KR101012530B1 - Aluminum/Nickel Clad Material, and Method for Manufacture Thereof and Exterior Terminal for Electric Cell - Google Patents

Aluminum/Nickel Clad Material, and Method for Manufacture Thereof and Exterior Terminal for Electric Cell

Info

Publication number
KR101012530B1
KR101012530B1 KR1020047003904A KR20047003904A KR101012530B1 KR 101012530 B1 KR101012530 B1 KR 101012530B1 KR 1020047003904 A KR1020047003904 A KR 1020047003904A KR 20047003904 A KR20047003904 A KR 20047003904A KR 101012530 B1 KR101012530 B1 KR 101012530B1
Authority
KR
South Korea
Prior art keywords
nickel
aluminum
layer
sheet
clad material
Prior art date
Application number
KR1020047003904A
Other languages
Korean (ko)
Other versions
KR20050058991A (en
Inventor
가즈히로 시오미
마사아키 이시오
켄이치 후나모토
Original Assignee
가부시키가이샤 네오맥스 마테리아르
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 네오맥스 마테리아르 filed Critical 가부시키가이샤 네오맥스 마테리아르
Publication of KR20050058991A publication Critical patent/KR20050058991A/en
Application granted granted Critical
Publication of KR101012530B1 publication Critical patent/KR101012530B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/002Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of light metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 알루미늄/니켈 클래드재(1)는, 순알루미늄으로 형성된 알루미늄층(3)과 순니켈로 형성된 니켈층(2)이 확산접합되고, 상기 니켈층(2)의 경도가 Hv 130∼170으로 된 것이다. 이 클래드재(1)에 있어서, 상기 알루미늄층(3)과 니켈층(2)을 두께 0.4∼10.0㎛, 바람직하게는 1.0∼6.0㎛의 Al-Ni계 금속간화합물층을 통하여 확산접합함으로써 우수한 박리강도를 얻을 수 있다. 상기 클래드재는, 초음파용접을 적용하여도 알루미늄재에 대하여 안정한 용접접합성이 얻어지고, 또한 굽힘가공을 실시하여도 형상불량이 생기기 어렵다. 이 때문에, 전지용 외부단자의 소재로서 바람직하다.In the aluminum / nickel cladding material 1 of the present invention, the aluminum layer 3 formed of pure aluminum and the nickel layer 2 formed of pure nickel are diffusion-bonded, and the hardness of the nickel layer 2 is Hv 130 to 170. It is made. In this cladding material 1, the aluminum layer 3 and the nickel layer 2 are excellently peeled by diffusion bonding through an Al-Ni-based intermetallic compound layer having a thickness of 0.4 to 10.0 µm, preferably 1.0 to 6.0 µm. Strength can be obtained. Even if ultrasonic cladding is applied to the clad material, stable weldability to the aluminum material is obtained, and shape defects are less likely to occur even when bending is performed. For this reason, it is suitable as a raw material of a battery external terminal.

알루미늄, 니켈, 클래드재, 전지, 단자Aluminum, Nickel, Clad Material, Battery, Terminal

Description

알루미늄/니켈 클래드재와 그 제조방법 및 전지용 외부단자{Aluminum/Nickel Clad Material, and Method for Manufacture Thereof and Exterior Terminal for Electric Cell}Aluminum / Nickel Clad Material, and Method for Manufacture Thereof and Exterior Terminal for Electric Cell}

본 발명은 전지(電池) 외장케이스에 결합되는 외부단자 및 그 소재로서 바람직하게 사용할 수 있는 알루미늄/니켈 클래드재(Clad Material)에 관한 것이다.The present invention relates to an external terminal coupled to a battery outer case and an aluminum / nickel clad material that can be suitably used as a material thereof.

휴대전화나 노트형 컴퓨터 등의 소형의 전자·전기기기에는, 소형전지가 탑재되어 있다. 이 소형전지에는, 순알루미늄으로 형성된 외장케이스를 구비한 것이 있다. 전지에 의해 발생한 전기는, 상기 순알루미늄제의 외장케이스에 부설된 외부단자 및 이에 접합된 도전부재를 통하여 각종 전자부품으로 공급된다. 상기 도전부재는, 통상, 내식성, 내구성이 우수한 순니켈로 형성되어 있다.Small electronics and electronic devices such as mobile phones and notebook computers are equipped with small batteries. Some of these small batteries have an outer case formed of pure aluminum. The electricity generated by the battery is supplied to various electronic components through an external terminal attached to the outer case made of pure aluminum and a conductive member bonded thereto. The conductive member is usually formed of pure nickel having excellent corrosion resistance and durability.

상기 외부단자는, 폭 3mm, 길이 20mm 정도의 방형(方形)을 취하고 있다. 상기 외부단자에는, 예를들면 일본특개 2001-6746호 공보에 기재되어 있는 바와 같이, 순알루미늄제의 외장케이스 및 순니켈제의 도전부재와의 접합성을 고려하여, 순알루미늄에 의해 형성된 알루미늄층과 순니켈에 의해 형성된 니켈층이 접합된 알루미늄/니켈 클래드재에 의해 형성된 것이 있다.The external terminal has a rectangular shape of about 3 mm in width and 20 mm in length. The external terminal includes, for example, an aluminum layer formed of pure aluminum in consideration of the bonding property between an outer case made of pure aluminum and a conductive member made of pure nickel, as described in Japanese Patent Application Laid-Open No. 2001-6746; Some nickel layers formed by pure nickel are formed of bonded aluminum / nickel cladding materials.

종래, 이 알루미늄/니켈 클래드재는, 순니켈에 의해 형성된 니켈 시트(Sheet)와 순알루미늄에 의해 형성된 알루미늄 시트를 겹치고, 그 겹쳐진 시트를 한쌍의 롤(Roll)을 통하여 냉간압연한 후, 그 압접(壓接) 시트에 확산소둔(擴散燒鈍)이 실시되어, 알루미늄층과 니켈층이 확산접합됨으로써 제작된다. 냉간압접에서의 압하율(壓下率)은, 양(兩) 시트가 후공정에서 박리되지 않는 정도의 접합이 얻어지도록 60% 정도 이상으로 한다. 또한, 고온에서의 확산소둔은, 알루미늄층과 니켈층과의 계면(界面)에 취약한 Al-Ni계 금속간화합물이 생성하고, 알루미늄층과 니켈층과의 박리강도를 열화(劣化)시키는 것으로 생각되고 있다. 이 때문에, 확산소둔은, 통상, 상기 금속간화합물이 생성하지 않도록 400℃ 정도 이하의 낮은 소둔온도로 단시간 유지함으로써 행해지고 있다. 전지용 외부단자는, 통상, 상기 알루미늄/니켈 클래드재를 길이방향에 따라 필요한 외부단자폭과 동일한 폭의 스트립(Srtip)으로 슬릿(Slit)하고, 얻어진 스트립을 더 필요한 길이로 전단가공함으로써 제조된다.Conventionally, this aluminum / nickel cladding material overlaps a nickel sheet formed by pure nickel and an aluminum sheet formed by pure aluminum, and cold rolls the stacked sheets through a pair of rolls, and then press (Iii) Diffusion annealing is performed on the sheet to produce an aluminum layer and a nickel layer by diffusion bonding. The reduction ratio in cold press welding is about 60% or more so that the joining of the sheet | seat that the sheet | seat does not peel in a post process is obtained. In addition, diffusion annealing at high temperature is thought to produce an Al-Ni-based intermetallic compound that is vulnerable to the interface between the aluminum layer and the nickel layer, and deteriorates the peel strength between the aluminum layer and the nickel layer. It is becoming. For this reason, diffusion annealing is usually performed by holding for a short time at low annealing temperature of about 400 degreeC or less so that the said intermetallic compound does not produce | generate. A battery external terminal is usually manufactured by slitting the aluminum / nickel clad material into a strip having the same width as the required external terminal width along the longitudinal direction, and shearing the obtained strip to the required length.

상기 외부단자는, 종래, 전지 외장케이스에 스폿(Spot)용접(저항용접)에 의해 접합되었다. 스폿용접부에서는, 클래드재의 알루미늄과 니켈이 용접응고하여 금속간화합물이 생성하기 때문에, 용접부에서 전기저항이 증대하고, 전지의 효율이 저하한다. 이 때문에, 최근에, 외부단자는 초음파용접에 의해 접합되게 되었다. 초음파용접에서는, 용접부가 용융함이 없이, 알루미늄층이 전지 외장케이스에 압접된 상태로 되기 때문에, 금속간화합물은 생성하지 않고, 전지효율의 저하를 방지할 수가 있다.The external terminal is conventionally joined to a battery outer case by spot welding (resistance welding). In the spot welding portion, aluminum and nickel of the clad material are welded and coagulated to produce an intermetallic compound. Therefore, the electrical resistance increases in the weld portion, and the efficiency of the battery decreases. For this reason, in recent years, external terminals have been joined by ultrasonic welding. In ultrasonic welding, since the aluminum layer is pressed against the battery case without melting the welded portion, the intermetallic compound is not produced and the decrease in battery efficiency can be prevented.

그러나, 종래의 냉간압접에 의해 접합한 알루미늄/니켈 클래드재를 소재로 하여 제작한 전지용 외부단자를 사용하여 초음파용접하면, 접합강도의 불규칙함이 크고, 접합성이 불안정하다는 문제가 있다.However, when ultrasonic welding is performed using a battery external terminal made of aluminum / nickel clad material joined by conventional cold press welding, there is a problem that the bonding strength is large and the bonding property is unstable.

또한, 최근에는, 외부단자로서 Z자형 등 각종의 굴곡형상의 것이 요구되도록 되어 있다. 이러한 형태의 외부단자를 종래의 클래드재에 의해 형성한 경우, 굽힘가공시에 큰 스프링백(Spring-back)이 생기기 쉽고, 형상불량이 생기기 쉽다고 하는 문제가 있다.In recent years, various curved shapes such as Z-shaped are required as external terminals. When the external terminal of this type is formed by the conventional clad material, there is a problem that large spring-back is likely to occur during bending processing, and shape defects are likely to occur.

본 발명은 이러한 문제를 감안하여 이루어진 것으로, 초음파용접을 적용하여도 안정한 용융접합성이 얻어지고, 또한 굽힘가공을 실시하여도 형상불량이 생기기 어려운 전지용 외부단자, 그 소재로서 바람직한 알루미늄/니켈 클래드재, 및 그 제조방법을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is a battery external terminal which is stable in melt bonding even when ultrasonic welding is applied and hardly generates shape defects even after bending, an aluminum / nickel clad material which is preferable as a material thereof, And it aims to provide the manufacturing method.

본 발명자는 종래의 알루미늄/니켈 클래드재에 의해 제작한 전지용 외부단자를 사용하여 초음파용접을 행하면, 접합성이 불안정하게 되고, 또한 종래의 알루미늄/니켈 클래드재는 가공에 있어서 형상불량이 생기기 쉽다는 원인에 대하여 예의조사하였던 바, 알루미늄/니켈 클래드재의 니켈층이 매우 단단한 것이 원인이라는 것을 발견하였다. 또한, 종래, 확산소둔시에 알루미늄층과 니켈층의 계면에 Al-Ni계 금속간화합물이 생성하면, 알루미늄층과 니켈층 사이의 박리강도가 열화하는 것으로 생각되었지만, Al-Ni계 금속간화합물의 두께가 특정의 얇은 영역에서는 박리강도는 오히려 향상한다는 것을 발견하였다. 본 발명은 이러한 발견에 근거하여 이루어진 것이다.MEANS TO SOLVE THE PROBLEM This inventor becomes unstable at the time of ultrasonic welding using the external terminal for batteries manufactured with the conventional aluminum / nickel cladding material, and the conventional aluminum / nickel cladding material is a reason for the easy shape defect in processing. As a result of careful investigation, it was found that the cause is that the nickel layer of the aluminum / nickel cladding material is very hard. In addition, when Al-Ni-based intermetallic compounds are formed at the interface between the aluminum layer and the nickel layer during diffusion annealing, it is thought that the peel strength between the aluminum layer and the nickel layer deteriorates, but the Al-Ni-based intermetallic compound is deteriorated. It has been found that the peel strength is rather improved in the specific thin region of. The present invention has been made based on this finding.

즉, 본 발명의 알루미늄/니켈 클래드재는, 알루미늄의 순도가 98 mass% 이상의 순알루미늄으로 형성된 알루미늄층과, 니켈의 순도가 98 mass% 이상의 순니켈로 형성된 니켈층이 확산접합되고, 상기 니켈층의 경도가 Hv 130∼170으로 된 것이다. 상기 알루미늄층의 두께는 25∼100㎛으로 하는 것이 바람직하고, 또한 상기 니켈층의 두께는 50∼200㎛로 하는 것이 바람직하다.That is, in the aluminum / nickel cladding material of the present invention, an aluminum layer formed of pure aluminum with a purity of aluminum of 98 mass% or more and a nickel layer formed of pure nickel with a purity of 98 mass% or more of nickel are diffusely bonded to each other. The hardness is Hv 130 to 170. It is preferable that the thickness of the said aluminum layer shall be 25-100 micrometers, and it is preferable that the thickness of the said nickel layer shall be 50-200 micrometers.

이 알루미늄/니켈 클래드재에 의하면, 니켈층의 경도가 Hv 130∼170이고, 니켈층이 과도하게 단단하지 않으므로, 초음파용접시에 초음파진동이 초음파진동 출력단자(혼(Horn) 선단부)로부터 니켈층을 통하여 알루미늄층으로 신속하게 전달되기 때문에, 안정한 용접접합성이 얻어진다. 또한, 과도의 스프링백도 생기지 않기 때문에, 양호한 성형가공성이 얻어진다. 한편, 니켈층이 과도하게 연화하지 않으므로, 클래드재를 전단가공하여 전지용 외부단자 또는 그 소재 등의 가공편을 얻을 때에, 가공편의 선단 테두리에 돌기(버어(Burr))가 생기기 어렵다. 버어가 있으면, 용접 상대재료에 대하여 가공편이 밀착하지 않고, 초음파진동이 전달하기 어렵게 된다. 상기 클래드재에서는, 가공편에 버어가 생기기 어렵기 때문에, 초음파진동이 신속하게 전달되고, 양호한 초음파용접성이 얻어진다.According to this aluminum / nickel cladding material, since the nickel layer has a hardness of Hv 130 to 170 and the nickel layer is not excessively hard, the ultrasonic vibration is applied from the ultrasonic vibration output terminal (horn tip) to the nickel layer during ultrasonic welding. Since it is quickly transmitted to the aluminum layer through, stable weldability is obtained. In addition, since no excessive spring back occurs, good moldability is obtained. On the other hand, since the nickel layer does not soften excessively, when the clad material is sheared to obtain a workpiece such as an external terminal for a battery or a material thereof, projections (burrs) are hardly generated at the leading edge of the workpiece. If there is a burr, the workpiece is not in close contact with the welding partner material, and ultrasonic vibration is difficult to transmit. In the clad material, since burrs are less likely to form on the workpiece, ultrasonic vibration is transmitted quickly, and good ultrasonic weldability is obtained.

