WO1999016143A1 - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery Download PDF

Info

Publication number
WO1999016143A1
WO1999016143A1 PCT/JP1997/003336 JP9703336W WO9916143A1 WO 1999016143 A1 WO1999016143 A1 WO 1999016143A1 JP 9703336 W JP9703336 W JP 9703336W WO 9916143 A1 WO9916143 A1 WO 9916143A1
Authority
WO
WIPO (PCT)
Prior art keywords
container flange
flange
plastic working
sulfur battery
negative electrode
Prior art date
Application number
PCT/JP1997/003336
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimi Sato
Saburo Usami
Tadahiko Miyoshi
Hisamitsu Hato
Ryujiro Udo
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1997/003336 priority Critical patent/WO1999016143A1/en
Publication of WO1999016143A1 publication Critical patent/WO1999016143A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur sulfur battery having a positive and negative electrode container flange structure suitable for plastic working such as pressing.
  • the structure of a conventional sulfur battery is disclosed in, for example, JP-A-2-278671 and JP-A-7-94209.
  • the structure is such that a cylinder is installed at the end of the negative electrode container flange ⁇ positive electrode container flange to increase the joining distance by joining the cylindrical part by positioning during welding and welding, and to apply compressive stress to the joint part It is devised to do so.
  • they are targeted at machined flanges.
  • the positive and negative electrode container flanges are formed by plastic working such as pressing to reduce the circumferential undulation of the joint surface between the container flange and the insulating ring, which is a bottleneck for mass production, and to prevent poor joints at the joints by thermal pressure welding. No consideration was given to prevent it. Disclosure of the invention
  • the first invention of the present application is to A high-rigidity battery is installed by plastic working at the end of the processing vessel flange, and the circumferential undulation of the joint surface with the insulating ring material is reduced to prevent poor joints. It is.
  • a second invention is a sodium-sulfur battery characterized in that the same cylinder or a tapered cylinder is provided as a highly rigid body.
  • a third invention is a sodium sulfur battery, wherein the flange end is wound or corrugated as a highly rigid body.
  • a fourth invention is a sodium-sulfur battery, characterized in that the rigid plate has a thickness that is twice or more the thickness of the press-formed plate of the container flange.
  • a fifth invention is a sodium sulfur battery characterized in that the high-rigidity body is installed by plastic working simultaneously with the formation of the negative electrode or positive electrode container flange.
  • the sixth invention is a sodium sulfur battery c characterized in that the high-rigidity body is installed either before or after the molding of the negative or positive electrode container flange. In addition, since the circumferential undulation is reduced, it is possible to prevent the bonding failure and to improve the Na resistance.
  • the container flange material and the aluminum or aluminum alloy clad material are subjected to plastic working to form an insulating ring.
  • This is a sodium-sulfur battery characterized by minimizing circumferential waviness at the joint surface to prevent poor joints.
  • the eighth invention is characterized in that the aluminum or aluminum alloy is rubbed by rotating or reversely rotating it while pressing aluminum or an aluminum alloy on a joint surface of the positive electrode having a circumferential undulation and a flange of a single electrode and the insulating ring material, which is plastically worked. Ridge It was noted that the joint failure was prevented by filling the recess of the container flange having the aluminum or aluminum alloy with the aluminum or aluminum alloy and reducing the undulation of the aluminum or aluminum alloy to be the joining surface with the insulating ring. This is a sodium-sulfur battery.
  • FIG. 4 shows a state in which the negative electrode flange 3 is subjected to plastic working by press in claim 1.
  • a cylinder of a highly rigid body 7 to increase rigidity at the end of the negative electrode container flange 3 or the positive electrode container flange 4, Alternatively, an effect of restraining the generation of circumferential undulation of the positive electrode flange 4 is produced, and it is possible to prevent poor connection of the heat-pressed portion and cracking of ⁇ -alumina of the insulating ring 2. Na resistance is also improved.
  • Fig. 6 shows the measurement results of the circumferential waviness ⁇ of the press-formed plastically processed negative electrode container flange. A comparison is made between the case where the rigid body 7 is installed at the end and the case where the rigid body 7 is not installed.
  • Claim 8 aims at the same effect as claim 2, but claim 2 uses aluminum or aluminum alloy as the cladding material before plastic working, whereas claim 3 claims Although there is a difference in forming aluminum or aluminum alloy into a clad after plastic working of the container flange, the purpose of reducing the undulation of the joint surface and the effect of preventing a joint failure are the same.
