WO1999008103A1 - Sonde de controle par courants de foucault - Google Patents

Sonde de controle par courants de foucault Download PDF

Info

Publication number
WO1999008103A1
WO1999008103A1 PCT/FR1998/001754 FR9801754W WO9908103A1 WO 1999008103 A1 WO1999008103 A1 WO 1999008103A1 FR 9801754 W FR9801754 W FR 9801754W WO 9908103 A1 WO9908103 A1 WO 9908103A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
probe according
coil
transmitting coil
elements
Prior art date
Application number
PCT/FR1998/001754
Other languages
English (en)
Inventor
Annie Le Blanc
Michel Pigeon
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO1999008103A1 publication Critical patent/WO1999008103A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Definitions

  • the invention relates to an eddy current control probe.
  • the control technique by
  • Foucault is widely used in non-destructive testing of materials.
  • the probes used include at least one excitation coil supplied with current, the axis of which is generally perpendicular to the surface of a part to be checked, and at least one receiving element placed next to this emitting coil and which supplies a signal by the 'through the eddy currents induced in the material to be checked.
  • These currents and the receiver signal are influenced by faults close to the surface of the part to be checked, which makes it possible to detect the existence of these faults.
  • a privileged field of this technique is the detection of cracks in the components of nuclear installations such as the tubes of the steam generators, into which the probes can be introduced and to carry out a rapid and continuous control of the entire thickness of the part to be checked, so that they are the only effective devices.
  • These are probes called “anisotropic” which will be the only ones considered here; there are also "axisymmetric" probes where the transmitter and receiver windings are stacked on a common axis; they are not part of the invention and serve to detect other kinds of faults.
  • the probes intended for tubes thus frequently include a ring of transmitting coils directed over a whole circumference of the tube and which is adjacent to a ring of receiving elements, so that the inspection relates to the entire internal surface of the tube when the probe is moved in the axis thereof; it also happens frequently that there is also a circle of receiving elements around a transmitting coil, since the most easily detected faults are cracks in direction substantially parallel to the direction of alignment of a transmitting coil and a receiver: one can then easily detect cracks extending in various directions.
  • the receiving elements can be of various natures and in particular consist of coils whose axis is substantially perpendicular to the surface inspected, just like the emitting coils.
  • the electric excitation currents can take different natures: in recent years, impulse excitations have become in favor at the expense of sinusoidal excitations because they make it possible to supply current components of various frequencies which penetrate more or less deeply into the material to be inspected. and therefore give indications of faults at different depths.
  • a problem generally encountered with impulse excitations is the direct influence of the emitting coils on the receiving elements, by the creation of a magnetic field due to the more intense large of the currents encountered and which disturbs the measurements.
  • the inventors of the present invention have discovered that the probes intended for eddy current control provide generally better results by shielding the receiving elements rather than the transmitting coil.
  • the realization of this idea for windings placed side by side with anisotropic probes (juxtaposed on the surface of the examination piece) constitutes the most general definition of the invention.
  • this arrangement does not hinder the development of eddy currents in the material to be inspected.
  • the characteristics of the invention are particularly advantageous when using pulse excitations.
  • a particularly advantageous arrangement consists in interrupting the shielding, in the case where it is electrically conductive opposite the emitting coil, which has the effect of preventing the appearance of circular induced currents which would exert a residual influence on the receiver .
  • Figure 5 illustrates the operating system of the probe
  • Figures 6, 7, 8 and 9 illustrate a concrete embodiment of the probe
  • the receiving elements are also coils with or without a ferrite core, although others, such as magnetoresistors or Hall effect sensors, can be envisaged.
  • the known probe of FIG. 1 is placed on the surface of a part 1 to be inspected. It is not entirely represented, but on the contrary only its essential elements have been shown, namely a transmitting coil 2 and four receiving coils 3.
  • the coils all have parallel axes and are located next to each other, distant from the axes of the other coils, as in the following embodiments, which characterizes an anisotropic probe.
  • a shield 4 in the form of a conductive ring surrounds the coil transmitter 2 at a short distance from it and isolates it from the receiver coils 3 as indicated.
  • the signals induced in the receiving coils 3 are produced only by the eddy currents appearing in part 1, to the exclusion of any direct influence of the magnetic field produced by the transmitting coil 2.
  • the receiving coils 3 are at the same distance from the transmitting coil 2 and distributed in two pairs.