상기 알루미늄/니켈 클래드재에 있어서, 상기 알루미늄층과 니켈층은 두께가 0.4∼10.0㎛, 바람직하게는 1.0∼6.0㎛의 Al-Ni계 금속간화합물층을 통하여 확산용접되는 것이 바람직하다. Al-Ni계 금속간화합물 자체는 취약하지만, 니켈층 또는 알루미늄층과 상기 금속간화합물층과의 경계의 근방영역에서는 취약성은 나타나지 않고, 니켈층 또는 알루미늄층과 상기 금속간화합물층은 양호하게 접합한다. 상기 금속간화합물층의 두께가 0.4∼10.0㎛ 정도에서는, 상기 금속간화합물층 자체의 취약성이 나타나기 어렵기 때문에, 알루미늄층과 니켈층의 접합성은 비교적 양호하다. 더욱이, 상기 금속간화합물층의 두께를 1.0∼6.0㎛로 함으로써, 특히 우수한 접합성이 얻어진다. 이 때문에, 클래드재 또는 그 가공편에 대하여 엄격한 성형가공을 행하여도 알루미늄층과 니켈층은 박리하기 어렵게 되고, 우수한 성형가공성이 얻어진다.In the aluminum / nickel cladding material, the aluminum layer and the nickel layer are preferably diffusion welded through an Al—Ni-based intermetallic compound layer having a thickness of 0.4 to 10.0 μm, preferably 1.0 to 6.0 μm. Although the Al-Ni-based intermetallic compound itself is fragile, there is no fragility in the region near the boundary between the nickel or aluminum layer and the intermetallic compound layer, and the nickel or aluminum layer and the intermetallic compound layer are satisfactorily bonded. When the thickness of the intermetallic compound layer is about 0.4 to 10.0 µm, since the fragility of the intermetallic compound layer itself is less likely to appear, the bonding between the aluminum layer and the nickel layer is relatively good. Moreover, especially excellent bonding property is obtained by making the thickness of the said intermetallic compound layer into 1.0-6.0 micrometer. For this reason, even if the cladding material or the processed piece is subjected to strict molding, the aluminum layer and the nickel layer are hardly peeled off, and excellent molding processability is obtained.

상기 알루미늄/니켈 클래드재는 전지용 외부단자의 소재로서 바람직하고, 상기 알루미늄/니켈 클래드재를 쉬어(Shear)에 의한 절단이나 타발(打拔) 가공 등의 전단가공을 실시함으로써 전지용 외부단자를 용이하게 제작할 수가 있다.The aluminum / nickel cladding material is preferable as a material of the battery external terminal, and the aluminum / nickel cladding material can be easily produced by performing shear processing such as cutting or punching by shearing. There is a number.

상기 알루미늄/니켈 클래드재는, 니켈의 순도가 98 mass% 이상의 순니켈로 형성된 니켈 시트를 100∼300℃로 가열하고, 이 가열한 니켈 시트와 알루미늄의 순도가 98 mass% 이상의 순알루미늄으로 형성된 알루미늄 시트를 겹쳐 압하율 10∼17%로 압접한 후, 얻어진 압접 시트를 확산소둔함으로써 용이하게 제조할 수가 있다. 상기 확산소둔은, 500∼600℃의 온도범위로 행하는 것이 바람직하다.The aluminum / nickel cladding material is an aluminum sheet in which a nickel sheet formed of pure nickel with a purity of 98 mass% or more is heated to 100 to 300 ° C., and the heated nickel sheet and an aluminum sheet formed of pure aluminum with a purity of 98 mass% or more. And press-bonded at a reduction ratio of 10 to 17%, the resulting press-contacting sheet can be easily manufactured by diffusion annealing. The diffusion annealing is preferably performed in a temperature range of 500 to 600 ° C.

이상 설명한 바와 같이, 본 발명의 알루미늄/니켈 클래드재에 의하면, 그 니켈층이 Hv 130∼170의 경도로 조정되어 있으므로, 초음파용접시에 안정한 용접접합성이 얻어지고, 또한 과도의 스프링백이 억제되고, 굽힘가공성도 우수하다. 이 때문에, 전지용 외부단자 등의 소재로서 바람직하다. 또한, 본 발명의 제조방법에 의하면, 특수한 설비를 요구하는 일이 없고, 소정 경도의 니켈층을 구비한 알루미늄/니켈 클래드재를 용이하게 제조할 수가 있다.As described above, according to the aluminum / nickel cladding material of the present invention, since the nickel layer is adjusted to a hardness of Hv 130 to 170, stable weldability at the time of ultrasonic welding is obtained, and excessive spring back is suppressed. Excellent bending workability For this reason, it is suitable as raw materials, such as a battery external terminal. Moreover, according to the manufacturing method of this invention, an aluminum / nickel clad material provided with the nickel layer of predetermined hardness can be manufactured easily, without requiring a special installation.

도 1은, 본 발명에 의한 알루미늄/니켈 클래드재의 단면모식도이다.1 is a schematic cross-sectional view of an aluminum / nickel clad material according to the present invention.

도 2는, 압접시트의 접합강도, 확산소둔후의 클래드 시트의 박리강도의 측정요령 설명도이다.Fig. 2 is an explanatory diagram for measuring the bonding strength of the pressure-contacting sheet and the peeling strength of the clad sheet after diffusion annealing.

도 3은, 알루미늄/니켈 클래드재 시험편의 굽힘시험요령 설명도이다.3 is an explanatory diagram of a bending test method of an aluminum / nickel clad material test piece.

도 4는, 알루미늄/니켈 클래드재 시험편의 180°굽힘시험요령 설명도이다.4 is an explanatory diagram of 180 ° bending test tips of aluminum / nickel clad material test pieces.

본 발명의 실시형태에 의한 알루미늄/니켈 클래드재(1)는, 도 1에 도시하는 바와 같이, 알루미늄층(3)과, 니켈층(2)이 압접되어 확산접합된 것이고, 확산소둔후의 상기 니켈층(2)의 경도는 Hv 130∼170으로 되어 있다.In the aluminum / nickel cladding material 1 according to the embodiment of the present invention, as shown in FIG. 1, the aluminum layer 3 and the nickel layer 2 are press-bonded by diffusion bonding, and the nickel after diffusion annealing is used. The hardness of the layer 2 is Hv 130-170.

상기 알루미늄층(3), 상기 니켈층(2)은, 각각 순알루미늄, 순니켈에 의해 형성되어 있다. 알루미늄, 니켈의 순도는 높을 수록 바람직하지만, 본 발명에서는 불순물이 2 mass% 정도까지 허용되고, 알루미늄, 니켈의 순도가 98 mass% 이상, 바람직하게는 99 mass% 이상, 보다 바람직하게는 99.9 mass%의 것을 사용하는 것이 바람직하다.The aluminum layer 3 and the nickel layer 2 are formed of pure aluminum and pure nickel, respectively. The higher the purity of aluminum and nickel, the more preferable. However, in the present invention, impurities of up to 2 mass% are allowed, and the purity of aluminum and nickel is 98 mass% or more, preferably 99 mass% or more, and more preferably 99.9 mass%. It is preferable to use one.

상기 니켈층(2)의 경도는 본 발명에 있어서 중요하고, 비커스(Vickers) 경도로 Hv 130∼170으로 한다. 니켈층(2)의 경도는, 초음파용접성, 성형가공성 등에 큰 영향이 있고, Hv 170을 초과하면 성형가공시에 스프링백에 의한 형상불량이 과대하게 되기 쉽고, 또한 초음파용접시에 초음파가 니켈층(2)으로부터 알루미늄층(3)으로 전달하기 어렵게 되고, 알루미늄층(3)과 전지의 외장케이스와의 용접이 불안정하게 되고, 안정한 용접접합성이 얻어지지 않게 된다. 한편, Hv 130 미만에서는 강도가 저하함과 함께, 슬릿 등의 전단가공시에 절단면 단부에 큰 버어(Burr)가 생기게 된다. 외부단자의 외주연부에 버어가 생기면, 전지 외장케이스나 초음파용접장치의 초음파진동 출력단부 사이에 간극이 생겨 밀착하기 어렵게 되기 때문에, 초음파진동이 전달하기 어렵게 되고, 용접불량의 원인이 된다. 이 때문에, 본 발명에서는 니켈층(2)의 경도를 Hv 130∼170, 바람직하게는 경도 Hv 140∼160으로 한다.The hardness of the nickel layer 2 is important in the present invention and is set to Hv 130 to 170 in Vickers hardness. The hardness of the nickel layer 2 has a great influence on ultrasonic weldability, molding processability, etc., and when Hv 170 is exceeded, the shape defect due to spring back during molding processing tends to be excessive, and the ultrasonic wave is nickel layer during ultrasonic welding. It becomes difficult to transfer from (2) to the aluminum layer 3, and welding of the aluminum layer 3 and the exterior case of a battery becomes unstable, and stable weldability is no longer obtained. On the other hand, when the Hv is less than 130, the strength decreases, and a large burr is formed at the end of the cut surface during shear processing such as slits. If burrs are formed on the outer circumferential edges of the external terminals, gaps are formed between the battery case and the ultrasonic vibration output ends of the ultrasonic welding device, making it difficult to adhere. Therefore, ultrasonic vibrations are difficult to transmit and cause welding failure. For this reason, in this invention, the hardness of the nickel layer 2 shall be Hv130-170, Preferably hardness Hv140-160.

상기 알루미늄층과 니켈층은 확산소둔에 의해 확산접합되어 있다. 이 확산접합에 따라, 접합계면에 Al-Ni 금속간화합물이 생성하는 경우가 있다. Al-Ni 금속간화합물 그 자체는 취약하기 때문에, 알루미늄층과 니켈층 사이의 박리강도를 저하시키는 것으로 생각되었다. 그러나, 알루미늄층과 니켈층의 계면에 생성한 Al-Ni계 금속간화합물층의 두께가 극히 얇은 영역에서는 접합강도는 저하되지 않고, 경우에 따라서는 오히려 향상됨을 알았다. 상기 금속간화합물층의 두께가 0.4∼10.0㎛ 정도에서는, 실용상, 문제가 없는 정도의 박리강도를 갖는다. 특히, 상기 금속간화합물층의 두께를 1.0∼6.0㎛ 정도로 함으로써, 후술하는 실시예로부터 명백한 바와 같이, 박리강도는 매우 높아지고, 엄격한 성형가공에 대하여 충분히 적용할 수 있도록 된다.The aluminum layer and the nickel layer are diffusion bonded by diffusion annealing. Due to this diffusion bonding, an Al-Ni intermetallic compound may be produced at the bonding interface. Since the Al-Ni intermetallic compound itself is fragile, it was thought to reduce the peel strength between the aluminum layer and the nickel layer. However, in the region where the thickness of the Al-Ni-based intermetallic compound layer formed at the interface between the aluminum layer and the nickel layer is extremely thin, it was found that the bonding strength did not decrease but rather improved in some cases. When the thickness of the said intermetallic compound layer is about 0.4-10.0 micrometers, it has a peeling strength of the grade which is satisfactory practically. In particular, by making the thickness of the intermetallic compound layer about 1.0 to 6.0 mu m, the peel strength becomes very high, as apparent from the examples described later, and it is possible to apply sufficiently to strict molding processing.

상기 알루미늄층(3)의 두께는, 25∼100㎛가 바람직하다. 알루미늄층(3)이 매우 얇으면, 제조과정에서 니켈층(2)과의 압접이 곤란하게 되고, 한편 매우 두꺼우면, 전지 외장케이스의 초음파용접이 곤란하게 된다. 이 때문에, 25∼100㎛가 바람직하고, 보다 바람직하게는 30∼70㎛ 정도이다, 상기 니켈층(2)의 두께는, 초음파용접성, 내구성의 확보를 위하여 50㎛ 이상이 바람직하지만, 매우 두꺼워도 원가상승을 초래할 뿐이므로, 200㎛ 이하, 바람직하게는 150㎛ 이하로 하는 것이 좋다.As for the thickness of the said aluminum layer 3, 25-100 micrometers is preferable. If the aluminum layer 3 is very thin, it becomes difficult to press-contact with the nickel layer 2 in the manufacturing process, while if it is very thick, ultrasonic welding of the battery case is difficult. For this reason, 25-100 micrometers is preferable, More preferably, it is about 30-70 micrometers. Although the thickness of the said nickel layer 2 is 50 micrometers or more in order to ensure ultrasonic weldability and durability, even if it is very thick, Since only cost rises, it is good to set it as 200 micrometers or less, Preferably it is 150 micrometers or less.

다음에, 상기 실시형태의 알루미늄/니켈 클래드재의 제조방법에 대하여 설명한다.Next, the manufacturing method of the aluminum / nickel clad material of the said embodiment is demonstrated.

상기 알루미늄/니켈 클래드재는, 순알루미늄에 의해 형성된 알루미늄 시트 및 순니켈에 의해 형성된 니켈 시트를 준비하고, 상기 니켈 시트를 100∼300℃로 가열하고, 가열한 니켈 시트를 상기 알루미늄 시트와 겹치고, 한쌍의 롤의 간극을 통하여 10∼17%의 압하율로 롤압접하고, 이에 따라 얻어진 알루미늄층과 니켈층이 접합된 압접 시트를 확산소둔함으로써 제조된다. 더욱이, 압하율(%)은, (압하에 의해 감소하는 두께) / (원래의 전체 두께)× 100으로 산출된다.The aluminum / nickel cladding material prepares an aluminum sheet formed of pure aluminum and a nickel sheet formed of pure nickel, heats the nickel sheet to 100 to 300 ° C., overlaps the heated nickel sheet with the aluminum sheet, and pairs. Roll pressing is carried out at a reduction ratio of 10 to 17% through the gap between the rolls, and is produced by diffusion annealing the press contact sheet to which the aluminum layer and the nickel layer thus obtained are bonded. Moreover, the reduction ratio (%) is calculated as (thickness decreasing by reduction) / (original total thickness) x 100.

상기 니켈 시트를 100∼300℃로 가열함으로써, 10∼17%의 저압하(低壓下)에 의해서도 2N/mm 정도 이상의 충분한 접합강도를 갖는 압접 시트를 얻을 수 있다. 니켈 시트의 가열온도가 100℃미만에서는, 17%의 압하율로 롤압접하여도 알루미늄 시트와의 접합력이 부족하고, 압접후의 공정에서 박리할 우려가 생긴다. 한편, 300℃를 초과하면, 압접시의 롤의 윤활이 가혹하게 되고, 윤활불량이 생겨서 압접이 곤란하게 된다. 이 때문에, 니켈 시트의 가열온도를 100∼300℃, 바람직하게는 150∼250℃로 한다. 더욱이, 니켈 시트를 소정의 온도로 가열한 후는, 가능한 한 신속하게 롤압접하는 것이 바람직하고, 가열후 5초 이내, 바람직하게는 3초 이내에 알루미늄 시트와 압접하는 것이 권장된다.By heating the said nickel sheet at 100-300 degreeC, the press contact sheet which has sufficient bonding strength about 2 N / mm or more can be obtained also by the low pressure drop of 10 to 17%. If the heating temperature of a nickel sheet is less than 100 degreeC, even if it roll-contacts at 17% of the reduction ratio, the bonding force with an aluminum sheet may be insufficient, and it may peel in the process after press welding. On the other hand, when it exceeds 300 degreeC, the lubrication of the roll at the time of pressure welding will be severe, a lubrication defect will arise and it will become difficult for pressure welding. For this reason, the heating temperature of a nickel sheet is 100-300 degreeC, Preferably it is 150-250 degreeC. Moreover, after heating the nickel sheet to a predetermined temperature, it is preferable to roll-contact as quickly as possible, and it is recommended to press-contact with the aluminum sheet within 5 seconds after heating, preferably within 3 seconds.

한편, 알루미늄 시트는 원칙으로서 가열이 불필요하고, 실온(室溫)인 채로 좋다. 가열하더라도 200℃ 이하로 제한하는 것이 바람직하다. 롤압접에서의 압하율은 저압하율이 채용되기 때문에, 압하전의 알루미늄 시트의 두께도 필연적으로 얇게 된다. 예를들면, 클래드재의 알루미늄층의 두께를 25∼100㎛로 하는 경우, 알루미늄 시트의 두께는 28∼111㎛ 로 한다. 25∼120㎛ 정도의 두께의 알루미늄 시트를 사용하여 롤압접하는 경우, 알루미늄 시트를 200℃ 초과하여 가열하면, 가열에 의해 시트의 강도가 저하하고, 롤압접시에 시트에 장력을 부여하기 때문에 시트에 부여되는 장력에 견딜 수 없게 되고, 부분적으로 신장이 생기거나, 현저한 경우에는 파단하는 등의 문제가 생긴다.On the other hand, an aluminum sheet does not need heating as a general rule, and can remain as room temperature. It is preferable to limit to 200 degrees C or less even if it heats. Since the low reduction ratio is adopted for the reduction ratio in roll welding, the thickness of the aluminum sheet before the reduction is inevitably thin. For example, when the thickness of the aluminum layer of a clad material is 25-100 micrometers, the thickness of an aluminum sheet shall be 28-111 micrometers. In the case of roll pressure welding using an aluminum sheet having a thickness of about 25 to 120 μm, when the aluminum sheet is heated above 200 ° C., the strength of the sheet decreases by heating, and the sheet is tensioned during roll pressing. It becomes unbearable to the tension imparted to it, causing elongation, or breaking in some cases.

상기 롤압접에서의 압하율은 상기와 같이 10∼17%와 극히 좁은 범위로 할 필요가 있다. 5% 미만에서는, 니켈을 300℃로 가열한 상태에서도, 알루미늄 시트와 니켈 시트와의 접합강도가 2N/mm 정도 이하로 되고 충분한 접합강도가 얻어지지 않고, 박리할 우려가 생긴다. 또한, 5% 이상이라도 10% 미만에서는, 버어가 높아지고, 초음파용접성이 저하하게 된다. 한편, 17%를 초과하여 압하하면, 니켈 시트를 300℃로 가열한 상태에서도 압하후의 경도가 Hv 170을 초과하게 되고, 성형가공성이나 초음파용접성에 문제가 생기게 된다. 따라서, 압하율을 10∼17%, 바람직하게는 11∼15%로 한다.It is necessary to make the reduction ratio in the said roll press welding into the range which is 10-17% and extremely narrow as mentioned above. If it is less than 5%, even when the nickel is heated to 300 ° C, the bonding strength between the aluminum sheet and the nickel sheet is about 2 N / mm or less, and sufficient bonding strength is not obtained, which may cause peeling. Moreover, even if it is 5% or more and less than 10%, a burr will become high and ultrasonic weldability will fall. On the other hand, if the reduction is more than 17%, the hardness after reduction exceeds Hv 170 even when the nickel sheet is heated to 300 ° C., resulting in problems in moldability and ultrasonic weldability. Therefore, the reduction ratio is 10 to 17%, preferably 11 to 15%.

롤압접에 의해 접합된 압접시트는, 확산소둔에 의해 알루미늄층과 니켈층이 확산접합되어, 클래드재로 된다. 확산소둔조건에 의해, 클래드재에서의 알루미늄 층과 니켈층 사이의 박리강도는 다양하게 변화하지만, 클래드재의 박리강도는 실용적으로는 4.0N/mm 정도 이상이면 좋다. 특히, 클래드재에 엄격한 가공을 실시하는 경우에는, 8.0N/mm 정도 이상, 보다 바람직하게는 10.0N/mm 정도 이상의 충분한 박리강도를 갖는 것이 바람직하다. 비교적 단시간으로 충분한 박리강도를 얻기 위하여는, 500∼600℃의 온도에서 확산소둔하는 것이 바람직하다. 400∼450℃에서도 확산소둔할 수 있지만, 충분한 박리강도를 얻기 위하여는, 소둔시간이 1hr 이상 필요하게 되어 생산성이 현저하게 저하한다. 한편, 500℃에서의 소둔에서는 3∼20min 정도, 600℃에서는 1∼5min 정도라는 비교적 단시간으로 충분한 박리강도를 얻을 수 있다. 더욱이, 확산소둔에 의해 니켈층의 경도는 오히려 저하하는 경향이 있지만, 그 정도는 소둔온도가 높아질수록, 소둔시간이 길어질수록 크게 된다.In the pressure-contacting sheet bonded by roll pressure welding, the aluminum layer and the nickel layer are diffusion-bonded by diffusion annealing to form a clad material. Depending on the diffusion annealing conditions, the peel strength between the aluminum layer and the nickel layer in the clad material varies in various ways, but the peel strength of the clad material may be about 4.0 N / mm or more practically. In particular, when the cladding is subjected to strict processing, it is preferable to have sufficient peel strength of about 8.0 N / mm or more, more preferably about 10.0 N / mm or more. In order to obtain sufficient peel strength in a relatively short time, it is preferable to carry out diffusion annealing at a temperature of 500 to 600 占 폚. Although diffusion-annealing can also be performed at 400 to 450 ° C, in order to obtain sufficient peel strength, annealing time is required for 1 hour or more, and productivity is remarkably reduced. On the other hand, sufficient peeling strength can be obtained in a relatively short time of about 3 to 20 min at annealing at 500 ° C and about 1 to 5 min at 600 ° C. Furthermore, although the hardness of the nickel layer tends to be lowered by diffusion annealing, the degree becomes larger as the annealing temperature is higher and the annealing time is longer.

상기 압접시트의 접합강도 및 확산소둔후의 같은 시트(클래드 시트)의 박리강도는 이하의 요령에 의해 측정된다. 도 2에 도시하는 바와 같이, 압접시트로부터 채취한 시험편(11)의 단부에서 알루미늄층(13), 니켈층(12)을 일부 박리하고, 박리한 부분을 수직으로 절곡하고, 그 말단을 인장시험기에 의해 인장하고, 박리하는데에 필요한 박리력을 구한다. 그 값을 시험편의 폭으로 나누어 단위폭당 박리력을 접합강도로 하여 구한다. 확산소둔에 의해 알루미늄층과 니켈층이 확산접합된 클래드 시트는, 시험편의 단부에서 각 층을 박리하는 것은 곤란하므로, 확산소둔전에, 압접시트의 단부를 미리 박리하여 두고, 확산소둔후, 미리 박리하여 둔 박리부분을 수직으로 절곡하고, 상기와 마찬가지로 하여 단위폭당 박리력을 구하고, 이를 박리강도로 한다.The bonding strength of the pressure-contacting sheet and the peeling strength of the same sheet (clad sheet) after diffusion annealing are measured by the following methods. As shown in FIG. 2, the aluminum layer 13 and the nickel layer 12 are partially peeled off at the ends of the test piece 11 taken from the pressure-contacting sheet, the peeled portions are bent vertically, and the ends thereof are tensile testers. It pulls out and calculates the peeling force required for peeling. The value is divided by the width of the test piece to determine the peel force per unit width as the bonding strength. In the clad sheet in which the aluminum layer and the nickel layer are diffusion-bonded by diffusion annealing, it is difficult to peel each layer from the end of the test piece. Therefore, before the diffusion annealing, the end portion of the press-contact sheet is peeled off in advance, and after diffusion annealing, the sheet is peeled off in advance. The peeled off portions were bent vertically, and the peeling force per unit width was obtained in the same manner as above, and this was taken as the peeling strength.

이상과 같이 하여 제조된 알루미늄/니켈 클래드재는, 적당한 폭, 예를들면 외부단자의 폭과 동일한 폭의 스트립으로 슬릿된다. 외부단자는, 단자폭으로 슬릿된 스트립을 필요한 외부단자 길이로 전단가공함으로써, 또는 단자폭보다 광폭으로 슬릿된 스트립을 타발가공함으로써 제작된다. 또한, 그와 같이 가공된 평판형상의 가공편에 대하여, 필요에 따라 굽힘가공 등의 성형가공이 실시되어서 소기의 형상으로 가공된다.The aluminum / nickel cladding material produced as described above is slit into strips of the same width, for example, the width of the external terminals. The external terminal is manufactured by shearing a strip slit in terminal width to the required external terminal length or by punching a strip slit wider than the terminal width. Moreover, the shaping | molding process, such as bending process, is given to the plate-shaped workpiece | work processed in this way as needed, and it is processed to a desired shape.

이하, 실시예를 들어, 본 발명을 보다 구체적으로 설명하지만, 본 발명은 이러한 실시예에 의해 한정적으로 해석되지는 않는다.Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by such an Example.

(실시예)(Example)

이하의 요령으로 각종의 클래드재의 시편(試片)을 제작하였다.In the following manner, specimens of various clad materials were produced.