  • FIG. 1 shows a sodium-sulfur battery according to the present invention.
  • 2 and 3 show examples of application of the first invention of the present application.
  • Fig. 4 shows the state of plastic working by press forming.
  • Fig. 5 shows the undulation of the press-formed flange.
  • FIG. 6 is a diagram comparing the undulations in the circumferential direction of the flange when the cylinder is installed as the highly rigid body of the second invention and when it is not installed.
  • 7 to 9 show applied examples of the second invention
  • FIGS. 10 to 14 show stress deformation examples of the first invention. No.
  • FIGS. 15 and 16 show an embodiment of the third invention.
  • FIG. 17 shows an embodiment of the fourth invention.
  • FIGS. 18 and 19 show an embodiment of the seventh invention.
  • FIG. 20 and FIG. 21 show an embodiment of the eighth invention.
  • the sodium sulfur battery targeted by the present invention uses sodium as an edible electrode active material 5 and sulfur as a positive electrode active material 6 via a solid electrolyte tube 1 as shown in FIG. ⁇ -aluminum separating the negative and positive electrodes from the upper opening of the bag tube 1 /
  • An insulating ring 2 made of metal is installed, and the negative electrode container flange 3 and the positive electrode container flange 4 manufactured by plastic working such as pressing on the insulating ring 2 are joined via an aluminum alloy of a brazing material 8.
  • the structure is At the end of the flange 3 of the negative electrode container formed by plastic working such as pressing, a cylinder of a highly rigid body 7 is installed as shown in FIG. 2, and the flange 4 of the positive electrode container as shown in FIG.
  • Fig. 7 shows the case where the high rigid body 7 is a tapered cylinder
  • Fig. 8 shows the case where the high rigid body 7 cylinder is installed at the end of the negative electrode container flange 3 in an upward direction different from that in Fig. 2.
  • a cylinder of a highly rigid body 7 facing downward from FIG. 3 is provided at the end of the flange 4 of the positive electrode container.
  • the effect of reducing the circumferential undulation of the flange is the same, but there is also a merit that the appearance of the joint can be easily inspected.
  • FIGS. 11 and 12 show modified examples of the first and second inventions.
  • the negative electrode container flange 3 is formed into the shape shown in Fig. 10 by cutting it at the ⁇ _ ⁇ 'cross section after plastic working, and the undulation is the same as in Fig. 2 using the negative plastic container flange 3 as it is plastically processed. Can be reduced. Since the rigidity of the outer end is increased, the effect of suppressing the increase in circumferential undulation works, which has the effect of reducing undulation.
  • FIGS. 15 and 16 show an embodiment of the third invention. The case where the end portion of the flange is formed into a wound shape and a corrugated shape as the high rigid body 7 is shown.
  • FIG. 17 shows an embodiment of the fourth invention.
  • a sodium-sulfur battery characterized by being formed as a highly rigid body 7 with a thickness that is at least twice the thickness of a press-formed plate of a container flange. The function and effect are the same as those of the first and second inventions.
  • FIGS. 18 and 19 show an embodiment of the seventh invention.
  • the container flange material 3 and aluminum or aluminum alloy 14 are used as a clad, and then formed into a plastic press Fig. 19 by plastic pressing. . Since aluminum or an aluminum alloy is soft, swelling of the bonding surface can be reduced by using the aluminum or aluminum alloy for the heat-bonding bonding surface, so that there is an effect that poor bonding can be prevented. The same can be applied to the positive electrode container flange.
  • FIG. 20 and FIG. 21 show an embodiment of claim 8.
  • An aluminum or aluminum alloy ring 15 is sandwiched between a flat rigid jig 17 at the lower part of the negative electrode container flange 3 corresponding to the joint surface of the negative electrode flange 3 having undulations produced by plastic working with the insulating ring 2.
  • the flat rigid jig By rotating or reversely rotating the flat rigid jig while pressing aluminum or aluminum alloy against the negative electrode container flange 3, the concave portion of the circumferential undulation of the negative electrode container flange 3 ⁇ ⁇ Pressing and filling aluminum or aluminum alloy 15
  • Aluminum or aluminum alloy to be joined to insulating ring 2 It has the effect of reducing the undulation on the lower surface of 15 and preventing the occurrence of poor joints at the heat-welded joint. 20 and 21 can be similarly applied to the positive electrode container flange.
  • the present invention since it can be manufactured by mechanical working and plastic working by pressing etc., it is possible to reduce circumferential undulation of the positive or negative electrode container flange, prevent poor joining with the insulator ring, and improve battery strength reliability. Can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