  • the receiving coils 3 of each of the pairs are connected to the measuring circuit, not shown, of the probe so that their measurements are subtracted, which refines the sensitivity to certain defects of the part 1.
  • the pairs are arranged perpendicularly from the emitting coil 2 and thus detect each of the different faults and in particular cracks of different directions. Many other arrangements of the winding and in particular of the receiving coils 3 can be chosen according to the defects whose detection is preferred.
  • FIG. 2 this time there are four pairs of receiver coils 3 around the transmitter coil 2, the receiver coils 3 additional to those of FIG. 1 being located symmetrically to the previous ones with respect to the emitting coil 2 which is therefore entirely surrounded by the eight receiving coils 3.
  • this figure describes an embodiment of the invention: it is noted that the shield 4 surrounding the emitting coil 2 in the previous embodiment has disappeared and is replaced by a new one shielding of rectangular shape 5 for each of the pairs of receiving coils 3. Shielding 5 surrounds completely each of the receiving coils 3 of the pair considered and separates them from one another as well as from the other coils 2 and 3.
  • FIG. 3 A slightly different embodiment is illustrated in FIG. 3, where eight receiving coils 3 are regularly arranged in a circle around the emitting coil 2; the shielding is itself modified and takes the appearance of rings 6 individually surrounding each of the receiving coils 3.
  • FIG. 4 illustrates a configuration where the shielded rings 6 are replaced by shielded rings 7 which differ from them in that that they have an interruption or an opening 8 in order to limit the currents likely to be induced therein.
  • the openings 8 are placed opposite the emitting coil 2 and thus hardly reduce the insulation offered by the rings 7.
  • a generator 9 delivers emission signals drawn from a probe 10 whose essential elements have been described previously and which will be at its tower fully illustrated in the following figures.
  • the characteristics of the emission signal are such that it advantageously contains sufficiently numerous components at low frequency which, as is known, penetrate better into the material of the part 1 in depth.
  • the signals induced in the coils Receivers 3 are detected electronically and formatted in a signal reception and formatting device 11, the output signals of which are delivered to a signal analysis device 12 which is associated with it. Analysis can be performed manually or automatically.
  • FIG. 1 shows the block diagram for controlling the interior of metal tubes 14.
  • the probe 10 is arranged at the end of a train of probes
  • connection sheath 16 which may essentially comprise a flexible connection sheath 16, connected to the scanning device 13 and a probe head 17 attached to the connection sheath
  • the probe 10 includes a movable frame 20 which holds these coils in place and slides. in the cell 18, which is hollowed out in a probe body 21.
  • the movement of the armature 20 is ensured by a deformable piece 22 placed at the bottom of the cell 18 and compressed between the bottom of the armature 20 and the probe body 21 and which acts as a spring tending to push the probe 10 out of the cell 18 and to move in particular the coils 2 and 3 towards the surface of the tube 14.
  • the projection of the probe 10 outside the cell 18 is however limited by the action of a needle 23 having a conical end 24 against which a conical face 25 of a lateral recess of the frame 20 abuts.
  • the needle 23 being disposed in a threaded bore 26 of the probe head 17 and oriented in the axis of the probe train 15, it suffices to screw it to modify its insertion into the lateral recess of the armature 20 and the insertion of the latter in the cell 18.
  • the use of these parts is justified by the need to place the probe 10 as close as possible to the surface of the tube 14 in order to minimize the air gap with the emitting and receiving coils 2 and 3.
  • the structural elements of the probe 10, and in particular the probe body 21 and the armature 20, are made of non-magnetic material so as not to disturb the induction in room 1 and measurements. Nickel and copper alloys can be offered.
  • the probe can be produced by the techniques of construction of printed circuits: it can then comprise a superposition of flexible layers of substrate, some of which are active layers comprising, as shown in Figure 10, transmitting spirals 102 and receiving spirals 103, one and a pair respectively as in the embodiment of Figures 6 to 9.
  • the receiving spirals 103 have opposite directions to make a differential measurement. They are surrounded by a shield 105 arranged in the form of a conductive rectangle hollowed out at the location of the receiving spirals 103. It does not separate the receiving spirals 103 from one another, unlike the shield 5 of similar shape, because the influence of this separation is not very important.
  • the spirals 102 and 103 and the shields 105 of the various superposed layers are interconnected by interconnection pads 106 and interconnection tracks 107 arranged in layers 108 intermediate to the active layers 109.
  • the spirals then form transmitting and receiving coils similar to those of the preceding figures.
  • the stack of layers 108 and 109 is housed in a probe body 110 and forms a flexible frame for the printed circuit; its position is adjusted by several screws 111 or equivalent means which allow it to be deformed at will to adapt it to the shape of the surface to be inspected. This is one of the main advantages of this construction. Another relates to the ease of choosing the number of spirals and the impedance of the coils.