폭 60mm, 두께 50㎛의 순니켈(니켈의 순도 99.9% 이상)의 니켈 시트 및 동일한 폭, 두께 50㎛의 순알루미늄(알루미늄의 순도 99.9% 이상)의 알루미늄 시트를 준비하였다. 상기 니켈 시트를 터널로(爐)에서 가열한 후, 터널로를 나가고 나서약 2초 이내로 상기 알루미늄 시트와 겹쳐 한쌍의 압하롤을 통하여 압접하였다. 각 시료의 니켈 시트의 가열온도, 롤압접시의 압하율을 표 1에 나타낸다.A nickel sheet of pure nickel (pure 99.9% or higher purity of nickel) having a width of 60 mm and a thickness of 50 μm and an aluminum sheet of pure aluminum having a thickness of 50 μm and having a purity of 99.9% or higher of aluminum having the same width and thickness were prepared. After the nickel sheet was heated in the tunnel furnace, the nickel sheet was overlapped with the aluminum sheet within about 2 seconds after exiting the tunnel furnace and pressed through a pair of rolling rolls. Table 1 shows the heating temperature of the nickel sheet of each sample and the rolling reduction rate of the roll pressing plate.

롤압접에 의해 알루미늄층과 니켈층이 압접된 압접 시트로부터 폭 10mm, 길이 100mm의 시험편을 채취하고, 알루미늄층과 니켈층과의 접합강도를, 먼저 설명한 측정요령에 의해 측정하였다. 접합강도는, 이하의 공정을 문제없이 처리하기 위하여는 2N/mm 정도 이상은 필요하다. The test piece of width 10mm and length 100mm was extract | collected from the press contact sheet which the aluminum layer and the nickel layer were crimped | bonded by roll pressure welding, and the bonding strength of an aluminum layer and a nickel layer was measured by the measuring method demonstrated previously. Bonding strength is about 2N / mm or more in order to process the following processes without a problem.                 

다음에, 압접 시트에 동일한 표에 나타내는 소둔조건에 의해 확산소둔을 실시하고, 알루미늄층과 니켈층을 확산접합한 클래드재를 얻었다. 이 클래드재의 박리강도, 니켈층의 경도를 측정하였다. 박리강도는 폭 10mm, 길이 100mm의 시험편을 사용하여 먼저 설명한 측정요령에 의해, 또한 경도는 비커스경도계로써 0.2kgf(1.96N)의 하중을 가하여 측정하였다.Next, diffusion annealing was performed on the pressure-contacting sheet under the annealing conditions shown in the same table to obtain a clad material obtained by diffusion bonding the aluminum layer and the nickel layer. The peeling strength of this clad material and the hardness of the nickel layer were measured. Peel strength was measured using a test piece of 10 mm in width and 100 mm in length, and the hardness was measured by applying a load of 0.2 kgf (1.96 N) with a Vickers hardness tester.

또한, 상기 클래드재로부터 단면관찰시험편을 채취하고, 하기의 요령으로 클래드재의 알루미늄층과 니켈층 사이에 형성된 Al-Ni계 금속간화합물층의 평균 두께를 측정하였다. 상기 단면관찰시험편을 그 판두께 방향에 따른 단면(판두께 단면)을 관찰면으로 하도록 합성수지에 매립하고, 상기 판두께 단면이 노출하도록 매립시험편을 연마하고, SEM(주사형 전자현미경)으로서 4000배로 단면관찰을 하였다. 측정결과를 표 1에 같이 나타낸다. 더욱이, 관찰된 금속간화합물층은, EPMA에 의해 원소분석하였던 바, Al-Ni계 금속간화합물에 의해 형성되어 있음이 확인되었다.In addition, a cross-sectional observation test piece was taken from the clad material and the average thickness of the Al-Ni-based intermetallic compound layer formed between the aluminum layer and the nickel layer of the clad material was measured. The cross-section observation test piece was embedded in a synthetic resin so that the cross section (plate thickness cross section) along the plate thickness direction was used as the observation surface, and the embedded test piece was polished so that the plate thickness cross section was exposed, and was 4000 times as SEM (scanning electron microscope). Sectional observation was performed. The measurement results are shown in Table 1. Furthermore, when the observed intermetallic compound layer was elementally analyzed by EPMA, it was confirmed that the intermetallic compound layer was formed of Al-Ni-based intermetallic compound.

또한, 상기 클래드재를 니켈층이 하측으로 되도록 슬리터(Slitter)에 공급하여 절단하고, 폭 3mm의 스트립을 얻었다. 상기 슬리터는, 상하 한쌍의 회전칼로 이루어지는 절단부를 복수개 갖고 있고, 상기 회전칼은 회전하면서 서로 교차하도록 근접함으로써 클래드재를 절단한다. 이 때문에, 절단된 스트립의 한쪽의 절단면에 있어서는 니켈층의 하단부에 버어(Burr)가 형성되고, 다른쪽의 절단면에 있어서는 알루미늄층의 상단부에 버어가 형성되었다. 상기 니켈층 및 알루미늄층의 단부에 형성된 버어의 높이(㎛)를 표면조도계에 의해 측정하였다. 버어 높이가 10㎛ 초과하면, 초음파용접성에 악영향을 미치게 되므로, 버어 높이에 대하여는 10㎛ 이 하를 합격이라고 한다.Further, the clad material was fed to a slitter so that the nickel layer was lowered, and cut to obtain a strip having a width of 3 mm. The slitter has a plurality of cutting portions made up of a pair of upper and lower rotary knives, and the rotary knives cut the clad material by being close to cross each other while rotating. For this reason, the burr was formed in the lower end part of the nickel layer in one cut surface of the cut | disconnected strip, and the burr was formed in the upper end part of the aluminum layer in the other cut surface. The height (micrometer) of the burr formed in the edge part of the said nickel layer and the aluminum layer was measured with the surface roughness meter. If the burr height exceeds 10 mu m, the ultrasonic weldability is adversely affected. Therefore, the burr height is 10 mu m or less for the pass.

이와같이 하여 얻어진 알루미늄/니켈 클래드의 스트립을 길이 20mm로 전단가공하여 용접시험편을 얻었다. 용접시험편의 알루미늄층측표면을 0.5mm의 순알루미늄판(폭 5mm×길이 30mm)으로 접촉하여, 폭방향의 중앙부를 초음파용접하였다. 용접조건은 이하와 같다.The strip of aluminum / nickel clad thus obtained was sheared to a length of 20 mm to obtain a weld test piece. The aluminum layer side surface of the welding test piece was contacted with the 0.5 mm pure aluminum plate (width 5mm x length 30mm), and the ultrasonic part was welded to the center part of the width direction. Welding conditions are as follows.

초음파용접기 : 초음파공업주식회사제, 형식 USW-2410Z15SUltrasonic Welding Machine: Ultrasonic Industry Co., Ltd., Model USW-2410Z15S

가압력 : 200NPress force: 200N

인가시간 : 0.3초Duration: 0.3 sec

피크파워(Peak Power) : 250WPeak Power: 250W

에너지 : 63JEnergy: 63 J

초음파용접후, 용접부의 접합력을 측정하였다. 측정요령은, 도 3에 도시하는 바와 같이, 용접후의 용접시험편(21)과 순알루미늄판(22)을 용접부(W)의 끝에서 각각 L자형으로 수직하게 절곡하고, 그 단부를 인장하고, 접합부를 박리시키는데 필요한 인장력을 접합력으로 하여 측정하였다. 이와같은 측정을 각 시료에 대해 5점 행하고, 접합력의 최대값과 최소값의 차 ΔF를 구하였다. 접합부는 안정한 용접접합이 얻어지는 것이 중요하고, 상기 ΔF가 0.5kgf(4.9N)을 초과하면 초음파용접의 접합안정성이 문제가 되므로, 초음파용접성에 대하여는 ΔF≤4.9N을 합격이라고 한다.After the ultrasonic welding, the bonding force of the welded portion was measured. As shown in Fig. 3, the welded test piece 21 and the pure aluminum plate 22 after welding are each bent vertically in an L-shape at the end of the welded portion W, the ends thereof are tensioned, and the joints are joined. The tensile force required to peel off was measured as the bonding force. Such measurement was performed 5 points for each sample, and the difference ΔF between the maximum value and the minimum value of the bonding force was obtained. It is important for the joint to obtain a stable weld joint, and if the ΔF exceeds 0.5 kgf (4.9 N), the joint stability of ultrasonic welding becomes a problem. Therefore, ΔF ≦ 4.9 N is regarded as the pass for the ultrasonic weldability.

또한, 상기 스트립으로부터 길이 50mm의 굽힘시험편(S)을 채취하고, 강도(Stiffness) 시험기(P. C. A 사제, 형식 719형)를 사용하여, 스프링백을 관찰 하기 쉽도록 개방각 60°(굴곡부의 굽힘반경 0.38mm)의 V형으로 굽힘가공하고, 가공후의 시험편의 V형부의 개방각도 θ°를 측정하고, 스프링백량 Δθ = θ - 60을 구하였다. 상기 Δθ가 20°를 초과하게 되면, 이웃하는 2변이 이루는 각을 90°로 굴곡한 굽힘가공을 행할 때에 가공정밀도의 열화가 현저하게 되므로, 굽힘가공성에 대하여는 Δθ≤20°를 합격이라고 한다. 이들의 측정결과를 표 1에 함께 나타낸다.In addition, a bending test piece S having a length of 50 mm was taken from the strip, and a stiffness tester (type 719, manufactured by PC A) was used to open the spring at an angle of 60 ° (bending of the bent portion) for easy observation. Bending was carried out in a V shape having a radius of 0.38 mm), the opening angle θ ° of the V shape portion of the test piece after processing was measured, and the springback amount Δθ = θ-60 was determined. When Δθ exceeds 20 °, deterioration of the processing precision is remarkable when bending the angle formed by two adjacent sides at 90 °, so that Δθ ≦ 20 ° is regarded as the passability. These measurement results are shown in Table 1 together.

또한, 상기 굽힘시험편(S)을 사용하여 180°굽힘시험을 하기의 요령으로 행하였다. 도 4에 도시하는 바와 같이, 알루미늄층이 내측으로 되도록 시험편(S)의 길이방향의 중앙부를 중심으로 하여 180°절곡하여 겹친 후, 원래의 상태로 복귀하고, 중앙부에서의 알루미늄층과 니켈층의 국부적인 박리의 발생상태를 눈으로 관찰하였다. 국부박리가 전혀 생기지 않은 것을 AA, 경미한 국부박리가 생긴 것을 A, 명료한 국부박리가 생긴 것을 B로 하여, 관찰결과를 표 1에 함께 나타낸다.Moreover, the 180 degree bending test was done using the said bending test piece S in the following way. As shown in FIG. 4, after bending by 180 degree centering on the center part of the longitudinal direction of the test piece S so that an aluminum layer may become inward, it returns to an original state, and the aluminum layer and nickel layer of the center part The incidence of local exfoliation was visually observed. Table 1 shows the observation results together, with AA showing no local peeling at all, A showing mild local peeling, and B showing clear local peeling.

Figure 112004010976708-pct00001
Figure 112004010976708-pct00001

표 1에 의해, 니켈층의 경도가 Hv 130∼170의 실시예(시료 No. 4∼6, 10∼13, 15∼19, 21, 22)는 초음파용접성, 굽힘가공성이 양호함을 알 수 있다. 한편, 니켈층의 경도가 Hv 170 초과의 시료 No. 1, 7, 8, 23에서는 초음파용접성, 굽 힘가공성의 어느쪽도 문제가 있다. 또한, 압하율이 낮기 때문에, 니켈층의 경도가 Hv 120의 시료 No. 3에서는, 알루미늄층측의 버어 높이가 10㎛를 초과하고, 용접성이 저하되고 있다. 시료 No. 2, 9는 압하율 또는 니켈 시트의 가열온도가 부적절하기 때문에, 압접 시트의 박리강도가 지나치게 작고, 니켈층과 알루미늄층이 취급중에 박리했기 때문에, 확산소둔을 할 수 없었던 것이다. 또한, 시료 No. 14는 니켈 시트의 가열온도가 지나치게 높고, 윤활불량이 생겼기 때문에, 압접을 할 수 없었던 것이다.It can be seen from Table 1 that the hardness of the nickel layer is excellent in the ultrasonic welding property and the bending processability of Examples (Samples No. 4 to 6, 10 to 13, 15 to 19, 21, 22) of Hv 130 to 170. . On the other hand, the hardness of the nickel layer was greater than Sample No. Hv 170. In 1, 7, 8, and 23, there is a problem in both the ultrasonic weldability and the bending workability. In addition, since the reduction ratio was low, the hardness of the nickel layer was set to Sample No. of Hv 120. In 3, the burr height on the aluminum layer side exceeds 10 micrometers, and weldability is falling. Sample No. 2 and 9 are not suitable for the reduction rate or the heating temperature of the nickel sheet. Therefore, the peeling strength of the pressure-contacting sheet is too small, and the nickel layer and the aluminum layer were peeled off during handling. In addition, sample No. Since the heating temperature of the nickel sheet was too high and the lubrication defect occurred, 14 was not able to press-contact.

한편, Al-Ni계 금속간화합물층의 평균 두께가 1.0∼6.0㎛인 실시예(시료 No. 4∼6, 10∼13, 15, 18, 21)에서는, 확산소둔후의 박리강도가 8N/mm 이상으로 우수한 확산접합성이 얻어지고 있다. 평균 두께가 0.4㎛의 시료 No. 17 이나 9.8㎛의 시료 No. 19는, 박리강도가 5N/mm 정도로 약간 낮은 값이었지만, 180°굽힘시험에 있어서 국부박리는 경미하고, 실용상 문제가 없는 성형가공성을 갖고 있다. 이에 대하여, 상기 금속간화합물층이 생기지 않은 시료 No. 16 이나 과대한 두께의 시료 No. 22에서는, 초음파용접성, 굽힘가공성은 양호하지만, 박리강도가 저하하여 국부박리의 정도가 크다. 이 때문에, 이들의 시료의 클래드재는, 엄격한 성형가공이 실시되는 용도에는 매우 적합하지 않다. 시료 No. 20은 550℃의 소둔온도에 대하여 소둔시간이 길기 때문에, 금속간화합물의 생성이 과다하게 되고, 박리강도의 측정이 불가능하였다. 시료 No. 23은, 종래의 클래드재에 대응하는 것이고, 압접시의 압하율이 높기 때문에, 확산소둔온도가 350℃에서도 양호한 박리강도가 얻어졌지만, 니켈층의 경도가 높기 때문에, 초음파용접성, 굽힘가공성의 열화가 현저하다.On the other hand, in Examples (Samples No. 4 to 6, 10 to 13, 15, 18, 21) in which the average thickness of the Al-Ni-based intermetallic compound layer was 1.0 to 6.0 µm, the peel strength after diffusion annealing was 8 N / mm or more. Excellent diffusion bonding property is obtained. Sample No. with an average thickness of 0.4 µm. Sample No. of 17 or 9.8 μm 19 had a value slightly lower than the peel strength of about 5 N / mm, but in the 180 ° bending test, the local peeling was mild and had a moldability without any problem in practical use. In contrast, Sample No. wherein the intermetallic compound layer did not occur. 16 or excessively thick sample No. In 22, ultrasonic weldability and bending workability are good, but peeling strength is lowered, and the degree of local peeling is large. For this reason, the cladding material of these samples is not very suitable for the use by which strict molding process is performed. Sample No. Since the annealing time was long with respect to the annealing temperature of 550 degreeC, 20 produced | generated the intermetallic compound excessively, and peeling strength was not able to be measured. Sample No. 23 corresponds to the conventional cladding material, and since the reduction ratio during the welding process is high, a good peeling strength is obtained even at the diffusion annealing temperature of 350 ° C., but the hardness of the nickel layer is high, so that the ultrasonic weldability and the bending workability deteriorate. Is remarkable.

Claims (17)

알루미늄의 순도가 98mass% 이상의 순알루미늄으로 형성된 알루미늄층과, 니켈의 순도가 98mass% 이상의 순니켈로 형성된 니켈층이 확산접합된 시트상의 알루미늄/니켈 클래드재(Clad Material)로서,As a sheet-like aluminum / nickel clad material in which an aluminum layer formed of pure aluminum with an aluminum purity of 98 mass% or more and a nickel layer formed of pure nickel with a purity of 98 mass% or more are diffusion-bonded, 상기 니켈층의 경도가 Hv 130∼170이고, 상기 알루미늄층과 니켈층이 Al-Ni계 금속간화합물층을 통하여 확산접합되어 있으며, 상기 Al-Ni계 금속간화합물층은 평균두께가 1.0 ~ 6.0 ㎛ 인 것을 특징으로 하는 알루미늄/니켈 클래드재.The nickel layer has a hardness of Hv 130 to 170, the aluminum layer and the nickel layer are diffusely bonded through the Al-Ni intermetallic compound layer, and the Al-Ni intermetallic compound layer has an average thickness of 1.0 to 6.0 μm. Aluminum / nickel clad material, characterized in that. 삭제delete 삭제delete 제1항에 있어서,The method of claim 1, 상기 알루미늄층은, 그 두께가 25∼100㎛인 것을 특징으로 하는 알루미늄/니켈 클래드재.The aluminum layer has a thickness of 25 to 100 µm, the aluminum / nickel clad material. 삭제delete 삭제delete 제4항에 있어서,The method of claim 4, wherein 상기 니켈층은, 그 두께가 50∼200㎛인 것을 특징으로 하는 알루미늄/니켈 클래드재.The said nickel layer is 50-200 micrometers in thickness, The aluminum / nickel clad material characterized by the above-mentioned. 삭제delete 삭제delete 제1항에 기재한 알루미늄/니켈 클래드재에 의해 형성된 전지(電池)용 외부단자.An external terminal for a battery formed of the aluminum / nickel cladding material according to claim 1. 삭제delete 삭제delete 제7항에 기재한 알루미늄/니켈 클래드재에 의해 형성된 전지용 외부단자.An external terminal for batteries formed by the aluminum / nickel cladding material according to claim 7. 삭제delete 삭제delete 제1항에 기재한 알루미늄/니켈 클래드재의 제조방법으로서,As a method for producing the aluminum / nickel clad material according to claim 1, 니켈의 순도가 98mass% 이상의 순니켈로 형성된 니켈 시트(Sheet)를 100∼300℃로 가열하는 가열공정과,A heating step of heating a nickel sheet formed of pure nickel with a purity of nickel of 98 mass% or more at 100 to 300 ° C., 가열한 니켈 시트와 알루미늄의 순도가 98mass% 이상의 순알루미늄으로 형성된 알루미늄 시트를 겹쳐 압하율(壓下率) 10∼17%로 압접(壓接)하여 압접 시트를 얻는 압접공정과,A press welding step of overlapping the heated nickel sheet with an aluminum sheet formed of pure aluminum having a purity of 98 mass% or more, and pressing the sheet at a reduction ratio of 10 to 17% to obtain a pressing sheet; 상기 압접 시트를 확산소둔(擴散燒鈍)하는 확산소둔공정을 갖고,It has a diffusion annealing process of diffusion annealing the pressure-contacting sheet, 상기 확산소둔은 500 ~ 600℃의 온도범위에서 3 ~ 5 min유지하는 것을 특징으로 하는 알루미늄/니켈 클래드재의 제조방법.The diffusion annealing method of manufacturing an aluminum / nickel clad material, characterized in that for 3 to 5 minutes to maintain in the temperature range of 500 ~ 600 ℃. 삭제delete
KR1020047003904A 2002-08-29 2003-08-28 Aluminum/Nickel Clad Material, and Method for Manufacture Thereof and Exterior Terminal for Electric Cell KR101012530B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002250155 2002-08-29
JPJP-P-2002-00250155 2002-08-29

Publications (2)

Publication Number Publication Date
KR20050058991A KR20050058991A (en) 2005-06-17
KR101012530B1 true KR101012530B1 (en) 2011-02-07

Family

ID=31972612

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047003904A KR101012530B1 (en) 2002-08-29 2003-08-28 Aluminum/Nickel Clad Material, and Method for Manufacture Thereof and Exterior Terminal for Electric Cell

Country Status (4)

Country Link
KR (1) KR101012530B1 (en)
CN (1) CN100398312C (en)
AU (1) AU2003257586A1 (en)
WO (1) WO2004020191A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396481C (en) * 2004-08-12 2008-06-25 肇庆市风华锂电池有限公司 Aluminium-nickel metal welding bond and process for preparing the same
EP2662179B1 (en) * 2009-10-26 2014-07-30 Neomax Materials Co., Ltd. Aluminum bonding alloy made of an Nickel-Magnesium alloy
KR101527112B1 (en) * 2010-05-28 2015-06-08 한국과학기술원 Method for diffusion bonding of nickel-based alloys
CN102601153B (en) * 2012-03-14 2014-09-10 河海大学 Method for preparing layered nickel/aluminum composite material
JP6705322B2 (en) * 2016-07-21 2020-06-03 住友電気工業株式会社 Lead wire for electric parts and electric parts
CN108838505A (en) * 2018-07-25 2018-11-20 昆山恩能聚新能源科技有限公司 A kind of macromolecule aluminum diffusing nickel welding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162088A (en) * 1994-11-30 1996-06-21 Sanyo Electric Co Ltd Cylindrical nonaqueous electrolytic battery
JPH11195434A (en) * 1997-10-07 1999-07-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001076706A (en) * 1999-09-08 2001-03-23 Hitachi Maxell Ltd Polymer electrolyte battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69610320T2 (en) * 1995-07-06 2001-05-31 Showa Entetsu Co Ltd PLATED MATERIAL
JP3523530B2 (en) * 1999-06-17 2004-04-26 Necトーキン栃木株式会社 Non-aqueous electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162088A (en) * 1994-11-30 1996-06-21 Sanyo Electric Co Ltd Cylindrical nonaqueous electrolytic battery
JPH11195434A (en) * 1997-10-07 1999-07-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001076706A (en) * 1999-09-08 2001-03-23 Hitachi Maxell Ltd Polymer electrolyte battery

Also Published As

Publication number Publication date
CN1556751A (en) 2004-12-22
KR20050058991A (en) 2005-06-17
CN100398312C (en) 2008-07-02
AU2003257586A1 (en) 2004-03-19
WO2004020191A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
Wu et al. Microstructure, welding mechanism, and failure of Al/Cu ultrasonic welds
Shin et al. Mechanical performance and electrical resistance of ultrasonic welded multiple Cu-Al layers
JP4627400B2 (en) Aluminum / nickel clad and battery external terminals
KR20120057566A (en) Clad plate
JP2007222908A (en) Weld joint of steel material and aluminum material, and spot welding method for the same
JPWO2007032439A1 (en) Material for three-layer stainless steel clad steel plate, thick plate and method for producing steel plate for polymer electrolyte fuel cell separator, and polymer electrolyte fuel cell separator
JP2013514188A (en) Conductive composite component and method of manufacturing the same
JP2013173155A (en) Spot welding method of steel plate having different plate thickness
KR101012530B1 (en) Aluminum/Nickel Clad Material, and Method for Manufacture Thereof and Exterior Terminal for Electric Cell
CA2272115C (en) Bonding of metal workpieces
Pati et al. Ultrasonic spot welding of Al-Cu sheets: a comprehensive study
Go et al. Influence of process parameters on formation of Al/Cu dissimilar weld using ultrasonic welding
CN110690403B (en) Lead member for battery and method for manufacturing lead member for battery
Lee Process and Quality Characterization for Ultrasonic Welding of Lithium-Ion Batteries.
JP2013035063A (en) Resistance spot welding method
CN115379916B (en) Method for manufacturing resistance welded member
JP6672116B2 (en) Structural member in which metal parts are welded to steel plate and method for manufacturing the same
JP2006051523A (en) Clad material for electrically conductive component, and manufacturing method therefor
JP5906618B2 (en) Resistance spot welding method
Lee et al. Characterization of joint quality in ultrasonic welding of battery tabs
CN115379915B (en) Method for manufacturing resistance welded member
JP2005194571A (en) Ni-Co ALLOY, CLAD MATERIAL, AND PRODUCTION METHOD THEREFOR
JP7502620B2 (en) Manufacturing method of processed materials
Das et al. Mechanical behavior of ultrasonic spot welded aluminum to cupro-nickel sheets for battery tabs
JP2022037790A (en) Manufacturing method for motor core

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140107

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180104

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 10