WO1999017048A1 - Fire-resistant sound-proof pipe - Google Patents

Fire-resistant sound-proof pipe Download PDF

Info

Publication number
WO1999017048A1
WO1999017048A1 PCT/JP1997/003538 JP9703538W WO9917048A1 WO 1999017048 A1 WO1999017048 A1 WO 1999017048A1 JP 9703538 W JP9703538 W JP 9703538W WO 9917048 A1 WO9917048 A1 WO 9917048A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fireproof
sound
tube
sound absorbing
Prior art date
Application number
PCT/JP1997/003538
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Ohira
Mitsuo Hori
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to JP2000514078A priority Critical patent/JP4419164B2/en
Priority to PCT/JP1997/003538 priority patent/WO1999017048A1/en
Publication of WO1999017048A1 publication Critical patent/WO1999017048A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/21Rigid pipes made of sound-absorbing materials or with sound-absorbing structure

Definitions

  • the present invention relates to a fireproof soundproof pipe applied to a plumbing system of a building water supply / drainage device or an air conditioner. More specifically, it relates to a fireproof soundproof tube having excellent soundproof performance.
  • BACKGROUND ART Rigid polyvinyl chloride pipes which have been widely used for piping and the like, are easily burned down in a fire, and have problems such as spread of fire and generation of toxic gas.
  • a fire-resistant double-layer pipe has been proposed which is provided with fire resistance by coating the periphery of a hard pipe with, for example, fiber reinforced mortar or asbestos.
  • Japanese Patent Application Publication No. 51-91051 discloses a fireproof soundproof pipe in which a foamed plastic layer is provided between a metal inner pipe and an outer pipe.
  • the sound absorbing performance (soundproofing performance) of the foamed plastic layer as the sound absorbing layer is low.
  • the gap between the inner and outer tubes must be widened and the sound absorbing layer It was necessary to increase the thickness. Therefore, the required performance is not sufficient. If sound absorption performance (soundproofing performance) that can cope with the problem is to be ensured, the diameter of the fireproof soundproof tube itself becomes too large, it does not conform to the standard, and it may lead to a situation where piping cannot be performed at the specified location. On the other hand, when trying to conform to the standard, there was no one that could satisfy both the standard-compatible thickness and sufficient soundproofing performance, such that sufficient soundproofing would not be obtained.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a fireproof soundproof tube having a sufficient soundproof performance even if the thickness is small.
  • DISCLOSURE OF THE INVENTION The present invention relates to a fireproof soundproof tube provided with a fireproof layer around an inner tube, and in the invention according to claims 1 to 6, a dipole moment between the inner tube and the fireproof layer.
  • the active component which is the greatest feature of these inventions, refers to a component that dramatically increases the amount of dipole moment in the sound absorbing layer.
  • the active component itself has a large dipole moment, or the active component. Although the dipole moment itself is small, it refers to a component in which the dipole moment in the sound absorbing layer is dramatically increased by including the active component. Also claims?
  • a fireproof soundproof pipe provided with a corrugated reflection groove on the inner peripheral surface of the refractory layer or the outer peripheral surface of the inner pipe is proposed, and includes, for example, an inner pipe 2 and an outer pipe 3 shown in FIG.
  • a conventional soundproof tube member 11 described in Japanese Patent Application Laid-Open No.
  • the waveform reflection groove may be formed in a smooth curved surface such as a sine curve, or may be formed in a zigzag shape in which peaks and valleys are continuous. Further, it may have a rectangular waveform or a continuous loop-shaped cross section.
  • FIG. 1 is an enlarged sectional view showing a fireproof soundproof tube provided with a wave reflection groove on the inner peripheral surface of the fireproof layer of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a fireproof soundproof tube provided with a sound absorbing layer in a gap between the inner tube and the fireproof layer shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a gap is formed in a fireproof layer provided with a waveform reflection groove.
  • FIG. 4 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a sound absorbing layer is provided in a gap between an inner tube of the fireproof soundproof tube shown in FIG. 3 and a fireproof layer.
  • FIG. 5 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a sound absorbing layer is provided in a gap of the fireproof layer shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a sound absorbing layer is provided in a gap of the fireproof layer shown in FIG.
  • FIG. 6 is an enlarged cross-sectional view showing a fireproof soundproof tube provided with a corrugated reflection groove on the inner peripheral surface of the inner tube of the present invention.
  • FIG. 7 is an enlarged cross-sectional view showing a fireproof soundproof tube provided with a sound absorbing layer in a gap between the inner tube and the fireproof layer shown in FIG.
  • FIG. 8 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a gap is formed in an inner tube provided with a waveform reflection groove.
  • FIG. 9 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a sound absorbing layer is provided in a gap between an inner tube of the fireproof soundproof tube shown in FIG. 8 and a fireproof layer.
  • FIG. 7 is an enlarged cross-sectional view showing a fireproof soundproof tube provided with a sound absorbing layer in a gap between the inner tube and the fireproof layer shown in FIG.
  • FIG. 8 is an enlarged cross-sectional view showing
  • FIG. 10 is an enlarged sectional view showing a fireproof soundproof tube in which a sound absorbing layer is provided in a gap of the inner tube shown in FIG.
  • FIG. 11 is a schematic diagram showing a state of a dipole in the sound absorbing material (foam resin layer).
  • FIG. 12 is a schematic diagram showing the state of a dipole when sound energy is applied to the sound absorbing material (foamed resin layer).
  • FIG. 13 is a graph showing the relationship between the dielectric constant (p ') and the dielectric loss factor (d).
  • FIG. 14 is an enlarged cross-sectional view showing a conventional soundproof tube member having a double tube structure including an inner tube and an outer tube, and having a reflection absorbing plate disposed in a gap between the inner and outer tubes.
  • refractory soundproofing tube c present invention will be described in detail in accordance with the embodiment shown the refractory soundproof tube in the drawings of the present invention, a pipe such as plumbing device or air conditioner of a building It is applied as
  • the fireproof soundproof tube 11 shown in FIG. 1 includes an inner tube 12, a fireproof layer 13, and a spacing member 14, which are integrally formed by extrusion.
  • this fireproof The inner pipe 12, the refractory layer 13 and the spacing member 14 in the soundproof pipe 11 may be separately formed and then assembled. However, from the point of strength and workability, it is desirable to extrude integrally as in this embodiment.
  • inorganic fibers such as asbestos, glass fibers, and ceramic fibers are used, and these are combined with an inorganic binder such as cement to form a tube or a metal tube. Or a ceramic tube or a plastic tube containing a flame retardant or a flame retardant fiber.
  • hard polyethylene was used for the inner tube 12 and the spacing member 14, and hard polyethylene containing glass fiber was used for the refractory layer 13.
  • FIG. 1 has an inner pipe 12, a fireproof layer 13, and a spacing member 14 that are integrally extruded and formed. It is formed into a shape, but the thickness, length, etc. of the inner tube 12, the refractory layer 13, and the spacing member 14 are also appropriately determined in accordance with the intended use, use condition, and use location.
  • the point that the inner pipe 12, the refractory layer 13, and the spacing member 14 are integrally extruded and formed is the same for each soundproof pipe member shown in FIGS. 2 to 10 described later. The description of this point is omitted in the description of each embodiment in FIG.
  • a wave reflection groove 15 is provided on the inner peripheral surface of the fireproof layer 13.
  • Figure 2 shows a fireproof soundproof pipe 1 1 with a sound absorbing layer 16 provided in the gap between the inner pipe 12 and the fireproof layer 13. It shows.
  • the sound absorbing layer 16 is made of a foamed resin layer.
  • the sound absorbing layer 16 may be a fiber layer or the like in addition to the foamed resin layer. As shown in FIG.
  • the fireproof soundproof tube 11 shown in FIG. 3 has a gap 17 formed in a fireproof layer 13 provided with a wave reflection groove 16.
  • the size and shape of the void 17 are arbitrary, and can be freely formed within a moldable range.
  • the formation of the air gap 17 can save material, and the sound from the inner pipe 12 tends to propagate further to the outside even if the sound from the inner pipe 12 is attenuated by the irregular reflection of the waveform reflection groove 15 described above. However, the air layer formed in the gap 17 acts as an obstacle, and effective sound reduction is measured.
  • the fireproof soundproof tube 11 shown in FIG. 4 has a sound absorbing layer 16 provided in a gap between the inner tube 12 and the fireproof layer 13 in the fireproof soundproof tube 11 shown in FIG.
  • the fireproof soundproof tube 11 shown in FIG. 5 has a form in which a sound absorbing layer 18 is formed in the void 17 of the fireproof layer 13 in the fireproof soundproof tube 11 shown in FIG.