Abstract

La sonde comprend au moins une bobine émettrice (2) d'un champ magnétique et un élément récepteur (3) sensible à des courants de Foucault induits par le champ dans l'épaisseur d'une pièce métallique (1) adjacente. Des blindages conducteurs (6) sont disposés autour des éléments récepteurs (3) pour les soustraire à l'induction directe par la bobine (2). Le reste de la sonde est en matériau amagnétique tel qu'en alliage de nickel et de cuivre. Cette disposition des blindages permet de ne pas affaiblir l'énergie électromagnétique produite par la bobine (2) sur la pièce (1). De telles sondes à courant de Foucault s'appliquent à la détection des défauts et aux contrôles non destructifs de surfaces.

Description

SONDE DE CONTROLE PAR COURANTS DE FOUCAULT
DESCRIPTION
L' invention concerne une sonde de contrôle par courants de Foucault. La technique de contrôle par courants de
Foucault est largement utilisée dans les contrôles non destructifs des matériaux. Les sondes utilisées comprennent au moins une bobine excitatrice alimentée en courant, dont l'axe est généralement perpendiculaire à la surface d'une pièce à contrôler, et au moins un élément récepteur disposé à côté de cette bobine émettrice et qui fournit un signal par l'intermédiaire des courants de Foucault induits dans le matériau à contrôler. Ces courants et le signal du récepteur sont influencés par les défauts proches de la surface de la pièce à contrôler, ce qui permet de détecter l'existence de ces défauts. Un domaine privilégié de cette technique est la détection de fissures dans les composants des installations nucléaires tels que les tubes des générateurs de vapeur, dans lesquels les sondes peuvent être introduites et procéder à un contrôle rapide et continu de la totalité de l'épaisseur de la pièce à contrôler, de sorte qu'elles constituent les seuls appareils efficaces. Il s'agit de sondes appelées « anisotropes » qui seront seules considérées ici ; on rencontre aussi des sondes « axisymétriques » où les bobinages émetteur et récepteur sont empilés sur un axe commun ; elles ne font pas partie de l'invention et servent à détecter d'autres genres de défauts. Il est possible de multiplier les bobines émettrices et les éléments récepteurs afin d'accroître la zone d'inspection et la nature des défauts détectés : les sondes destinées à des tubes comprennent ainsi fréquemment une couronne de bobines émettrices dirigées sur l'ensemble d'une circonférence du tube et qui est adjacente à une couronne d'éléments récepteurs, si bien que l'inspection porte sur toute la surface interne du tube quand la sonde est déplacée dans l'axe de celui-ci ; il arrive aussi fréquemment qu'on dispose aussi un cercle d'éléments récepteurs autour d'une bobine émettrice, car les défauts les plus facilement détectés sont les fissures de direction sensiblement parallèle à la direction d'alignement d'une bobine émettrice et d'un récepteur : on peut alors facilement détecter des fissures s' étendant dans des directions diverses. Les éléments récepteurs peuvent être de natures variées et notamment consister en des bobines dont l'axe est sensiblement perpendiculaire à la surface inspectée, tout comme les bobines émettrices. Les courants électriques d' excitation peuvent prendre différentes natures : ces dernières années, les excitations impulsionnelles sont devenues en faveur au détriment des excitations sinusoïdales car elles permettent de fournir des composants de courant de fréquences variées qui pénètrent plus ou moins profondément dans la matière à inspecter et donnent donc des indications sur des défauts à différentes profondeurs . Un problème généralement rencontré avec les excitations impulsionnelles est l'influence directe des bobines émettrices sur les éléments récepteurs, par la création d'un champ magnétique dû à l'intensité plus grande des courants rencontrés et qui perturbe les mesures. On a proposé, pour s'affranchir de cette influence indésirée, de contenir le champ magnétique engendré par la bobine émettrice par un blindage au champ magnétique, généralement conducteur de l'électricité disposé autour de la bobine et qui l'isole donc des éléments récepteurs environnants. Ce blindage en anneau est cependant le siège d'un courant induit quand la bobine émettrice est active, ce qui crée une sorte de boucle de court-circuit dont l'effet est de réduire gravement les courants de Foucault développés dans la matière à inspecter. L'atténuation du bruit produit par l'influence directe de la bobine émettrice sur le récepteur n'a donc pas forcément l'effet d'améliorer grandement la qualité d'un signal par là même affaibli.
Les inventeurs de la présente invention ont mis au jour que les sondes destinées au contrôle par courants de Foucault fournissent des résultats généralement meilleurs en blindant les éléments récepteurs plutôt que le bobinage émetteur. La réalisation de cette idée pour des bobinages placés côté à côté de sondes anisotropes (juxtaposés sur la surface de la pièce d'examen), constitue la définition la plus générale de l'invention. Pour une absorption du champ magnétique produit par la bobine tout aussi bonne qu'avec les conceptions connues, cette disposition ne contrarie pas le développement des courants de Foucault dans la matière à inspecter. Les caractéristiques de l'invention sont particulièrement avantageuses lors de l'utilisation d'excitations impulsionnelles. Une disposition particulièrement avantageuse consiste à interrompre le blindage, dans le cas où il est électriquement conducteur à l'opposé de la bobine émettrice, ce qui a pour effet d' interdire l'apparition de courants induits circulaires qui exerceraient une influence résiduelle sur le récepteur.
On va maintenant décrire l'invention plus en détail à l'aide des figures suivantes :
• la figure 1 illustre par souci de récapitulation une conception conforme à l'art antérieur ;
• les figures 2, 3 et 4 illustrent quelques réalisations de l'invention ;
• la figure 5 illustre le système d'exploitation de la sonde ; • les figures 6, 7, 8 et 9 illustrent une réalisation concrète de la sonde ;
• et les figures 10 et 11 illustrent une autre réalisation de la sonde.
Dans la suite de la description, on supposera que les éléments récepteurs sont aussi des bobinages avec ou sans noyau de ferrite, bien que d'autres, tels que des magnétorésistances ou des capteurs à effet Hall, puissent être envisagés. La sonde connue de la figure 1 est placée sur la surface d'une pièce 1 à inspecter. Elle n'est pas représentée entièrement, mais on n'a figuré au contraire que ses éléments essentiels, à savoir une bobine émettrice 2 et quatre bobines réceptrices 3. Les bobines ont toutes des axes parallèles et sont situées les unes à côté des autres, distantes des axes des autres bobines, comme dans les réalisations suivantes, ce qui caractérise une sonde anisotrope. De plus, un blindage 4 se présentant sous forme d'un anneau conducteur entoure la bobine émettrice 2 à peu de distance d'elle et l'isole des bobines réceptrices 3 comme on l'a signalé.
Les signaux induits dans les bobines réceptrices 3 sont uniquement produits par les courants de Foucault apparaissant dans la pièce 1, à l'exclusion de toute influence directe du champ magnétique produit par la bobine émettrice 2.
Les bobines réceptrices 3 sont à la même distance de la bobine émettrice 2 et réparties en deux paires. Les bobines réceptrices 3 de chacune des paires sont branchées sur le circuit de mesure, non représenté, de la sonde pour que leurs mesures se soustraient, ce qui affine la sensibilité à certains défauts de la pièce 1. Les paires sont disposées perpendiculairement à partir de la bobine émettrice 2 et détectent ainsi chacune des défauts différents et notamment des fissures de directions différentes. Bien d' autres dispositions du bobinage et notamment des bobines réceptrices 3 peuvent être choisies selon les défauts dont on privilégie la détection.