In a sodium-sulfur battery in which a positive or negative electrode container flange formed by plastic molding, such as the press working, etc., is joined to an insulator ring, the occurence of a defective junction is prevented. The peripheral waviness of container flanges (3 and 4) caused by plastic molding is reduced by providing highly rigid bodies (7 and 7) formed by plastic molding which is performed simultaneously with, before, or after the plastic molding performed on the flanges (3 and 4) at the end sections of the flanges (3 and 4). Alternatively, the peripheral waviness of an aluminum or aluminum alloy ring member put on the joint surface of each container flange with the insulator ring having peripheral waviness caused by plastic molding is reduced by press-fitting and sticking aluminum or an aluminum alloy in and to the recessed section of the flange caused by the waviness while the joint surface of the flange is inserted into a planar rigid jig together with the aluminum or aluminum alloy ring member put on the surface and the jig is pressed against the flange.

Description

明 細 書  Specification
ナトリウム一硫黄電池 技術分野  Technical field of sodium-sulfur battery
本発明は、 プレス等の塑性加工に適した正極及び負極容器フランジ構 造を有するナ卜リゥムー硫黄電池に関する。 背景技術  The present invention relates to a sulfur sulfur battery having a positive and negative electrode container flange structure suitable for plastic working such as pressing. Background art
従来のナ卜リゥムー硫黄電池の構造は例えば特開平 2— 27867 1 号公報, 特開平 7— 94209号に開示されている。 その構造は負極容器フランジゃ正 極容器フランジ端部に、 接合時の位置決め及び溶接によリ円筒部を接合 して接合距離を長くするため及び接合部に圧縮応力を作用させる目的で 円筒を設置する工夫がなされている。 しかし、 それらは機械加工による 切削加工フランジを対象にしている。 正極又は及び負極容器フランジを プレス等の塑性加工による成形として、 量産化を図るにネックとなる容 器フランジと絶縁リングとの接合面の周方向うねりを小さく し、 熱圧接 接合部の接合不良を防止するための配慮がなされていなかった。 発明の開示  The structure of a conventional sulfur battery is disclosed in, for example, JP-A-2-278671 and JP-A-7-94209. The structure is such that a cylinder is installed at the end of the negative electrode container flange ゃ positive electrode container flange to increase the joining distance by joining the cylindrical part by positioning during welding and welding, and to apply compressive stress to the joint part It is devised to do so. However, they are targeted at machined flanges. The positive and negative electrode container flanges are formed by plastic working such as pressing to reduce the circumferential undulation of the joint surface between the container flange and the insulating ring, which is a bottleneck for mass production, and to prevent poor joints at the joints by thermal pressure welding. No consideration was given to prevent it. Disclosure of the invention
ナ卜リゥムー硫黄電池の低コス ト化及び量産化を進めるには、 機械加 ェからプレス等による塑性加工に置き換えるのが効果的である。 本発明 は塑性加工の正極又は及び負極容器フランジにおいて、 絶縁リングとの 接合面となる容器フランジの周方向うねりを小さく して、 接合不良を防- 止したナトリゥムー硫黄電池を提供することにある。  In order to promote cost reduction and mass production of sodium sulfur batteries, it is effective to replace mechanical machining with plastic working such as pressing. It is an object of the present invention to provide a sodium-sulfur battery in which, in a plastically processed positive or negative electrode container flange, a circumferential undulation of a container flange serving as a joining surface with an insulating ring is reduced to prevent poor joining.
前記目的を達成するため、 本願第 1発明は、 正極又は及び負極の塑性 加工容器フランジの端部に塑性加工によって高剛性体を設置し、 絶縁リ ング材との接合面の周方向うねりを小さくすることにより、 接合不良を 防止したことを特徴とするナ卜リゥムー硫黄電池である。 To achieve the above object, the first invention of the present application is to A high-rigidity battery is installed by plastic working at the end of the processing vessel flange, and the circumferential undulation of the joint surface with the insulating ring material is reduced to prevent poor joints. It is.
第 2発明は、 高剛性体として同筒又はテーパ付円筒を設置することを 特徴としたナトリゥム—硫黄電池である。  A second invention is a sodium-sulfur battery characterized in that the same cylinder or a tapered cylinder is provided as a highly rigid body.
第 3発明は、 高剛性体として、 フランジ端部を巻状又は波板状にした ことを特徴としたナトリゥムー硫黄電池。  A third invention is a sodium sulfur battery, wherein the flange end is wound or corrugated as a highly rigid body.
第 4発明は、 高剛性体として、 容器フランジのプレス成形板厚に比べ 2倍以上の厚みを有する板厚としたことを特徴としたナトリウム一硫黄 電池。  A fourth invention is a sodium-sulfur battery, characterized in that the rigid plate has a thickness that is twice or more the thickness of the press-formed plate of the container flange.
第 5発明は、 高剛性体が負極又は及び正極容器フランジの成形と同時 に塑性加工によリ設置することを特徴としたナトリゥムー硫黄電池。 第 6発明は、 高剛性体が負極又は及び正極容器フランジの成形の前又 は後のいずれかによリ設置することを特徴としたナトリゥムー硫黄電池 c 上記第 2発明から第 6発明はいずれにおいても、 周方向うねりを小さ くするため、 接合不良を防止すると共に、 耐 N a性も向上する効果があ る。 A fifth invention is a sodium sulfur battery characterized in that the high-rigidity body is installed by plastic working simultaneously with the formation of the negative electrode or positive electrode container flange. The sixth invention is a sodium sulfur battery c characterized in that the high-rigidity body is installed either before or after the molding of the negative or positive electrode container flange. In addition, since the circumferential undulation is reduced, it is possible to prevent the bonding failure and to improve the Na resistance.