  • the sound from the inner tube 12 is first absorbed by the sound absorbing layer 16, and the sound that has escaped absorption is attenuated by the irregular reflection of the waveform reflection groove 15, and is further formed in the fireproof layer 13.
  • FIG. 7 shows a fireproof soundproof pipe 11 provided with a sound absorbing layer 16 in a gap between the inner pipe 12 and the fireproof layer 13.
  • the sound absorbing layer 16 is made of a foamed resin layer.
  • the sound absorbing layer 16 may be a fiber layer or the like in addition to the foamed resin layer. As shown in FIG. 7, by providing the sound absorbing layer 16 in the gap between the inner pipe 12 and the fireproof layer 13, the fireproof soundproof pipe 11 is caused by the irregular reflection of the sound of the above-described waveform reflection groove 15. In addition to the attenuation, the sound absorbing layer 16 absorbs the sound, so that the sound reduction is more effectively measured.
  • the fireproof soundproof tube 11 shown in FIG. 8 has a gap 19 formed in an inner tube 12 provided with a waveform reflection groove 16. The size and shape of the void 19 are arbitrary, and can be freely formed within a moldable range.
  • the formation of the air gap 19 can save material, and the sound from the inner tube 12 tends to propagate to the outside, whereas the air layer formed in the air gap 17 Since it becomes an obstacle, effective sound reduction can be measured in combination with the attenuation caused by the irregular reflection of the waveform reflection groove 15 described above.
  • the fireproof soundproof pipe 11 shown in FIG. 9 has a sound absorption layer 16 provided in the gap between the inner pipe 12 and the fireproof layer 13 in the fireproof soundproof pipe 11 shown in FIG. In this case, the sound from the inner pipe 12 is first prevented from propagating by the air layer in the gap 19 formed in the inner pipe 12, and is attenuated by the irregular reflection of the waveform reflection groove 15, and the sound is further absorbed. It will be absorbed by layer 16.
  • the fireproof soundproof pipe 11 shown in FIG. 10 is a form in which the sound absorbing layer 20 is formed in the gap 19 of the inner pipe 12 in the fireproof soundproof pipe 11 shown in FIG. 9.
  • the sound from the inner tube 12 is first absorbed by the sound absorbing layer 20 provided in the inner tube 12, and the sound that has escaped absorption is attenuated by the irregular reflection of the waveform reflection groove 15. Absorbed by sound absorbing layer 1 6 Will be.
  • the sound absorbing layers 16, 18, 20 (foamed resin layers) shown in the forms shown in FIGS. 2, 4, 5, 5, 7, 9, and 10 are made of urethane, chloroprene, and styrene.
  • the sound absorbing layers 16, 18, 20 (foamed resin layers) shown in the above figures are made of polyurethane and foamed by adding a foaming agent, a catalyst and the like to this resin.
  • the sound absorbing layers 16, 18, 20 (foamed resin layer) shown in each figure contain an active ingredient that increases the amount of dipole moment in the sound absorbing layer (foamed resin layer).
  • the active component is a component that dramatically increases the amount of dipole moment in the sound absorbing layer (foamed resin layer), and the active component itself has a large dipole moment amount, or is an active component.
  • the amount of dipole moment of the component itself is small, it refers to a component in which the amount of dipole moment in the sound-absorbing layer (foamed resin layer) dramatically increases due to the inclusion of the active component.
  • the relationship between the sound absorbing property of the sound absorbing layer (foamed resin layer) and the amount of dipole moment will be described.
  • displacement occurs in the dipole 22 existing inside the sound absorbing material (foamed resin layer) 21.
  • Displacement of the dipole 22 means that each dipole 22 in the sound absorbing material (foam resin layer) 21 rotates or shifts in phase. It can be said that the arrangement state of the dipoles 22 inside the sound absorbing material (foam resin layer) 21 before sound energy is applied as shown in FIG. 11 is stable. However, as shown in FIG. 12, when sound energy is applied to the sound absorbing material (foamed resin layer) 21, displacement occurs in the dipole 22 existing inside the sound absorbing material (foamed resin layer) 21.
  • Each dipole 22 inside the sound absorbing material (foam resin layer) 21 will be placed in an unstable state, and each dipole 22 will return to the stable state shown in FIG. At this time, energy is consumed. It is thought that the sound absorption effect is generated through the generation of frictional heat on the surface of the sound absorbing material (foamed resin layer), the displacement of the dipole inside the sound absorbing material (foamed resin layer), and the energy consumption due to the dipole restoring action. It is done. Due to the mechanism by which the above-described sound absorbing effect occurs, as the amount of the dipole moment inside the sound absorbing material (foamed resin layer) 21 shown in FIGS. 11 and 12 increases, the sound absorbing material (foamed resin layer) increases.
  • the sound absorbing performance of 21 is also high. From this, the amount of the dipole moment in the sound-absorbing layer (foamed resin layer) increases to 3 times or 10 times under the same conditions by blending the above-mentioned active ingredient. Therefore, the energy consumption due to the dipole restoring effect when the energy is transferred is also increased drastically, and it is thought that the sound absorption performance far exceeds the expected.
  • Examples of the active ingredient that induces such an effect include compounds containing a mercaptobenzothiazyl group such as N, N-dicyclohexylbenzothiazyl-1-sulfenamide, 2-mercaptobenzothiazole and dibenzothiazyl sulfide; 2- ⁇ 2 'one hydroxy 3'-(3 ", 4", 5 ", 6" tetrahydroftarimidemethyl) one 5 '—methylphenyl ⁇ benzotriazole, 2 _ ⁇ 2 Xy-5'-methylphenyl ⁇ benzotriazole, 2- ⁇ 2'-hydroxy-3'-t-butyl-5'-methylphenyl ⁇ 1-5-chlorobenzotriazole, 2- ⁇ 2'-hydroxy 3 ', 5' —Di-tert-butylphenyl ⁇ -1-5-Chemical compound having a benzotriazole group such as benzotriazole or ethyl 2-cyano-1,3,3-diphen
  • the sound-absorbing layer (foamed resin layer) containing the active ingredient dramatically increases the amount of dipole moment, thereby exhibiting excellent sound energy absorbing performance (sound absorbing properties).
  • the amount of dipole moment in this sound absorbing layer (foamed resin layer) is expressed as the difference in dielectric constant ⁇ ') between A and B shown in Fig. 13. In other words, the larger the difference between the dielectric constants (£ ′) between ⁇ ⁇ and ⁇ shown in FIG. 13 is, the larger the amount of the dipole moment is.
  • the dielectric loss factor (£ ⁇ ) the dielectric constant (£') X the dielectric loss tangent (tancS) Holds.
  • the sound absorbing layer (Foamed resin layer) was found to have excellent energy absorption performance (sound absorption).
  • the fire-resistant sound-insulating pipe of the present invention is freely provided as long as the water supply and drainage noise can be more effectively reduced, such as a vibration damping layer, a sound insulation layer, and a vibration insulation layer outside and / or inside the above sound absorbing layer. It can be used additionally. In this case, it is desirable that the additionally used damping layer, sound insulation layer and vibration damping layer contain an active ingredient that increases the dipole moment.
  • a fireproof soundproof tube can be created.
  • the above-mentioned vibration damping layer for example, a layer obtained by mixing rubber with the above vinyl chloride resin can be used.
  • the rubber includes acrylonitrile-butene-diene rubber (NBR), styrene-butadiene rubber (SBR), butadiene rubber (BR), natural rubber (NR), isoprene rubber (IR) and the like.
  • the compounding of the rubber is for obtaining good viscoelastic properties at room temperature, and the compounding amount is preferably 10 to 80% by weight. If the amount is more or less than this range, sufficient viscoelastic properties at room temperature cannot be obtained.
  • the damping layer can be filled with a filler to improve the damping properties. As the filler, the same one as exemplified in the description of the foamed resin layer can be used.
  • the vibration-proof layer is mainly made of rubber-based materials such as acrylonitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), butadiene rubber (BR), natural rubber (NR), and isoprene rubber (IR).
  • the vibration-proofing layer may be filled with a filler such as carbon black or calcium carbonate, if necessary (for adjusting the hardness).
  • a filler such as carbon black or calcium carbonate
  • the sound insulating layer include acetic acid obtained by random copolymerization or block copolymerization with at least one kind of monomer copolymerizable with vinyl chloride monomer in addition to a resin polymerized with vinyl chloride alone.
  • Vinyl chloride copolymer resins such as vinyl-vinyl chloride copolymer, ethylene-vinyl chloride copolymer, vinylidene chloride-vinyl chloride copolymer, or resins that can be graft-copolymerized with vinyl chloride monomer
  • vinyl chloride-based resins such as ethylene monoacetate-vinyl chloride graft copolymer and polyurethane-vinyl chloride graft copolymer obtained by graft copolymerization
  • the filling amount of the filler is preferably 50 to 95% by weight, as in the case of the foamed resin layer described above. It should be noted that the scope of the present invention is defined in “Claims”, and all changes and modes included in the scope can be adopted.

Abstract

A fire-resistant sound-proof pipe which can be used for the piping of a water supply/drain system, an air conditioner, etc. of a building. The fire-resistant and sound-proof pipe is characterized in that a sound absorbing layer which contains an active component which increases the dipole moment value is provided between the inner pipe and a fire-resistant layer. The pipe has an unprecedented excellent sound-proof performance.

Description

曰月糸田 ¾ 耐火防音管 技術分野 本発明は、 建築物の給排水装置や空調装置などの配管等に適用される耐火防音 管に関する。 詳細には優れた防音性能を備えた耐火防音管に関する。 背景技術 従来より配管等に多用されている硬質塩化ビニル管は、 火災時に容易に焼失し、 延焼や有毒ガスの発生といった不具合を有している。 このような不具合を改善す ベく、 硬質管周りに、 例えば繊維強化モルタルや石綿を被覆して、 耐火性を付与 した耐火二層管が提案されている。 一方、 近年ますます室内環境、 居住空間の快適性が求められる中で、 騒音対策 についても大きくクローズアップされており、 配管等の給排水騒音の合理的かつ 確実な防止対策は業界間でも開発が進められつつある。 このような業界間におけ る騒音対策、 防音性についての考え方は、 当然のことながら上述の耐火二層管の 分野にも波及し、 耐火防音管なるものも提案されるに至っている。 例えば特閧昭 5 1 - 9 1 0 5 1号公報には、 金属製の内外管の間に発泡プラス チック層を設けた耐火防音管が示されている。 ところがこの耐火防音管にあっては、 吸音層としての発泡プラスチック層の吸 音性能 (防音性能) が低く、 十分な性能を確保するためには、 内外管の隙間を広 くして、 吸音層の厚みを厚くする必要があった。 このため、 要求される性能に十 分に対応できる吸音性能 (防音性能) を確保しょうとした場合、 耐火防音管自体 の径が太くなつて、 規格に合わなくなり、 所定箇所に配管できないという事態を 招くことになる。 一方、 規格に合わせようとした場合には、 十分な防音性が得ら れなくなるといった具合に、 規格に適合できる太さと、 十分な防音性能の両者を 満足できるものはなかった。 本発明は、 このような事情に鑑みなされたものであり、 厚みが薄くても十分な 防音性能を有する耐火防音管を提供することを目的とするものである。 発明の開示 本発明は、 内管の周りに耐火層を設けた耐火防音管であって、 請求項 1〜6記 載の発明では、 前記内管と耐火層との間に双極子モ一メント量を増加させる活性 成分を配合した吸音層が設けられている耐火防音管を提案しており、 これにより、 従来に例を見ない優れた防音性能を導き出している。 これらの発明の最大の特徴である活性成分とは、 吸音層における双極子モーメ ントの量を飛躍的に増加させる成分をいい、 当該活性成分そのものの双極子モー メント量が大きいもの、 あるいは活性成分そのものの双極子モ一メント量は小さ いが、 当該活性成分が含まれることで、 吸音層における双極子モーメント量が飛 躍的に増加するような成分をいう。 また、 請求項?〜 1 1記載の発明では、 耐火層内周面または内管外周面に波形 反射溝を設けた耐火防音管を提案しており、 例えば図 1 4に示す内管 2と外管 3 とからなる二重管構造を有し、 前記内管と外管 3との隙間に反射吸収板 4を配置 した従来の防音管部材 1 1 (特開平 2— 1 6 8 0 9 7号公報に記載) における反 射吸収板にも匹敵する、 (あるいは双極子モーメント量を増加させる活性成分を 配合した吸音層が設けられた形態のものにあっては、 それを遙かに上回る) 優れ た防音性能を導き出している。 波形反射溝は、 例えばサインカーブのような滑らかな湾曲面状に形成されてい てもよいし、 山部と谷部とが連続するジグザグ形状に形成されていても良い。 さ らには矩形状の波形形状を呈するものや連続したループ状の断面形状を有するも のであっても良い。 この波形反射溝を耐火層内周面または内管外周面に設けるこ とで、 内管からの音は波形反射溝の壁に当たって乱反射し、 波形反射溝内で衝突 を繰り返し、 次第に減衰していくことになる。 特に連続したループ状の断面形状 を有する波形反射溝の場合、 一旦溝内に入り込んだ音は、 溝の出口 (開口) が小 さいことから、 溝内から出られず衝突を繰り返すことになることから、 より効果 的な減衰が計られることになる。 図面の簡単な説明 図 1は、 本発明の耐火層内周面に波形反射溝を設けた耐火防音管を示す拡大断 面図である。 図 2は、 図 1に示す内管と耐火層との隙間に吸音層を設けた耐火防音管を示す 拡大断面図である。 図 3は、 波形反射溝を設けた耐火層内に空隙を形成した耐火防音管を示す拡大 断面図である。 図 4は、 図 3に示す耐火防音管の内管と耐火層との隙間に吸音層を設けた耐火 防音管を示す拡大断面図である。 図 5は、 図 3に示す耐火層の空隙に吸音層を設けた耐火防音管を示す拡大断面 図である。 図 6は、 本発明の内管外内周面に波形反射溝を設けた耐火防音管を示す拡大断 面図である。 図 7は、 図 6に示す内管と耐火層との隙間に吸音層を設けた耐火防音管を示す 拡大断面図である。 図 8は、 波形反射溝を設けた内管内に空隙を形成した耐火防音管を示す拡大断 面図である。 図 9は、 図 8に示す耐火防音管の内管と耐火層との隙間に吸音層を設けた耐火 防音管を示す拡大断面図である。 図 10は、 図 8に示す内管の空隙に吸音層を設けた耐火防音管を示す拡大断面図 である。 図 11は、 吸音材 (発泡樹脂層) 中の双極子の状態を示した模式図である。 図 12は、 吸音材 (発泡樹脂層) に音エネルギーが加わったときの双極子の状態 を示した模式図である。 図 13は、 誘電率 (£ ' ) と誘電損率 (ど〃 ) との関係を示したグラフである。 図 14は、 内管と外管とからなる二重管構造を有し、 前記内外管の隙間に反射吸 収板を配置した従来の防音管部材を示した拡大断面図である。 発明を実施するための最良の形態 以下、 本発明の耐火防音管を図面に示した実施の形態に従って詳細に説明する c 本発明の耐火防音管は、 建築物の給排水装置や空調装置などの配管として適用さ れるものである。 図 1に示す耐火防音管 1 1は、 内管 1 2と耐火層 1 3と間隔保 持部材 1 4とからなり、 これらが一体に押し出し成形されている。 尚、 この耐火 防音管 1 1における内管 1 2、 耐火層 1 3及び間隔保持部材 1 4は、 別々に成形 しておき、 その後組み立てても良い。 しかしながら、 強度、 作業性の点からは、 本形態のように一体に押し出し成形するのが望ましい。 内管 1 2の材質としては、 従来より硬質配管に用いられている硬質ポリ塩化ビ ニルゃポリエチレン、 ポリプロピレン、 ポリブテンなどを用いることができる。 耐火層 1 3としては、 石綿、 ガラス繊維、 セラミック繊維などの無機質繊維を用 い、 これをセメントなどの無機質結合材で結合して管状としてものや金属管など、 従来より耐火層として用いられていたものや、 セラミック管や難燃剤や難燃繊維 を含有するプラスチック管などを適用することができる。 図 1に示す形態では、 内管 1 2及び間隔保持部材 1 4として硬質ポリエチレンを用い、 耐火層 1 3とし てガラス繊維を含む硬質ポリエチレンを用いた。 また、 図 1に示す耐火防音管 1 1は、 内管 1 2と耐火層 1 3と間隔保持部材 1 4とが一体に押し出し成形され、 さらに使用箇所に応じて直管や L管など所望の 形状に成形されるが、 内管 1 2、 耐火層 1 3、 間隔保持部材 1 4の太さ、 長さな どについても同様に、 用途や使用状態、 使用箇所に応じて適宜決定される。 尚、 内管 1 2と耐火層 1 3と間隔保持部材 1 4とを一体に押し出し成形する点 は、 後述する図 2〜 1 0に示す各防音管部材についても同じとしたので、 図 2〜 図 1 0の各形態の説明箇所で、 この点についての説明は割愛する。 図 1に示す耐火防音管 1 1にあっては、 前記耐火層 1 3の内周面に波形反射溝 1 5が設けられている。 図 1の波形反射溝 1 5は、 連続したループ状の断面形状 を有している。 このため、 内管 1 2からの音はループ状の波形反射溝 1 5の壁に 当たって乱反射し、 反射溝 1 5内で衝突を繰り返し、 次第に減衰してゆくことに なる。 図 2は、 内管 1 2と耐火層 1 3との隙間に吸音層 1 6を設けた耐火防音管 1 1 を示すものである。 この形態において吸音層 1 6は発泡樹脂層からなる。 尚、 吸 音層 1 6は、 発泡樹脂層の他に繊維層なども用いることができる。 図 2に示す如く、 内管 1 2と耐火層 1 3との隙間に吸音層 1 6を設けることに より、 当該耐火防音管 1 1は、 前述の波形反射溝 1 5の音の乱反射のよる減衰に 加えて、 吸音層 1 6が音を吸収することから、 より効果的に減音が計られること になる。 図 3に示す耐火防音管 1 1は、 波形反射溝 1 6を設けた耐火層 1 3内に空隙 1 7を形成したものである。 空隙 1 7の大きさや形状は任意であり、 成形可能な範 囲で自由に形成することができる。 空隙 1 7の形成は、 材料の節約を計ることが できると共に、 内管 1 2からの音が前述の波形反射溝 1 5の乱反射により減衰さ れてもさらに外部へ伝播しょうとするのに対し、 これを空隙 1 7内に形成された 空気層がその障害となり、 効果的な減音が計られることになる。 図 4に示す耐火防音管 1 1は、 図 3に示す耐火防音管 1 1における内管 1 2と 耐火層 1 3との隙間に吸音層 1 6を設けたものである。 この形態の場合、 内管 1 2からの音は、 まず吸音層 1 6によって吸収され、 吸収を免れた音が波形反射溝 1 5の乱反射により減衰され、 さらに耐火層 1 3内に形成された空隙 1 7内の空 気層によつて伝播が阻害されるといつた具合に減衰されるようになつている。 図 5に示す耐火防音管 1 1は、 図 4に示す耐火防音管 1 1における耐火層 1 3 の空隙 1 7内に吸音層 1 8を形成した形態である。 この形態の場合、 内管 1 2か らの音は、 まず吸音層 1 6によって吸収され、 吸収を免れた音が波形反射溝 1 5 の乱反射により減衰され、 さらに耐火層 1 3内に形成された空隙 1 7内の吸音層 によって吸収されるといつた具合に減衰されるようになっている。 図 6に示す耐火防音管 1 1は、 前記内管 1 2の外周面に波形反射溝 1 5が設け られている。 図 6の波形反射溝 1 5は、 連続したループ状の断面形状を有してい る。 このため、 内管 1 2からの音はループ状の波形反射溝 1 5の壁に当たって乱 反射し、 反射溝 1 5内で衝突を繰り返し、 次第に減衰してゆくことになる。 図 7は、 内管 1 2と耐火層 1 3との隙間に吸音層 1 6を設けた耐火防音管 1 1 を示すものである。 この形態において吸音層 1 6は発泡樹脂層からなる。 TECHNICAL FIELD The present invention relates to a fireproof soundproof pipe applied to a plumbing system of a building water supply / drainage device or an air conditioner. More specifically, it relates to a fireproof soundproof tube having excellent soundproof performance. BACKGROUND ART Rigid polyvinyl chloride pipes, which have been widely used for piping and the like, are easily burned down in a fire, and have problems such as spread of fire and generation of toxic gas. In order to remedy such a problem, a fire-resistant double-layer pipe has been proposed which is provided with fire resistance by coating the periphery of a hard pipe with, for example, fiber reinforced mortar or asbestos. On the other hand, with the increasing demand for comfort in indoor environments and living spaces in recent years, noise measures have also become a major focus, and rational and reliable measures to prevent plumbing and other plumbing noise are being developed among industries. It is being done. Naturally, this concept of noise control and soundproofing among industries has spread to the above-mentioned field of fireproof double-layered pipes, and fireproofed soundproof pipes have been proposed. For example, Japanese Patent Application Publication No. 51-91051 discloses a fireproof soundproof pipe in which a foamed plastic layer is provided between a metal inner pipe and an outer pipe. However, in this fireproof soundproof tube, the sound absorbing performance (soundproofing performance) of the foamed plastic layer as the sound absorbing layer is low. To ensure sufficient performance, the gap between the inner and outer tubes must be widened and the sound absorbing layer It was necessary to increase the thickness. Therefore, the required performance is not sufficient. If sound absorption performance (soundproofing performance) that can cope with the problem is to be ensured, the diameter of the fireproof soundproof tube itself becomes too large, it does not conform to the standard, and it may lead to a situation where piping cannot be performed at the specified location. On the other hand, when trying to conform to the standard, there was no one that could satisfy both the standard-compatible thickness and sufficient soundproofing performance, such that sufficient soundproofing would not be obtained. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fireproof soundproof tube having a sufficient soundproof performance even if the thickness is small. DISCLOSURE OF THE INVENTION The present invention relates to a fireproof soundproof tube provided with a fireproof layer around an inner tube, and in the invention according to claims 1 to 6, a dipole moment between the inner tube and the fireproof layer. We have proposed a fire-resistant sound-insulating tube with a sound-absorbing layer containing an active ingredient that increases the amount, which has led to unprecedented superior sound insulation performance. The active component, which is the greatest feature of these inventions, refers to a component that dramatically increases the amount of dipole moment in the sound absorbing layer. The active component itself has a large dipole moment, or the active component. Although the dipole moment itself is small, it refers to a component in which the dipole moment in the sound absorbing layer is dramatically increased by including the active component. Also claims? In the inventions described in (1) to (11), a fireproof soundproof pipe provided with a corrugated reflection groove on the inner peripheral surface of the refractory layer or the outer peripheral surface of the inner pipe is proposed, and includes, for example, an inner pipe 2 and an outer pipe 3 shown in FIG. In a conventional soundproof tube member 11 (described in Japanese Patent Application Laid-Open No. 2-16897), which has a double-tube structure, and has a reflection-absorbing plate 4 disposed in a gap between the inner tube and the outer tube 3 Demonstrates excellent soundproofing performance that is comparable to that of a reflection-absorbing plate (or far exceeds that in the case where a sound-absorbing layer containing an active component that increases the amount of dipole moment is provided). ing. The waveform reflection groove may be formed in a smooth curved surface such as a sine curve, or may be formed in a zigzag shape in which peaks and valleys are continuous. Further, it may have a rectangular waveform or a continuous loop-shaped cross section. By providing this wave reflection groove on the inner peripheral surface of the refractory layer or the outer surface of the inner tube, the sound from the inner tube impinges on the wall of the wave reflection groove and is irregularly reflected, repeatedly colliding in the wave reflection groove, and gradually attenuated. Will be. In particular, in the case of a wavy reflective groove having a continuous loop-shaped cross-section, once the sound has entered the groove, the sound cannot be emitted from the groove due to the small exit (opening) of the groove. Therefore, more effective damping is measured. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged sectional view showing a fireproof soundproof tube provided with a wave reflection groove on the inner peripheral surface of the fireproof layer of the present invention. FIG. 2 is an enlarged cross-sectional view showing a fireproof soundproof tube provided with a sound absorbing layer in a gap between the inner tube and the fireproof layer shown in FIG. FIG. 3 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a gap is formed in a fireproof layer provided with a waveform reflection groove. FIG. 4 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a sound absorbing layer is provided in a gap between an inner tube of the fireproof soundproof tube shown in FIG. 3 and a fireproof layer. FIG. 5 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a sound absorbing layer is provided in a gap of the fireproof layer shown in FIG. FIG. 6 is an enlarged cross-sectional view showing a fireproof soundproof tube provided with a corrugated reflection groove on the inner peripheral surface of the inner tube of the present invention. FIG. FIG. 7 is an enlarged cross-sectional view showing a fireproof soundproof tube provided with a sound absorbing layer in a gap between the inner tube and the fireproof layer shown in FIG. FIG. 8 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a gap is formed in an inner tube provided with a waveform reflection groove. FIG. 9 is an enlarged cross-sectional view showing a fireproof soundproof tube in which a sound absorbing layer is provided in a gap between an inner tube of the fireproof soundproof tube shown in FIG. 8 and a fireproof layer. FIG. 10 is an enlarged sectional view showing a fireproof soundproof tube in which a sound absorbing layer is provided in a gap of the inner tube shown in FIG. FIG. 11 is a schematic diagram showing a state of a dipole in the sound absorbing material (foam resin layer). FIG. 12 is a schematic diagram showing the state of a dipole when sound energy is applied to the sound absorbing material (foamed resin layer). FIG. 13 is a graph showing the relationship between the dielectric constant (p ') and the dielectric loss factor (d). FIG. 14 is an enlarged cross-sectional view showing a conventional soundproof tube member having a double tube structure including an inner tube and an outer tube, and having a reflection absorbing plate disposed in a gap between the inner and outer tubes. DETAILED DESCRIPTION OF THE EMBODIMENTS, refractory soundproofing tube c present invention will be described in detail in accordance with the embodiment shown the refractory soundproof tube in the drawings of the present invention, a pipe such as plumbing device or air conditioner of a building It is applied as The fireproof soundproof tube 11 shown in FIG. 1 includes an inner tube 12, a fireproof layer 13, and a spacing member 14, which are integrally formed by extrusion. In addition, this fireproof The inner pipe 12, the refractory layer 13 and the spacing member 14 in the soundproof pipe 11 may be separately formed and then assembled. However, from the point of strength and workability, it is desirable to extrude integrally as in this embodiment. As the material of the inner tube 12, hard polyvinyl chloride—polyethylene, polypropylene, polybutene, and the like, which have been conventionally used for hard piping, can be used. As the refractory layer 13, inorganic fibers such as asbestos, glass fibers, and ceramic fibers are used, and these are combined with an inorganic binder such as cement to form a tube or a metal tube. Or a ceramic tube or a plastic tube containing a flame retardant or a flame retardant fiber. In the embodiment shown in FIG. 1, hard polyethylene was used for the inner tube 12 and the spacing member 14, and hard polyethylene containing glass fiber was used for the refractory layer 13. In addition, the fireproof soundproof pipe 11 shown in FIG. 1 has an inner pipe 12, a fireproof layer 13, and a spacing member 14 that are integrally extruded and formed. It is formed into a shape, but the thickness, length, etc. of the inner tube 12, the refractory layer 13, and the spacing member 14 are also appropriately determined in accordance with the intended use, use condition, and use location. The point that the inner pipe 12, the refractory layer 13, and the spacing member 14 are integrally extruded and formed is the same for each soundproof pipe member shown in FIGS. 2 to 10 described later. The description of this point is omitted in the description of each embodiment in FIG. In the fireproof soundproof tube 11 shown in FIG. 1, a wave reflection groove 15 is provided on the inner peripheral surface of the fireproof layer 13. The waveform reflection groove 15 in FIG. 1 has a continuous loop-shaped cross-sectional shape. For this reason, the sound from the inner tube 12 is irregularly reflected on the wall of the loop-shaped wave reflection groove 15, and repeats collision in the reflection groove 15, and is gradually attenuated. Figure 2 shows a fireproof soundproof pipe 1 1 with a sound absorbing layer 16 provided in the gap between the inner pipe 12 and the fireproof layer 13. It shows. In this embodiment, the sound absorbing layer 16 is made of a foamed resin layer. The sound absorbing layer 16 may be a fiber layer or the like in addition to the foamed resin layer. As shown in FIG. 2, by providing the sound absorbing layer 16 in the gap between the inner pipe 12 and the fireproof layer 13, the fireproof soundproof pipe 11 is caused by the irregular reflection of the sound of the waveform reflection groove 15 described above. In addition to the attenuation, the sound absorbing layer 16 absorbs the sound, so that the sound reduction is more effectively measured. The fireproof soundproof tube 11 shown in FIG. 3 has a gap 17 formed in a fireproof layer 13 provided with a wave reflection groove 16. The size and shape of the void 17 are arbitrary, and can be freely formed within a moldable range. The formation of the air gap 17 can save material, and the sound from the inner pipe 12 tends to propagate further to the outside even if the sound from the inner pipe 12 is attenuated by the irregular reflection of the waveform reflection groove 15 described above. However, the air layer formed in the gap 17 acts as an obstacle, and effective sound reduction is measured. The fireproof soundproof tube 11 shown in FIG. 4 has a sound absorbing layer 16 provided in a gap between the inner tube 12 and the fireproof layer 13 in the fireproof soundproof tube 11 shown in FIG. In this case, the sound from the inner tube 12 was first absorbed by the sound absorbing layer 16, and the sound that escaped absorption was attenuated by the irregular reflection of the waveform reflection groove 15, and was further formed in the refractory layer 13 When propagation is hindered by the air layer in the void 17, it is attenuated any time. The fireproof soundproof tube 11 shown in FIG. 5 has a form in which a sound absorbing layer 18 is formed in the void 17 of the fireproof layer 13 in the fireproof soundproof tube 11 shown in FIG. In this case, the sound from the inner tube 12 is first absorbed by the sound absorbing layer 16, and the sound that has escaped absorption is attenuated by the irregular reflection of the waveform reflection groove 15, and is further formed in the fireproof layer 13. It is attenuated as soon as it is absorbed by the sound absorbing layer in the void 17. In the fireproof soundproof tube 11 shown in FIG. 6, a wave reflection groove 15 is provided on the outer peripheral surface of the inner tube 12. The wavy reflection groove 15 in FIG. 6 has a continuous loop-shaped cross-sectional shape. You. For this reason, the sound from the inner tube 12 hits the wall of the loop-shaped wave reflection groove 15 and is irregularly reflected, and repeats collision in the reflection groove 15 to be gradually attenuated. FIG. 7 shows a fireproof soundproof pipe 11 provided with a sound absorbing layer 16 in a gap between the inner pipe 12 and the fireproof layer 13. In this embodiment, the sound absorbing layer 16 is made of a foamed resin layer.
尚、 吸音層 1 6は、 発泡樹脂層の他に繊維層なども用いることができる。 図 7に示す如く、 内管 1 2と耐火層 1 3との隙間に吸音層 1 6を設けることに より、 当該耐火防音管 1 1は、 前述の波形反射溝 1 5の音の乱反射のよる減衰に 加えて、 吸音層 1 6が音を吸収することから、 より効果的に減音が計られること になる。 図 8に示す耐火防音管 1 1は、 波形反射溝 1 6を設けた内管 1 2内に空隙 1 9 を形成したものである。 空隙 1 9の大きさや形状は任意であり、 成形可能な範囲 で自由に形成することができる。 空隙 1 9の形成は、 材料の節約を計ることがで きると共に、 内管 1 2からの音が外部へ伝播しょうとするのに対し、 これを空隙 1 7内に形成された空気層がその障害となるので、 前述の波形反射溝 1 5の乱反 射による減衰と合わせて、 効果的な減音が計られることになる。 図 9に示す耐火防音管 1 1は、 図 8に示す耐火防音管 1 1における内管 1 2と 耐火層 1 3との隙間に吸音層 1 6を設けたものである。 この形態の場合、 内管 1 2からの音は、 まず内管 1 2内に形成された空隙 1 9内の空気層によって伝播が 阻害され、 波形反射溝 1 5の乱反射により減衰され、 さらに吸音層 1 6によって 吸収されることになる。 図 1 0に示す耐火防音管 1 1は、 図 9に示す耐火防音管 1 1における内管 1 2 の空隙 1 9内に吸音層 2 0を形成した形態である。 この形態の場合、 内管 1 2か らの音は、 まず内管 1 2内に設けた吸音層 2 0によって吸収され、 吸収を免れた 音が波形反射溝 1 5の乱反射により減衰され、 さらに吸音層 1 6によって吸収さ れることになる。 また、 図 2、 図 4、 図 5、 図 7、 図 9、 図 1 0に示す形態で示した吸音層 1 6、 1 8、 2 0 (発泡樹脂層) は、 ウレタン、 クロ口プレン、 スチレンブタジエン共 重合体、 ポリエチレン、 ポリプロピレン、 エチレン酢酸ビニル、 スチレンなどの 従来より発泡成形用の高分子材料として用いられている樹脂を用い、 これらの樹 脂の 1種若しくは 2種以上をベースとして、 これに発泡剤、 触媒などを加えて発 泡成形したものである。 上記各図に示す吸音層 1 6、 1 8、 2 0 (発泡樹脂層) は、 ポリウレタンをベースとし、 この樹脂に発泡剤、 触媒などを加えて発泡成形 したものである。 また各図に示す吸音層 1 6、 1 8、 2 0 (発泡樹脂層) 中には、 吸音層 (発泡 樹脂層) における双極子モーメント量を増加させる活性成分が配合されている。 前述した如く活性成分とは、 該吸音層 (発泡樹脂層) における双極子モーメント の量を飛躍的に増加させる成分であり、 当該活性成分そのものの双極子モ一メン ト量が大きいもの、 あるいは活性成分そのものの双極子モ一メント量は小さいが、 当該活性成分が含まれることで、 吸音層 (発泡樹脂層) における双極子モ一メン ト量が飛躍的に増加するような成分をいう。 ここで、 吸音層 (発泡樹脂層) における吸音性と双極子モーメント量との間の 関係について説明する。 一般に発泡構造を持つ吸音材に音のエネルギーが加わつ たとき、 音は気泡内を衝突しながら通り抜け、 この際に摩擦熱として消費されて、 その減衰が計られることは知られている。 (尚、 吸音層として繊維層を設けた場 合には、 繊維表面または繊維間隙を音が衝突しながら通り抜け、 この際に摩擦熱 として消費されて、 音の減衰が計られる。 ) 本発明者らは、 上述の音エネルギーの減衰メカニズムとは別の減衰メカニズム があり、 これらが共働して音エネルギーを減衰しているという理論を提唱してい る。 すなわち、 吸音材 (発泡樹脂層) に音が衝突すると振動が発生する。 このと き、 図 1 1に示すように吸音材 (発泡樹脂層) 2 1内部に存在する双極子 2 2に 変位が生じる。 双極子 2 2に変位が生じるとは、 吸音材 (発泡樹脂層) 2 1内部 における各双極子 2 2が回転したり、 位相がズレれたりすることをいう。 図 1 1に示すような音のエネルギーが加わる前の吸音材 (発泡樹脂層) 2 1内 部における双極子 2 2の配置状態は安定な状態にあると言える。 ところが、 図 1 2に示すように、 吸音材 (発泡樹脂層) 2 1に音エネルギーが加わることで、 吸 音材 (発泡樹脂層) 2 1内部に存在する双極子 2 2に変位が生じ、 吸音材 (発泡 樹脂層) 2 1内部における各双極子 2 2は不安定な状態に置かれることになり、 各双極子 2 2は、 図 1 1に示す安定な状態に戻ろうとする。 このとき、 エネルギーの消費が生じるのである。 こうした、 吸音材 (発泡樹脂 層) 表面における摩擦熱の発生と、 吸音材 (発泡樹脂層) 内部における双極子の 変位、 双極子の復元作用によるエネルギー消費とを通じて、 吸音効果が生じるも のと考えられるのである。 上述の吸音効果が生じるメカニズムから、 図 1 1及び図 1 2に示すような吸音 材 (発泡樹脂層) 2 1内部における双極子モーメントの量が大きくなればなる程、 その吸音材 (発泡樹脂層) 2 1の持つ吸音性能も高くなると考えられる。 このことから、 前述の活性成分を配合することで、 吸音層 (発泡樹脂層) にお ける双極子モーメントの量は、 同じ条件の下で 3倍とか、 1 0倍とかいった量に 増加することになり、 これに伴って、 エネルギーが伝達されたときの双極子の復 元作用によるエネルギー消費量も飛躍的に増大し、 予測を遙かに超えた吸音性能 が生じることになると考えられる。 このような作用効果を導く活性成分としては、 例えば N、 N—ジシクロへキシ ルベンゾチアジル一 2—スルフェンアミ ド、 2—メルカプトべンゾチアゾール、 ジベンゾチアジルスルフィ ドなどのメルカプトべンゾチアジル基を含む化合物、 2 - {2 ' 一ハイ ドロキシー 3 ' - ( 3 " , 4" , 5" , 6" テトラハイ ドロフ タリミデメチル) 一 5 ' —メチルフエ二ル} 一べンゾトリアゾ一ル、 2 _ {2 ' 一ハイ ド口キシ一 5 ' —メチルフエ二ル} ベンゾトリアゾール、 2— {2 ' —ハ ィ ドロキシー 3 ' - tーブチルー 5 ' —メチルフエ二ル} 一 5—クロ口べンゾト リアゾール、 2— {2 ' —ハイ ドロキシー 3 ' , 5 ' —ジ一 t一ブチルフエ二ル} 一 5—クロ口べンゾトリアゾ一ルなどのベンゾトリアゾール基を持つ化合物、 あ るいはェチルー 2—シァノ一 3 , 3—ジ一フエ二ルァクリレ一トなどのジフエ二 ルァクリレート基を持つ化合物の中から選ばれた 1種若しくは 2種以上を挙げる ことができる。 前記活性成分の配合量としては、 吸音層 (発泡樹脂層) を構成する高分子 1 0 0重量部に対して 1 0〜2 0 0重量部の割合が好ましい。 というのは、 活性成分 の配合量が前記範囲外の場合には、 活性成分を配合したことによる吸音性の飛躍 的な向上が見られないことになるからである。 上記の如く、 活性成分が配合された吸音層 (発泡樹脂層) は、 双極子モーメン トの量が飛躍的に増加し、 もって優れた音エネルギーを吸収する性能 (吸音性) を発揮するに至るのであるが、 この吸音層 (発泡樹脂層) における双極子モーメ ントの量は、 図 1 3に示す A— B間における誘電率 ε ' ) の差として表される。 すなわち図 1 3に示す Α—Β間における誘電率 (£' ) の差が大きければ大きい ほど、 双極子モーメントの量が大きいということになる。 さて、 図 1 3は誘電率 (£' ) と誘電損率 (£〃 ) との関係を示したグラフで ある。 このグラフに示すように、 誘電率 (£' ) と誘電損率 (£〃 ) との間には、 誘電損率 (e〃 ) =誘電率 (£' ) X誘電正接 ( t a ncS) といった関係が成り 立っている。 本発明者は、 吸音材料についての研究を通して、 ここでいう誘電損率 ) が高ければ高いほど、 エネルギー吸収性能 (吸音性) も高いということを見い出 したのである。 この知見に基づいて、 上述の吸音層 (発泡樹脂層) における誘電損率 (£〃 ) を調べたところ、 周波数 1 1 0 H zにおける誘電損率が 5 0以上であるとき、 当 該吸音層 (発泡樹脂層) は優れたエネルギー吸収性能 (吸音性) を有しているこ とが解った。 尚、 本発明の耐火防音管は、 上記吸音層の外側及びまたは内側に制振層や遮音 層、 防振層など、 給排水騒音をより効果的に低減化できるようなものであれば自 由に追加して用いることができる。 尚、 この場合、 追加使用する制振層や遮音層、 防振層も、 双極子モ一メントを増加させる活性成分が配合されているものを用い るのが望ましい。 このように、 当該耐火防音管の用途や使用状態に応じて、 上記各層の種類や積 層順、 各層の厚さや層の数など適宜決定し用いることにより、 その用途や使用状 態に最適な耐火防音管を造り出すことができる。 上記制振層としては、 例えば上記塩化ビ二ル系樹脂にゴムを配合したものを挙 げることができる。 この場合においてゴムとしては、 アクリロニトリル一ブ夕ジ ェンゴム (N B R ) 、 スチレン一ブタジエンゴム (S B R ) 、 ブタジエンゴム ( B R ) 、 天然ゴム (N R ) 、 イソプレンゴム ( I R ) などがある。 ゴムの配合 は、 常温で良好な粘弾性特性を得るためであり、 その配合量は 1 0〜8 0重量% が好ましい。 この範囲よりも配合量が多かったり少なかったりした場合には、 常 温での十分な粘弾性特性が得られなくなる。 この制振層にはフイラ一を充填して制振性の改善を計ることができる。 フイラ —としては、 発泡樹脂層の説明箇所で例示したものと同じものを用いることがで きる。 また防振層としては、 例えばァクリロニトリル一ブタジエンゴム (N B R ) 、 スチレン一ブタジエンゴム (S B R ) 、 ブタジエンゴム (B R ) 、 天然ゴム (N R ) 、 イソプレンゴム ( I R ) などのゴム系材料を主体とするもの、 これらゴム 系材料に樹脂をブレンドしたものなどを用いることができる。 また防振層には、 これに必要に応じて (硬度調整のため) 、 カーボンブラックや炭酸カルシウムな どのフィラーを充填することもできる。 遮音層としては、 例えば塩化ビニル単独で重合した樹脂のほか、 塩化ビニル単 量体と共重合し得る単量体のうちの少なくとも 1種以上とランダム共重合または ブロック共重合して得られる、 酢酸ビニル—塩化ビニル共重合体、 エチレン—塩 化ビニル共重合体、 塩化ビニリデン—塩化ビニル共重合体などの塩化ビニル共重 合樹脂、 、 あるいは塩化ビニル単量体とグラフ ト共重合し得る樹脂とグラフ ト共 重合して得られる、 エチレン一酢酸ビニル—塩化ビニルグラフ ト共重合体、 ポリ ウレタン—塩化ビニルグラフト共重合体などの塩化ビニルグラフ ト共重合樹脂な どの塩化ビニル系樹脂に、 炭酸カルシウム、 タルク、 酸化マグネシウム、 アルミ ナ、 酸化チタン、 バライ ト、 酸化鉄、 酸化亜鉛、 グラフアイ トなどのフイラ一を 充填したもの挙げることができる。 この場合フイラ一は、 前述の発泡樹脂層の場 合と同じように、 5 0〜9 5重量%の充填量がよい。 尚、 本発明の範囲は、 「請求の範囲」 に定義されており、 その範囲に含まれる 全ての変更、 形態を採ることができる。 The sound absorbing layer 16 may be a fiber layer or the like in addition to the foamed resin layer. As shown in FIG. 7, by providing the sound absorbing layer 16 in the gap between the inner pipe 12 and the fireproof layer 13, the fireproof soundproof pipe 11 is caused by the irregular reflection of the sound of the above-described waveform reflection groove 15. In addition to the attenuation, the sound absorbing layer 16 absorbs the sound, so that the sound reduction is more effectively measured. The fireproof soundproof tube 11 shown in FIG. 8 has a gap 19 formed in an inner tube 12 provided with a waveform reflection groove 16. The size and shape of the void 19 are arbitrary, and can be freely formed within a moldable range. The formation of the air gap 19 can save material, and the sound from the inner tube 12 tends to propagate to the outside, whereas the air layer formed in the air gap 17 Since it becomes an obstacle, effective sound reduction can be measured in combination with the attenuation caused by the irregular reflection of the waveform reflection groove 15 described above. The fireproof soundproof pipe 11 shown in FIG. 9 has a sound absorption layer 16 provided in the gap between the inner pipe 12 and the fireproof layer 13 in the fireproof soundproof pipe 11 shown in FIG. In this case, the sound from the inner pipe 12 is first prevented from propagating by the air layer in the gap 19 formed in the inner pipe 12, and is attenuated by the irregular reflection of the waveform reflection groove 15, and the sound is further absorbed. It will be absorbed by layer 16. The fireproof soundproof pipe 11 shown in FIG. 10 is a form in which the sound absorbing layer 20 is formed in the gap 19 of the inner pipe 12 in the fireproof soundproof pipe 11 shown in FIG. 9. In this case, the sound from the inner tube 12 is first absorbed by the sound absorbing layer 20 provided in the inner tube 12, and the sound that has escaped absorption is attenuated by the irregular reflection of the waveform reflection groove 15. Absorbed by sound absorbing layer 1 6 Will be. The sound absorbing layers 16, 18, 20 (foamed resin layers) shown in the forms shown in FIGS. 2, 4, 5, 5, 7, 9, and 10 are made of urethane, chloroprene, and styrene. Using resins conventionally used as polymer materials for foam molding, such as butadiene copolymer, polyethylene, polypropylene, ethylene vinyl acetate, and styrene, based on one or more of these resins It is foamed by adding a foaming agent and a catalyst to the mixture. The sound absorbing layers 16, 18, 20 (foamed resin layers) shown in the above figures are made of polyurethane and foamed by adding a foaming agent, a catalyst and the like to this resin. The sound absorbing layers 16, 18, 20 (foamed resin layer) shown in each figure contain an active ingredient that increases the amount of dipole moment in the sound absorbing layer (foamed resin layer). As described above, the active component is a component that dramatically increases the amount of dipole moment in the sound absorbing layer (foamed resin layer), and the active component itself has a large dipole moment amount, or is an active component. Although the amount of dipole moment of the component itself is small, it refers to a component in which the amount of dipole moment in the sound-absorbing layer (foamed resin layer) dramatically increases due to the inclusion of the active component. Here, the relationship between the sound absorbing property of the sound absorbing layer (foamed resin layer) and the amount of dipole moment will be described. It is generally known that when sound energy is applied to a sound absorbing material having a foamed structure, the sound passes through the bubbles while colliding, and is consumed as frictional heat at this time, and its attenuation is measured. (If a fiber layer is provided as the sound absorbing layer, the sound passes through the fiber surface or the fiber gap while colliding, and is consumed as frictional heat at this time, and the sound is attenuated.) Have proposed a theory that there are different attenuation mechanisms from the above-mentioned sound energy attenuation mechanism, and that they cooperate to attenuate sound energy. That is, when sound collides with the sound absorbing material (foamed resin layer), vibration is generated. This and Then, as shown in FIG. 11, displacement occurs in the dipole 22 existing inside the sound absorbing material (foamed resin layer) 21. Displacement of the dipole 22 means that each dipole 22 in the sound absorbing material (foam resin layer) 21 rotates or shifts in phase. It can be said that the arrangement state of the dipoles 22 inside the sound absorbing material (foam resin layer) 21 before sound energy is applied as shown in FIG. 11 is stable. However, as shown in FIG. 12, when sound energy is applied to the sound absorbing material (foamed resin layer) 21, displacement occurs in the dipole 22 existing inside the sound absorbing material (foamed resin layer) 21. Each dipole 22 inside the sound absorbing material (foam resin layer) 21 will be placed in an unstable state, and each dipole 22 will return to the stable state shown in FIG. At this time, energy is consumed. It is thought that the sound absorption effect is generated through the generation of frictional heat on the surface of the sound absorbing material (foamed resin layer), the displacement of the dipole inside the sound absorbing material (foamed resin layer), and the energy consumption due to the dipole restoring action. It is done. Due to the mechanism by which the above-described sound absorbing effect occurs, as the amount of the dipole moment inside the sound absorbing material (foamed resin layer) 21 shown in FIGS. 11 and 12 increases, the sound absorbing material (foamed resin layer) increases. It is considered that the sound absorbing performance of 21 is also high. From this, the amount of the dipole moment in the sound-absorbing layer (foamed resin layer) increases to 3 times or 10 times under the same conditions by blending the above-mentioned active ingredient. Therefore, the energy consumption due to the dipole restoring effect when the energy is transferred is also increased drastically, and it is thought that the sound absorption performance far exceeds the expected. Examples of the active ingredient that induces such an effect include compounds containing a mercaptobenzothiazyl group such as N, N-dicyclohexylbenzothiazyl-1-sulfenamide, 2-mercaptobenzothiazole and dibenzothiazyl sulfide; 2-{2 'one hydroxy 3'-(3 ", 4", 5 ", 6" tetrahydroftarimidemethyl) one 5 '—methylphenyl} benzotriazole, 2 _ {2 Xy-5'-methylphenyl} benzotriazole, 2- {2'-hydroxy-3'-t-butyl-5'-methylphenyl} 1-5-chlorobenzotriazole, 2- {2'-hydroxy 3 ', 5' —Di-tert-butylphenyl} -1-5-Chemical compound having a benzotriazole group such as benzotriazole or ethyl 2-cyano-1,3,3-diphenylacrylate And one or more compounds selected from compounds having a diphenyl acrylate group such as The compounding amount of the active ingredient is preferably from 100 to 200 parts by weight based on 100 parts by weight of the polymer constituting the sound absorbing layer (foamed resin layer). This is because if the amount of the active ingredient is out of the above range, no drastic improvement in sound absorption due to the incorporation of the active ingredient will be observed. As described above, the sound-absorbing layer (foamed resin layer) containing the active ingredient dramatically increases the amount of dipole moment, thereby exhibiting excellent sound energy absorbing performance (sound absorbing properties). However, the amount of dipole moment in this sound absorbing layer (foamed resin layer) is expressed as the difference in dielectric constant ε ') between A and B shown in Fig. 13. In other words, the larger the difference between the dielectric constants (£ ′) between 示 す and Β shown in FIG. 13 is, the larger the amount of the dipole moment is. FIG. 13 is a graph showing the relationship between the dielectric constant (£ ') and the dielectric loss factor (£ 〃). As shown in this graph, there is a relationship between the dielectric constant (£ ') and the dielectric loss factor (£ 〃) such that the dielectric loss factor (e〃) = the dielectric constant (£') X the dielectric loss tangent (tancS) Holds. Through research on sound-absorbing materials, the inventor has found that the higher the dielectric loss ratio here, the higher the energy absorption performance (sound absorption). It was done. Based on this finding, the dielectric loss factor (£ 〃) of the above sound absorbing layer (foamed resin layer) was examined. When the dielectric loss factor at a frequency of 110 Hz was 50 or more, the sound absorbing layer (Foamed resin layer) was found to have excellent energy absorption performance (sound absorption). The fire-resistant sound-insulating pipe of the present invention is freely provided as long as the water supply and drainage noise can be more effectively reduced, such as a vibration damping layer, a sound insulation layer, and a vibration insulation layer outside and / or inside the above sound absorbing layer. It can be used additionally. In this case, it is desirable that the additionally used damping layer, sound insulation layer and vibration damping layer contain an active ingredient that increases the dipole moment. In this way, by appropriately determining the type and stacking order of each layer, the thickness of each layer, the number of layers, and the like according to the use and use state of the fireproof soundproof tube, the most suitable for the use and use state can be obtained. A fireproof soundproof tube can be created. As the above-mentioned vibration damping layer, for example, a layer obtained by mixing rubber with the above vinyl chloride resin can be used. In this case, the rubber includes acrylonitrile-butene-diene rubber (NBR), styrene-butadiene rubber (SBR), butadiene rubber (BR), natural rubber (NR), isoprene rubber (IR) and the like. The compounding of the rubber is for obtaining good viscoelastic properties at room temperature, and the compounding amount is preferably 10 to 80% by weight. If the amount is more or less than this range, sufficient viscoelastic properties at room temperature cannot be obtained. The damping layer can be filled with a filler to improve the damping properties. As the filler, the same one as exemplified in the description of the foamed resin layer can be used. The vibration-proof layer is mainly made of rubber-based materials such as acrylonitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), butadiene rubber (BR), natural rubber (NR), and isoprene rubber (IR). And those obtained by blending a resin with these rubber-based materials. The vibration-proofing layer may be filled with a filler such as carbon black or calcium carbonate, if necessary (for adjusting the hardness). Examples of the sound insulating layer include acetic acid obtained by random copolymerization or block copolymerization with at least one kind of monomer copolymerizable with vinyl chloride monomer in addition to a resin polymerized with vinyl chloride alone. Vinyl chloride copolymer resins such as vinyl-vinyl chloride copolymer, ethylene-vinyl chloride copolymer, vinylidene chloride-vinyl chloride copolymer, or resins that can be graft-copolymerized with vinyl chloride monomer In addition to vinyl chloride-based resins such as ethylene monoacetate-vinyl chloride graft copolymer and polyurethane-vinyl chloride graft copolymer obtained by graft copolymerization, calcium carbonate , Talc, magnesium oxide, alumina, titanium oxide, barite, iron oxide, zinc oxide, graphite, etc. Filled ones can be mentioned. In this case, the filling amount of the filler is preferably 50 to 95% by weight, as in the case of the foamed resin layer described above. It should be noted that the scope of the present invention is defined in “Claims”, and all changes and modes included in the scope can be adopted.

Claims

言青求の範囲 Scope of word blue
1 . 内管の周りに耐火層を設けた耐火防音管において、 前記内管と耐火層と の間に双極子モ一メント量を増加させる活性成分を配合した吸音層が設けられて いることを特徴とする耐火防音管。 1. A fireproof soundproof tube provided with a fireproof layer around the inner tube, wherein a sound absorbing layer containing an active ingredient that increases the amount of dipole moment is provided between the inner tube and the fireproof layer. Features a fireproof soundproof tube.
2 . 前記吸音層が発泡樹脂層であることを特徴とする請求項 1記載の耐火防 音管。 2. The fireproof soundproof tube according to claim 1, wherein the sound absorbing layer is a foamed resin layer.
3 . 前記吸音層が繊維層であることを特徴とする請求項 1記載の耐火防音管 c 3. The fireproof soundproof tube c according to claim 1, wherein the sound absorbing layer is a fiber layer.
4 . 前記活性成分が、 N、 N—ジシクロへキシルベンゾチアジル— 2—スル フェンアミ ド、 2—メルカプトべンゾチアゾ一ル、 ジベンゾチアジルスルフイ ド などのメルカプトべンゾチアジル基を含む化合物、 2— { 2 ' —ハイ ド口キシ一 3 ' - ( 3 " , 4 " } 5 , 6 テトラハイ ド 口フ夕リミデメチル) 一 5 ' —メ チルフエ二ル} 一べンゾトリァゾ一ル、 2— { 2 ' —ハイ ドロキシー 5 ' —メチ ルフエ二ル} ベンゾトリアゾ一ル、 2— { 2 ' —ハイ ド口キシ一 3 ' — t—ブチ ル一 5 ' —メチルフエ二ル} — 5 _クロ口べンゾトリァゾ一ル、 2— { 2 ' ーハ イ ド口キシ一 3 ' , 5 ' ージー t—ブチルフエ二ル} 一 5—クロ口べンゾトリア ゾールなどのベンゾトリアゾ一ル基を持つ化合物、 あるいはェチルー 2—シァノ — 3 , 3—ジ一フエ二ルァクリレ一トなどのジフエ二ルァクリレート基を持つ化 合物の中から選ばれた 1種若しくは 2種以上であることを特徴とする請求項 1 〜 3のいずれかに記載の耐火防音管。 4. The active ingredient is a compound containing a mercaptobenzothiazyl group such as N, N-dicyclohexylbenzothiazyl-2-sulfenamide, 2-mercaptobenzothiazole, dibenzothiazylsulfide, etc., 2- { 2 '—Hide mouth 3'-(3 ", 4" } 5,6 tetrahide mouth rimidemethyl) 1 5'—Methylphenyl} Venzotriazole, 2— {2'—High Droxy 5 '—methyl phenyl} benzotriazole, 2- {2' —hydric oxy 3 '— t-butyl -1 5' —methyl phenyl} — 5 _chloro benzotriazole, 2 — {2 '-Hydrox xy-l 3', 5 '-G-t-butylphenyl} -l- 5-Methyl-benzobenzotriazole or other compound having a benzotriazoyl group, or ethyl 2-cyano — 3, 3 —Different creatures Refractory soundproofing pipe according to any one of claims 1 to 3, characterized in that one or more selected from among of compounds having Ruakurireto group.
5 . 前記活性成分が吸音層を構成する高分子 1 0 0重量部に対して 1 0 〜 2 0 0重量部の割合で配合されていることを特徴とする請求項 1 〜 4のいずれかに 記載の耐火防音管。 5. The method according to any one of claims 1 to 4, wherein the active ingredient is blended in a proportion of 10 to 200 parts by weight to 100 parts by weight of the polymer constituting the sound absorbing layer. The described fireproof soundproof tube.
6 . 前記吸音層の外側または内側に、 遮音層、 制振層または防振層を設けた ことを特徴とする請求項 1〜 5記載の耐火防音管。 6. A sound insulation layer, a vibration suppression layer or a vibration insulation layer is provided outside or inside the sound absorption layer The fire-resistant soundproof tube according to claim 1, wherein:
7 . 内管の周りに耐火層を設けた耐火防音管において、 前記耐火層内周面ま たは内管外周面に波形反射溝を設けたことを特徴とする耐火防音管。 7. A fireproof soundproofing tube provided with a fireproof layer around the inner tube, wherein a wave reflection groove is provided on the inner peripheral surface of the fireproof layer or the outer peripheral surface of the inner tube.
8 . 前記内管と耐火層との間に、 双極子モーメント量を増加させる活性成分 を配合した吸音層が設けられていることを特徴としている請求項 7記載の耐火防 音管。 8. The fireproof soundproof tube according to claim 7, wherein a sound absorbing layer containing an active ingredient for increasing a dipole moment is provided between the inner tube and the fireproof layer.
9 . 前記波形反射溝を設けた耐火層または内管に空隙を形成したことを特徴 とする請求項 7または 8記載の耐火防音管。 9. The fireproof soundproof tube according to claim 7 or 8, wherein a gap is formed in the fireproof layer or the inner tube provided with the wave reflection groove.
1 0 . 前記空隙内に双極子モーメント量を増加させる活性成分を配合した吸 音層を設けたことを特徴とする請求項 9記載の耐火防音管。 10. The fireproof soundproof tube according to claim 9, wherein a sound absorbing layer containing an active component that increases the amount of dipole moment is provided in the gap.
1 1 . 前記吸音層の外側または内側に、 遮音層、 制振層または防振層を設け たことを特徴とする請求項 8〜 1 0記載の耐火防音管。 11. The fireproof soundproof tube according to claim 8, wherein a sound insulation layer, a vibration suppression layer, or a vibration insulation layer is provided outside or inside the sound absorption layer.
PCT/JP1997/003538 1997-10-01 1997-10-01 Fire-resistant sound-proof pipe WO1999017048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000514078A JP4419164B2 (en) 1997-10-01 1997-10-01 Fireproof soundproof tube
PCT/JP1997/003538 WO1999017048A1 (en) 1997-10-01 1997-10-01 Fire-resistant sound-proof pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/003538 WO1999017048A1 (en) 1997-10-01 1997-10-01 Fire-resistant sound-proof pipe

Publications (1)

Publication Number Publication Date
WO1999017048A1 true WO1999017048A1 (en) 1999-04-08

Family

ID=14181244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003538 WO1999017048A1 (en) 1997-10-01 1997-10-01 Fire-resistant sound-proof pipe

Country Status (2)

Country Link
JP (1) JP4419164B2 (en)
WO (1) WO1999017048A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294208A (en) * 2001-03-29 2002-10-09 Cci Corp Vibration-damping adhesive composition, and vibration- damping steel plate using vibration-damping adhesive composition
KR100695292B1 (en) 2005-07-28 2007-03-14 에스케이 텔레콤주식회사 Method for providing the integrated video conference service in different networks
CN102200213A (en) * 2011-05-13 2011-09-28 四川诺满绝热工程技术有限公司 Flexible sound-insulation and heat-insulation sleeve capable of being dismounted and reused
WO2020095086A1 (en) * 2017-09-25 2020-05-14 Zehnder Group International Ag Tube for air distribution systems
US10980391B2 (en) 2017-04-28 2021-04-20 Owens Corning Intellectual Capital, Llc Appliance with acoustically insulated ductwork

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015224174A1 (en) 2015-12-03 2017-06-08 Contitech Schlauch Gmbh apportionment hose

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040039B2 (en) * 1977-04-15 1985-09-09 三菱重工業株式会社 Soundproofing method for sounding body
JPH02168097A (en) * 1988-12-20 1990-06-28 Aoki Corp Muffling pipe
JPH0336449U (en) * 1989-08-10 1991-04-09
JPH05215289A (en) * 1992-02-04 1993-08-24 Shibazaki:Kk Silent pipe
JPH07145270A (en) * 1993-11-22 1995-06-06 Kyowa:Kk Rubber and/or plastic molded article having insulating property, vibration damping property and heat conductivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040039B2 (en) * 1977-04-15 1985-09-09 三菱重工業株式会社 Soundproofing method for sounding body
JPH02168097A (en) * 1988-12-20 1990-06-28 Aoki Corp Muffling pipe
JPH0336449U (en) * 1989-08-10 1991-04-09
JPH05215289A (en) * 1992-02-04 1993-08-24 Shibazaki:Kk Silent pipe
JPH07145270A (en) * 1993-11-22 1995-06-06 Kyowa:Kk Rubber and/or plastic molded article having insulating property, vibration damping property and heat conductivity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294208A (en) * 2001-03-29 2002-10-09 Cci Corp Vibration-damping adhesive composition, and vibration- damping steel plate using vibration-damping adhesive composition
KR100695292B1 (en) 2005-07-28 2007-03-14 에스케이 텔레콤주식회사 Method for providing the integrated video conference service in different networks
CN102200213A (en) * 2011-05-13 2011-09-28 四川诺满绝热工程技术有限公司 Flexible sound-insulation and heat-insulation sleeve capable of being dismounted and reused
CN102200213B (en) * 2011-05-13 2012-09-05 四川诺满绝热工程技术有限公司 Flexible sound-insulation and heat-insulation sleeve capable of being dismounted and reused
US10980391B2 (en) 2017-04-28 2021-04-20 Owens Corning Intellectual Capital, Llc Appliance with acoustically insulated ductwork
WO2020095086A1 (en) * 2017-09-25 2020-05-14 Zehnder Group International Ag Tube for air distribution systems

Also Published As

Publication number Publication date
JP4419164B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP5771514B2 (en) Sound insulation structure of collecting pipe joint
JP2009264577A (en) Soundproof drain pipe
JP5484740B2 (en) Soundproof synthetic resin pipe and method for producing the same
KR101952114B1 (en) PVC pipe composition with improved noise reduction and flame retardancy and PVC pipes or fittings
JP2006308071A (en) Soundproof pipe body
WO1999017048A1 (en) Fire-resistant sound-proof pipe
JP2023160921A (en) Drain piping joint
JP4419163B2 (en) Soundproof pipe member
JP2007133246A (en) Sound absorbing structure
KR20220105625A (en) A method for manufacturing a panel having a noise-blocking function in an apartment building
JP2007133245A (en) Sound absorbing structure
JP2001074191A (en) Fireproofing three-layer pipe
JP4196247B2 (en) Fireproof and soundproof tube structure
JP3470149B2 (en) Soundproof material
JP4304863B2 (en) Soundproof pipe member
JP2005098067A (en) Sound absorbing panel and sound absorbing method
JP5850678B2 (en) Piping sound insulation structure
JP5433314B2 (en) Soundproofing material, soundproofing synthetic resin pipe member and manufacturing method thereof
JP4991115B2 (en) Incombustible sound absorbing foam
JP2008249067A (en) Soundproof drain pipe
JP2008076869A (en) Waterproof sound absorber
JPH1096496A (en) Soundproof pipe member
JP3037188B2 (en) Damping sound insulation board
WO2000017563A1 (en) Soundproof cover for pipes
JP2005207537A (en) Soundproof piping

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)