L'une d'elle est illustrée à la figure 2 : on trouve cette fois quatre paires de bobines réceptrices 3 autour de la bobine émettrice 2, les bobines réceptrices 3 supplémentaires à celles de la figure 1 étant situées symétriquement aux précédents par rapport à la bobine émettrice 2 qui est donc entièrement entourée par les huit bobines réceptrices 3. Cependant, cette figure décrit une réalisation de l'invention : on remarque que le blindage 4 entourant la bobine émettrice 2 dans la réalisation précédente a disparu et est remplacé par un nouveau blindage de forme rectangulaire 5 pour chacune des paires de bobines réceptrices 3. Le blindage 5 entoure complètement chacune des bobines réceptrices 3 de la paire considérée et les sépare l'une de l'autre ainsi que des autres bobines 2 et 3.
Une réalisation un peu différente est illustrée à la figure 3, où huit bobines réceptrices 3 sont disposées régulièrement en cercle autour de la bobine émettrice 2 ; le blindage est lui-même modifié et prend l'aspect d'anneaux 6 entourant individuellement chacune des bobines réceptrices 3. La figure 4 illustre une configuration où les anneaux 6 blindés sont remplacés par des anneaux blindés 7 qui se distinguent d'eux en ce qu'ils présentent une interruption ou une ouverture 8 afin de limiter les courants susceptibles d'y être induits. Les ouvertures 8 sont placées à l'opposé de la bobine émettrice 2 et ne réduisent ainsi presque pas l'isolation offerte par les anneaux 7.
Les principes précédents présidant à la construction des blindages pourront sans difficultés être appliqués à d'autres configurations des bobines émettrices et réceptrices qu'on peut envisager et dont de nombreuses sont d'ailleurs exposées dans l'art antérieur. On passe maintenant à la description du schéma de principe de l'appareil de contrôle, illustré à la figure 5. Un générateur 9 délivre des signaux d'émission puisés à une sonde 10 dont les éléments essentiels ont été décrits précédemment et qui sera à son tour illustrée complètement aux figures suivantes. Les caractéristiques du signal d'émission sont telles que celui-ci contient avantageusement des composantes suffisamment nombreuses à basse fréquence qui, on le sait, pénètrent mieux dans le matériau de la pièce 1 en profondeur. Les signaux induits dans les bobines réceptrices 3 sont détectés électroniquement et mis en forme dans un dispositif de réception et de mise en forme du signal 11, dont les signaux de sortie sont délivrés à un dispositif d'analyse du signal 12 qui lui est associé. L'analyse peut être effectuée manuellement ou automatiquement. Dans ce dernier cas, elle est avantageusement facilitée par des logiciels d'application dédiés et incorporés au dispositif d'analyse du signal 12, qui comprendra alors un ordinateur. On trouve enfin un dispositif de déplacement mécanique 13 connu du métier qui permettra de balayer partiellement ou totalement la surface de la pièce 1. Quand plusieurs mesures sont entreprises à la fois sur autant de bobines réceptrices 3 ou de paires de bobines réceptrices 3 montées en différentiel, le dispositif de réception et de mise en forme du signal 11 peut être enrichi d'un multiplexeur qui recueille tour à tour les informations fournies par les différentes voies de mesure. La figure 6 montre le schéma de principe pour contrôler l'intérieur de tubes métalliques 14. La sonde 10 est disposée à l'extrémité d'un train de sonde
15 pouvant comprendre essentiellement une gaine de liaison 16 souple, reliée au dispositif de balayage 13 et une tête de sonde 17 accrochée à la gaine de liaison
16 et qui comprend un alvéole 18 pour la sonde 10 et deux centreurs 19 s' appuyant sur le tube 14, par exemple par des billes repoussées par des ressorts. Les figures 7 , 8 et 9 représentent la disposition de la sonde 10 dans son alvéole 18 en vues longitudinale, transversale et de face. Outre les bobines émettrice 2 et réceptrices 3, la sonde 10 comprend une armature 20 mobile qui maintient ces bobines en place et coulisse dans l'alvéole 18, qui est creusé dans un corps de sonde 21. Le déplacement de l'armature 20 est assuré par une pièce deformable 22 disposée au fond de l'alvéole 18 et comprimée entre le fond de l'armature 20 et le corps de sonde 21 et qui joue le rôle d'un ressort tendant à repousser la sonde 10 vers l'extérieur de l'alvéole 18 et à déplacer en particulier les bobines 2 et 3 vers la surface du tube 14. La saillie de la sonde 10 hors de l'alvéole 18 est cependant limitée par l'action d'un pointeau 23 ayant un bout conique 24 contre lequel une face conique 25 d'un creux latéral de l'armature 20 bute. Le pointeau 23 étant disposé dans un alésage fileté 26 de la tête de sonde 17 et orienté dans l'axe du train de sonde 15, il suffit de le visser pour modifier son enfoncement dans le creux latéral de l'armature 20 et l'enfoncement de celle-ci dans l'alvéole 18. L'emploi de ces pièces est justifié par la nécessité de placer la sonde 10 le plus près possible de la surface du tube 14 afin de minimiser l'entrefer avec les bobines émettrice et réceptrices 2 et 3. On trouve ici une bobine émettrice 2 unique et une paire de bobines réceptrices 3 situées côte à côte et entourées par un blindage commun, pratiquement semblable à celui de la figure 2 et portant donc la référence 5. Cependant, on remarque que les bobines réceptrices 3 ont des axes inclinés par rapport à celui de la bobine émettrice 2 dans des directions opposées, afin qu'elles soient dirigées normalement à la portion de surface du tube 14 sur laquelle elles sont dirigées. Cette situation est donc due à la forme incurvée de la surface du tube 14 et ne serait pas justifiée pour l'examen d'une pièce plane. On observe enfin un pion 27 fixé à l'armature 20 et coulissant dans une rainure 28 du corps de sonde 21 pour régler le mouvement de la sonde 10, et des fils électriques 29 qui relient les bobines 2 et 3 au générateur 9 d'impulsions et au dispositif de réception et de mise en forme du signal 11. Il est avantageux que les éléments structurels de la sonde 10, et en particulier le corps de sonde 21 et l'armature 20, soient en matière amagnétique pour ne pas perturber l'induction dans la pièce 1 et les mesures. Des alliages de nickel et de cuivre peuvent être proposés.
Une dernière réalisation de l'invention est décrite à l'aide de la figure 10 et de sa coupe 11. La sonde peut être réalisée par les techniques de construction des circuits imprimés : elle peut alors comprendre une superposition de couches souples de substrat dont certaines sont des couches actives comprenant, comme on le représente à la figure 10, des spirales émettrices 102 et des spirales réceptrices 103, au nombre d'une et d'une paire respectivement comme dans la réalisation des figures 6 à 9. Les spirales réceptrices 103 ont des directions opposées pour réaliser une mesure différentielle. Elles sont entourées d'un blindage 105 disposé sous forme d'un rectangle conducteur évidé à l'emplacement des spirales réceptrices 103. Il ne sépare pas les spirales réceptrices 103 l'une de l'autre, contrairement au blindage 5 de forme analogue, car l'influence de cette séparation est peu importante. Les spirales 102 et 103 et les blindages 105 des différentes couches superposées sont reliés entre eux par des plots d'interconnexion 106 et des pistes d'interconnexions 107 disposés dans des couches 108 intermédiaires aux couches actives 109. Les spirales forment alors des bobines émettrices et réceptrices analogues à celles des figures précédentes. L'empilement des couches 108 et 109 est logé dans un alvéole de corps de sonde 110 et forme une armature souple pour le circuit imprimé ; sa position est réglée par plusieurs vis 111 ou des moyens équivalents qui permettent de le déformer à volonté pour l'adapter à la forme de la surface à inspecter. C'est un des avantages principaux de cette construction. Un autre a trait à la facilité de choisir le nombre de spirales et l'impédance des bobines.

