75 et lb, où b désigne la dimension transversale ou largeur de l'ouverture (22).
4. Oscillateur fluidique selon la revendication 3, dans lequel la dimension longitudinale Le des parois latérales est sensiblement égale à b.
5. Oscillateur fluidique selon l'une des revendications 1 à 4, dans lequel la paroi frontale (40) de l'obstacle (26) comporte deux surfaces frontales (44, 46) essentiellement planes encadrant la cavité (42) dudit obstacle, le plan de chacune desdites surfaces étant sensiblement perpendiculaire au plan de symétrie longitudinal
(P)-
6. Oscillateur fluidique selon la revendication 5, dans lequel la chambre d'oscillation (24) possède deux portions de parois (30a, 32a) situées de part et d'autre de l'ouverture (22) et comportant deux surfaces respectivement disposées en regard des surfaces frontales (44, 46) de l'obstacle et étant sensiblement parallèles à celles-ci.
7. Oscillateur fluidique selon la revendication 5, dans lequel la cavité (42) est définie par une surface qui possède, dans le plan d'oscillation du jet de fluide, d'une part, deux portions droites (42a, 42b) sensiblement parallèles au plan de symétrie longitudinal (P) aux endroits où ladite surface rejoint chacune desdites surfaces frontales (44, 46) et, d'autre part, une portion de forme semi-circulaire (42c) raccordée auxdites portions droites.
8. Oscillateur fluidique selon l'une des revendications 1 à 7, dans lequel la partie de la cavité (42) la plus éloignée de l'ouverture (22) est située à une distance Lo de la paroi frontale (40) de l'obstacle (26) comprise entre 2,2b et 2,5b, où b désigne la dimension transversale ou largeur de l'ouverture.
9. Oscillateur fluidique selon l'une des revendications 1 à 8, dans lequel la distance L entre l'ouverture (22) et la paroi frontale (40) de l'obstacle (26) est comprise entre 2,8 et 3,2b, où b désigne la dimension transversale ou largeur de l'ouverture.
10. Oscillateur fluidique selon l'une des revendications 1 à 9, comprenant au moins deux capteurs (48, 50) de détection des variations de la vitesse ou de la pression de l'écoulement du fluide.
11. Oscillateur fluidique selon la revendication 10, dans lequel des capteurs (48, 50) de détection des variations de la vitesse de l'écoulement du fluide sont disposés à proximité de l'extrémité de la buse (38).
PCT/FR1998/002182 1997-10-17 1998-10-12 Oscillateur fluidique a fente prolongee WO1999020905A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR9812907-4A BR9812907A (pt) 1997-10-17 1998-10-12 Entalhe estendido
EP98947645A EP1025366B1 (fr) 1997-10-17 1998-10-12 Oscillateur fluidique a fente prolongee
US09/529,298 US6321790B1 (en) 1997-10-17 1998-10-12 Fluid oscillator with an extended slot
JP2000517194A JP2001521105A (ja) 1997-10-17 1998-10-12 延長されたスロット付き流体振動子
KR1020007004067A KR20010024516A (ko) 1997-10-17 1998-10-12 확장 슬로트를 갖는 유체 발진기
PL98339807A PL339807A1 (en) 1997-10-17 1998-10-12 Fluid oscillator with an elongated gap
DE69821965T DE69821965T2 (de) 1997-10-17 1998-10-12 Fluidischer oszillator mit verlängtem spalt
CA002306923A CA2306923C (fr) 1997-10-17 1998-10-12 Oscillateur fluidique a fente prolongee
HU0004903A HUP0004903A3 (en) 1997-10-17 1998-10-12 Fluid oscillator with extended slot
AU94488/98A AU745657B2 (en) 1997-10-17 1998-10-17 Fluid oscillator with extended slot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9713145A FR2769957B1 (fr) 1997-10-17 1997-10-17 Oscillateur fluidique a fente prolongee
FR97/13145 1997-10-17

Publications (1)

Publication Number Publication Date
WO1999020905A1 true WO1999020905A1 (fr) 1999-04-29

Family

ID=9512448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/002182 WO1999020905A1 (fr) 1997-10-17 1998-10-12 Oscillateur fluidique a fente prolongee

Country Status (14)

Country Link
US (1) US6321790B1 (fr)
EP (1) EP1025366B1 (fr)
JP (1) JP2001521105A (fr)
KR (1) KR20010024516A (fr)
CN (1) CN1282407A (fr)
AU (1) AU745657B2 (fr)
BR (1) BR9812907A (fr)
CA (1) CA2306923C (fr)
DE (1) DE69821965T2 (fr)
FR (1) FR2769957B1 (fr)
HU (1) HUP0004903A3 (fr)
PL (1) PL339807A1 (fr)
RU (1) RU2208718C2 (fr)
WO (1) WO1999020905A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2325959C2 (ru) * 2006-05-18 2008-06-10 Михаил Петрович Дудко Гидродинамический генератор акустических колебаний ультразвукового диапазона и способ создания акустических колебаний ультразвукового диапазона
JP5037046B2 (ja) * 2006-07-03 2012-09-26 学校法人同志社 流体噴出装置
WO2009150664A1 (fr) * 2008-06-10 2009-12-17 Avinash Shrikrishna Vaidya Débitmètre à oscillateur avec recirculation
US8272404B2 (en) * 2009-10-29 2012-09-25 Baker Hughes Incorporated Fluidic impulse generator
CN102128649B (zh) * 2011-03-03 2012-11-21 中国计量学院 无反馈通道的射流流量计
WO2013177300A1 (fr) * 2012-05-22 2013-11-28 Sparo Labs Système de spiromètre et méthodes d'analyse de données
US9170135B2 (en) 2012-10-30 2015-10-27 Itron, Inc. Module for gas flow measurements with a dual sensing assembly
US9222812B2 (en) 2012-10-30 2015-12-29 Itron, Inc. Hybrid sensor system for gas flow measurements
EP3261931B1 (fr) * 2015-02-25 2019-07-24 C.H. & I. Technologies, Inc. Buse à orifices multiples de station de recharge
FR3055700A1 (fr) * 2016-09-02 2018-03-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Debitmetre a oscillation fluidique a orifices de mesure symetriques pour dispositif d'observance d'un traitement d'oxygenotherapie
CN113019789B (zh) * 2021-03-19 2022-02-15 大连理工大学 一种脱壁式反馈射流振荡器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1391215A (fr) * 1964-02-27 1965-03-05 Teknika Générateur d'ondes élastiques
FR2400690A1 (fr) * 1977-08-19 1979-03-16 Lennart Arne Mesureur de debit
US4244230A (en) * 1978-10-12 1981-01-13 Peter Bauer Fluidic oscillator flowmeter
WO1993022627A1 (fr) 1992-04-29 1993-11-11 Schlumberger Industries S.A. Debitmetre a oscillateur fluidique
FR2746147A1 (fr) * 1996-03-15 1997-09-19 Schlumberger Ind Sa Oscillateur fluidique comportant un obstacle a profil ameliore

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396808A (en) * 1992-04-29 1995-03-14 Schlumberger Industries, S.A. Fluidic oscillator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1391215A (fr) * 1964-02-27 1965-03-05 Teknika Générateur d'ondes élastiques
FR2400690A1 (fr) * 1977-08-19 1979-03-16 Lennart Arne Mesureur de debit
US4244230A (en) * 1978-10-12 1981-01-13 Peter Bauer Fluidic oscillator flowmeter
WO1993022627A1 (fr) 1992-04-29 1993-11-11 Schlumberger Industries S.A. Debitmetre a oscillateur fluidique
FR2746147A1 (fr) * 1996-03-15 1997-09-19 Schlumberger Ind Sa Oscillateur fluidique comportant un obstacle a profil ameliore

Also Published As

Publication number Publication date
US6321790B1 (en) 2001-11-27
DE69821965D1 (de) 2004-04-01
CA2306923C (fr) 2005-12-13
AU9448898A (en) 1999-05-10
FR2769957B1 (fr) 2001-11-30
BR9812907A (pt) 2000-08-08
CA2306923A1 (fr) 1999-04-29
DE69821965T2 (de) 2004-12-16
AU745657B2 (en) 2002-03-28
EP1025366A1 (fr) 2000-08-09
CN1282407A (zh) 2001-01-31
FR2769957A1 (fr) 1999-04-23
JP2001521105A (ja) 2001-11-06
EP1025366B1 (fr) 2004-02-25
HUP0004903A3 (en) 2001-07-30
HUP0004903A2 (hu) 2001-05-28
KR20010024516A (ko) 2001-03-26
PL339807A1 (en) 2001-01-02
RU2208718C2 (ru) 2003-07-20

Similar Documents

Publication Publication Date Title
EP0524852B1 (fr) Oscillateur fluidique et debitmetre comportant un tel oscillateur
EP1025366B1 (fr) Oscillateur fluidique a fente prolongee
EP0708914B1 (fr) Oscillateur fluidique a large gamme de debits et compteur de fluide comportant un tel oscillateur
CH665481A5 (fr) Dispositif de mesure d'ecoulement et utilisation de celui-ci dans des systemes liquide/gaz a deux ou plusieurs phases.
CH630175A5 (fr) Debitmetre a tube de pitot.
FR3080683A1 (fr) Moyen de mesure de fluide
EP0886732B1 (fr) Oscillateur fluidique comportant un obstacle a profil ameliore
EP0592657B1 (fr) Oscillateur fluidique et debitmetre comportant un tel oscillateur
FR2776379A1 (fr) Compteur de gaz a filtres anti-poussieres
FR2690739A1 (fr) Débitmètre à oscillateur fluidique.
EP0835385B1 (fr) Oscillateur fluidique et procede de mesure d'une quantite volumique de fluide s'ecoulant dans un tel oscillateur fluidique
EP0805341B1 (fr) Dispositif de mesure du débit d'un fluide en écoulement à élément(s) modificateur(s) du profil de vitesses dudit écoulement
FR2635864A1 (fr) Debitmetre fonctionnant selon le principe de coriolis ii
WO2024079278A1 (fr) Sonde de captage de pression
FR2652904A1 (en) Fluid flow speed sensor
LU82432A1 (fr) Barrage rabattable non vibrant
EP0752092B1 (fr) Compteur de fluide a tourbillons comportant un double obstacle
BE1004451A6 (fr) Dispositif pour le refroidissment accelere d'un produit metallique en mouvement.
FR2508634A1 (fr) Debitmetre
WO2002063251A1 (fr) Compteur volumetrique de liquide
WO2024022817A1 (fr) Ensemble de nettoyage pour capteurs de véhicule automobile
FR2635865A1 (fr) Debitmetre fonctionnant selon le principe de coriolis iii

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98812223.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2306923

Country of ref document: CA

Ref document number: 2306923

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2000-1377

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1020007004067

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/003734

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 94488/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998947645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09529298

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998947645

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV2000-1377

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1020007004067

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 94488/98

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1020007004067

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998947645

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV2000-1377

Country of ref document: CZ