また第 7発明は、 正極又は負極容器フランジを塑性加工する前の素材 の段階で、 容器フランジ材とアルミニウム又はアルミニウム合金のクラ ッ ド材としたものを塑性加工することにより、 絶縁リング状との接合面 の周方向うねりを小さくすることで、 接合不良を防止したことを特徴と するナトリゥムー硫黄電池である。  Also, in the seventh invention, at the stage of the raw material before the positive or negative electrode container flange is subjected to plastic working, the container flange material and the aluminum or aluminum alloy clad material are subjected to plastic working to form an insulating ring. This is a sodium-sulfur battery characterized by minimizing circumferential waviness at the joint surface to prevent poor joints.
また第 8発明は、 塑性加工した周方向うねりを有する正極又は及び一良 極容器フランジの絶縁リング材との接合面に、 アルミニウム又はアルミ ニゥム合金を押しつけながら回転又は逆回転してすり込み、 周方向うね りを有する容器フランジの凹部に前記アルミニウム又はアルミニウム合 金を満たし、 かつ絶縁リングとの接合面となるアルミニウム又はアルミ ニゥム合金のうねリを小さくすることで、 接合不良を防止したことを特 徵とするナ卜リゥム—硫黄電池である。 Further, the eighth invention is characterized in that the aluminum or aluminum alloy is rubbed by rotating or reversely rotating it while pressing aluminum or an aluminum alloy on a joint surface of the positive electrode having a circumferential undulation and a flange of a single electrode and the insulating ring material, which is plastically worked. Ridge It was noted that the joint failure was prevented by filling the recess of the container flange having the aluminum or aluminum alloy with the aluminum or aluminum alloy and reducing the undulation of the aluminum or aluminum alloy to be the joining surface with the insulating ring. This is a sodium-sulfur battery.
第 4図は請求項 1 において、 負極フランジ 3 をプレスによる塑性加工 している状態を示す。 ダイス 1 3 とポンチ 1 2 を使用して円板より負極 容器フランジ 3 を成形する際、 負極フランジ 3の外側に拘束する手段を 設置しない場合は第 4図に示すように周方向に大きなうねりを発生する 可能性があり、 第 5図に示すように、 絶縁リング 2にアルミニウム合金 のブレージング 8 を介して熱圧接するに、 前記うねりが存在する負極フ ランジ 3 を接合した場合に、 接合不良が発生したリ絶縁リング 2の α— アルミナリングが割れる可能性がある。 また、 耐 N a性も期待できない。 一方、 第 2図及び第 3図に示すように、 負極容器フランジ 3又は正極容 器フランジ 4の端部に剛性を増大するための高剛性体 7の円筒を設置す ることで、 負極フランジ 3又は正極フランジ 4の周方向うねりの発生を 拘束する効果が生じ、 熱圧接部の接合不良や絶縁リング 2の α —アルミ ナの割れを防止できる。 耐 N a性も向上する。 第 6図はプレス成形の塑 性加工負極容器フランジの周方向うねり δの測定結果を示す。 端部に高 剛性体 7 を設置した場合と、 高剛性体 7 を設置しない場合について比較 して示す。 高剛性体 7 を設置しない場合は最大 0 . 2 6皿 のうねりが発 生している力 高剛性体 7 を設置した場合は最大 0 . 0 8 ΐΜΐ で、 うねり は約 1 Ζ 3に低減できることがわかる。 つまり、 容器フランジのうねり を小さくすることで、 熱圧接部の接合不良や絶縁リング 2の割れを防 できる効果がある。 請求項 2〜6も請求項 1 と同様の作用と効果がある。 請求項第 7は、 鋼材の正極又は及び負極フランジ 3, 4の材料よリ柔 らかい材料のアルミニウム又アルミニウム合金のクラッ ド材を使用する ことにより、 アルミニウム又はアルミニウム合金の熱圧接接合面のうね リを低減する作用を利用したものである。 FIG. 4 shows a state in which the negative electrode flange 3 is subjected to plastic working by press in claim 1. When forming the negative electrode container flange 3 from the disk using the die 13 and the punch 12, if no means is installed outside the negative electrode flange 3, large undulations in the circumferential direction will occur as shown in Fig. 4. As shown in FIG. 5, when the negative electrode flange 3 having the undulation is bonded to the insulating ring 2 by hot pressing through the aluminum alloy brazing 8 as shown in FIG. The α-alumina ring of the generated re-insulation ring 2 may crack. Also, Na resistance cannot be expected. On the other hand, as shown in FIGS. 2 and 3, by installing a cylinder of a highly rigid body 7 to increase rigidity at the end of the negative electrode container flange 3 or the positive electrode container flange 4, Alternatively, an effect of restraining the generation of circumferential undulation of the positive electrode flange 4 is produced, and it is possible to prevent poor connection of the heat-pressed portion and cracking of α-alumina of the insulating ring 2. Na resistance is also improved. Fig. 6 shows the measurement results of the circumferential waviness δ of the press-formed plastically processed negative electrode container flange. A comparison is made between the case where the rigid body 7 is installed at the end and the case where the rigid body 7 is not installed. When the high-rigidity body 7 is not installed, the maximum undulation force is 0.26. When the high-rigidity body 7 is installed, the maximum swelling is 0.08 mm, and the swelling can be reduced to about 1/3. I understand. In other words, by reducing the undulation of the container flange, it is possible to prevent poor connection of the heat-pressed portion and cracking of the insulating ring 2. Claims 2 to 6 have the same function and effect as claim 1. Claim 7 is more flexible than the material of the steel positive or negative flanges 3 and 4. The use of aluminum or aluminum alloy cladding material, which is a fragile material, utilizes the effect of reducing the undulation of the aluminum or aluminum alloy heat-welded joint surface.