Claims

REVENDICATIONS
1. Sonde (10, 110) comprenant une bobine émettrice (2, 102) et un ou plusieurs éléments récepteurs (3, 103) sensibles à des courants de Foucault parcourant une pièce (1, 14) sondée, adjacente à la sonde, quand la bobine émettrice est parcourue par un courant inducteur, le ou les éléments récepteurs étant distants d'un axe de la bobine émettrice, caractérisée en ce qu'elle comprend au moins un blindage (5, 105, 6, 7, 8) éventuellement conducteur de l'électricité, entourant le ou les éléments récepteurs, le blindage étant continu au moins devant la bobine émettrice, et en ce que la bobine émettrice est dépourvue de blindage l'entourant.
2. Sonde selon la revendication 1, caractérisée en ce que le ou les éléments récepteurs sont constitués de bobinages similaires à la bobine émettrice, de magnétorésistances ou de capteurs à effet Hall.
3. Sonde selon la revendication 1, caractérisée en ce que le blindage (8) est discontinu, interrompu à l'opposé de la bobine émettrice.
4. Sonde selon la revendication 1, caractérisée en ce que la bobine émettrice, le blindage et les éléments récepteurs sont construits sous forme d'au moins une couche de circuit imprimé (109).
5. Sonde selon la revendication 1, caractérisée en ce qu'elle comprend au moins une paire d' éléments récepteurs montés en opposition pour donner une mesure différentielle.
6. Sonde selon la revendication 1, caractérisée en ce- qu'elle comprend un dispositif de multiplexage (11) pour recueillir successivement les courants induits dans les éléments récepteurs par les courants de Foucault.
7. Sonde selon la revendication 1, caractérisée en ce que le courant inducteur est impulsionnel et présente de fortes composantes à basse fréquence.
8. Sonde selon la revendication 1, caractérisée en ce qu'elle comprend un corps de sonde (21) et/ou une armature (20) en matière amagnétique.
9. Sonde selon la revendication 1, caractérisée en ce qu'elle comprend un corps de sonde (21, 110) dans lequel coulisse une armature (20, 108, 109) porteuse de la bobine émettrice et des éléments récepteurs, et un système de réglage (22 à 26) de position de l'armature dans le corps de sonde.
10. Sonde selon les revendications 4 et 9, caractérisée en ce que le système de réglage comprend plusieurs éléments indépendants (111) permettant de déformer l'armature, qui est formée par un substrat souple du circuit imprimé.
PCT/FR1998/001754 1997-08-08 1998-08-06 Sonde de controle par courants de foucault WO1999008103A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/10222 1997-08-08
FR9710222A FR2767196B1 (fr) 1997-08-08 1997-08-08 Sonde de controle par courants de foucault

Publications (1)

Publication Number Publication Date
WO1999008103A1 true WO1999008103A1 (fr) 1999-02-18

Family

ID=9510193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/001754 WO1999008103A1 (fr) 1997-08-08 1998-08-06 Sonde de controle par courants de foucault

Country Status (2)

Country Link
FR (1) FR2767196B1 (fr)
WO (1) WO1999008103A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317542C (zh) * 2005-09-19 2007-05-23 西安理工大学 一种抗腐蚀耐高温电涡流间隙传感器及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741203A (en) * 1986-11-21 1988-05-03 Westinghouse Electric Corp. Turbine inspection device and associated coil assembly and associated method
US5047719A (en) * 1990-05-25 1991-09-10 The Failure Group, Inc. Flexible coil assembly for reflectance-mode nondestructive eddy-current examination
US5648721A (en) * 1993-10-12 1997-07-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotating flux-focusing eddy current probe for flaw detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741203A (en) * 1986-11-21 1988-05-03 Westinghouse Electric Corp. Turbine inspection device and associated coil assembly and associated method
US5047719A (en) * 1990-05-25 1991-09-10 The Failure Group, Inc. Flexible coil assembly for reflectance-mode nondestructive eddy-current examination
US5648721A (en) * 1993-10-12 1997-07-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotating flux-focusing eddy current probe for flaw detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317542C (zh) * 2005-09-19 2007-05-23 西安理工大学 一种抗腐蚀耐高温电涡流间隙传感器及其制作方法

Also Published As

Publication number Publication date
FR2767196A1 (fr) 1999-02-12
FR2767196B1 (fr) 1999-09-03

Similar Documents

Publication Publication Date Title
EP2417443B1 (fr) Dispositif de controle non destructif d'une structure electriquement conductrice
EP0646806B1 (fr) Structure magnétique ouverte
US6888346B2 (en) Magnetoresistive flux focusing eddy current flaw detection
FR2694811A1 (fr) Sonde à courants de Foucault pour la détection de défauts dans un échantillon d'essai.
FR2611276A1 (fr) Sonde a courants de foucault a compensation circonferentielle
CN100472221C (zh) 用于缺陷定位的系统与方法
EP0871012A1 (fr) Capteur inductif micro-usiné, notamment du déplacement d'un objet
FR2881826A1 (fr) Procede de conception et de realisation d'un dispositif de controle a courants de foucault
EP2047241B1 (fr) Procede et dispositif de controle par courants de foucault a fonctions emission/reception separees d'une piece electriquement conductrice
FR2743890A1 (fr) Capteur a courants de foucault et outillage de controle de tube comportant au moins un tel capteur
EP0338381A1 (fr) Capteur de position
WO1997024611A1 (fr) Dispositif et procede de controle de tubes par courants de foucault
EP1015880A1 (fr) Sonde a courants de foucault
WO1999008103A1 (fr) Sonde de controle par courants de foucault
EP1155313A1 (fr) Procede et dispositif de mesure in situ de la distance entre deux elements donnes dans une conduite tubulaire
EP0136238A1 (fr) Dispositif pour mesurer la proximite d'une surface metallique conductrice
EP0538110B1 (fr) Appareil de contrÔle non destructif, par ultrasons, de matériaux tels que des matériaux composites, et procédé correspondant
FR2591342A1 (fr) Sonde ultrasonique pour tester le materiau de pieces fendues ou creuses
FR2902191A1 (fr) Dispositif de controle non destructif permettant de determiner la presence de materiau magnetique dans des materiaux non magnetiques ou a magnetisme oriente comme par exemple les soudures
FR2844056A1 (fr) Installation d'analyse d'un circuit integre
CA2215566A1 (fr) Sonde a courants de foucault, pour le controle non destructif de pieces electriquement conductrices
EP0772051B1 (fr) Transformateur de mesure non-conventionnel
WO2006082334A1 (fr) Procédé réalisation d'une tête de contrôle à courants de foucault de grande dynamique et de haute résolution spatiale
FR2693798A1 (fr) Dispositif d'inspection de courants de Foucauld à champ magnétique rotatif.
FR2678384A1 (fr) Dispositif electromagnetique pour la detection de defauts dans un cable.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1999511771

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA