WO1999018215A1 - Recombinants de virus herpetique infectieux aviaire et vaccins recombinants prepares avec ces derniers - Google Patents

Recombinants de virus herpetique infectieux aviaire et vaccins recombinants prepares avec ces derniers Download PDF

Info

Publication number
WO1999018215A1
WO1999018215A1 PCT/JP1998/004468 JP9804468W WO9918215A1 WO 1999018215 A1 WO1999018215 A1 WO 1999018215A1 JP 9804468 W JP9804468 W JP 9804468W WO 9918215 A1 WO9918215 A1 WO 9918215A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
gene
recombinant
hvt
region
Prior art date
Application number
PCT/JP1998/004468
Other languages
English (en)
French (fr)
Inventor
Syuji Saito
Takashi Okuda
Original Assignee
Nippon Zeon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co., Ltd. filed Critical Nippon Zeon Co., Ltd.
Priority to US09/509,871 priority Critical patent/US6632664B1/en
Priority to EP98945596A priority patent/EP1026246B1/en
Priority to DE69836557T priority patent/DE69836557T2/de
Publication of WO1999018215A1 publication Critical patent/WO1999018215A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16311Mardivirus, e.g. Gallid herpesvirus 2, Marek-like viruses, turkey HV
    • C12N2710/16341Use of virus, viral particle or viral elements as a vector
    • C12N2710/16343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S424/00Drug, bio-affecting and body treating compositions
    • Y10S424/81Drug, bio-affecting and body treating compositions involving autoimmunity, allergy, immediate hypersensitivity, delayed hypersensitivity, immunosuppression, immunotolerance, or anergy