請求項第 8は、 請求項第 2 と同じ効果を狙ったものであるが、 請求項 第 2が塑性加工前にアルミニウム又はアルミニウム合金をクラッ ド材と したのに対し、 請求項第 3は、 容器フランジの塑性加工後にアルミニゥ ム又はアルミニウム合金をクラッ ド化する違いがあるが、 接合面のうね りを小さくする目的と、 接合部の不良を防止する効果は同じである。 図面の簡単な説明  Claim 8 aims at the same effect as claim 2, but claim 2 uses aluminum or aluminum alloy as the cladding material before plastic working, whereas claim 3 claims Although there is a difference in forming aluminum or aluminum alloy into a clad after plastic working of the container flange, the purpose of reducing the undulation of the joint surface and the effect of preventing a joint failure are the same. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明対象のナトリウム一硫黄電池を示す。 第 2図, 第 3図 は本願第 1発明の適用例を示す。 第 4図はプレス形成による塑性加工状 態を示す。 第 5図はプレス成形フランジのうねり発生状態を示す。 第 6 図は第 2発明の高剛性体として円筒を設置した場合と設置しない場合の フランジ周方向のうねりを比較した図である。 第 7図〜第 9図は第 2発 明の応用例、 第 1 0図〜第 1 4図は第 1発明の応力変形例を示す。 第 FIG. 1 shows a sodium-sulfur battery according to the present invention. 2 and 3 show examples of application of the first invention of the present application. Fig. 4 shows the state of plastic working by press forming. Fig. 5 shows the undulation of the press-formed flange. FIG. 6 is a diagram comparing the undulations in the circumferential direction of the flange when the cylinder is installed as the highly rigid body of the second invention and when it is not installed. 7 to 9 show applied examples of the second invention, and FIGS. 10 to 14 show stress deformation examples of the first invention. No.
1 5図, 第 1 6図は第 3発明の一実施例を示す。 第 1 7図は第 4発明の 一実施例を示す。 第 1 8図, 第 1 9図は第 7発明の実施例を示し、 第FIGS. 15 and 16 show an embodiment of the third invention. FIG. 17 shows an embodiment of the fourth invention. FIGS. 18 and 19 show an embodiment of the seventh invention.
2 0図, 第 2 1 図は第 8発明の実施例を示す。 発明を実施するための最良の形態 FIG. 20 and FIG. 21 show an embodiment of the eighth invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施例を第 1 図及び第 2図, 第 3図に示す。 本発明で対象 としているナ卜リゥムー硫黄電池は、 第 1 図に示すように固体電解質^ 管 1 を介して、 食極活物質 5にナトリウムを、 正極活物質 6に硫黄を用 い、 固体電解質袋管 1 の上部開口部に負極と正極を分離する α—アルミ / One embodiment of the present invention is shown in FIG. 1, FIG. 2, and FIG. The sodium sulfur battery targeted by the present invention uses sodium as an edible electrode active material 5 and sulfur as a positive electrode active material 6 via a solid electrolyte tube 1 as shown in FIG. Α-aluminum separating the negative and positive electrodes from the upper opening of the bag tube 1 /
ナ製の絶縁リング 2が設置され、 該絶縁リング 2にプレス等の塑性加工 によつて製作された負極容器フランジ 3及び正極容器フランジ 4がブレ —ジング材 8のアルミニウム合金を介して接合されている構造となって いる。 プレス等の塑性加工によって成形された負極容器フランジ 3の端 部には高剛性体 7の円筒が第 2図に示すように設置され、 また正極容器 フランジ 4にも第 3図に示すような高剛性体 7の円筒が設置されている 前記の高剛性体 7 を設置することにより、 負極又は及び正極容器フラン ジ 3, 4の塑性加工時に発生する周方向うねりを低減できる。 うねりを 小さくすることで熱圧接接合部の接合不良を防止すると共に、 絶縁リン グ 2の α —アルミナリングの割れを防止及び耐 N a性を向上する効果が ある。 An insulating ring 2 made of metal is installed, and the negative electrode container flange 3 and the positive electrode container flange 4 manufactured by plastic working such as pressing on the insulating ring 2 are joined via an aluminum alloy of a brazing material 8. The structure is At the end of the flange 3 of the negative electrode container formed by plastic working such as pressing, a cylinder of a highly rigid body 7 is installed as shown in FIG. 2, and the flange 4 of the positive electrode container as shown in FIG. By installing the high-rigidity body 7 in which the cylinder of the rigidity body 7 is installed, it is possible to reduce circumferential waviness generated during plastic working of the negative electrode or the positive electrode container flanges 3 and 4. By reducing the undulations, it is possible to prevent the bonding failure of the thermal pressure welded joint, to prevent the α-alumina ring of the insulating ring 2 from cracking, and to improve the Na resistance.
第 7図は、 高剛性体 7にテーパ付円筒とした場合、 第 8図は負極容器 フランジ 3の端部に第 2図とは異なる方向の上向きに高剛性体 7の円筒 を設置したもので、 同様に第 9図は正極容器フランジ 4の端部に第 3図 とは逆の下向きの高剛性体 7の円筒を設置したものである。 第 7図〜第 9図の高剛性体 7においては、 フランジの周方向うねりを小さくする効 果は同じであるが、 接合部の外観検査が行い易いというメ リツ トも生じ る。  Fig. 7 shows the case where the high rigid body 7 is a tapered cylinder, and Fig. 8 shows the case where the high rigid body 7 cylinder is installed at the end of the negative electrode container flange 3 in an upward direction different from that in Fig. 2. Similarly, in FIG. 9, a cylinder of a highly rigid body 7 facing downward from FIG. 3 is provided at the end of the flange 4 of the positive electrode container. In the high-rigidity member 7 shown in FIGS. 7 to 9, the effect of reducing the circumferential undulation of the flange is the same, but there is also a merit that the appearance of the joint can be easily inspected.
第 1 1 図, 第 1 2図は第 1及び第 2発明の応用変形例を示す。 負極容 器フランジ 3 を塑性加工後に Α _ Α ' 断面で切断することで第 1 0図の 形状とするものであリ塑性加工のままの負極容器フランジ 3 を用いた第 2図と同様にうねりが低減できる。 外側端部の剛性が大きくなるため、 周方向のうねり増大を抑制する作用が働き、 うねりをより小さくする 果がある。 第 1 3図及び第 1 4図で塑性加工後に A— A断面で切断する 場合も内側の剛性が大となるため、 周方向のうねり増大を抑制する作用 があり、 うねりをより小さくするため、 接合不良を防止でき熱圧接部の 耐 N a性も向上できる効果がある。 第 1 0図〜第 1 4図に関しては正極 容器フランジにも同様に適用できる。 FIGS. 11 and 12 show modified examples of the first and second inventions. The negative electrode container flange 3 is formed into the shape shown in Fig. 10 by cutting it at the Α _ Α 'cross section after plastic working, and the undulation is the same as in Fig. 2 using the negative plastic container flange 3 as it is plastically processed. Can be reduced. Since the rigidity of the outer end is increased, the effect of suppressing the increase in circumferential undulation works, which has the effect of reducing undulation. In Fig. 13 and Fig. 14, even when cutting along the A-A cross section after plastic working, the rigidity inside increases, so the effect of suppressing the increase in circumferential undulations Since the undulation is further reduced, it is possible to prevent poor joining and to improve the Na resistance of the heat-welded portion. 10 to 14 can be similarly applied to the positive electrode container flange.
第 1 5図及び第 1 6図は第 3発明の一実施例を示す。 高剛性体 7 とし てフランジ端部を卷状及び波板状とした場合を示す。  FIGS. 15 and 16 show an embodiment of the third invention. The case where the end portion of the flange is formed into a wound shape and a corrugated shape as the high rigid body 7 is shown.
第 1 7図は第 4発明の一実施例を示す。 高剛性体 7 として容器フラン ジのプレス成形板厚に比べ 2倍以上の厚みを有する板厚で成形されたこ とを特徴としたナトリウム—硫黄電池である。 作用と効果は第 1 , 第 2 発明と同様である。  FIG. 17 shows an embodiment of the fourth invention. A sodium-sulfur battery characterized by being formed as a highly rigid body 7 with a thickness that is at least twice the thickness of a press-formed plate of a container flange. The function and effect are the same as those of the first and second inventions.
第 1 8図及び第 1 9図は第 7発明の一実施例を示す。 負極容器フラン ジ 3の塑性変形前の第 1 8図に示す板材の状態で、 容器フランジ材 3 と アルミニウム又はアルミニウム合金 1 4 をクラッ ドとし、 その後塑性プ レス加工で第 1 9図に成形する。 アルミニウム又はアルミニウム合金は 柔らかいため、 熱圧接接合面を前記アルミニウム又はアルミニウム合金 とすることにより、 接合面のうねりを小さくすることができるため、 接 合不良を防止できる効果がある。 正極容器フランジに対しても同様に適 用できる。  FIGS. 18 and 19 show an embodiment of the seventh invention. In the state of the plate material shown in Fig. 18 before the plastic deformation of the negative electrode container flange 3, the container flange material 3 and aluminum or aluminum alloy 14 are used as a clad, and then formed into a plastic press Fig. 19 by plastic pressing. . Since aluminum or an aluminum alloy is soft, swelling of the bonding surface can be reduced by using the aluminum or aluminum alloy for the heat-bonding bonding surface, so that there is an effect that poor bonding can be prevented. The same can be applied to the positive electrode container flange.
第 2 0図及び第 2 1 図は請求項 8の一実施例を示す。 塑性加工により 製作したうねりを有する負極フランジ 3の絶縁リング 2 との接合面に当 る負極容器フランジ 3の下部に、 アルミニウム又はアルミニウム合金リ ング 1 5 を平面剛体ジグ 1 7の間に挟み、 前記アルミニウム又はアルミ ニゥム合金を負極容器フランジ 3に押しつけながら、 平面剛体ジグを回 転又は逆回転することで、 負極容器フランジ 3の周方向うねりの凹部丄 アルミニウム又はアルミニウム合金 1 5 を押し込み張り付けて満たし、 かつ絶縁リング 2 との接合面となるアルミニウム又はアルミニウム合金 1 5の下面のうねりを小さく し、 熱圧接接合部の接合不良の発生を防止 する効果がある。 第 2 0図及び第 2 1 図に関しては正極容器フランジに 対しても同様に適用可能である。 産業上の利用可能性 FIG. 20 and FIG. 21 show an embodiment of claim 8. An aluminum or aluminum alloy ring 15 is sandwiched between a flat rigid jig 17 at the lower part of the negative electrode container flange 3 corresponding to the joint surface of the negative electrode flange 3 having undulations produced by plastic working with the insulating ring 2. By rotating or reversely rotating the flat rigid jig while pressing aluminum or aluminum alloy against the negative electrode container flange 3, the concave portion of the circumferential undulation of the negative electrode container flange 3 押 し Pressing and filling aluminum or aluminum alloy 15 Aluminum or aluminum alloy to be joined to insulating ring 2 It has the effect of reducing the undulation on the lower surface of 15 and preventing the occurrence of poor joints at the heat-welded joint. 20 and 21 can be similarly applied to the positive electrode container flange. Industrial applicability
本発明によれば、 機械加工からプレス等による塑性加工で製造できる ので、 正極あるいは負極容器フランジの周方向うねりを小さく して、 絶 縁体リングとの接合不良を防止でき、 電池の強度信頼性を向上できる。  According to the present invention, since it can be manufactured by mechanical working and plastic working by pressing etc., it is possible to reduce circumferential undulation of the positive or negative electrode container flange, prevent poor joining with the insulator ring, and improve battery strength reliability. Can be improved.