Definitions

  • the present invention relates to the integration of a foreign gene into a nonessential region of the genome of turkey herpes virus (hereinafter sometimes referred to as HVT) or the genome of Marek's disease virus (hereinafter sometimes referred to as MDV). Recombinant HVT and MDV, and vaccines using them. Background art
  • virus vector vaccines using genetic recombination techniques have been based on vaccines of the genus Boxhuinoles (Ogawa et al., Vaccine. _8: 486-490 (1990)) and adenovirus vectors. ⁇ Kuching (Hsu, KH et al., Vaccine, 607-612 (1994)), the strength of vaccines with Baculo Winores as a vector, and the vaccine with Herculus Winores as a vector ( Shin, M.-F. et al., Pro Natl. Acad. Sci. USA, 81: 5867-5870 (1984)).
  • genetically modified vector vaccines of the genus Herpesvirus have been actively studied in recent years.
  • the virus used as a virus vector for expressing a foreign antigen gene is human herpes virus (HSV) zoe eskie disease virus (PRVXVan Zi jl M., et al., J. Virol., 65: 2761). -2765 (1991)), turkey herpes innoles (HVT) (Morgan RW et al., Avian Pis. 36: 858-870 (1992)), and Marek's disease virus (MDV).
  • HVT virus and vaccine strain MDV are Because it is highly safe in poultry and has good pectin properties, it is attracting attention as a vector virus for birds.
  • HVT and MDV are transmitted in the form of box virus, which is released from the infected cells into the blood and then infects other cells. Infections are established between neighboring cells without adhering to any infection mode. Therefore, it is not affected by HVT or MDV-specific antibodies present in the bloodstream.
  • the genetically modified regions previously known in recombinant HVT or MDV include the TK region (Ross L. et al., 16th Internation al Herpes virus Workshop (1991)) and the US10 region (Sakaguchi M. et al. Vaccine, 12_: 953-957 (1994)), US2 region (Sondermeier, PJ et al., Vaccine, 11: 349-358 (1993)) and other genes that are not essential for the survival of HVT. It was only a report that a foreign antigen gene was incorporated into the gene.
  • the present inventors have conducted intensive studies to solve such problems, and as a result, have found that a gene insertion region of HVT or MDV capable of inserting many kinds of foreign antigen genes and stably expressing an antigen protein can be obtained.
  • the non-translated region of ⁇ or MDV mentioned here can be found, and various foreign antigen genes can be inserted into that region.
  • Recombinant HVT or MDV into which these foreign antigen genes have been inserted is prepared, and these recombinants are produced. By infecting the host with the virus, they found that the host provided a sufficient vaccine effect, and completed the present invention. Disclosure of the invention
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a recombinant gene having a foreign gene inserted into a specific site in a non-translated region of a virus belonging to the avian infectious herpes virus is inserted.
  • the present inventors have completed the present invention by producing a virus and finding out that this recombinant virus can be used as a vaccine.
  • the present invention relates to a gene region which is an untranslated region in a genome.
  • the present invention relates to avian infectious recombinant herpes viruses in which a foreign gene has been introduced.
  • the virus is preferably turkey herpesvirus (HVT) or Marek's disease virus (MDV).
  • Said untranslated region is preferably the open reading frame of the turkey herpes virus or the Marek's disease virus, which corresponds to each open reading frame of the human simple virus.
  • Non-translated regions existing between the frames, and particularly preferred foreign gene insertion sites are (1) between UL44 and UL45, (2) between UM5 and UL46, and (3) between UL41 and UL42. , (4) between UL40 and UL41, (5) the downstream region of the gB gene, (6) between UL53 and UL54, and (7) at least one insertion site selected from the group consisting of UL36 and UL37. It is.
  • the exogenous gene is preferably a gene derived from a pathogen of an infectious disease of birds, and particularly preferably an antigen gene derived from a pathogen selected from the group consisting of viruses, bacteria, fungi, and protozoa. is there.
  • the foreign gene is preferably Newcastle Disease Virus (NDV), Gumbo Disease Virus (IBDV), Infectious Laryngotracheitis Virus (ILTV), Infectious Bronchitis Virus (IBV). , Mycoplasma (MG), and a gene derived from a pathogen selected from the group consisting of coccidia:
  • the present invention also relates to chicken chicken containing the above-mentioned recombinant virus as an active ingredient.
  • the virus used in the present invention is a virus that infects birds and belongs to the genus Herpesvirus (avian infectious herpesvirus). ) Is preferred. It is a member of the genus Herpesvirus, which is a powerful species of inoculant that persists permanently in infected animals in the presence of latent or persistent infection. This is because it has properties.
  • Herpesvirus avian infectious herpesvirus
  • the above-mentioned virus may be able to impart a long-acting effect to infected birds over a long period of time, and is expected to be effective as a vaccine.
  • the HVT or MDV used in the present invention is not particularly limited as long as it can be obtained naturally or obtained from ATCC or the like for a fee or free of charge.
  • HVT include those belonging to the gammavirus subfamily, which are naturally non-pathogenic and non-neoplastic, and are used as vaccines for poultry.
  • Can be Specific examples include FC 126 (AT CC VR-584B), PB-THV1, H-2, YT-7, WTHV-1 and HPRS-26.
  • FC 126 strain is preferably used. be able to.
  • specific examples of MDV include CV 1988 and SB1.
  • the above-mentioned virus is grown in an appropriate host cell to obtain genomic DNA. Then, the untranslated region in the genomic DNA is confirmed, and a foreign gene described later is inserted into the region.
  • the host and growth conditions for growing the virus are appropriately selected according to the virus to be propagated. For example, when growing HVT, CEF, embryonated chicken eggs, chicken kidney cells, etc. are used as host cells. You. Incubate at around 37 ° C for 3-4 days in Eagle's MEM, Leibovitz L-15 McCoy's 5A (1: 1 mixture) medium.
  • Extract DNA from cells cultured as described above according to a standard method That is, the cells cultured in a monolayer are detached, the centrifuged supernatant is removed, the protein is denatured and removed with a lysis buffer, and then A is extracted with phenol and ethanol.
  • the untranslated region of the DNA of the virus obtained in this way is confirmed as described below.
  • the untranslated region is a region that has no 0RF and does not define the amino acid sequence of the protein expressed by translation, and 0RF is involved in both transcription, translation, and protein expression.
  • Base region that does not exist.
  • the nucleotide sequence contained in this region may be a substitution, deletion or addition of a base as long as the region does not contain 0RF.
  • the region where the foreign gene is inserted is called the foreign gene insertion region, and the site where the foreign gene is inserted is called the foreign gene insertion site.
  • the foreign gene insertion region can be obtained as follows.
  • the case of HVT or MDV will be described as an example.
  • the untranslated regions of these viruses are obtained as follows. First, regions whose sequences are mutually determined, such as human simple herpes virus type I (HSV-1), whose entire nucleotide sequence has been elucidated, and MDV-1, which has a nucleotide sequence highly homologous to HVT. For example, select the sequence before and after the sequence that is presumed to be the untranslated region.
  • HSV-1 human simple herpes virus type I
  • MDV-1 which has a nucleotide sequence highly homologous to HVT.
  • a DNA primer is synthesized based on these sequences, and a polymerase chain reaction (PCR) is performed under predetermined conditions using the HVT or MDV DNA as type III under predetermined conditions. Obtained by amplifying a specific gene o T The absence of ORF in the amplified gene is confirmed by DNA sequence analysis, and there is a gene mechanism related to the transcription and translation of 0RF (such as a mechanism including an enhancer, a motor, and a terminator). Confirm the position where no foreign gene is inserted and determine the foreign gene insertion region.
  • PCR polymerase chain reaction
  • Additions, deletions, and substitutions of specific sequences as described above include in vitro mutations (in vitro mutagenes is), PCR, site-directed mutations (site-di rected mutagenesis), and It can be performed using a general method such as the site-specific mutation method described in JP-A-6-16709.
  • the foreign gene insertion region may be at least 10 bp before and after the foreign gene insertion site including the untranslated region, preferably at least 100 bp, more preferably at least 500 bp.
  • the foreign gene insertion site is not particularly limited as long as it is within the untranslated region. Specific examples include (1) between UL44 and UL45, between UL45 and UL46, and (2) UL41. UL42, (3) between UU0 and UL41, (4) downstream region of gB gene, (5) between UL53 and UL54, (6) UL36 and UL Between 37 and. These were the focus of the HSV-1 at the 16th International Health Virus Workshop, which was held on July 7-12, 1991, in Pacific Grove, California, USA. Is published.
  • HSV-1 preferred are not only HSV-1 but also MDV (1) and (4) in which homology is confirmed at 0RF, more preferably 0V.
  • the untranslated region can be estimated (1).
  • the sequence containing the untranslated region must be cloned into a brassmid. There is no particular limitation.
  • plasmids such as PBR322, pBR325, pBR327, pBR328, pUC18, pUC19, pUC7, pUC8, and pUC9
  • phages such as lambda phage, M13 phage, etc.
  • pHC79 pHC79.
  • the untranslated region obtained as described above is incorporated into these plasmids by a conventional method.
  • a mutation is made to a specific portion of the untranslated region that has been cloned into a plasmid such as the above, and a new restriction enzyme-cleaved site is inserted. And insert the foreign gene into it.
  • the method of adding a mutation may be in accordance with a conventional method, and a method commonly used by those skilled in the art, such as in vitro mutagenes is or PCR, may be used. That is, in the PCR method, a mutation such as deletion, substitution, or addition of 1 to 2 bases is generated in a PCR primer, and the mutation can be generated by using this primer.
  • the foreign gene introduced here includes both autologous genes and non-autologous genes that are not originally contained in the region, and may be an antigen gene of avian infectious herpesvirus. Desirable.
  • genes include, for example, genes derived from pathogens of avian infectious diseases. Viruses, bacteria, fungi, protozoa, and the like can be mentioned as the pathogen causing infectious diseases in birds.An antigen gene of these pathogens, that is, a gene encoding an antigenic determinant is preferable. Can be used for
  • Newcastle Disease Virus which is a problem throughout the life of the chicken
  • Gumbo Disease Virus IBDV
  • infectious laryngotracheitis which is a problem after middle chicks Virus (ILTV)
  • IBV infectious bronchitis virus
  • MG mycoplasma
  • these genes can be inserted into avian infectious herpesviruses such as HVT and MDV to produce recombinant DNA.
  • the virus can be expressed as an antigen in the body of infected chickens. This also allows it to be used as an effective vaccine.
  • recombinant viruses are produced by incorporating the gene into avian infectious herpes viruses such as HVT or MDV, and the proteins expressed in the body of birds infected with these viruses are structural proteins.
  • the protein may be either a protein or a non-structural protein, and is not particularly limited as long as it is a protein spanning a DNA sequence.
  • HN protein, F protein, and NP protein are listed, and in IBV, M protein, N protein, and spiked protein are listed.
  • IBDV all proteins from VP1 to VP5, ILTV Is a herpesvirus, so proteins that are homologous to HSV-1 or MDV or HVT (especially gB proteins or proteins equivalent to UL32), and mycoplasma have additional proteins And HMW-related proteins, 40K proteins, 66K proteins, 67K proteins (the sequence is described in International Publication No. ff094 / 23019), and the like.
  • Such a foreign gene is called a heterologous antigen gene.
  • the promoter to be used may be a synthetic promoter or a natural promoter, and can function effectively as a promoter in a transcription system carried in cells infected with HVT or MDV. It is not particularly limited as long as it is a product.
  • promoters are, of course, unique promoters possessed by HVT or MDV, or promoters, DNA or eukaryotes derived from viruses other than HVT or MDV.
  • prokaryotic or synthetic promoters can be used in the present invention as long as the above requirements are satisfied.
  • herpesvirus thymidine kinase promoter Ross LJ, Gen. Virol. 74: 371-377 (1993)
  • the gB protein promoters of HVT and MDV see above.
  • IE Promoter of Human Cytomegalovirus (HCMV) Alting-Mees MA, Nucleic Acid Res., 17: 9494 (1989)
  • SV40 Promoter (Gunning P., Proc. Natl.) Acad.
  • Plasmids are constructed by incorporating these into the above-mentioned untranslated regions in such a manner that foreign antigen genes are expressed under the control of a specific promoter. Plasmids constructed in this way can recombine with specific regions of the HVT and MDV genomes to create recombinant viruses.
  • the introduction of the above-described foreign gene into the untranslated region of the genome of the bird-infected Herbes virus may be performed according to a standard method.
  • the case of HVT is explained as an example.
  • the plasmid obtained by introducing a foreign antigen gene into the HVT untranslated region obtained as described above was injected into HVT-infected cells by electroporation, the calcium phosphate method, and Liboflu Introduce with a method using cutin or a gene gun. From the viewpoint of high transfection efficiency, it is preferable to adopt a method using electroporation.
  • the amount of the plasmid to be introduced is in the range of 0.1 to 1000 g, the amount of HVT-DNA between the plasmid and the homologous region of the plasmid in the cells into which such a plasmid is introduced is determined. The incidence of recombinant viruses is high.
  • one or more foreign genes are incorporated into the untranslated region of plasmid, and at least one of them is an enzyme gene that develops a specific substrate. It is good to keep it.
  • enzyme genes include, for example, -galactosidase gene.
  • Recombinant HVT containing the yS-galactosidase gene can be clearly distinguished from non-recombinant virus because it exhibits a specific color upon addition of a substrate such as brugal. Therefore, by culturing cells infected with a virus incorporating such a gene in a medium to which a specific substrate has been added, a virus-infected cell that has developed color can be selected. By repeating this operation, the recombinant virus can be purified.
  • the method for preparing the live secretin of the present invention is not particularly limited, but it can be prepared, for example, by the following method.
  • the cells After infecting cells infected with the recombinant virus of the present invention into cells capable of growing the virus (hereinafter referred to as host cells) and growing the cells, the cells are detached with a scraper or trypsin, and centrifuged. To separate infected cells and supernatant.
  • a cell derived from a tree is preferable, and CEF (nitric embryo fibroblast), chicken kidney cell and the like can be suitably used.
  • the resulting infected cells are suspended in a culture medium containing 10% dimethyl sulfoxide (DMS0) and stored frozen in the presence of liquid nitrogen. When used as a peptide, dissolve this cryopreserved product in 100 volumes of phosphate buffer.
  • DMS0 dimethyl sulfoxide
  • the stabilizer and other components for storing the infected cells under liquid nitrogen are not particularly limited as long as the virus-infected cells can stably survive and have no pharmacological problem with the recipe. Not done.
  • the method of administering the raw vaccine of the present invention to poultry is not particularly limited, but a method of inoculating subcutaneously by injection is generally used and is the same as the current HVT vaccine.
  • the amount of inoculation may be the same as the conventional vaccine.
  • This vaccine is only used as a vaccine for herpesvirus infections.
  • the antigen genes inserted into the untranslated region can be used as pectin of a disease caused by a pathogen from which those genes are derived.
  • the pectin of the present invention can be used as a useful recombinant HVT multivalent pectin.
  • HVT-DNA The preparation of HVT-DNA was basically performed according to the method of ee et al. (J. of Virol., 7: 289-294 (1971)).
  • HVT FC-126 strain
  • infected cells 5 x 10 7 cells cultured at 37 ° C for 4 days in a mixed medium of Liivopits Z McCoy 5A (1: 1) were scraped with a scraper. After centrifugation at low speed (2,000 rpm, 5 minutes). Discarded supernatant, the precipitated infected cells in 10 volumes Li cis hits carbonochloridate Tsu off ⁇ chromatography (0.15M NaCl, 0.1M EDTA, 1 % SDS, 100 of g Zml Pr oteinase K) a was Karoe 0
  • the protein was denatured by adding an equal volume of ethanol, and this operation was repeated twice to extract HVT-DNA.
  • the extracted DNA was recovered by ethanol precipitation.
  • UL44 and 45 are described in Coussens et al.
  • UL46 is described in JP-A-6-292258.
  • PCR was performed as follows and cloned into PUC18.
  • DNA was obtained from the CEF infected with the HVT-FC126 strain by the method of Example 1, and this DNA lOOng was used as a template.
  • primer set A 50 pmol each consisting of primer 1 (CCCCGAATTC ATGGAAGAAA TTTCC; SEQ ID NO: 1) and primer 2 (CGCGGGCCTT ATTGGCCAAA ACACACCTCT AACGGTTACT; SEQ ID NO: 2) and primer 3 (GCGCGGCCAGACAGACTAGACAGAC
  • primer set B 50 pmol each
  • primer 4 CCCCAAGCTT TCAAGTGATA CTGCGTGA; SEQ ID NO: 4
  • a mixture of these two PCR products (mixing ratio 1: 1, mixed with lOOng each) was used as a template at 45 ° C for 1 minute using Primer-1 and Primer-4.
  • the Sfil site was introduced between the 0RFs of UL45h and UL46h by performing 30 cycle PCR with 1 minute at 73 ° C and 3 minutes at 73 ° C.
  • the obtained broad product was digested with EcoRI and Hindlll, and the fragment was ligated to the EcoRI-Hindlll site of pUCl8 using T4 ligase (Takara Shuzo) 4 units at 16 ° C for 30 minutes. After incubating and inserting, pNZ45 / 46Sfi was constructed.
  • a primer consisting of primers 1 and 5 (GC GCGGCCAA TAAGGCCAAC ATCGGGACGT ACATCAT; SEQ ID NO: 5) was used as a template with DNA 10 Ong) obtained from the CEF infected with the HVT-FC126 strain.
  • Set C 50 pmol each
  • Primer 6 (GC PCR was performed in the same manner as in Example 2 using GCGGCCTT ATTGGCCTTA AATACCGCGT TTGGAGTAAA; SEQ ID NO: 6) and a primer set D consisting of primer 14 (50 pmol each). Approximately 10 ⁇ g of each product was obtained.
  • This product was digested with EcoRI and Hindlll, and the obtained fragment was inserted into the EcoRI-Hinddlll site of pUC18 in the same manner as in Example 2 to construct pNZ44 / 45 Sfi.
  • Synthetic DNA (5'-AGCTGCCCCCCCGGCAAGCTTGCA-3 '(SEQ ID NO: 7)) was inserted into the Hindlll-Pstl site of PUC18, and then this portion was made double-stranded with DNA polymerase.
  • a synthetic DNA (5′—TCGACATTTTTATGTAC-3 ′ (SEQ ID NO: 8)) was inserted into the Sail—Kpnl site of the obtained plasmid, and similarly double-stranded with DNA polymerase. .
  • This PUC18X was digested with Hindlll and Pstl to prepare a fragment obtained by annealing synthetic DNA 1 (AGCTTGCCAA TAAGGCTGCA; SEQ ID NO: 11) and synthetic DNA 2 (ATGGCCCGCC GGCTGACCG C; SEQ ID NO: 12). This was inserted into the above Xhol site using T4 license (Takara Shuzo) to construct pU18 XG.
  • Synthetic DNA 3 (GCGGTCAGCC GGCGGGCCAT; SEQ ID NO: 13) and Synthetic DNA 4 (GGTAAACTGC AGACTTGGCA GT; SEQ ID NO: 14) were introduced into the PU18XG Kpnl-EcoRI site to introduce a poly-A addition signal and Sfil site.
  • the annealed fragment was inserted by T4ligase to construct pUCpolyASfi:
  • Synthetic DNA 5 (ACTGCC AAGT CTGCAGTTTACC; SEQ ID NO: 15) was inserted into the Hindlll-Pstl site of this pMCSpolyASfi in the same manner as in Example 2 to construct pGIMCSpolyASfi.
  • a set of primers E and M13P7 comprising primer 7 (SEQ ID NO: 12) and primer 8 (SEQ ID NO: 15) (PCR was performed under the same conditions as in Example 2 using primer set F consisting of Primer 9 (SEQ ID NO: 13) and Toyobo Co., Ltd. About 10 g of each product was obtained.
  • the amplification product lOOng obtained using the above two primer sets was mixed at a mixing ratio of 1: 1, and the resulting mixture was used as a template. This was performed using the M13P7 primer and primer-18. PCR was performed in the same manner as in Example 2 to obtain about 10 / g of a PCR product (1).
  • a mixture obtained by mixing lOOng of each of the products of the two primer sets in a ratio of 1: 1 was used as a template. This time, PCR was performed with primers of primer 10 and M13P8 primer, and the PCR product was obtained. About 10 g of (2) was obtained.
  • Nsil-Nhel fragment of about 600 bp including the CMV promoter of pBK-CMV was inserted into the Pstl-Xbal site of pUC19 as in Example 2 to construct pUCCMV.
  • pUC19 is digested with BamHI, and then extracted with phenol: black mouth form, recovered by ethanol precipitation, and ligated with the ⁇ -galactosidase gene prepared above. Then, a hybrid plasmid pNZ66 was prepared.
  • pUWP-1 Plasmid containing a promoter of DNA encoding 7.5 K dalton peptide of vaccinia virus WR strain
  • Hp all and EcoRI and 1.5% low melting point About 0.26 kb fragment containing the 7.5K promoter was separated by agarose electrophoresis (70 V, 6 hours), extracted with phenol: cloth form (1: 1), and precipitated with ethanol. DNA was recovered. The cohesive end of this DNA fragment was made blunt by DNA polymerase.
  • PNZ76 The resulting hybrid plasmid was designated PNZ76.
  • PNZ76 was digested with BamHI, and an approximately 2.9 kb fragment containing no -galactosidase gene was recovered from 0.8% agarose gel.
  • hybrid phage mplO-HN180 was digested with Bglll and BamHI, and a DNA fragment of about 1.8 kb of NH gene was recovered from 0.8% agarose gel.
  • the resulting plasmid was used to transform a competent Escherichia coli TG-1 strain, and the plasmid was extracted according to a conventional method to prepare a hybrid plasmid containing the HN gene. And was named pNZ-187.
  • the Hindlll-BamHI fragment containing the CMV promoter overnight region was constructed by PCR in (2) by PCR.
  • the BamHI fragment was replaced as described in Example 2 to construct pCMV-HNCBgll-).
  • Nsil-Nhel fragment of about 600 bp containing the RSV motor of pBK-RSV was inserted into the Pstl-Xbal site of PUC19 as described in Example 2 to construct pUCRSV.
  • pBK-RSV (STRATAGENE, lOOng) template PCR was performed in the same manner as in Example 2 using primer 13 (CGGGAGCTCT AATTGTTTGT G; SEQ ID NO: 18) and primer 14 (CGGGAATTCG CTTACAATTT; SEQ ID NO: 19) (50 pmol each).
  • primer 13 CGGGAGCTCT AATTGTTTGT G; SEQ ID NO: 18
  • primer 14 CGGGAATTCG CTTACAATTT; SEQ ID NO: 19
  • the fragment amplified by this PCR was double-digested with Sacl and EcoRI, and inserted into the Sacl-EcoRI site of pUCR SV as described in Example 2 to construct pUCRSV-pA.
  • the plasmid XLIII-10H containing the NDV F gene and HN gene (Virus Research. 7_: 241-255 (1987)) was used.
  • PNZ76 prepared as described above was double-erased with BamHI and Smal, and about 3. Okb and BamHI-Smal fragments excluding the lacZ gene part were recovered. The recovered fragment was ligated with a fragment completely containing about 2. 1 kb of the F gene by ligase to transform a competent E. coli TG1 strain.
  • Plasmid was prepared from colonies grown on LB agar medium containing 50 g mL of ampicillin by the same procedure as above. This plasmid was digested with restriction enzymes (BamHI and Smal), and the desired clone was identified and named PNZ98 '.
  • This ⁇ 98 ′ includes the full length of the F gene and about 300 bp at the 5 ′ end of the HN gene. In order to remove this part, ⁇ 98 'is double digested with Smal and Kpnl, resulting in an approximately 4,150 bp Smal— P
  • the Kpnl fragment was recovered by 0.8% agarose gel electrophoresis.
  • PNZ98 was double-digested with Smal and Avail in the same manner, and Smal-Avall of about 650 bp was recovered by 1.5% agarose gel electrophoresis.
  • the recovered fragment was exchanged with the Pstl-BamHI fragment 75 bp contained in PNZ98RSV3 'to construct pNZ98RSVpA.
  • PRSV-F was constructed by ligating the Mlul-Sacl-cut 2,892 bp fragment of pRSV constructed in Example 5 and the Mlul-Sacl-cut 2,262 bp fragment containing the NDV F gene of pNZ98RSVpA. .
  • a 62 bp BamHI-Kpnl fragment of pBluescript SK + was inserted into the BamHI-Kpnl site of pCMV-HN (BglI-) constructed in Example 6 as described in Example 2 to construct pCMV-NO MCS.
  • pBK-RSV (STRATAGENE) was Using primer 15 (CGGGGGCCCT AATTGTTTGT G; SEQ ID NO: 20) and primer 16 (CGGGGTACCG CTTACAATTT; SEQ ID NO: 21) as PC templates, PCR was carried out in the same manner as in Example 2, and pA of SV40 was added. A fragment with a signal was generated.
  • the fragment amplified by this PCR was double-digested with Apal and Kpnl, and inserted into the Apal-Kpnl site of pCMV / MCS as described in Example 2 to construct pCMVZMCSpA.
  • RNA was extracted from the IBDV field isolate Okayama strain by a conventional method, and cDNA was prepared using reverse transcriptase and a cDNA synthesis kit (Takara Shuzo).
  • a region corresponding to VP2 was identified as a primer 17 (GCAAGCTTGC GATGACGAAC CTGC; SEQ ID NO: 22) based on the gene sequence described in JP-A-62-503006. 18 (GCGTCGACTC ACCTCCTTAG GGCCC; SEQ ID NO: 23).
  • pCMVZ MCSpA was partially digested with HindIII and then partially digested with SaII to obtain a 3,687 bp fragment.
  • the IBDV fragment obtained by the above PCR was double-digested with Hindlll and Sail and inserted into a 3,687 base pair fragment as described in Example 2 to obtain pCMV-VP2S (Okayama).
  • the Bgll fragment of pRSV containing the RSV promoter constructed in Example 5 was inserted into the Sfil site of pNZ45Z46Sfi constructed in Example 2 as described in Example 2 to construct PNZ45Z46RSV.
  • the Bgll fragment of pUC18Xlac containing lacZ constructed in Example 9 was inserted into the Sfil site of PNZ45Z46RSV as described in Example 2 to construct pNZ45Z46RSVlac.
  • Example 8 The Ball fragment of pCMV-VP2S (0kayama) containing the VP2 gene of IBDV constructed in Example 8 was inserted into the Sfil site of pNZ45 / 46RSVlac constructed in Example 10 as described in Example 2, / Built 46VP2S
  • NZ45 / 46HNF A Bgll fragment of pCMV-HN (BglI-) containing the NDV HN gene constructed in Example 6 was inserted into the Sfil site of pNZ45 / 46RSnac constructed in Example 10 as described in Example 2, PNZ45 / 46HN was constructed. Further, a Bgll fragment of pRSV-F containing the F gene of NDV constructed in Example 7 was inserted into the Sfil site of PNZ45N46HN to construct PNZ45Z46HNF.
  • the Bgll fragment of pCMV-HN (BglI-) containing the NDV HN gene constructed in Example 6 was inserted into the Sfil site of pNZ44Z45RSVlac constructed in Example 10, to construct PNZ44Z45HN.
  • the Bgll fragment of pRSV-F containing the F gene of NDV constructed in Example 7 was inserted into the Sfil site of pNZ44Z45HN to construct pNZ4445HNF.
  • PNZ45Z46HNF-VP2S was constructed by inserting the Bgll fragment of pCMV-VP2S (Okayama) containing the VP2 gene of IBDV constructed in Example 8 into the Sfil site of PNZ45Z46HNF constructed in Example 12:
  • the PNZ44Z45VP2S-HN was constructed by inserting the Bgll fragment of pCMV-HN (BglI-) containing the NDV NH gene constructed in Example 6 into the Sfil site of PNZ44Z45VP2S constructed in Example 11. Furthermore, the Bgll fragment of pRSV-F containing the F gene of NDV constructed in Example 7 was inserted into the Sfil site of pNZ44Z45VP2S-HN to construct pNZ44Z45VP2S-HNF.
  • the monolayer of CEF separated by trypsin was converted to Saline G (0.14 M sodium chloride, 0.5 mM sodium chloride, 1. ImM phosphoric acid-sodium hydrogen hydrogen,
  • the cells were suspended in 1.5 mM dihydrogen-sodium phosphate, 0.5 mM magnesium chloride '6 hydrate, 0.011% glucose) to prepare a cell suspension.
  • Example 11 12 and plus Mi de for recombinant produced in 13 pNZ44 / 45VP2S, pNZ44 / 45HNF , pNZ45 / 46 VP2S, pNZ45 / 46HNF, pNZ44 / 45VP2S -HNF pNZ45 / 46HNF — VP2S (40 g) and HVT DNA prepared in Example 1 were mixed at 100 // g each.
  • the solution was allowed to stand at room temperature for 10 minutes, and electroporated at room temperature using Gene Pulser (manufactured by Bio-Rad) under the conditions of 3.0 KVCDT 1 , 0.4 msec, and 25 ° C.
  • Gene Pulser manufactured by Bio-Rad
  • the cells into which plasmid and HVT DNA have been introduced are then spread on a 9 cm-diameter culture dish (Falcon), and incubated at 37 ° C until the HVT-specific black is formed. Cultured for days to 5 days.
  • the plaques were formed cells detached using 1% Application Benefits trypsin, similarly Bok Li were mixed with cells of CEF (2 X 10 7 cells) was peeled off in god of military arts, culture 96 ⁇ el flat bottom multiplay Bok (Falcon Co. Limited dilution to 10 sheets. These plates were further cultured at 37 ° C. for about 4 to 5 days until HVT-specific plaques were formed in each well. Then, in half of each plate; 100 ⁇ g / well of CEF culture medium containing 100 ⁇ g Zml and 0.8% agar, which is a chromogenic substrate for S-galactosidase (Bluogal: Gibco). And incubated at 37 ° C for about 4 hours.
  • the number of blue plaques in each cell was counted, the plate with the highest number of blue plaques was selected, and CEF containing recombinant HVT-infected cells was collected by adding 1% trypsin to any 20-well. It was mixed with X 10 5 cells were seeded in culture 96 Uweru flat bottom multiplay Bok respectively. The process of passing once from a 96-well flat bottom multi-plate for culture to a 96-well flat bottom multi-plate for culture is repeated as a single screening until all the cells turn blue and black is added. The virus was purified by repeating the process until all plaques turned blue. Normally, it can be purified with about 5 to 10 screenings.
  • the infected cells After growing the infected cells on a 9 cm diameter culture dish, the infected cells were further grown on a 16 cm diameter culture dish, and the titer of the recombinant HVT was measured.
  • the titer was 1-6 ⁇ 10 5 TCID 5 .
  • Recombinant HVTs made from each recombinant plasmid are called as shown in Table 1 below.
  • the recombinant virus DNA (HF003, HF004) prepared in Example 14 was extracted by the same method as the HVT-DNA extraction method of Example 1.
  • the resulting recombinant virus DNA (HF003, HF004), its recombinant plasmid (pNZ45Z46VP2S, pNZ44 / 45HNF) and the parental virus DNA were digested with BamHI and these were subjected to 0.8% agarose electrophoresis. The samples were analyzed by Southern blot hybridization and autoradiography.
  • the probe used was a fragment of PNZ45Z46VP2S or pNZ4445HNF digested with EcoRI using the Multipriming Labeling System (Amersham "P-labeled probe DNA.
  • the above-mentioned recombinant HVT-infected cells were cultured on a tissue culture chamber slide at 37 ° C with CEF until plaques appeared, and fixed with cold acetate.
  • the FITC-labeled anti-mouse IgG antibody, FITC-labeled anti-mouse IgG antibody, and FITC-labeled anti-Egret IgG antibody were used as the labeled antibodies. Diluted.
  • Each solution containing the above antibody was brought into contact with cells on a chamber slide fixed with cold acetone, left at room temperature at 100% humidity for about 1 hour, and washed three times with PBS. Thereafter, the mixture was reacted with a diluent of FITC-conjugated anti-chicken immunoglobulin or anti-mouse IgG for about 1 hour at room temperature. Then, the cells were washed three times with PBS, and the reactivity was examined by microscopic observation under a fluorescence excitation wavelength (493.5 nm).
  • HVT parent strain FC-126 was infected as a control virus, and cells infected with this parent strain virus were used as control cells. The results are shown in Table 2. did.
  • Mab represents a monoclonal antibody. +: Reaction, one: no reaction
  • each recombinant HVT was placed under the back skin of the chicken at 10 4 TC ID 5 .
  • Commercially available live NDV vaccine (Japan Institute for Biological Sciences) used for positive control group was inoculated into 4-day-old chicks as instructed.
  • Chickens vaccinated with uninoculated 0Z100 recombinant HVT were 100% protected against NDV challenge.
  • the HI antibody titer was as low as 2 times or less in the FC 126 vaccinated group and the non-vaccinated group, but in the other groups, it was 128 to 1024 times in all chickens.
  • each recombinant HVT is transferred to the back skin of the chickens.
  • Below 10 4 TCID 5 . was inoculated using a 26 G needle.
  • a commercially available live NDV vaccine (Kitasato Research Institute) used for the positive control group was inoculated into 16-day-old chicks as instructed.
  • Example 19 Chicken vaccine effect experiment (chicken with transfer antibody)
  • Example 14 Commercially available chickens were inoculated to determine whether or not the recombinant HVT obtained in Example 14 exerts vaccine effects on chickens having a transfer antibody.
  • the chicken used was a fresh chick from a commercially available white leghorn (Dekalb chicken, Kanagawa Poultry Federation).
  • Example of HF004 and HF006 Subcutaneous inoculation was performed in the same manner as in 17.
  • the HI antibody titer at the early age was 97 (average value of 20 birds).
  • the group vaccinated with the recombinant HVT showed almost perfect vaccine effect on the NDV challenge.
  • the HI antibody titer at the time of challenge was clearly higher than the FC 126 vaccinated group (ku2) and the non-vaccinated group (ku2) (16 and 15.5).
  • a recombinant turkey herb in which a foreign gene is inserted into a gene region that is an untranslated region in a turkey virus virus genome. And a pectin containing the recombinant virus and the recombinant turkey herpesvirus.

Description

明 細 書 鳥類感染型ヘルぺス属ウィルスの組み換え体、 およびこれを利用し た組み換えワクチン 発明の分野
本発明は、 七面鳥へルぺスウィルス (以下、 HVT という こ とがあ る) のゲノ ムまたはマレッ ク病ウィルス (以下、 MDV という こ とが ある) のゲノムの非必須領域に外来遺伝子を組み込んだ組み換え HV T および MDV 、 及びそれを利用したワ ク チ ンに関する。 背景技術
従来、 遺伝子組み換え手法を使つたウィルスベク タ一ワクチンは 、 ボッ クスウイノレス属をべクタ一と したワクチン (Ogawa ら、 Va ccine. _8 : 486-490 ( 1990) )、 アデノ ウイルスをベク ターと したヮ クチン (Hsu, K. H. ら、 Vaccine, 607-612 ( 1994 ) ) 、 バキュ ロ ウイノレスをベク ターと したワ ク チ ンのほ力、、 ヘルぺスウイ ノレス属 をべク タ一と したワク チン (Shin, M. - F. ら、 Pro Nat l. Acad. Sci. USA, 81 : 5867-5870 ( 1984) )が知られている。 中でもヘルべ スウイルス属の遺伝子組み換えべクターワ ク チ ンは近年盛んに研究 されている。
外来抗原遺伝子を発現させるウィルスベク タ一と して用いるウイ ルスは、 ヒ トヘルぺスウィルス(HSV) ゃォ一エスキー病ウィルス(P RVXVan Zi j l M., ら、 J. Virol. , 65 : 2761-2765 ( 1991) ) 、 七面 鳥ヘルぺスゥイノレス(HVT) (Morgan R. W. ら、 Avian Pis. 36 : 858- 870 ( 1992) ) 、 マレッ ク病ウィルス(MDV) などが知られている。 こ れらの中でも HVT ウィルスおよびワクチン株 MDV は接種対象動物と なる家禽での安全性が高く 、 ヮクチン特性も良好であることから、 鳥類に対するべク夕一ウィルスと して注目されている。
また、 HVT および MDV の感染様式と して、 感染細胞から他の細胞 にウィルスが感染する際、 ウィルスが感染細胞から一旦血中に放出 されてから他の細胞に感染するというボッ クスウィルスのような感 染様式をと らず、 隣り合う細胞へ、 細胞間 -細胞間で感染が成立す る。 このため、 血流中に存在する HVT または MDV 特異的抗体の影響 を受けにく い。
従来、 親鳥からの移行抗体(Maternal ant ibody) の存在によって 、 ウィルス生ワクチンの効果が減弱され、 十分な効果を発揮できな いという問題があった。
近年、 鶏へのワクチン接種法の一つと して、 発生途中の鶏卵内に ワクチンを接種する方法も開発され、 flVT または MDV のワクチンと しての有用性も認められている。
しかしながら、 組み換え HVT も し く は MDV でこれまで知られてい る遺伝子組み換え領域は、 TK領域 (Ross L. ら、 16th Internat ion al Herpes vi rus Workshop ( 1991 ) ), US10領域 (Sakaguchi M. ら、 Vaccine, 12 _ : 953-957 ( 1994 ) ) , US 2領域 ( Sondermei j er, P. J . ら、 Vaccine, 11 : 349-358 ( 1993 ) ) などの HVT の生存に非必須 と考えられる遺伝子の中に外来抗原遺伝子を組み込むという報告ば かりであった。 このような非必須領域への組み込みは、 外来遺伝子 を、 非必須とはいえ本来 HVT で発現するべき遺伝子、 すなわち抗原 決定基となる遺伝子の代わりに発現させるため、 HVT も し く は M の抗原性を減弱させる可能性がある。 そればかりでなく 、 挿入部分 のオープン · リ 一ディ ング · フレーム(0RF) の転写及び翻訳に関係 した遺伝子機構 (ェンハンサ一、 プロモータ一、 ター ミ ネ一ターな ど) 力 挿入遺伝子の発現に対して悪影響を及ぼす可能性を否定で きない。
事実、 多く のウィルスで、 非必須と考えられるタ ンパク質をコ一 ドする遺伝子領域を欠失させたり、 その部分に外来遺伝子を組み込 んだり した場合に、 ウィルスの形状が変化したり抗原性が低下した りすることが報告されている。 さ らに、 弱毒ワクチンの調整方法と しても、 外来遺伝子を組込む方法が用いられているケースがある。 また、 TK領域に外来遺伝子を挿入して発現させたときに、 発現遺 伝子の抗原性が低下するという報告もある (Ross L. ら、 J. Gen. V irol. , 74 : 371 - 377 ( 1993 ) )。 さ らに、 特定の 0RF 内に揷入でき る抗原遺伝子の長さが限られてしま うため、 多く の抗原遺伝子を揷 入できないなど、 ワクチンと して多く の問題点がある
本発明者らは、 かかる問題点を解決すべく鋭意研究を進めた結果 、 何種類もの外来抗原遺伝子を揷入でき、 かつ安定的に抗原タ ンパ ク質を発現できる HVT または MDV の遺伝子挿入領域、 つま り ここで いう ΗΠ または MDV の非翻訳領域を見いだし、 その部分に種々の外 来抗原遺伝子を挿入できること、 そしてこれらの外来抗原遺伝子が 挿入された組み換え HVT または MDV を作製し、 これらの組み換えゥ ィルスを宿主に感染させることにより、 宿主側に十分なワクチン効 果を付与する事を見いだし、 本発明を完成するに至ったのである。 発明の開示
本発明の発明者らは、 上記の課題を解決すべく鋭意研究を重ねた 結果、 鳥類感染型ヘルぺス属ウイルスに属するウイルスの非翻訳領 域中の特定の部位に外来遺伝子を挿入した組み換えウィルスを作製 し、 この組み換えウィルスをワクチンと して使用できることを見出 し、 本発明を完成したものである。
すなわち、 本発明は、 ゲノ ム中の非翻訳領域である遺伝子領域に 外来遺伝子が揷入された、 鳥類感染型組み換えヘルぺス属ウィルス に関する。 ここで、 上記ウイルスは、 好ま し く は七面鳥ヘルぺスゥ ィルス(HVT) またはマレッ ク病ウィルス(MDV) である。
前記の非翻訳領域は、 好ま し く は、 ヒ ト単純へルぺスウィルスの 各オープン . リ ーディ ング ' フレームに相当する七面鳥ヘルぺスゥ ィルスまたはマレッ ク病ウィルスのオープン · リ ーディ ング ' フ レ ームの間に存在する非翻訳領域であり、 特に好ま しい外来遺伝子揷 入部位は ( 1 ) UL44と UL45の間、 ( 2 ) UM5と UL46の間、 ( 3 ) UL 41と UL42の間、 ( 4 ) UL40と UL41の間、 ( 5 ) gB遺伝子の下流領域 、 ( 6 ) UL53と UL54の間、 および ( 7 ) UL36と UL37からなる群から 選ばれる少なく と も 1箇所の揷入部位である。
上記外来遺伝子は、 好ま し く は、 鳥類の感染症の病原体に由来す る遺伝子であり、 特に好ま し く はウィルス、 細菌、 真菌、 および原 虫からなる群から選ばれる病原体由来の抗原遺伝子である。 さ らに また、 上記外来遺伝子は、 好ま し く は、 ニューカ ッ スル病ウィルス (NDV ) 、 ガンボ口病ウィルス (IBDV) 、 伝染性喉頭気管炎ウィルス ( ILTV ) 、 伝染性気管支炎ウィルス(IBV) 、 マイ コプラズマ (MG) 、 およびコク シジゥ厶からなる群から選ばれる病原体由来の遺伝子 である:,
本発明はまた、 上記の組み換えウイルスを有効成分とする鶏用ヮ クチンに関する。 発明の実施の形態
以下に、 本発明を詳述する。
本発明で使用するウィルス
本発明で使用するウィルスは、 鳥類に感染するウィルスのうち、 ヘルぺスウィルス属に属する もの (鳥類感染型ヘルぺス属ウイルス ) であることが好ま しい。 これは、 ヘルぺスウィルス属に属するゥ イノレス力く、 潜伏感染 ( l atent inf ect ion) や持続感染 ( pers istent inf ect ion) の状態で感染動物の体内に永続的に生存し続ける とい う性質を有するためである。
鳥類感染型ヘルぺス属ウィルスのなかでも、 特に、 七面鳥ヘルべ スウィルス(HVT) またはマレッ ク病ウィルス(MDV) であることが好 ま しい。 上記のウィルスは感染期間が長いために長期にわたってヮ クチン効果を感染した鳥類に付与できる可能性があり、 ワクチンと しての有効性が期待されるこ とによる。
HVT または MDV
本発明において使用する HVT または MDV は、 天然に得られたり、 ATCCなどから有償または無償で入手できる ものなどであればよ く 、 特に限定される ものではない。
HVT の好ま しい例と しては、 ガンマへルぺスウィルス亜科に属し 、 生来非病原性であり、 かつ非腫瘍性のウィルスで家禽用のワクチ ンと して用いられている ものが挙げられる。 具体的には、 FC 126 (AT CC VR- 584B ) , PB-THV 1 , H— 2, YT— 7, WTHV - 1 , HPRS— 26など が挙げられ、 例えば、 FC 126株を好適に使用するこ とができる。 ま た、 MDV と しては、 具体的には、 CV 1988や SB 1 などを挙げるこ と力く できる。
本発明の組み換えウィルスを作製するためには、 まず、 上記のゥ ィルスを適当な宿主細胞中で増殖させ、 ゲノム DNA を得る。 そして 、 このゲノム DNA 中の非翻訳領域を確認し、 その領域に、 後述する 外来遺伝子を挿入する。
ウイルスを増殖させるための宿主および増殖条件は、 增殖させよ う とするウィルスに応じて適宜選択する。 例えば、 HVT を増殖させ る場合には、 宿主細胞と して CEF 、 発育鶏卵、 鶏腎細胞などを用い る。 Eagle' s MEM 、 ライボピッツ L — 15 マッ コイ 5 A ( 1 : 1混 合) 培地などの中で、 37 °C前後にて、 3 ~ 4 日間培養する。
以上のように培養した細胞から定法に従って DNA を抽出する。 す なわち、 単層培養した細胞をはがし、 遠心上清をとり、 リ シスバッ ファーでタ ンパク質を変性除去した後に、 フヱノールとエタノール で A を抽出する。
このようにして得られたウィルスの DNA の非翻訳領域を後述のよ うに確認する。
非翻訳領域とは、 0RF を有さず、 翻訳によって発現されるタ ンパ ク質のア ミ ノ酸配列を規定していない塩基および 0RF が転写、 翻訳 、 タ ンパク質発現のいずれにも関与していない塩基領域をいう。 こ の領域に含まれている塩基配列は、 その領域が 0RF を含むこととな らない限り、 塩基の置換、 欠失、 付加されたものであってもよい。 外来遺伝子挿入領域
外来遺伝子を挿入する領域を、 外来遺伝子挿入領域といい、 外来 遺伝子を挿入する部位を外来遺伝子挿入部位という。
外来遺伝子挿入領域は、 以下のようにして得ることができる。 HV T または MDV の場合を例にと って説明する。
これらのウィルスの非翻訳領域を、 以下のようにして得る。 まず 、 全塩基配列が解明されている ヒ 卜単純へルぺスウィルス I 型(HSV — 1 ) や、 HVT と相同性の高い塩基配列を持つ MDV - 1 など相互で 配列が確定されている領域などから、 非翻訳領域と推定される配列 の前後の配列を選択する。
ついで、 これらの配列をもとに DNA プライマ一を合成し、 HVT ま たは MDV の DNA を铸型と して所定の条件でポリ メ ラ一ゼチェ―ンリ ァク シ ョ ン(PCR) を行い、 特定の遺伝子を増幅することによつて得 れる o T この増幅された遺伝子に ORF がないこ とを DNA 配列分析で確認し 、 0RF の転写および翻訳に関係した遺伝子機構 (ェンハンサ一、 プ 口モーター、 ター ミ ネータ一などを含む機構) なども存在しない位 置を確認して、 外来遺伝子挿入領域を決定する。
この領域がウイルスの増殖に非必須であり、 外来遺伝子を導入で きることを明らかにするために、 この領域に、 特異的な配列を付加 し、 も し く は欠失させ、 または置換を行い、 CEF (鶏胚繊維芽細胞) に感染させ、 このような変化を生じさせた前後における感染性およ び増殖性の変化を調べる。
上記のような特定の配列の付加、 欠失、 置換などは、 in vi t ro突 然変異(in vitro mutagenes i s ) , PCR 、 部位特異的突然変異(s i te - di rected mutagenesis) 、 および特公平 6 - 16709号公報に記載され た部位特定変異法など、 一般的な手法を用いて行う こ とができる。
また、 CEF に対しては、 m. 0. i. ^ 1 で感染させ、 37°Cで 3〜 4時 間イ ンキュベー ト して増殖させ、 ウィ ルスの増殖性、 細胞の形態、 プラークの形態、 細胞の不死化を観察する。
この結果、 塩基の変更前の株と細胞やプラークの形態に差がな く 、 また、 ウィルスの増殖性も 5 回の繰り返し実験の平均で塩基の変 異前の株との差が ± 20 %以内である こ とを確認し、 同部位を外来遺 伝子の挿入が可能な領域 (外来遺伝子挿入可能領域) と判断する。 この際、 外来遺伝子揷入領域は、 非翻訳領域を含めて外来遺伝子挿 入部位の前後 10bp以上あればよ く 、 好ま し く は lOObp 以上、 より好 ま し く は 500bp 以上あればよい。
外来遺伝子挿入部位は非翻訳領域内にあれば特に限定される もの ではないが、 具体例と しては、 ( 1 ) UL44と UL45との間および UL45 と UL46との間、 ( 2 ) UL41と UL42、 ( 3 ) UU0と UL41との間、 ( 4 ) gB遺伝子の下流領域、 ( 5 ) UL53と UL54との間、 ( 6 ) UL36と UL 37との間、 などが挙げられる。 これらは、 第 16回国際へルぺスウイ ルスヮ一ク シ ョ ップ (1991年 07月 7〜 12日に米国力 リ フ ォルニァ州 パシフィ ッ クグローブで開催された) の予稿集中に、 HSV— 1 につ いて掲載されている。
これらの中でも、 好ま しいものと して、 HSV— 1だけでなく 、 MD V でも相同性が 0RF において確認されている ( 1 ) および ( 4 ) を 挙げることができ、 より好ま し く は 0RF 間の非翻訳領域が推定でき る ( 1 ) を挙げることができる。
外来遺伝子含有プラ ス ミ ドの構築
外来遺伝子を HVT も し く は MDV の非翻訳領域に挿入するには、 非 翻訳領域を含んだ配列をブラ ス ミ ドにク ロ一ニングしておく必要が あるが、 このプラ ス ミ ドも特に限定されるものではない。
例えば、 PBR322, pBR325 , pBR327 , pBR328 , pUC 18, pUC 19 , pUC 7 , pUC 8 、 および pUC 9 などのプラス ミ ド、 ラムダフ ァ ージ、 M 13フ ァ一ジなどのようなフ ァ ージ、 pHC79 などのコス ミ ドを例示するこ とができる。
これらのプラス ミ ドに、 上記のようにして得た非翻訳領域を常法 によって組み込む。
このよ うに組み込まれた非翻訳領域へ外来遺伝子を挿入するため には、 上記のようなブラス ミ ドなどにク ローニングした非翻訳領域 の特定の部分に変異を加えて新たな制限酵素切断部分を作り出し、 そこに外来遺伝子を挿入する。
変異を加える方法は定法に従えばよ く 、 in vi tro mutagenes i sや PCR など当業者において通常用いられる方法を使用する ことができ る。 すなわち、 PCR法では、 PCRプライマーに 1〜 2塩基の欠失、 置換、 付加などの変異を生じさせ、 このプライマ一を使用すること により変異を生じさせることができる。 ここで揷入する外来遺伝子とは、 本来その領域には含まれていな い自己由来の遺伝子、 非自己由来の遺伝子の双方を含み、 鳥類感染 型ヘルぺス属ウイルスの抗原遺伝子であることが望ま しい。
このよ うな遺伝子と しては、 例えば、 鳥類の感染症の病原体に由 来する遺伝子を挙げることができる。 鳥類の感染症を引き起こす病 原体と しては、 ウィルス、 細菌、 真菌、 原虫などを挙げることがで き、 これらの病原体が有する抗原遺伝子、 すなわち、 抗原決定基を コ一ドする遺伝子を好適に使用することができる。
このよ うな病原体と しては、 具体的には、 鶏の一生を通じて問題 となるニューキャ ッ スル病ウィルス(NDV) 、 ガンボ口病ウィルス ( IBDV) 、 中雛以降で問題となる伝染性喉頭気管炎ウィルス (ILTV) 、 伝染性気管支炎ウィルス(IBV) 、 マイ コプラズマ (MG) 、 および コク シジゥムなどを挙げることができる。
特に、 中和抗原遺伝子または感染防御抗原と考えられる抗原の遺 伝子が同定されている疾病では、 これらの遺伝子を HVT や MDV など の鳥類感染型ヘルぺス属ウィルスに組み込むことによって、 組み換 えウィルスが感染した鶏の体内で抗原と して発現させる ことが可能 となる ことによる。 また、 これによつて、 効果的なワクチンと して 使用するこ とが可能になる。
具体的に、 HVT または MDV などの鳥類感染型ヘルぺス属ウィルス に遺伝子を組み込んで組み換えゥィルスを作製し、 これらのウィル スに感染した鳥類の体内で発現されるタ ンパク質は、 構造タ ンパク 質、 非構造タ ンパク質のいずれであってもよく 、 DNA配列のわかつ ているタ ンパク質であれば特に限定されない。
例えば、 NDV では、 HNタ ンパク質、 Fタ ンパク質、 NPタ ンパク質 が、 また、 IBV では、 Mタ ンパク質、 Nタ ンパク質、 スパイクタ ン パク質が挙げられる。 IBDVでは、 VP 1〜 VP 5の全タ ンパク質、 ILTV はへルぺスウィルスであることから、 HSV— 1 や MDV, HVTと相同性 のあるタ ンパク質 (特に gBタ ンパク質や UL32相当タ ンパク質など) 、 マイ コプラズマではア ドへシンタ ンパク質、 HMW 関連タ ンパク質 、 40 Kタ ンパク質、 66 Kタ ンパク質、 67 Kタ ンパク質など (国際公 開公報 ff094/ 23019 号に配列が記載) などが挙げられる。
したがって、 これらのタ ンパク質をコ一 ドしている遺伝子を組み 込むことが好ま しい。 このような外来遺伝子を、 異種抗原遺伝子と いラ 0
また、 異種抗原遺伝子を HVT または MDV で発現させるためには、 異種抗原遺伝子の上流域にプロモータ—配列を組込む必要がある。 使用するプロモータ一は、 合成プロモータ—、 天然プロモータ—の いずれであつてもよ く 、 HVT または MDV が感染した細胞内で保有す る転写の系でプロモ一夕一と して有効に機能し得る ものであれば特 に限定されない。
このようなプロモータ一と しては、 HVT または MDV が保有してい る固有のプロモータ一は無論のこと、 HVT も し く は MDV 以外のウイ ルス由来のプロモータ一や DNA 、 または真核生物も し く は原核生物 由来のものや合成プロモータ—であつても上記要件を満たす限り、 本発明において使用することができる。
具体的には、 ヘルぺスウィルスのチ ミ ジンキナーゼプロモーター ( Ross L. J. , Gen. Vi rol. 74 : 371-377 ( 1993) )、 HVT および MD V の gBタ ンパク質プロモ一夕一 (前出) 、 ヒ 卜サイ トメ ガロウィル ス (HCMV) の IEプロモータ一(Al ting- Mees M. A. , Nucleic Acid R es., 17 : 9494 ( 1989) ) , SV40プロモ一夕一(Gunning P., Proc. N atl. Acad. Sci., 84 : 4831-4835 ( 1987) ) 、 ヒ 卜および鶏の ァ クチンプロモータ一 (前出、 および Kost A. T. , Nucleic Acid Res ., 11 : 8287-8301 ( 1983) ) 、 /S —グロ ビンプロモーター (Spitzn l o er J. R. , Nucleic Acid Res., 18 : 1- 11 ( 1990) )、 ラウス肉腫ゥ ィルス(RSV) の LTR プロモータ一 (Fiek A. ら、 Nucleic Acid Res . , _2_0 : 1785 ( 1992) )などが挙げられる。 その他、 HVT または MDV の構造夕 ンパク質や必須遺伝子のプロモータ一を利用することがで さ る。
上述した非翻訳領域に、 特定のプロモーターの支配下において外 来抗原遺伝子が発現するような形でこれらを組込み、 プラス ミ ドを 構築する。 このよ うにして構築されたプラス ミ ドは、 HVT および MD V ゲノムの特定領域と組み換えを起こ して組み換えウィ ルスを作る ことができる。
組み換えウィ ルスの作製
鳥類感染型ヘルべス属ウィ ルスのゲノ ムの非翻訳領域内への上記 のよ うな外来遺伝子の揷入は、 定法に従って行えばよい。 HVT の場 合を例にとつて説明する。
まず、 上記のようにして得た HVT 非翻訳領域内に外来抗原遺伝子 が揷入されたブラス ミ ドを、 HVT 感染細胞に、 エレク トポレ一シ ョ ンゃ、 リ ン酸カルシウム法、 リ ボフ ヱク チ ンを用いた方法や遺伝子 銃などで導入する。 導入効率の高さから、 エレク ト ロポレーシ ヨ ン ゃリ ポフエクチンを用いた方法を採用するこ とが好ま しい。 導入す るプラス ミ ドの量を、 0. 1 〜 1000 gの範囲とする と、 このような プラス ミ ドを導入した細胞内における、 HVT— DNA とプラス ミ ドの 相同領域との間での組み換えウィルスの発生率が高く なる。
このよ うにして誕生した組み換え HVT のみを選択するためには、 プラス ミ ドの非翻訳領域に 1 または複数の外来遺伝子を組み込み、 そのうちの少なく と も 1 つを特定の基質を発色させる酵素遺伝子と しておく とよい。 このような酵素遺伝子の例と しては、 例えば、 —ガラク ト シダ一ゼ遺伝子が挙げられる。 yS -ガラク ト シダ一ゼ遺伝子を含む組み換え HVT は、 ブルォガル などの基質の添加により特定の色を呈するため、 非組み換えウイル スと明確に区別できる。 したがって、 このような遺伝子を組み込ん だウィルスに感染させた細胞を、 特定の基質を添加した培地中で培 養するこ とによ り、 発色したウイルス感染細胞を選択することがで きる。 この操作を繰り返すこ とによ って、 組み換えウィルスを純化 することができる。
生ワ クチン
本発明の生ヮクチンの調製方法は特に限定されないが、 たとえば 次の方法によって調製する こ とができる。
本発明の組み換えウィルスの感染細胞を当該ウィルスが生育でき る細胞 (以下、 宿主細胞という) に感染させ、 増殖させた後、 細胞 をスク レ一パ一または 卜 リ プシ ンではがし、 遠心分離によって感染 細胞と上清とに分離する。
宿主細胞と しては、 卜 リ 由来の細胞が好ま し く 、 CEF (ニヮ 卜 リ胚 繊維芽細胞) 、 鶏腎細胞などを好適に使用することができる。
得られた感染細胞は、 10 %のジメ チルスルフ ォキシ ド (DMS0) を 含む培養用培地に懸濁し、 液体窒素存在下で凍結保存する。 ヮクチ ンと して使用するときは 100倍量のリ ン酸緩衝液にこの凍結保存品 を溶かして使用する。
液体窒素下で上記感染細胞を保存するための安定剤やその他の成 分は、 ウィルス感染細胞が安定的に生存でき、 かつレシピエン 卜 に とつて薬理学的に問題のない成分であれば特に限定されない。
本発明の生ワクチ ンの家禽への投与方法は特に限定されないが、 皮下に注射により接種する方法が一般的に用いられており、 現行の HVT ワクチ ンと同じである。 接種量も従来ワ ク チ ンと同様でよい。
本ワクチンはヘルぺス属ウィルス感染症用ワクチンと してだけで なく 、 非翻訳領域に挿入した抗原遺伝子によって、 それらの遺伝子 が由来する病原体によつて惹起される疾病のヮクチンと して使用す ることができる。 本発明のヮクチンは、 有用な組み換え HVT 多価ヮ クチンと して使用することができる。 実施例
以下に実施例を用いて本発明をさ らに詳細に説明するが、 本発明 はこれらの実施例に何ら限定される ものではない。
実施例 1. HVT - DNA の調製
HVT - DNA の調製は、 基本的にし ee らの方法 (J. of Virol. , 7 : 289-294 (1971)) に準じて行った。
先ず 16cm培養皿で、 ライボピッ ツ Zマッ コイ 5 A ( 1 : 1 ) 混合 培地中 37°Cで 4 日間培養した HVT(FC - 126 株) 感染細胞 ( 5 x 107 個) をスク レーパーで剝がし、 低速 (2,000rpm、 5分) で遠心分離 した。 遠心上清をすて、 沈殿した感染細胞の 10倍量にあたる リ シス ノく ッ フ ァー (0.15M NaCl, 0.1M EDTA, 1 %SDS, 100 g Zmlの Pr oteinase K ) をカロえた 0
37°Cで一昼夜保温した後、 等量のフヱノ 一ルを加えてタ ンパク質 を変成させ、 この操作を 2回繰り返して HVT- DNA を抽出した。 抽 出した DNA はエタノール沈殿によって回収した。
実施例 2. pNZ45/46Sfi の構築
MDV- 1型の gCh(Coussensら、 J. Gen. Virol. , 62 : 2373-2379 (1981))遺伝子とそれに隣接する BamHI— Βフラグメ ン トの EcoRI -BamHI 断片 (特開平 6 — 292583号公報) の情報をもとにして、 OR F の間に Sfil部位を導入できるように合成 DNA (プライマ一 1〜 4 ) を設計した。
こ こで、 上記の Coussensらの文献では UL44および 45が記載されて おり、 特開平 6 - 292583号公報には UL46が記載されている。
このプライマ一を用いて以下のように PCR を行い、 PUC18 にク ロ 一二ングした。
HVT- FC126 株感染 CEF より、 実施例 1 の方法で DNA を取得し、 この DNA lOOng をテンプレー ト と して用いた。 また、 プライマ一 1 (CCCCGAATTC ATGGAAGAAA TTTCC ; 配列番号 1 ) とプライマ— 2 ( CGCGGGCCTT ATTGGCCAAA ACACACCTCT AACGGTTACT ; 配列番号 2 ) か らなるプライマ一セッ 卜 A (それぞれ 50pmol) およびプライマ一 3 (GCGCGGCCAA TAAGGCCAA ACACAGTAAC CGTTAGAGGT ; 配列番号 3 ) とプライマ— 4 (CCCCAAGCTT TCAAGTGATA CTGCGTGA ; 配列番号 4 ) とからなるプライマ一セッ 卜 B (それぞれ 50pmol) とを用いて、 通常の方法で PCI? を行った。 30サイ クルで反応を停止させ、 それぞ れ約 10 i gの増幅産物を得た。
これら 2 つの PCR 産物を混合したもの (混合比 1 : 1 、 それぞれ lOOng を混合したもの) をテンプレー ト と して、 プライマ一 1 とプ ライマ一 4 とを用いて、 45°C 1分、 60°C 2分、 73°C 3分を 1 サイク ルと して 30サィ クル PCR を行う ことにより、 UL45h および UL46h の 0RF の間に Sfil部位を導入した。
得られた增幅産物を EcoRI と Hindlll で切断し、 その断片を pUCl 8 の EcoRI— Hindlll 部位に T 4 リ ガ一ゼ (宝酒造社製) 4ュニ ツ 卜を用いて 16°Cで、 30分間ィ ンキュベー 卜 して挿入し、 pNZ45/46Sf i を構築した。
実施例 3. pNZ44/45fiの構築
実施例 2 と同様に、 HVT-FC126 株感染 CEF より取得した DNA 10 Ong)をテンプレー ト と して、 プライマ一 1 およびプライマ一 5 (GC GCGGCCAA TAAGGCCAAC ATCGGGACGT ACATCAT ; 配列番号 5 ) からな るプライマ一セッ ト C (それぞれ 50pmol) およびプライマ一 6 (GC GCGGCCTT ATTGGCCTTA AATACCGCGT TTGGAGTAAA ; 配列番号 6 ) とプ ライマ一 4からなるプライマ一セッ 卜 D (それぞれ 50pmol) とを用 いて、 実施例 2 と同様にして PCR を行った。 それぞれ約 10〃 gの增 幅産物が得られた。
これら 2つの PCR 産物を混合したもの (混合比 1 : 1、 それぞれ lOOng を混合したもの) をテンプレー ト と して、 プライマ一 1 (50pm ol) とプライマ一 4 (50pmol) とを用いて実施例 2 と同様にして PC R を行う ことにより、 UL44h(MDVlの HSV— 1 に対応する gCh または gA) および UL45h の 0RF の間に Sf i I部位を導入した。
この産物を EcoRI と Hindlll とで切断し、 得られた断片を pUC18 の EcoRI— Hindlll 部位に実施例 2 と同様にして揷入し、 pNZ44/45 Sfi を構築した。
実施例 4. pGlMCSpolyASfiの構築
( 1 ) ドナープラス ミ ド pGTPs の構築
PUC18の Hindlll- Pstl部位に、 合成 DNA(5' - AGCTGCCCCCCCGGCAAG CTTGCA- 3' (配列番号 7 ) ) を挿入し、 その後 DNA ポリ メ ラ一ゼで この部分を二本鎖と した。 次いで、 得られたプラス ミ ドの Sail— Kp nl部位に合成 DNA(5' — TCGACATTTTTATGTAC - 3' (配列番号 8 ) ) を 挿入し、 同様に DNA ポ リ メ ラ一ゼでニ本鎖と した。 さ らに、 ここで 得られたプラス ミ ドの Sacl— EcoRI 部位に、 2本の合成 DNA(5' — AA TTCGGCCGGGGGGGCCAGCT- 3' (配列番号 9 ) ) および (5' - GGCCCCCC CGGCCG- 3' (配列番号 10) ) をァニールさせたものを購入し、 最後 にこのプラス ミ ドの Hindlll— Sacl部位にプラス ミ ド pNZ1729R(Yan agida et al., J. Virol. ,— 66—: 1402-1408 (1992)を Hindlll と Sa IIとで消化して得られた約 140bp の DNA 断片を揷入して、 プラス ミ ド pGTPs を構築した。
( 2 ) pGIMCSpolyAsfiの構築 PUC18を Dralで切断し、 Xholリ ンカ— (宝酒造社製) を実施例 2 と同様にして挿入し、 Xholサイ トを導入した PUC18Xを構築した。
この PUC18Xを Hindlll と Pstlで切断し、 合成 DNA 1 (AGCTTGCCAA TAAGGCTGCA ; 配列番号 11) と合成 DNA 2 (ATGGCCCGCC GGCTGACCG C ; 配列番号 12) とをァニールした断片を作製した。 これを T 4ラ ィゲ一ス (宝酒造社製) を用いて上記の Xholサイ トに揷入し、 pU18 XGを構築した。
この PU18XGの Kpnl - EcoRI 部位に、 ポリ A付加シグナルおよび Sf ilサイ 卜を導入するために、 合成 DNA 3 (GCGGTCAGCC GGCGGGCCAT ; 配列番号 13) と合成 DNA 4 (GGTAAACTGC AGACTTGGCA GT ; 配列 番号 14) とをァニールした断片を T 4 ライゲ一スによって挿入し、 pUCpolyASfi を構築した:.
この pUCpolyASfi の Kpnl BamHI サイ 卜に、 実施例 4 ( 1 ) に記 載の pGTPs の Kpnl- BamHI 断片 36bpを挿入し、 pMCSpolyASf iを構築 した。
この pMCSpolyASf iの Hindlll— Pstlサイ トに合成 DNA 5 (ACTGCC AAGT CTGCAGTTTA CC ; 配列番号 15) を実施例 2 と同様にして挿入 し、 pGIMCSpolyASfiを構築した。
実施例 5. pRSVおよび pCMVの構築
pBK— RSV(STRATAGENE社製) から Nsilと Nhelとを用いて二重消化 して切り出した RSV プロモータ一を含む約 600bp の Nsil— Nhel断片 を、 実施例 3で得られた pGIMCSpolyASfiの Pstl- Xbal部位に実施例 2 と同様にして挿入し、 pRSVを構築した。
同様に、 pBK— CMV(STRATAGENE社製) の CMV プロモータ—を含む Nsil - Nhel断片を切出し、 実施例 3で得られた pGIMCSpolyASf iの Ps tl一 Xbal部位に実施例 2 と同様にして導入して、 pCMVを構築した。 実施例 6. pCMY-HN(BglI ― ) の構築 ( 1 ) pCMVの CMV プロモーターからの Bgll部位の欠失
pCMV の CMV プロモーター内には、 Bgll部位が 3箇所存在するた め、 Bgll部位を欠失させるために、 以下のように PCR を行って変異 を導入した。 変異は次の方法によって行った。
実施例 5で構築した pCMV(lOOng) をテンプレー トにして、 プライ マ一 7 (配列番号 12) とプライマ一 8 (配列番号 15) とからなるプ ライマ一セッ ト E, M 13 P 7プライマー (東洋紡績株式会社製) と プライマ一 9 (配列番号 13) からなるプライマ一セッ ト Fとを用い て、 実施例 2 と同様の条件で PCR を行った。 それぞれ約 10 gの增 幅産物を得た。
上記 2つのプライマ一セッ 卜を用いて得た増幅産物 lOOng を混合 比 1 : 1 で混合し、 その混合物をテンプレー ト と して、 今度は、 M 13P 7 プライマーとプライマ一 8 とを用いて実施例 2 と同様に PCR を行い、 PCR 産物 ( 1 ) を約 10/ g得た。
同様に pCMV(lOOng) をテンプレー トにして、 プライマー 10 (配列 番号: ) とプライマ— 11 (GGCATAATGC ATGGCGGGCC AT ; 配列番号 17) とのセッ ト F、 およびプライマ— 12 (ATGGCCCGCC ATGCATTATG CC ; 配列番号 16) と M13P 8プライマ— (東洋紡績株式会社) と で、 実施例 2 と同様にして PCR を行った。
同様に、 これら 2つのプライマ一セッ 卜の産物それぞれ lOOng を 1 : 1で混合した混合物をテンプレー 卜 と して、 今度は、 プライマ 一 10と M 13 P 8プライマーのプライマーで PCR を行い、 PCR 産物 ( 2 ) を約 10 g得た。
さ らに、 PCR 産物 ( 1 ) と、 PCR 産物 ( 2 ) とを混合し、 M13P 7プライマーと M 13 P 8プライマーとを用いて実施例 2 と同じよ う に PCR を行う ことにより、 Bgll部位を欠失した CMV プロモーターを 得ることができた。 ( 2 ) pUCCMVの構築
また、 pUC19 の Pstl— Xbal部位に、 pBK— CMV(STRATAGENE社) の CMV プロモ一夕—を含む約 600bp の Nsil— Nhel断片を実施例 2 のよ うにして挿入して、 pUCCMVを構築した。
( 3 ) pNZ87 の構築
( 3 - 1 ) 7.5 Kプロモータ一に yS —ガラク ト シダーゼ遺伝子が 連結されたプラ ス ミ ド(pNZ76) の作製
10// gの pMAOOKShirakawaら、 Gene. 28 : 127- (1984)) を BamH I で消化後、 フ ヱ ノ ール : ク ロ口ホルム ( 1 : 1 ) で抽出し、 エタ ノ ール沈殿によ り、 ―ガラク ト シダーゼ遺伝子 (約 3.3kb)を回収 した。
—方、 0.3 g の pUC19 を BamHI で消化後、 フ ヱ ノ ール : ク ロ 口 ホルムで抽出し、 エタノール沈殿により回収し、 上記で調製した ^ —ガラク ト シダーゼ遺伝子とライゲ一シ ョ ンし、 ハイ プリ ッ ドプラ ス ミ ド pNZ66 を作製した。
40 g の pUWP— 1 (ワ クチニァウィルス WR株の 7.5 Kダル ト ンの ペプチ ドをコー ドする DNA のプロモータ一を含むプラス ミ ド) を Hp all と EcoRI とで消化し、 1.5%低融点ァガロース電気泳動 (70V , 6 時間) により、 7.5Kプロモータ一を含む約 0.26kb の断片を 分離し、 フ エ ノ ール : ク ロ口ホルム ( 1 : 1 ) で抽出し、 エタノ ー ル沈殿により DNA を回収した。 この DNA 断片の接着末端を DNA ポリ メ ラーゼにより平滑末端と した。
Ο. Ζ μ g の pNZ66 を Hin iで消ィ匕し、 フ エ ノ ール : ク ロ 口ホルム で抽出し、 エタノール沈殿により断片を回収し、 上記の約 0.26kbの 7.5Kプロモータ一遺伝子をラィゲーシ ヨ ンし、 得られたハイブリ ッ ドプラス ミ ドを PNZ76 と命名した。
( 3 - 2 ) ハイ プリ ッ ドフ ァ ージ raplO— HN180 からプロモータ一 およびその支配下に NDV の HN遺伝子 DNA を連結したハイ プリ ッ ドプ ラス ミ ド pNZ87 の作製
PNZ76 を BamHI で消化し、 0.8%ァガロースゲルより、 —ガラ ク 卜 シダーゼ遺伝子を含まない約 2.9kb の断片を回収した。
一方、 ハイプリ ッ ドファージ mplO— HN180 を Bglll と BamHI とで 消化後、 0.8%ァガロースゲルより約 1.8kb の NH遺伝子の DNA 断片 を回収した。
両者をリ ガーゼによ り連結し、 得られたプラス ミ ドでコ ンビテン 卜な大腸菌 TG- 1株を形質転換し、 常法に従ってプラス ミ ドを抽出 し、 HN遺伝子を含むハイ プリ ッ ドプラス ミ ドを検出し、 これを pNZ 一 87と命名した。
( 4 ) PNZ87CMVの構築
次に、 ( 3 ) で構築した pNZ87 から、 NDV の HN遺伝子を含む約 1. 8kb の BamHI- Sacl断片を切り出した。 この断片を pUCCMVの BamHI — Sacl部位に実施例 2 と同様にして揷入して、 PNZ87CMVを構築した o
この pNZ87CMVの CMV プロモータ—領域には Bgll部位が含まれるの で、 CMV プロモ一夕一領域を含む Hindlll- BamHI 断片を ( 2 ) で PCR により構築した Bgll部位を欠失した CMV プロモーターの Hindi II -BamHI 断片と実施例 2 に記載したようにして入れ替えて、 pCMV -HNCBgll ― ) を構築した。
実施例 7. pRSV- Fの構築
( 1 ) pUCBSV— pAの構築
PUC19 の Pstl— Xbal部位に、 pBK— RSV(STRATAGENE社) の RSV プ 口モータ一を含む約 600bp の Nsil- Nhel断片を実施例 2に記載した よ うにして挿入し、 pUCRSVを構築した。
これとは別に、 pBK - RSV(STRATAGENE社、 lOOng)をテンプレー ト と して、 プライマー 13 (CGGGAGCTCT AATTGTTTGT G ; 配列番号 18) とプライマー 14 (CGGGAATTCG CTTACAATTT ; 配列番号 19) のプライ マ一 (それぞれ 50pmol) とを用いて、 実施例 2 と同様にして PCR を 行う こ とによって、 pBK— RSV に含まれる SV40プロモーターの pA付 加シグナルを持つ断片を作製した。
この PCR で增幅した断片を Saclと EcoRI とで二重消化して、 pUCR SVの Sacl— EcoRI 部位に実施例 2 に記載のようにして挿入するこ と によ り、 pUCRSV- pAを構築した。
( 2 ) pNZ98 の構築
NDV の F遺伝子および HN遺伝子を含むプラス ミ ド XLIII— 10H ( Virus Research. 7_: 241-255 (1987)) を使用した。
4 gのプラス ミ ド XLIII - 10Hを Xbalで消化し、 生じた付着末 端を DNA ポリ メ ラ一ゼで平滑末端と し、 フエノール—ク ロ口ホルム ( 1 : 1 ) で抽出し、 エタ ノ ール沈殿により回収した。 回収した DN A を BamHI で消化し、 0.8%ァガロースゲルで電気泳動して、 約 2. lkb の F遺伝子を完全に含む断片を回収した。
—方、 上記のようにして作製した PNZ76 を BamHI と Smalで二重消 化し、 lacZ遺伝子部分を除いた約 3. Okb のと BamHI- Smal断片を回 収した。 回収したこの断片と、 約 2. lkb の F遺伝子を完全に含む断 片とをリ ガーゼによつて連結し、 コ ン ビテン トな大腸菌 TG 1株を形 質転換した。
50 g mLのアンピシ リ ンを含む LB寒天培地上で生育してきたコ ロニーから、 上記と同様の操作によってプラス ミ ドを調製した。 制 限酵素(BamHIと Smal) でこのプラス ミ ドを切断し、 目的のク ローン を確認し、 PNZ98' と命名した。 この ρΝΖ98'には、 F遺伝子全長の他 、 HN遺伝子の 5 ' -末端約 300bp が含まれる。 この部分を除去する ために、 ρΝΖ98'を Smalと Kpnlとで二重消化し、 約 4, 150bp の Smal— P
Kpnl断片を 0. 8 %ァガロースゲル電気泳動により回収した。 また、 PNZ98'を Smalと Avai l とで同様に二重消化し、 約 650bp の Smal— Av all を 1. 5 %ァガロースゲル電気泳動により回収した。
これら 2つの断片を混合し、 DNA ポリ メ ラ一ゼによって付着末端 を平滑末端と した後にコンビテン 卜な大腸菌 TG 1 を形質転換し、 形 質転換体を得た。 50 μ gノ mLのァンピシリ ンを含む LB寒天培地上で この形質転換体を生育させ、 形成されたコ ロニーより上述のように してプラス ミ ドを得た。 このプラス ミ ドを Smalで再び消化し、 切断 されたものを選択してプラス ミ ド pNZ98 を得た。
( 3 ) 上記 ( 2 ) で構築した PNZ98 から、 NDV の F遺伝子を含む 約 1. 8bp の BamHI— Sacl断片を切り出し、 pUCRSV— pAの BamHI— Sa cl部位に実施例 2 に記載したようにして揷入し、 PNZ98RSV3'を構築 したつ
また、 pNZ98 を Pst lで切断したのち、 BamHI にて部分消化を行い 、 125bp の断片を回収した。
この回収した断片と PNZ98RSV3'に含まれる Pst l - BamHI 断片 75bp と交換して、 pNZ98RSVpAを構築した。
実施例 5 で構築した pRSVの Mlul - Sacl切断 2, 892bp 断片と、 pNZ9 8RSVpAの NDV の F遺伝子を含む Mlul - Sacl切断 2, 262bp 断片をライ ゲーシ ョ ンすることによって、 pRSV— Fを構築した。
実施例 8 . pCMV - VP2S (0kayama) の構築
( 1 ) pCMV/ MCS の構築
実施例 6 で構築した pCMV - HN (BglI ― ) の BamHI - Kpnl部位に、 pBluescript SK+ の BamHI— Kpnl断片 62bpを実施例 2 に記載したよ うに挿入し、 pCMVノ MCS を構築した。
( 2 ) pCMV/ MCSpA の構築
これとは別に、 実施例 7 と同様に、 pBK— RSV (STRATAGENE社) を PC テンプレー ト と して、 プライマ一 15 ( CGGGGGCCCT AATTGTTTGT G ; 配列番号 20) とプライマ— 16 ( CGGGGTACCG CTTACAATTT ; 配列番号 21) とを用いて、 実施例 2 と同様に PCR を行い、 SV40の pA付加シグ ナルを持つ断片を作製した。
この PCR で增幅した断片を Apalと Kpnlとで二重消化して、 pCMV/ MCS の Apal— Kpnl部位に実施例 2 に記載したように揷入することに より、 pCMVZ MCSpA を構築した。
( 3 ) pCMV— VP2Sの構築
さ らに、 IBDV野外分離株岡山株より、 常法により RNA を抽出し、 リ バ一ス ト ラ ンスク リ プターゼと cDNA合成キ ッ ト (宝酒造製) とを 用いて cDNAを作製した。
この cDNAをテンプレー 卜 と して、 VP 2 に相当する領域を特開昭 62 - 503006号公報に記載された遺伝子配列を元にして、 プライマ一 17 ( GCAAGCTTGC GATGACGAAC CTGC ; 配列番号 22) とプライマ— 18 ( GCGTCGACTC ACCTCCTTAG GGCCC ; 配列番号 23) とを設計した。
これら 2つのプライマーを用いて実施例 2 と同様に PCK を行う こ とによ つて180¥の ? 2 に相当する領域を取得した。
これとは別に、 pCMVZ MCSpA を Hindl l l で部分消化し、 ついで Sa I Iで部分消化して 3, 687 塩基対の断片を得た。 上記の PCR によって 取得した IBDVの断片を Hindl l l と Sai lとで二重消化し、 これを 3, 68 7 塩基対の断片に実施例 2 で記載したようにして挿入し、 pCMV - VP 2 S (Okayama) を構築した。
実施例 9 . pUC18Xlac の構築
lacZの BamHI— Smal断片(Yanagida ら、 J. Virol. , 66 : 1402- 1 408 ( 1992) ) を、 実施例 4で構築した PU18XGの BamHI— Smal部位に 実施例 2 に記載したようにして揷入し、 pUC18Xlac を構築した。 施例 10. pNZ45Z 46RSVlacおよび pNZ44Z 45RSVlacの構築 ( 1 ) pNZ45Z46RSVlacの構築
実施例 2で構築した pNZ45Z46Sfi の Sfil部位に、 実施例 5で構 築した RSV プロモータ一を含む pRSVの Bgll断片を実施例 2 に記載し たよ うに揷入して、 PNZ45Z46RSV を構築した。
この PNZ45Z46RSV の Sfil部位に、 実施例 9で構築した lacZを含 む pUC18Xlac の Bgll断片を実施例 2に記載したように挿入して、 p NZ45Z46RSVlacを構築した。
( 2 ) pNZ44Z45RSVlacの構築
同様に、 実施例 3で構築した pNZ44Z45Sfi の Sfil部位に、 実施 例 5で構築した RSV プロモ一夕一を含む pKSVの Bgll断片を挿入して 、 NZ45/ 46RSV を構築した。
この PNZ44Z45RSV の Sfil部位に、 実施例 9で構築した lacZを含 む pUC18Xlac の Bgl I断片を実施例 2 に記載したよ うに揷入して、 p NZ44Z45RSVlacを構築した。
実施例 11. PNZ45Z46VP2Sおよび pNZ44Z 45VP2Sの構築
( 1 ) NZ45/46VP2S
実施例 10で構築した pNZ45/ 46RSVlacの Sfil部位に、 実施例 8で 構築した IBDVの VP 2遺伝子を含む pCMV- VP2S(0kayama) の Ball断片 を実施例 2に記載したように挿入して、 PNZ45/ 46VP2Sを構築した
( 2 ) PNZ44/ 45VP2S
同様に、 実施例 10で構築した pNZ44Z45RSVlacの Sfil部位に、 実 施例 8で構築した IBDVの VP 2遺伝子を含む pCMV- VP2S(0kayama) の Bgll断片を実施例 2 に記載したように挿入して、 PNZ44Z45VP2Sを 構築した。
実施例 12. PNZ45X46HNF および pNZ44Z45HNF の構築
( 1 ) NZ45/ 46HNF の構築 実施例 10で構築した pNZ45/ 46RSnacの Sfil部位に、 実施例 6で 構築した NDV の HN遺伝子を含む pCMV- HN(BglI - ) の Bgll断片を実 施例 2 に記載したようにして挿入し、 PNZ45/46HNを構築した。 さ らに PNZ45ノ 46HNの Sfil部位に、 実施例 7で構築した NDV の F遺伝 子を含む pRSV— Fの Bgll断片を揷入して、 PNZ45Z46HNF を構築し た。
( 2 ) PNZ44/ 45HNF の構築
同様に、 実施例 10で構築した pNZ44Z45RSVlacの Sfil部位に、 実 施例 6で構築した NDV の HN遺伝子を含む pCMV- HN(BglI ― ) の Bgll 断片を挿入して、 PNZ44Z45HNを構築した。 さ らに pNZ44Z45HNの Sfil部位に、 実施例 7で構築した NDV の F遺伝子を含む pRSV- Fの Bgll断片を挿入して、 pNZ44 45HNF を構築した。
施例 13. PNZ45/ 46HNF — VP2Sおよび pNZ44/ 45VP2S— HNF の構 m
( 1 ) PNZ45/ 46HNF —VP 2 の構築
実施例 12で構築した PNZ45Z46HNF の Sfil部位に、 実施例 8で構 築した IBDVの VP 2遺伝子を含む pCMV— VP2S (Okayama ) の Bgll断片 を揷入して、 PNZ45Z46HNF — VP2Sを構築した:.
( 2 ) PNZ44/ 45VP2S— HNF の構築
実施例 11で構築した PNZ44Z45VP2Sの Sfil部位に、 実施例 6で構 築した NDV の NH遺伝子を含む pCMV- HN(BglI ― ) の Bgll断片を挿入 して、 PNZ44Z45VP2S— HNを構築した。 さ らに pNZ44Z 45VP2S— HN の Sfil部位に、 実施例 7で構築した NDV の F遺伝子を含む pRSV- F の Bgll断片を揷入して、 pNZ44Z45VP2S— HNF を構築した。
実施例 14. 組み換え HVT の純化
ト リ プシンではがした単層の CEF を、 Saline G (0.14M塩化ナ 卜 リ ウム、 0.5mM 塩化力 リ ウム、 1. ImM リ ン酸—水素ニナ ト リ ウム、 1.5mM リ ン酸ニ水素—ナ ト リ ウム、 0.5mM 塩化マグネシゥム ' 6水 和物、 0.011%グルコース) に懸濁し、 細胞懸濁液を調製した。 こ の細胞懸濁液 ( 2 X 107 個) に、 実施例 11, 12および 13で作製した 組み換え用プラス ミ ド pNZ44/45VP2S, pNZ44/45HNF, pNZ45/46 VP2S, pNZ45/46HNF, pNZ44/ 45VP2S - HNF pNZ45/46HNF — VP2S をそれぞれ 40 g と、 実施例 1 で調製した HVT の DNA を 100// gず つ混合した。
この溶液を室温にて 10分間放置した後、 室温にてジーンパルサ一 (Bio- Rad社製) を用いて、 3. 0KVCDT 1, 0.4msec, 25°Cの条件下で エレク ト ロポレーシ ヨ ンした。
プラス ミ ド及び HVT の DNA を導入した細胞を、 その後 9 cm径の培 養用ディ ッ シュ (Falcon社製) にまき、 37°Cにて HVT 特有のブラ一 クが形成されるまで約 4 日〜 5 日間培養した。
プラークが形成された細胞を 1 % ト リ プシンではがし、 同様に 卜 リ ブシンではがした CEF( 2 X 107 個) の細胞と混合し、 培養用 96ゥ エル平底マルチプレー 卜 (Falcon社製) 10枚に限界希釈した。 これ らのプレー 卜を、 37°Cで各ゥ エルに HVT 特有のプラークが形成され るまで、 さ らに、 約 4 日〜 5 日間培養した。 ついで、 各プレー 卜の 半数のゥエルに; Sガラク 卜 シダ一ゼの発色基質であるブルォガル(B luogal : Gibco社製) 100 μ g Zml及び 0.8%寒天を含む CEF 培養 用培地を 100 1 /wellずつ加え、 37°Cにおいて約 4時間イ ンキュ ベ一 卜 した。
その後、 各ゥヱルの青プラーク数を数え、 最も青プラーク数の多 かったプレー トを選択し、 任意の 20ゥエルに 1 % ト リプシンを加え て組み換え HVT 感染細胞を含む CEF をそれぞれ回収し、 1 X 105 個 の細胞と混合し、 それぞれに培養用 96ゥヱル平底マルチプレー 卜に 播いた。 培養用 96ゥヱル平底マルチプレー 卜から培養用 96ゥヱル平底マル チプレー トに一回継代する行程を一回のスク リ 一ニングと しては、 全ゥヱルが青ブラークになるまで繰り返し、 ブルォガルを加えたと きに全プラークが青変するまで繰り返し、 ウィルスを純化した。 通 常は、 ほぼ 5〜: 10回のスク リ 一ニングで純化できる。
9 cm径の培養用ディ ッ シュ上で感染細胞を増殖させたのち、 16cm 径の培養用ディ ッ シュで感染細胞をさ らに增殖させ、 組み換え HVT の力価を測定したところ、 組み換え HVT の力価は 1〜 6 X 105 TCID 5 であった。
各組み換え用プラス ミ ドから作製された組み換え HVT を以下の表 1 ように呼ぶこと と した。
表 1 組み換え用プラス ミ ドの名称 組み換え HVT の名称
PNZ44/ 45VP2S HF002
PNZ45/ 46VP2S HF003
PNZ44X 45HNF HF004
PNZ45/ 46HNF HF005
PNZ44/ 45HNF - VP2S HF006
PNZ45/ 46HNF - VP2S HF007
実施例 15. サザンハイ ブリ ダィゼ一 シ ョ ン
実施例 14で調製した組み換えウィルス DNA (HF003, HF004) を実施 例 1 の HVT - DNA 抽出方法と同じ方法で抽出した。
得られた組み換えウィ ルス DNA (HF003, HF004) 、 その組み換え用 プラス ミ ド(pNZ45Z 46VP2S, pNZ44/ 45HNF) . 及び親株ウィルス DN A を、 BamHI で消化し、 これらを 0. 8 %ァガロース電気泳動に供し 、 サザンブロ ッ 卜ハイブリ ダィゼ一シ ヨ ンとオー トラジオグラフィ —で分析した。
使用したプローブは、 PNZ45Z 46VP2Sまたは pNZ44 45HNF を Ec oRI で消化した断片をマルチプライムラべリ ングシステム (アマシ ャム社製) で、 " P標識したプローブ DNA である。
その結果、 プローブ DNA と相同な配列が組み換え HVT にも存在す ることが判明した。
実施例 16. 組み換え HVT 感染細胞での外来抗原の発現確認 (蛍光抗 体法)
組織培養用チヤ ンバースライ ド上で、 上記組み換え HVT 感染細胞 を CEF とと もに 37°Cでプラークが出現するまで培養し、 冷アセ ト ン で固定した。
発現した抗原を検出するために、 一次抗体抗体と して以下のもの を用いた。 /3 —ガラク 卜 シダ一ゼの検出には、 抗 ガラク ト シダ一 ゼゥサギ抗血清 (ポリ ク ロ一ナル抗体 : Organon Teknica N. V. 社 製) 、 NDV—HNタ ンパク質及び Fタ ンパク質の検出には、 NDVワク チ ン免疫鶏血清を、 それぞれ 500倍に PBS で希釈して用いた。 IBDV - VP 2 夕 ンパク質の検出には、 抗 VP— 2 モノ ク ローナル抗体 GK— 5 ( Yamaguchi T. , et al. , Avian Dis. , 40 : 501-509 ( 1996) )を ΡΒ S で 100倍に希釈して用いた。
標識抗体と しては、 F ITC標識抗ニヮ ト リ IgG 抗体、 FITC標識抗マ ウス IgG 抗体、 FITC標識抗ゥサギ IgG 抗体 (いずれもハーラ ンセラ ラボ社製) を、 それぞれ使用時に PBS で 100倍に希釈した。
上記の抗体を含む各溶液を冷ァセ ト ンで固定したチャ ンバースラ ィ ド上の細胞と接触させ、 室温 100 %湿度で約一時間放置し、 PBS で三回洗浄した。 この後、 FITC結合抗鶏ィ ムノ グロブリ ンまたは抗 マウス IgG の希釈液とと もに、 約一時間、 室温にて反応させた。 そ の後、 PBS で三回洗浄し、 蛍光励起波長光(493. 5nm) 下で顕微鏡観 察して反応性を調べた。
対照ウィルスと して HVT 親株 FC— 126 を感染させ、 この親株ウイ ルスを感染させた細胞を対照細胞と して使用した。 結果を表 2 に示 した。
表 2 —次抗体に対する反応性 感染ウィ ルス 抗 HN Mab 抗 F Mab 抗 VP 2 Mab 抗; 3 - gal
HF002
HF003
HF004 +
HF005 +
HF006 +
HF007 +
FC 126
非感染細胞
表中、 Mab はモノ ク ローナル抗体を表わす。 + : 反応、 一 : 反応せ ず
NDV 抗原遺伝子を組み込んだ組み換 + + + +え HVT は抗 NDV モノ ク ロ一ナ ル抗体と反応し、 I BDV - VP 2遺伝子を組み込んだ組み換え HVT は抗 VP 2 モノ ク ローナル抗体と反応した。
+ + + +
この結果から、 各組み換え HVT は、 挿入した遺伝子がコー ドする タ ンパク質を発現している こ とが確認された。
実施例 17. 鶏ワ ク チ ンの NDV に対する効果実験(SPF鶏)
実施例 14で得られた組み換え HVT のワ ク チ ンの効果を判定す + + + + + +るた めにワ ク チ ン効果実験を実施した。
各群 10羽の試験用 SPF 鶏 (L ine M、 日本生物科学研究所) に、 表 2 に示す組み換え HVT を接種した。 陽性対照群には NDV の市販の生 ワクチンを接種し、 陰性対照群は末接種と した。
試験用 SPF 鶏が孵化したときに、 各組み換え HVT を、 鶏の背部皮 下に 10 4 TC ID 5。 となるように 26 Gの注射針をつかって接種した。 陽 性対照群に使用した市販の NDV 生ワクチン (日本生物科学研究所) は、 4 日齢の雛に用法通り点眼接種した。
接種 4週後に、 各群の鶏に強毒 NDV ウィルス (Sato株) を 10 4 PF U となるよ う に右大腿部にチャ レ ンジ した。 チャ レ ンジ後約 2週間 までの鶏の生死及び NDV の発症の有無を観察し、 生存率を指標と し て効果を判定した。
NDVウィルスをチヤ レンジする前に各鶏から採血を行い、 各鶏の 血清中の NDV に対する赤血球凝集抑制抗体の検出を行った。 測定は 市販されている NDV 赤血球凝集素 (日本生物科学研究所) の使用説 明書に従った。 結果は表 3 に示した。
表 3 組み換え HVT の NDV 攻撃試験結果 (その 1 ) 接種ウィルス 生存鶏数 Z試験鶏数 生存率 (%)
HF004 10 / 10 100
HF005 10 / 10 100
HF006 10 / 10 100
HF007 10 / 10 100
FC 126 0 / 10 0
NDV市販ワ ク チン 10 Z 10 100
非接種 0 Z 10 0 組み換え HVT を接種した鶏では、 NDV のチャ レ ンジに対して 100 %感染防御がなされた。 H I抗体価は FC 126 接種鶏群と非接種鶏群で 2倍以下という低い値であったのに対して、 他の群では全鶏 128 倍 から 1024倍であつた。
以上の結果から、 各組み換え HVT によって NDV に対する感染防御 能が接種鶏に付与されている ことが明らかとなつた。
実施例 18. 鶏ヮクチンの IBDVに対する効果実験(SPF鶏)
実施例 14で得られた組み換え HVT のワ ク チ ン効果を判定するため に、 ワ ク チン効果実験を実施した。
各群 10羽の試験用 SPF 鶏 ( Line M、 日本生物科学研究所) に、 HF 003 、 および親株ウィルスである FPV をそれぞれ接種した。 陽性対 照群には IBDVの市販のヮクチンを接種し、 陰性対照群は非接種と し た。
試験用 SPF 鶏が孵化したと きに、 各組み換え HVT を、 鶏の背部皮 下に 104 TCID 5。 となるように 26 Gの注射針をつかって接種した。 陽 性対照群に使用した市販の NDV 生ワクチン (北里研究所) は、 16日 齢の雛に用法通り点眼接種した。
生ワクチン接種 17日後に、 各群の鶏に強毒 IBDVゥィルス(Okayama 株) を 1. 5 X 103 ' 8 EID 5。となるように経口でチャ レンジした。 チヤ レ ンジ後約 3 日での鶏の生死を観察した。 その後生存した鶏を屠殺 し、 IBMの発症の有無をフ ァプリキウス囊の病変形成状態を指標と して効果を判定した。 ファブリ キウス囊の病変形成状態は、 出血 ( A ) 、 囊内チーズ様浸出物形成 ( B ) 、 黄色病変 ( C ) 、 ゼリ ー様 浸出物形成 ( D ) の 4点で判定した。 各病変スコアは、 病変を形成 した鶏羽数で表わし、 スコア合計で接種ワ ク チ ンの効果を判定した 。 結果を表 4 に示した。
表 4 組み換え HVT の IBDV攻撃試験結果
■ウィルス 生^^ A B C D 病 スコア
HF003 10/10 6/10 2/ 6 1/ 6 3/ 6 0/ 6 6
FPV 9/10 9/10 7/ 9 6/ 9 8/ 9 6/ 6 27 ϊ1¾δワクチン 10/10 3/10 1/ 3 0/ 3 2/ 3 0/ 3 3
10/10 3/10 7/10 9/10 8/10 5/10 29 組み換え HVT を接種した鶏では、 IBDVのチヤ レ ンジに対して市販 のワ ク チ ンとほぼ同等の感染防御能を示した。
この結果から、 組み換え HVT の接種によって IBDVに対する感染防 御能が付与されていることが示された。
実施例 19. 鶏ワ ク チ ン効果実験 (移行抗体保有鶏)
実施例 14で得られた組み換え HVT が移行抗体を保有している鶏に 対してもワクチン効果を発揮するかどうかについて、 市販鶏に接種 して調べた。
使用した鶏は、 市販されている白色レグホ ン (Dekalb鶏、 神奈川 養鶏連合会) から生まれた初生雛である。 HF004 と HF006 を実施例 17と同様に背部皮下接種した。
このとき同じロ ッ 卜の雛 20羽から、 心臓採血によつて血液を採取 し、 血清を得た。 移行抗体が完全になく なる 8週後に実施例 17と同 様に NDV によるチャ レ ンジを行い、 生存率の有無で感染防御能を評 価した。 結果を表 5 に示した。
表 5 組み換え HVT の NM 攻撃試験結果 (その 2 ) 接種ウィルス 生存鶏数 Z試験鶏数 生存率 (%) HI抗体価
HF004 19 / 20 95 16
HF006 18/ 20 90 15. 5
FC 126 0/ 20 0 く 2
NDV巿販ワ ク チ ン 14 Z 19 74 8 非接種 0 Z 20 0 <2 なお、 初生齢の H I抗体価は 97であった (20羽の平均値) 。
この結果から明らかなように、 組み換え HVT を接種した群では ND V のチャ レ ンジに対してほぼ完璧なワ ク チ ン効果が示された。 また 、 チヤ レンジ時の H I抗体価も FC 126 接種群 (く 2 ) や非接種群 (く 2 ) と比較して明らかに高い値を示した (16および 15. 5 ) 。
また、 HF004 と HF006 の間では H I抗体価に有意な差もなく 、 挿入 抗原の多少に関わらず、 鶏に対して有意な免疫効果を与えることが 不 tl o
これらの結果から明らかなように、 本明細書で示した組み換え HV T は、 すべて挿入抗原遺伝子が由来する疾病の効果的なワ ク チンに なった。 そればかりでな く 、 移行抗体の影響を受けない。
また、 挿入抗原の多少に関わらず効果を発揮したことから、 多価 組み換え HVT ワクチンと しての有用性が示された。
産業上の利用可能性
本発明によれば、 七面鳥へルぺスウイルスゲノ ム中の非翻訳領域 である遺伝子領域に外来遺伝子が挿入された組み換え七面鳥ヘルべ スウイルスおよび当該組み換え七面鳥ヘルぺスゥィルスを含有する ヮクチンが提供される。

Claims

請 求 の 範 囲
1. ゲノム中の非翻訳領域である遺伝子領域に外来遺伝子が挿入 された、 鳥類感染型組み換えヘルぺス属ウィルス。
2. 前記ウィルスが、 七面鳥へリ ペスウィルスまたはマ レ ッ ク病 ウィルスである、 請求項 1 に記載の組み換えゥィルス。
3. 前記非翻訳領域が、 ヒ ト単純へルぺスウィルス各オープン ' リ 一ディ ング · フ レームに相当する七面鳥へルぺスウィルスまたは マレッ ク病ウィルスのオープン ♦ リ 一ディ ング ' フ レームの間に存 在する非翻訳領域である、 請求項 1又は 2 に記載の組み換えウィル ス o
4. 前記外来遺伝子の揷入部が、 ( 1 ) UM4と UL45の間、 ( 2 ) UL45と UL46の間、 ( 3 ) UL41と UL42の間、 ( 4 ) UL40と UL41の間、
( 5 ) gB遺伝子の下流領域、 ( 6 ) UL53と UL54の間、 および ( 7 ) UL36と UL37からなる群から選ばれる少なく と も 1箇所の揷入部位で ある請求項 3 に記載の組み換えゥィルス。
5. 前記外来遺伝子が、 鳥類の感染症の病原体に由来する遺伝子 である請求項 1 〜 4 のいずれかに記載の組み換えウィルス。
6. 前記鳥類感染症の病原体がウィルス、 細菌、 真菌、 および原 虫から成る群から選ばれた病原体である、 請求項 5 に記載の組み換 ぇゥイノレス。
7. 前記鳥類感染症の病原体が、 ニューカ ッ スル病ウィルス(NDV ) 、 ガンボ口病ウィルス (IBDV) 、 伝染性喉頭気管炎ウィルス (IL TV) 、 伝染性気管支炎ウィ ルス(IBV) 、 マイ コプラズマ (MG) 、 お よびコク シジゥムからなる群から選ばれる病原体である、 請求項 5 又は 6 に記載の組み換えウィルス。
8. 前記外来遺伝子の上流にプロモータ—を有する、 請求項 1〜 7のいずれか 1項に記載の組み換えウィルス。
9. 請求項 1 ~ 8のいずれかに記載された組み換えウィルスを有 効成分とする鶏用ワ ク チン。
PCT/JP1998/004468 1997-10-03 1998-10-02 Recombinants de virus herpetique infectieux aviaire et vaccins recombinants prepares avec ces derniers WO1999018215A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/509,871 US6632664B1 (en) 1997-10-03 1998-10-02 Avian infectious herpesvirus recombinants and recombinant vaccines prepared with the use of the same
EP98945596A EP1026246B1 (en) 1997-10-03 1998-10-02 Avian infectious herpesvirus recombinants and recombinant vaccines prepared with the use of the same
DE69836557T DE69836557T2 (de) 1997-10-03 1998-10-02 Rekombinanten des infektiösen vogel-herpesvirus und rekombinante impfstoffe, die unter dessen verwendung hergestellt wurden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/271445 1997-10-03
JP27144597 1997-10-03

Publications (1)

Publication Number Publication Date
WO1999018215A1 true WO1999018215A1 (fr) 1999-04-15

Family

ID=17500131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004468 WO1999018215A1 (fr) 1997-10-03 1998-10-02 Recombinants de virus herpetique infectieux aviaire et vaccins recombinants prepares avec ces derniers

Country Status (5)

Country Link
US (1) US6632664B1 (ja)
EP (1) EP1026246B1 (ja)
JP (1) JP3587065B2 (ja)
DE (1) DE69836557T2 (ja)
WO (1) WO1999018215A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764684B2 (en) 2001-09-28 2004-07-20 Zeon Corporation Avian herpesvirus-based recombinant infectious bursal disease vaccine
US6866852B2 (en) * 2002-01-31 2005-03-15 Zeon Corporation Recombinant herpesvirus of turkeys and use thereof
US6924135B2 (en) 2003-08-29 2005-08-02 Zeon Corporation DNA encoding Eimeria glyceroaldehyde-3-phosphate dehydrogenase and uses thereof
EP1741720A1 (en) 2001-07-11 2007-01-10 Zeon Corporation Modified DNA molecule, recombinant containing the same, and uses thereof
US7329407B2 (en) * 2004-03-31 2008-02-12 Zeon Corporation Recombinant herpesvirus and polyvalent vaccine
WO2010119112A1 (en) 2009-04-15 2010-10-21 Ceva Sante Animale Recombinant avian herpes virus vectors and vaccine for immunizing waterfowl species
WO2021123104A1 (en) 2019-12-20 2021-06-24 Intervet International B.V. Multivalent hvt vector vaccine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005093070A1 (ja) * 2004-03-29 2008-02-14 日本ゼオン株式会社 組み換えヘルペスウイルス及びその利用
JP2008228658A (ja) * 2007-03-20 2008-10-02 Nippon Zeon Co Ltd 新規なプロモーター、これを有する組み換え七面鳥ヘルペスウイルス、及びこれを利用した家禽用ワクチン
US20080241188A1 (en) * 2007-03-30 2008-10-02 Zeon Corporation Turkey herpesvirus vectored recombinant containing avian influenza genes
US20090246226A1 (en) * 2008-03-28 2009-10-01 Zeon Corporation Avian vaccines possessing a positive marker gene
CA3146727C (en) 2011-10-21 2023-10-31 Intervet International B.V. Recombinant non-pathogenic marek's disease virus constructs encoding infectious laryngotracheitis virus and newcastle disease virus antigens
EP2768529A1 (en) * 2011-10-21 2014-08-27 Intervet International B.V. Recombinant nonpathogenic mdv vector providing multivalent immunity
ES2719409T5 (es) * 2011-11-30 2022-12-07 Boehringer Ingelheim Animal Health Usa Inc Vectores recombinantes de Gallid herpesvirus 3 (mdv serotipo 2) que expresan antígenos de patógenos aviares y usos de los mismos
EP2644702A1 (en) 2012-03-30 2013-10-02 Ceva Sante Animale Multivalent recombinant avian herpes virus and vaccine for immunizing avian species
EP2845904A1 (en) * 2013-09-06 2015-03-11 Ceva Sante Animale Recombinant Marek's disease viruses and uses thereof
AR103245A1 (es) 2014-12-24 2017-04-26 Intervet Int Bv Vacuna vectorial basada en hvt (herpes virus de los pavos) frente a nd (enfermedad de newcastle) - ibd (enfermedad de gumboro) mejorada
WO2016141320A2 (en) * 2015-03-05 2016-09-09 Northwestern University Non-neuroinvasive viruses and uses thereof
PE20220232A1 (es) 2018-12-21 2022-02-07 Ceva Sante Animale Virus del herpes aviar recombinantes que contienen multiples genes extranos
CN114616325A (zh) 2019-09-11 2022-06-10 硕腾服务有限责任公司 表达禽病原体抗原的重组火鸡疱疹病毒载体和其用途
MX2023004358A (es) 2020-10-15 2023-07-25 Ceva Sante Animale Hvt recombinante y usos de este.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029248A1 (fr) * 1994-04-20 1995-11-02 Rhone Merieux HERPESVIRUS TRANSFORMES POUR EXPRIMER gD $i(IN VITRO)
WO1996005291A1 (en) * 1994-08-09 1996-02-22 Syntro Corporation Recombinant herpesvirus of turkeys and uses thereof
WO1996021034A1 (fr) * 1994-12-30 1996-07-11 Rhone Merieux Vaccin vivant recombinant aviaire
JPH08337539A (ja) * 1994-12-30 1996-12-24 Rhone Merieux 鳥類ヘルペスウイルスをベースとした組換型鳥類用生ワクチン、特にガンボロ病用ワクチン
JPH0920682A (ja) * 1994-12-30 1997-01-21 Rhone Merieux ベクターとして鳥類ヘルペスウイルスを用いた鳥類用組換え生ワクチン

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2070997T3 (es) * 1989-12-04 1995-06-16 Akzo Nobel Nv Virus de herpes recombinante de pavos y vacunas vector vivas derivadas de los mismos.
US5853733A (en) * 1993-02-26 1998-12-29 Syntro Corporation Recombinant herpesvirus of turkeys and uses thereof
FR2750866B1 (fr) * 1996-06-27 1998-11-27 Rhone Merieux Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire
FR2757061B1 (fr) * 1996-12-16 1999-03-26 Rhone Merieux Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire
FR2758986B1 (fr) * 1997-01-31 1999-04-30 Rhone Merieux Vaccin vivant recombinant aviaire, utilisant comme vecteur le virus de la laryngotracheite infectieuse aviaire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029248A1 (fr) * 1994-04-20 1995-11-02 Rhone Merieux HERPESVIRUS TRANSFORMES POUR EXPRIMER gD $i(IN VITRO)
WO1996005291A1 (en) * 1994-08-09 1996-02-22 Syntro Corporation Recombinant herpesvirus of turkeys and uses thereof
WO1996021034A1 (fr) * 1994-12-30 1996-07-11 Rhone Merieux Vaccin vivant recombinant aviaire
JPH08337539A (ja) * 1994-12-30 1996-12-24 Rhone Merieux 鳥類ヘルペスウイルスをベースとした組換型鳥類用生ワクチン、特にガンボロ病用ワクチン
JPH0920682A (ja) * 1994-12-30 1997-01-21 Rhone Merieux ベクターとして鳥類ヘルペスウイルスを用いた鳥類用組換え生ワクチン

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DARTEIL R., ET AL.: "HERPESVIRUS OF TURKEY RECOMBINANT VIRUSES EXPRESSING INFECTIOUS BURSAL DISEASE VIRUS (IBDV) VP2 IMMUNOGEN INDUCE PROTECTION AGAINST AN IBDV VIRULENT CHALLENGE IN CHICKENS.", VIROLOGY, ELSEVIER, AMSTERDAM, NL, vol. 211., no. 02., 1 January 1995 (1995-01-01), AMSTERDAM, NL, pages 481 - 490., XP002914498, ISSN: 0042-6822, DOI: 10.1006/viro.1995.1430 *
See also references of EP1026246A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1741720A1 (en) 2001-07-11 2007-01-10 Zeon Corporation Modified DNA molecule, recombinant containing the same, and uses thereof
US6764684B2 (en) 2001-09-28 2004-07-20 Zeon Corporation Avian herpesvirus-based recombinant infectious bursal disease vaccine
US7153511B2 (en) 2001-09-28 2006-12-26 Zeon Corporation Avian herpesvirus-based recombinant Infectious Bursal Disease vaccine
US6866852B2 (en) * 2002-01-31 2005-03-15 Zeon Corporation Recombinant herpesvirus of turkeys and use thereof
US6924135B2 (en) 2003-08-29 2005-08-02 Zeon Corporation DNA encoding Eimeria glyceroaldehyde-3-phosphate dehydrogenase and uses thereof
US7329407B2 (en) * 2004-03-31 2008-02-12 Zeon Corporation Recombinant herpesvirus and polyvalent vaccine
WO2010119112A1 (en) 2009-04-15 2010-10-21 Ceva Sante Animale Recombinant avian herpes virus vectors and vaccine for immunizing waterfowl species
WO2021123104A1 (en) 2019-12-20 2021-06-24 Intervet International B.V. Multivalent hvt vector vaccine

Also Published As

Publication number Publication date
JP3587065B2 (ja) 2004-11-10
DE69836557T2 (de) 2007-09-20
DE69836557D1 (de) 2007-01-11
EP1026246A4 (en) 2002-11-20
EP1026246A1 (en) 2000-08-09
JPH11192093A (ja) 1999-07-21
US6632664B1 (en) 2003-10-14
EP1026246B1 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
US11730807B2 (en) Multivalent recombinant avian herpes viruses and vaccines for immunizing avian species
WO1999018215A1 (fr) Recombinants de virus herpetique infectieux aviaire et vaccins recombinants prepares avec ces derniers
HU214904B (hu) Eljárás pulyka rekombináns herpeszvírus és ebből származó élővektor-vakcina előállítására
JP2006348044A (ja) 鳥類ヘルペスウイルスをベースとした組換型鳥類用生ワクチン、特にガンボロ病用ワクチン
KR20200002834A (ko) 이종 조류 병원체 항원을 암호화하는 재조합 갈리드 헤르페스바이러스 3형 백신
EP1467753B1 (en) Recombinant herpesvirus of turkeys and use thereof
US6913751B2 (en) Recombinant avian herpesvirus useful in vaccine production
HU219377B (en) Recombinant virus of marek-disease
US20220040287A1 (en) Recombinant avian herpes viruses containing multiple foreign genes
US20100008948A1 (en) Recombinant herpesvirus useful in vaccine production
US5369025A (en) Recombinant fowlpox vaccine for protection against Marek&#39;s disease
WO2005093070A1 (ja) 組み換えヘルペスウイルス及びその利用
EP1471937B1 (en) A continuous cell line for the production of vaccines
US20050019348A1 (en) Marek&#39;s disease virus vaccine
JP3675569B2 (ja) 組み換えウイルス及びそれよりなるワクチン
JPH09271383A (ja) 組み換えウイルス、その作製法およびその利用
JP2003238449A (ja) 鶏用組み換えワクチン及びそれを用いた免疫付与方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998945596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09509871

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998945596

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998945596

Country of ref document: EP