Claims

求 の 範 囲 Range of request
1 . 固体電解質袋管を介して、 負極活物質にナトリウムを、 正極活物質 に硫黄を用い、 固体電解質袋管の上部開口部に負極と正極を分離する絶 縁体リングが設置され、 該絶縁体リングに負極容器フランジを正極容器 フランジが接合された構造一青のナ卜リゥムー硫黄電池において、 前記負極 容器フランジあるいは正極容器フランジの少なく とも一つがプレス等の 塑性加工により形成され、 かつ塑性加工容器フランジ端部に、 塑性加工 により高剛性体を設けることにより前記容器フランジに発生する周方向 のうねりを小さくすることを特徴とするナ卜リゥムー硫黄電池。  1. Using a solid electrolyte bag tube, sodium is used as the negative electrode active material and sulfur is used as the positive electrode active material. An insulator ring for separating the negative electrode and the positive electrode is installed at the upper opening of the solid electrolyte bag tube. In a blue sulfur battery having a negative electrode container flange and a positive electrode container flange joined to a body ring, at least one of the negative electrode container flange and the positive electrode container flange is formed by plastic working such as pressing. 2. A sulfur battery according to claim 1, wherein a high-rigidity body is provided at the end of the flange by plastic working to reduce circumferential waviness generated in the container flange.
2 . 特許請求の範囲第 1項に記載のナトリウム一硫黄電池において、 プ レス等の塑性加工によリ形成された負極容器フランジあるいは正極容器 フランジの少なく とも一つの端部に塑性加工により設置される高剛性体 力、 円筒あるいはテ一パ付き円筒であることを特徴とするナトリウム一 硫黄電池。  2. In the sodium-sulfur battery according to claim 1, the negative electrode container flange or the positive electrode container flange formed by plastic working such as pressing is installed at least at one end of the battery by plastic working. A sodium-sulfur battery characterized in that it is a highly rigid body, cylinder or tapered cylinder.
3 . 特許請求の範囲第 1項に記載のナトリウム一硫黄電池において、 プ レス等の塑性加工により形成された負極容器フランジあるいは正極容器 フランジの少なく とも一つの端部に塑性加工により設置される高剛性体 として、 フランジ端部を卷状あるいは波板状にしたことを特徴とするナ 卜リゥムー硫黄電池。  3. The sodium-sulfur battery according to claim 1, wherein the negative electrode container flange or the positive electrode container flange formed by plastic working such as pressing is mounted on at least one end of the battery by plastic working. A sulfur battery as claimed in claim 1, wherein the end of the flange is wound or corrugated as a rigid body.
4 . 特許請求の範囲第 1項に記載のナトリウム一硫黄電池において、 プ レス等の塑性加工により形成された負極容器フランジあるいは正極容器 フランジの少なく とも一つの端部に塑性加工により設置される高剛性体 が、 前記容器フランジのプレス成形板厚に比べて 2倍以上の厚みを有す _ る板厚で形成されたことを特徴とするナトリゥムー硫黄電池。  4. The sodium-sulfur battery according to claim 1, wherein the negative electrode container flange or the positive electrode container flange formed by plastic working such as pressing is mounted on at least one end of the battery by plastic working. A sodium sulfur battery, wherein the rigid body is formed with a thickness that is at least twice as large as the thickness of the press-formed plate of the container flange.
5 . 特許請求の範囲第 1項ないし 4のいずれかに記載の前記塑性加工に よリ設置される高剛性体が、 負極容器フランジあるいは正極容器フラン ジのいずれか一つの塑性加工と同時に設置することを特徴とするナ卜リ ゥムー硫黄電池。 5. The plastic working according to any one of claims 1 to 4, A nutrient sulfur battery wherein a highly rigid body is installed simultaneously with the plastic working of either the anode container flange or the cathode container flange.
6 . 特許請求の範囲第 1項ないし 4のいずれかに記載の前記塑性加工に よリ設置される高剛性体が、 負極容器フランジあるいは正極容器フラン ジのいずれか一つの塑性加工の前あるいは後に設置することを特徴とす るナ卜リゥムー硫黄電池。  6. The high rigid body installed by the plastic working according to any one of claims 1 to 4, before or after the plastic working of any one of the negative electrode container flange and the positive electrode container flange. A natural sulfur battery characterized by being installed.
7 . 特許請求の範囲第 1項ないし 6のいずれかに記載の前記塑性加工に よリ設置される高剛性体が、 部分的に設置されたことを特徴とするナ卜 リゥムー硫黄電池。  7. A sulfur battery according to any one of claims 1 to 6, wherein the high-rigid body installed by the plastic working is partially installed.
8 . 塑性加工容器フランジに容器フランジ素材とアルミニウムあるいは アルミニウム合金とのクラッ ド材を用いることにより、 塑性加工により 絶縁体リングとの接合面となる前記アルミニウムあるいはアルミニウム 合金側の周方向うねりを小さくすることを特徴とするナトリウム一硫黄 電池。  8. By using a clad material of the container flange material and aluminum or aluminum alloy for the plastic processing container flange, the circumferential undulation on the aluminum or aluminum alloy side, which is the joining surface with the insulator ring, is reduced by plastic processing. A sodium-sulfur battery, characterized in that:
9 . 塑性加工により形成したうねりを有する正極あるいは負極容器フラ ンジの絶縁体リングとの接合面に、 アルミニウムあるいはアルミニウム 合金リング材を平面剛体ジグで挟み、 平面ジグで押しっけながら、 平面 剛体ジグを回転あるいは逆回転することで、 周方向うねりを有する剛性 加工容器フランジの凹部にアルミニウムあるいはアルミニウム合金を押 し込み張付け、 かつ絶縁体リング材との接合面となる側のアルミニウム あるいはアルミニウム合金の周方向うねりを小さく したことを特徴とす るナ卜リゥムー硫黄電池。  9. The aluminum or aluminum alloy ring material is sandwiched by a flat rigid jig on the joint surface of the flange of the positive or negative electrode container with undulations formed by plastic working with the insulator ring, and the flat rigid jig is pushed in with the flat jig. By rotating or reversely rotating the aluminum or aluminum alloy, the aluminum or aluminum alloy is pressed into the recess of the processing vessel flange, which has rigidity with circumferential waviness. A natural sulfur battery characterized by reduced directional waviness.
PCT/JP1997/003336 1997-09-19 1997-09-19 Sodium-sulfur battery WO1999016143A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/003336 WO1999016143A1 (en) 1997-09-19 1997-09-19 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/003336 WO1999016143A1 (en) 1997-09-19 1997-09-19 Sodium-sulfur battery

Publications (1)

Publication Number Publication Date
WO1999016143A1 true WO1999016143A1 (en) 1999-04-01

Family

ID=14181165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003336 WO1999016143A1 (en) 1997-09-19 1997-09-19 Sodium-sulfur battery

Country Status (1)

Country Link
WO (1) WO1999016143A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141107A (en) * 2000-11-01 2002-05-17 Ngk Insulators Ltd Cartridge for housing sodium of sodium-sulfur battery and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138473A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Sodium-sulfur cell and manufacture thereof
JPH09190837A (en) * 1996-01-08 1997-07-22 Hitachi Ltd Sodium-sulfur battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138473A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Sodium-sulfur cell and manufacture thereof
JPH09190837A (en) * 1996-01-08 1997-07-22 Hitachi Ltd Sodium-sulfur battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141107A (en) * 2000-11-01 2002-05-17 Ngk Insulators Ltd Cartridge for housing sodium of sodium-sulfur battery and its manufacturing method

Similar Documents

Publication Publication Date Title
EP0496889B1 (en) Separator and its manufacturing method
WO2007058293A1 (en) Method for joining material
JPH0883598A (en) Electrochemical battery and connection system for battery
CN106271008B (en) A kind of erection welding tooling of split-type abnormal shape solid engines housing
JPH1147959A (en) Manufacture of outside sheet
CN113369829B (en) Method for processing injector partition plate cavity
JP4268850B2 (en) Fuel cell seal structure
WO1999016143A1 (en) Sodium-sulfur battery
US5270135A (en) Articles including a ceramic member and a metal member bonded together
JPH10225779A (en) Ultrasonic joining method for aluminum material
CN114505570B (en) Method for improving welding performance of direct-current relay
KR101012530B1 (en) Aluminum/Nickel Clad Material, and Method for Manufacture Thereof and Exterior Terminal for Electric Cell
JPH0134627Y2 (en)
JP2791059B2 (en) Fuel cell
JP2006275187A (en) Insulated container and its manufacturing method
KR101264163B1 (en) Center plate for molten carbonate fuel cell
CN214558430U (en) Butt welding elbow of easy welding height resistance to compression
CN217182378U (en) Copper-aluminum composite adapter sheet, top cover assembly and battery
JP7405811B2 (en) Terminal parts, secondary batteries, and methods of manufacturing terminal parts
CN216288744U (en) Metal battery shell and battery
CN202423499U (en) Cathode metal piece of sodium-sulfur battery
JPH0734912Y2 (en) Thermal adhesive seal member
JP3812259B2 (en) Gas manifold for phosphoric acid fuel cell
JP2003260529A (en) Coupling method and coupling structure
JP2024012817A (en) Laminate battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase