WO1999007883A1 - Method and kit for hla class i typing dna - Google Patents

Method and kit for hla class i typing dna Download PDF

Info

Publication number
WO1999007883A1
WO1999007883A1 PCT/CA1998/000768 CA9800768W WO9907883A1 WO 1999007883 A1 WO1999007883 A1 WO 1999007883A1 CA 9800768 W CA9800768 W CA 9800768W WO 9907883 A1 WO9907883 A1 WO 9907883A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
homo sapiens
seq
group
hla
Prior art date
Application number
PCT/CA1998/000768
Other languages
French (fr)
Inventor
Rainer H. Blasczyk
James Leushner
Original Assignee
Visible Genetics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visible Genetics Inc. filed Critical Visible Genetics Inc.
Priority to EP98939999A priority Critical patent/EP1003917A1/en
Priority to AU88468/98A priority patent/AU8846898A/en
Priority to CA002300369A priority patent/CA2300369A1/en
Priority to JP2000506365A priority patent/JP2001512694A/en
Publication of WO1999007883A1 publication Critical patent/WO1999007883A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to methods and materials for determining the HLA Class I type of a subject, wherein group-specific sequences are used to design primer molecules which may be used in amplification protocols which accurately identify the HLA group(s) and/or allele(s) carried by the subject.
  • HLA Histocompatibility Locus Antigen
  • the class I genes share a similar structure, which includes, inter alia, 5' -> 3', a 5' untranslated flanking region; a first exon ("ex ⁇ n 1") having a length of approximately 73 base pairs ("bp"); a first intron (“intron 1") having a length of approximately 130 bp; a second exon (“exon 2”), having a length of approximately 250 bp; a second intron (“intron 2”), having a length of approximately 272 bp; a third exon (“exon 3”), having a length of approximately 276 bp; a third intron (“intron 3”), having a length of approximately 588 bp; and a fourth exon ("exon 4").
  • the HLA Class I genes are highly polymorphic among individuals. As of 1996, at least 73 alleles of HLA-A. 126 alleles of HLA-B and 35 alleles of HLA-C have been identified. This variability is of particular relevance when tissue transplantation between a donor and a host is contemplated.
  • the histocompatibility antigens of donor and host should be as similar as possible to avoid both immune rejection of the transplanted tissue as well as graft-versus-host disease. It is therefore important to accurately identify the HLA types of donor and host. In view of the exigencies implicit in tissue transplantation, it is desirable that the typing be accomplished as efficiently as possible.
  • the Sequence Specific Oligonucleotide Probes uses a reverse dot blot format, wherein HLA-A probes are immobilized on a membrane, and the labelled target (patient sample) DNA is hybridized to the membrane-bound probe (as described in Saiki et al., 1989, Proc. Natl. Acad. Sci. 86:6230-6234).
  • the pattern of hybridization to the probes on the dot-blot gives information regarding the HLA type of the individual.
  • hybridization is inherently not sufficiently specific to rule out minor differences in sequence between probe and patient sample, there is a possibility that the patient sample may contain an allelic variant which is not accounted for.
  • Amplification Refractory Mutation System As described in the "HLA Class I SSP ARMS-PCR Typing Kit” Reference Manual, June 1995 edition, published by the Imperial Cancer Research Fund.
  • This assay is based on the need for complementarity (matching) between the 3' end of an amplification primer and a target DNA sequence. Absent such matching, the primer will not function properly and no fragment will be amplified. Sequence information is deduced by determining, for various pairs of primers acting on target DNA from a patient sample, whether or not a fragment is successfully amplified. The accuracy of the technique is limited by the number of primer pairs tested and by the possibility that allelic variations exist in regions of DNA which lie between the primers.
  • Intron sequences could provide the preferred hybridization sites for amplification and sequencing primers for the HLA-A, HLA-B and HLA-C genes because they may provide the DNA sequence of the full exon.
  • Intron sequences for an HLA Class I gene were disclosed at least as early as 1985 (Weiss et al Immunobiol 170:367-380, (1985)). Due to their substantial diversity, and the difficulties in sequencing, few intron sequences have been published subsequently.
  • Blasczyk et al. (Tissue Antigens 1996: 47: 102-110) used exon based amplification primers to determine group specificity. After amplification, universal sequencing primers located in intron 2 were used to sequence the amplified fragment. The paper does not disclose any intron sequence motifs from intron 1 or 3 or the 5' untranslated region.
  • Johnston-Dow et al presented a system for direct sequence determination of HLA-A wherein degenerate exon based primers were used to amplify exons 1 to 5 of the genomic HLA-A DNA sequence.
  • the degenerate primer pool was designed to amplify all alleles of the HLA-A locus. Group specificity was not sought or reported. Further, sequencing of the amplified fragment was obtained using a degenerate primer mix wherein primers hybridize to intron regions flanking exons 2 and 3.
  • a rational approach to typing of classical HLA Class I loci would provide a simplified series of steps for high resolution typing of each allele of each loci in a patient sample using intron based oligonucleotides. Further, this method would be able to identify new alleles without ambiguities.
  • the present invention relates to materials and methods for high- resolution, nucleic acid-based typing of the three classical HLA Class I genes (comprising the loci HLA-A, HLA-B and HLA-C) in a patient sample. It is based, in part, on the discovery of group-specific sequence motifs, derived from the analysis of numerous patient samples, which include sequences of the 5' flanking region, intron 1, intron 2, and intron 3. Such sequence motifs may be used to design amplification primers which may be used to identify the HLA group or type of a subject. The invention is also based, in part, on the determination of numerous allele-specific sequences which may be used to confirm the precise allelic type of a subject.
  • the present invention provides for substantially purified nucleic acids which are capable of selectively hybridizing with group specific sequence motifs in untranslated regions of the HLA-A, HLA-B or HLA-C gene loci.
  • nucleic acids which may be comprised in a kit, may be used, alone or in conjunction with exon- based primers, to determine the group specificity of HLA-A, HLA-B, or HLA-C alleles contained in a patient sample and to identify the specific alleles present.
  • the present invention provides for methods of ascertaining the HLA Class I type of a subject which comprise performing a first amplification reaction which identifies the group type of the subject, and a second amplification reaction which produces allele-specific nucleic acids for sequencing.
  • Amplification means the process of increasing the relative abundance of one or more specific genes or gene fragments in a reaction mixture with respect to the other genes.
  • a method of amplification which is well known by those skilled in the art is the polymerase chain reaction (PCR) as described in United States Patents Nos. 4,683,194, 4,683,195 and 4,683,202, which are incorporated herein by reference.
  • the PCR process involves the use of pairs of primers, one for each complementary strand of the duplex DNA (wherein the coding strand is referred to as the "sense strand” and its complementary strand is referred to as the "antisense strand”), that will hybridize at a site located near a region of interest in a gene.
  • Chain extension polymerization (without a chain terminating nucleotide) is then carried out in repetitive cycles to increase the number of copies of the region of interest many times.
  • the amplified oligonucleotides are then separated from the reaction mixture and used as the starting sample for the sequencing reaction.
  • Gelfand et al. have described a thermostable enzyme, "Taq polymerase,” derived from the organism Thermus aquaticus, which is useful in this amplification process (see United States Patent Nos. 5,352,600 and 5,079,352 which are incorporated herein by reference);
  • Group refers to a subset of alleles of one loci, all of which share sequence features which distinguish them from other groups.
  • serological group reactivity in a lymphocytotoxicity assay
  • the first two digits of an allele refer to the serological group; for example, the designation A*0201, A*0202, A*0217 all are members of the A2 group.
  • the nomenclature refers to the serological split group (e.g., A23 and A24 are serological splits of A9;
  • Group-specific sequence motif means a generally short, 1-25 nucleotide (“nt") sequence of nucleic acid which is found only in one or a few groups. Where a motif is shared by several groups in one region of the HLA locus, group- specific sequence motifs in other regions of the locus may serve as group- distinguishing features. The motif may share one or more nucleotides with the consensus sequence for the region;
  • Haplotype means the allele present on one chromosome
  • Heterozygote means the presence of at least two different alleles of a gene
  • Homozygote means the presence of a single species of allele of a gene
  • Locus means a gene, such as HLA-A, HLA-B or HLA-C; "Locus specific” means an event or thing associated with only one locus;
  • Patient sample means a sample collected from a patient in need of HLA typing which contains a sufficient amount and quality of nucleic acid (preferably DNA) for the performance of an amplification reaction.
  • nucleic acid preferably DNA
  • a nonlimiting example of a suitable source is peripheral blood lymphocytes, tissue (including cell cultures derived therefrom, mucosal scrapes, spleen and bone marrow;
  • Primer means a polynucleotide generally of 5-50 nucleotides length which can serve to initiate a chain extension reaction
  • Sequenase 2.0 product literature (Amersham Life Sciences, Cleveland) incorporated herein by reference). Basically, in this process, DNA to be sequenced is isolated, rendered single stranded, and placed into four vessels.
  • each vessel contains a small quantity of one type of optionally detectably labeled dideoxynucleotide triphosphate, e.g., dideoxyadenosine triphosphate ("ddA”), dideoxyguanosine triphosphate ("ddG”), dideoxycytosine triphosphate (“ddC”), or dideoxythymidine triphosphate ("ddT”).
  • ddA dideoxyadenosine triphosphate
  • ddG dideoxyguanosine triphosphate
  • ddC dideoxycytosine triphosphate
  • ddT dideoxythymidine triphosphate
  • each piece of the isolated DNA is hybridized with a primer.
  • the primers are then extended, one base at a time to form a new nucleic acid polymer complementary to the isolated pieces of DNA.
  • a dideoxynucleotide is incorporated into the extending polymer, this terminates the polymer strand and prevents it from being further extended.
  • a set of extended polymers of specific lengths are formed which are indicative of the positions of the nucleotide corresponding to the dideoxynucleic acid in that vessel.
  • Specific hybridization means hybridization of one strand of a nucleic acid to its complement.
  • Target sequence means the preferred site for specific hybridization of a primer
  • FIGURE 2 A and 2B depict, in schematic form, a method of the invention in which a cocktail of HLA-A group specific primers is used to amplify target DNA contained in a patient sample.
  • the products of amplification are then separated electrophoretically in an agarose gel, allowing the identification, by fragment mobility, of fragments corresponding to groups A2 and A3.
  • Primers specific for groups A2 and A3 are then used to amplify duplicate samples of target DNA in separate reactions, to produce A2 and A3 fragments which may then be sequenced using universal sequencing primers.
  • FIGURE 2C and 2D depict a strategy wherein group type specificity is determined by reaction of aliquots of genomic DNA in separate reactions with a panel of primer pairs.
  • FIGURE 3 depicts the nucleic acid sequences of the HLA-A 5' flanking region in various alleles, including a consensus sequence (SEQ ID NO:l) as well as the sequences for the following alleles: A*0101 (SEQ ID NO:2); A*0301 (SEQ ID NO:3); A*l 101 (SEQ ID NO:4); A*l 102 (SEQ ID NO:5); A*3001 (SEQ ID NO:6); A*3002 (SEQ ID NO:7); A*3004 (SEQ ID NO:8); A*0201-l 1 (SEQ ID NO:9); A*0215 (SEQ ID NO: 10); A*0217 (SEQ ID NO:l 1); A*6801 (SEQ ID NO:12); A*6802 (SEQ ID NO:13); A*6901 (SEQ ID NO:14); A*2301 (SEQ ID NO: 15); A*2402 (SEQ ID NO: 16); A*2403 (SEQ ID NO: 17); A*
  • FIGURE 4 depicts the nucleic acid sequences of HLA-A intron 1 in various alleles, including a consensus sequence (SEQ ID NO:39) as well as the sequences for the following alleles: A*0101 (SEQ ID NO:40); A*0301 (SEQ ID NO:41); A*1101 (SEQ ID NO:42); A*1102 (SEQ ID NO:43); A*3001 (SEQ ID NO:44); A*3002 (SEQ ID NO:45); A*3004 (SEQ ID NO:46); A*0201 (SEQ ID NO:47); A*0202 (SEQ ID NO:44); A*0203 (SEQ ID NO:49); A*0204 (SEQ ID NO:50); a*0205 (SEQ ID NO:51); A*0206 (SEQ ID NO:52); A*0207 (SEQ ID NO:53); A*0207 (SEQ ID NO:54); A*0208 (SEQ ID NO:55); A*0209 (SEQ ID NO
  • FIGURE 5 depicts the nucleic acid sequences of HLA-A intron 2 in various alleles, including a consensus sequence (SEQ ID NO:87) as well as sequences for the following alleles: A*0101 (SEQ ID NO:88); A*0201 (SEQ ID NO:89);
  • A*0202 (SEQ ID NO:90); A*0203 (SEQ ID NO:91); A*0204 (SEQ ID NO:92);
  • A*0205 (SEQ ID NO:93); A*0206 (SEQ ID NO:94); A*0207 (SEQ ID NO:95);
  • A*0208 (SEQ ID NO:96); A*0209 (SEQ ID NO:97); A*0210 (SEQ ID NO:98);
  • A*0211 (SEQ ID NO:99); A*0215 (SEQ ID NO: 100); A*0217 (SEQ ID NO: 101);
  • A*6801 (SEQ ID NO:102); A*6802 (SEQ ID NO:103); A*6901 (SEQ ID NO:104);
  • A*2501 (SEQ ID NO:105); A*2601 (SEQ ID NO:106); A*4301 (SEQ ID NO:107);
  • A*6601 (SEQ ID NO: 108); A*6602 (SEQ ID NO: 109); A*6603 (SEQ ID NO: 110);
  • A*3402 (SEQ ID NO: 111); A*2901 (SEQ ID NO: 112); A*2902 (SEQ ID NO: 113);
  • A*3101 (SEQ ID NO: 114); A*3201 (SEQ ID NO:115); A*3301 (SEQ ID NO: 116); A*3303 (SEQ ID NO: 117); A*7401 (SEQ ID NO: 118); A*7402 (SEQ ID NO: 119) A*7403 (SEQ ID NO:120); A*2301 (SEQ ID NO:121); A*2402 (SEQ ID NO:122) A*2403 (SEQ ID NO: 123); A*2404 (SEQ ID NO: 124); A*2405 (SEQ ID NO: 125) A*2407 (SEQ ID NO: 126); A*0301 (SEQ ID NO: 127); A* 1101 (SEQ ID NO: 128) A*1102 (SEQ ID NO:129); A*3001 (SEQ ID NO:130); A*3002 (SEQ ID NO:131) A*3004 (SEQ ID NO:132); and A*8001 (SEQ ID NO:133).
  • FIGURE 6 depicts the nucleic acid sequences of HLA-A intron 3 in various alleles, including a consensus sequence (SEQ ID NO: 134) as well as sequences for the following alleles: A*0101 (SEQ ID NO:135); A*0301 (SEQ ID NO:136); A*l 101 (SEQ ID NO:137); A*l 102 (SEQ ID NO:138); A*3001 (SEQ ID NO: 139); A*3002 (SEQ ID NO: 140); A*3004 (SEQ ID NO: 141); A*0201 (SEQ ID NO:142); A*0202 (SEQ ID NO:143); A*0203 (SEQ ID NO:144); A*0204 (SEQ ID NO: 145); A*0205 (SEQ ID NO: 146); A*0206 (SEQ ID NO: 147); A*0207 (SEQ ID NO: 148); A*0208 (SEQ ID NO: 149); A*0209 (SEQ ID NO: 150); A*
  • FIGURE 7 depicts a phylogenetic tree of the 5' flanking and 5' untranslated regions of HLA-A.
  • FIGURE 8 depicts a phylogenetic tree of introns 1-3 of the HLA-A gene.
  • FIGURE 9 depicts a phylogenetic tree of introns 1-3 of the HLA-B gene.
  • FIGURE 10 depicts the results of amplification using group-specific exon region primers to determine HLA-A group type, wherein the group specificity is determined to be 6601 and 3201 (see Table 7).
  • FIGURE 11 depicts the results of amplification using group-specific exon region primers to determine HLA-A group type, wherein the group specificity is determined to be 020x and 680x (see Table 8).
  • FIGURE 12 depicts the nucleic acid sequences of the first intron of HLA-B, inlcuding a consensus sequence (SEQ ID NO:246) as well as the sequences for the following alleles: B*0702 (SEQ ID NO:247), B*0801 (SEQ ID NO:248), B*1302 (SEQ ID NO:249), B*1401 (SEQ ID NO:250), B*1402 (SEQ ID NO:251), B*1501 (SEQ ID NO:252), B*1502 (SEQ ID NO:253), B*1505 (SEQ ID NO:254), B*1508 (SEQ ID NO:255), B*1510 (SEQ ID NO:256), B*1512 (SEQ ID NO:251), B*1513 (SEQ ID NO:258), B*1517 (SEQ ID NO:259), B*1525 (SEQ ID NO:260), B*1532 (SEQ ID NO:261), B*1801 (SEQ ID NO:
  • FIGURE 13A-B depicts the nucleic acid sequences of the second intron of HLA-B, including a consensus sequence (SEQ ID NO:300) as well as the following alleles: B*0702 (SEQ ID NO:301), B*0801 (SEQ ID NO:302), B*1302 (SEQ ID NO:303), B*1401 (SEQ ID NO:304), B*1402 (SEQ ID NO:305), B* 1501 (62) (SEQ ID NO:306), B* 1505(62) (SEQ ID NO:307), B* 1508(62) (SEQ ID NO:308), B*1510(71) (SEQ ID NO:309), B*1513(77) (SEQ ID NO:310), B*1517(63) (SEQ ID NO:311), B*1525(62) (SEQ ID NO:312), B*1532(62) (SEQ ID NO:313), B*1801 (SEQ ID NO:314), B*2702 (S
  • FIGURE 14A-E depicts the nucleic acid sequences of the third intron of HLA-B, including a consensus sequence (SEQ ID NO: 357) as well as the following alleles: B*0702 (SEQ ID NO:358),B*0801 (SEQ ID NO:359), B*1302 (SEQ ID NO:360), B*1401 (SEQ ID NO:361), B*1402 (SEQ ID NO:362), B*1501 (SEQ ID NO:363), B*1502 (SEQ ID NO:364), B*1510 (SEQ ID NO:365), B*1513 (SEQ ID NO:366), B*1517 (SEQ ID NO:367), B*1525 (SEQ ID NO:368), B*1801 (SEQ ID NO:369), B*27052 (SEQ ID NO:370), B*27053 (SEQ ID NO: 371), B*3501 (SEQ ID NO:372), B*3502 (SEQ ID NO:373), B
  • the present invention relates to compositions and methods which may be used to efficiently and accurately determine the HLA Class I type of a patient sample.
  • the present invention is based, in part, on the determination of group- specific sequence motifs in regions of HLA Class I loci. These motifs may be used to design oligonucleotides which may be used as group-specific primers in nucleic acid amplification reactions.
  • the present invention is also based, in part, on the determination of the sequences of regions of a wide variety of alleles of HLA Class I loci; such sequences may be used to distinguish one allele from another. Sequences of regions including the 5' flanking region of HLA-A and introns 1, 2 and 3 of HLA-A are provided herein, and are set forth in Figures 3-6.
  • oligonucleotide primers may be designed, synthesized, and used to amplify a portion of the HLA locus. Oligonucleotides used in this manner are referred to herein as "group-specific primers” and, in particular, as “group-specific untranslated region primers” or “group- specific exon region primers", as the case may be.
  • the primers correspond to untranslated regions of the HLA Class I locus ("group-specific untranslated region primers").
  • group-specific untranslated region primers Such primers may be used in pairs, wherein each member of the pair hybridizes to an untranslated region lying on either side of at least one exon.
  • primer pairs may be oligonucleotide pairs which hybridize to group-specific motifs in the 5' untranslated region and the first, second, or third intron; the first intron and the second or third intron; or the second and third intron.
  • the group-specific primers may be used in several different methods according to the invention.
  • the group-specific primers may be used in a diagnostic manner to identify which allelic groups are present in a patient sample.
  • the group-specific primers may be used to amplify sufficient amounts of a particular allelic fragment which is then subjected to direct nucleotide sequencing using universal sequencing primers.
  • the present invention provides for a method of determining the HLA Class I group type of a subject comprising (i) combining a group-specific primer pair with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; and (ii) determining whether a nucleic acid product is produced by the amplification; wherein the ability of a primer pair to produce a nucleic acid product is associated with a particular HLA group type.
  • the group-specific primers may be group-specific exon region primers or group-specific untranslated region primers.
  • the present invention provides for a method of determining the HLA Class I group type of a subject comprising (i) combining a plurality of group- specific exon region primer pairs with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; (ii) determining the size of the nucleic acid products of the amplification; and (iii) correlating the size of the product with the predicted size of a fragment associated with a particular HLA group type.
  • the plurality of primers is referred to as an HLA "cocktail" (see Figures 1 and 2). These first methods may be used to provide useful diagnostic information.
  • group type determination may serve as a first level of comparison for a histocompatibility analysis, even without identification of the specific allele(s) involved. For example, if a potential donor and host are being evaluated for tissue transplantation, if it is found that their group types do not match, no further comparison may be necessary. If, alternatively, their types do match, further analysis, for example by direct sequencing, may be desirable.
  • the present invention provides for a method of determining the HLA Class I allelic type of a subject comprising (i) combining a group-specific oligonucleotide primer pair with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; (ii) collecting the nucleic acid product of the amplification; and (iii) determining the nucleic acid sequence of the product.
  • the group-specific primer pair used may be determined based on the group type of the subject, as determined using the first method, described above.
  • group-specific untranslated region primers which span a region of the HLA locus containing allele-specific sequence may be utilized.
  • amplification reactions are performed for each group identified (e.g., separate reactions to amplify fragment for group A2 and group A3; see Figure 2). Sequencing may be performed using universal sequencing primers which will operate irrespective of HLA group or allelic type.
  • HLA-A HLA Class I gene loci
  • HLA-B HLA-B
  • HLA-C HLA Class I gene loci
  • a method of the invention takes advantage of this fact, and employs the strategy generally described in Figure 2, using the example of HLA-A.
  • a genomic DNA sample is prepared from a patient sample according to well known techniques. Aliquots of the genomic DNA may then separately be reacted with a panel of group- specific exon region primer pairs ( Figure 2C), wherein the successful amplification of a DNA fragment is associated with a particular group type.
  • part of the sample may be treated with a cocktail of group-specific exon region primer pairs.
  • Each primer pair in the cocktail will amplify only selected allelic groups because they specifically hybridize to group specific intron sequence motifs.
  • the cocktail may amplify all known HLA-A groups, with each group specific amplification product having a different length. When reaction products are separated on an agarose gel the group(s) present in the patient sample may be identified by length.
  • the direct sequence of alleles may be determined for precise allelic identification.
  • a further part of the patient sample DNA may be treated under PCR conditions with a pair of primers that are specific for the previously determined group; preferably such primers are group-specific untranslated region primers, which span greater distances of the locus. If two groups were detected, then two separate reactions are performed. At completion of the second amplification, the reaction products are sequenced using an intron based "universal primer" which hybridizes to an intron sequence which is conserved among all alleles of the locus.
  • the substantial advantage of the method of the invention is that the initial group specific amplification allows a PCR based separation of haplotypes in 95% of patient samples.
  • the separation of the haplotypes is a major achievement of this protocol since it permits the resolution of cis/trans linkages of heterozygote sequencing results which cannot be achieved with other protocols.
  • a separation of the haplotypes may be achieved in serological heterozygous samples with the sequencing primer mixes ("PMs") described in Table 2 (infra) using group-specific amplification corresponding to the serological families.
  • the selection of the PMs used for sequencing depends on the amplification patterns of the preceding PCR-SSP low-resolution typing.
  • the primers are designed to work with a in a single cycle protocol including, but not limited to, a PCR protocol on a Perkin Elmer System 9600, maintaining typing capacities of the laboratory. All PCR products carry sufficient sequence information for a complete subtyping. This approach is superior to a typing system using a single pair of generic primers followed by direct sequencing or SSO hybridization, even if the amplification strategy is locus-specific.
  • SBT Sequence Based Typing
  • the idea of the instant SBT approach is not only to identify the HLA-A, HLA-B and HLA-C subtypes, but to cover as many of the polymo ⁇ hic sites as possible and to define the cis/trans linkage of the polymo ⁇ hic sequence motifs. Typing results obtained with this method will remain unambiguous independently of the growing HLA sequence databank.
  • group-specific primers are desirably designed to facilitate hybridization to their intended targets. It should be taken into account that homology between different groups, and indeed between group-specific motifs, may exist. Accordingly, in preferred embodiments of the invention, a primer may be designed such that it hybridizes to its group target under relatively stringent conditions. For example, one or more mismatched residues may be engineered into the 3 ' domain of the molecule. Further, the primer may be designed such that it differs from any naturally occurring or consensus sequence, but rather has mismatches inserted which serve to further reduce hybridization of the primer to target DNA of a group other than the intended target group. Under certain circumstances, one or more mismatches may be introduced into the 5' end to destabilize internal hai ⁇ in loops; such changes are not generally expected to enhance the efficiency of the primer.
  • nucleic acid sequences may be comprised in group- specific untranslated region primers for HLA-A which are specific for the groups as indicated in Table 1.
  • the sequences in Table 1 have the following sequence identifiers: 11-210 is SEQ ID NO:35, and the remaining sequences Il-230m through 13-282 have SEQ ID NOS S: 181 -202, respectively.
  • the present invention provides for nucleic acid molecules comprising regions having the foregoing sequences or their functional equivalents.
  • “Functional equivalents" of a nucleotide sequence refers to nucleotide sequences which, when contained in a nucleic acid molecule, retain the specificity of the disclosed sequence and/or hybridize to the complement of the disclosed sequence under stringent hybridization conditions (e.g., .1 x SSC at 65°C).
  • oligonucleotides comprising the above sequences, or functional equivalents thereof which retain specificity, may be used in a PCR amplification reaction in the following pairwise combinations to generate group specific fragments of the lengths as indicated in Table 2. Table 2.
  • nucleic acid sequences may be comprised in group- specific exon region primers for HLA-A which are specific for the groups as indicated in Table 3 (sense primers) and Table 4 (antisense primers).
  • group-specific exon region primers for HLA-A which are specific for the groups as indicated in Table 3 (sense primers) and Table 4 (antisense primers).
  • primer numbers 85, 118, 120, 123, 127, 129, 134, 137, 140, 160, 167, 175, 193 and 202 have SEQ ID NOS:203-216, respectively.
  • primer numbers 98, 115, 116, 117, 126, 133, 135, 136, 138, 142, 144, 145, 152, 153, 154, 155, 161, 165, 168, and 180 have SEQ ID NOS:217-236, respectively, and primer number 119 has SEQ ID NO:245.
  • the present invention provides for nucleic acid molecules comprising regions having the foregoing sequences or their functional equivalents. They may, in specific nonlimiting examples, be used in pairs as set forth in Table 5. Table 3.
  • the foregoing group-specific primers may be modified by addition, deletion, or substitution of bases, to produce functionally equivalent primers with the substantially the same specificity, that is to say, such that the group specific polymo ⁇ hism(s) are not removed.
  • modifications may be constrained by several parameters.
  • exact matching at the 3' end is particularly important for primer extension.
  • Preferably, at least 5 nt are complementary to target DNA.
  • the primer is preferably less than 50% G or C.
  • the primers should be designed to avoid specific hybridization with pseudogenes or non-classical HLA Class I loci. In the examples which follow, the melting temperature of all primers used was about 62C to ensure uniform amplification conditions.
  • nucleic acid sequences are sequences which hybridize to all alleles of the indicated loci, in the locations indicated (and hence are referred to as universal sequencing primers).
  • the primers in Table 6 are assigned consecutively SEQ ID NOS:237-244.
  • the foregoing three groups of p ⁇ mers include 5' and 3' p ⁇ mers for sequencing across exons 2 and 3, respectively
  • Suitable universal sequencing p ⁇ mers is constrained by a va ⁇ ety of rules including the following Sequencing p ⁇ mer hyb ⁇ dization sites must e within the fragment amplified by the group specific amplification p ⁇ mers All p ⁇ mers are desirably selected to provide informative sequence and not start too far downstream of useful sequence Preferred p ⁇ mers hyb ⁇ dize to conserved sites near the exon intron bounda ⁇ es
  • Direct sequencing of the 2nd and 3rd exon may be performed from either the 5' or 3' end using the p ⁇ mers of Table 6 supra which are located in conserved regions of the 1st, 2nd and 3rd mtron as indicated. These conserved regions were found to be identical in all samples investigated, regardless of the amplified group.
  • the program identifies those stored sequences that are closest matched to the test sequence. The operator can then determine which allelic pair is in the test sample. If no allelic pair shows an exact match, the software allows the operator to review the test sequence to determine if errors in base-calling or other artifacts are interfering with the analysis.
  • the order of sequencing reactions may be selected by the operator. Each exon of each locus may be sequenced on the sense strand or anti-sense strand. A preferred method is to obtain sequence from one strand from each exon. If the results contain ambiguities, then the amplicon is re-sequenced using the other primer for the same exon. The availability of both sequencing primers provides redundancy to ensure robust results.
  • oligonucleotide species may be selected such that between them they will effectively prime the sequencing reactions for all alleles of the locus at the same site.
  • a dye- labelled primer may be employed instead of using dye terminators.
  • the selected sequencing primers is labelled on the 5' end with a detectable label, using phosphoramidite or NHS/dye ester techniques well known in the art.
  • the label selected depends on the detection instrument employed.
  • the label for use with an OpenGene System is the fluorophore Cy5.5 (Amersham Life Sciences, Cleveland OH). Fluorescein-isothio-cyanate may be used for detection with the ALF Automated Sequencer (Pharmacia, Piscataway NJ).
  • the sequencing reaction mixture is changed slightly to include only one ddNTP per reaction mixture.
  • the sample may be mixed with an equal volume of loading buffer (5% ficoll plus a coloured dye). 1.5 ul of these samples may be loaded per lane of a MicroCel electrophoresis cassette loaded in a MicroGene Blaster automated DNA sequencer (Visible Genetics Inc., Toronto). The sample may be electrophoresed and read.
  • Results may be displayed and analyzed with GeneObjects software.
  • the sequence of bases may be determined, and the HLA allele to which the sequence corresponds may then be identified. This process may be performed for each locus (HLA-A, HLA-B, HLA-C) and the results may then be reported to the patient file.
  • Multi-dye sequencers such as the Prism 377 (applied Biosystems, Inc., Foster City, California) detect multiple dyes in a single lane.
  • This technology conveniently employs dye-terminator chemistry, where the chain-terminating nucleotides are themselves labeled with fluorophores (see United States Patent No. 5,332,666, to Dupont de Nemours and Co.).
  • the reaction products carrying four different labels may be run in a single lane.
  • Either single dye or multi-dye chemistry may be employed according to the present invention, along with other sequencing chemistries.
  • Directly analogous methods may be used to determine the HLA-B type of an individual.
  • the second and third exon of the HLA-B gene are polymo ⁇ hic, and therefore provide for sequencing based typing strategies.
  • a list of primers, together with their sequence, length, and localization, is provided in Table 7 below. The primers in Table 7 are assigned consecutively SEQ ID NOS:398- 435.
  • Suitable primer mixes for HLA-B typing are set forth in Table 8 below.
  • Sequencing primers suitable for HLA-B typing are set forth in Table 9, below.
  • the primers in Table 9 are assigned consecutively SEQ ID NOS:436-
  • the protocol described in working example 8, infra may be used to accomplish HLA-B typing using the foregoing materials.
  • kits for use in practicing the methods of the invention.
  • such kits may further comprise buffers, reagents, and enzymes such as, amplification enzymes including but not limited to, Taq polymerase.
  • the kit may comprise group-specific exon region primers (for example, as a "cocktail" comprising a plurality of primers) as well as group-specific untranslated region primers; such primers may be contained in individual tubes.
  • the following method may be used to perform allele typing, here exemplified for HLA-B but, depending on the choice of primers, applicable to HLA-A as well.
  • the following reagents may be used: 2.5 mM deaza dNTP Mix (2.5 mM dATP, 2.5 mM dCTP, 2.5 mM dTTP, 1.25 mM dGTP, 1.25 mM 7-DEAZA dGTP); 166 mM ammonium sulphate (Sigma BioSciences); 100% DMSO; PCR primers (e.g., pairs selected from Table 8); genomic DNA control (60 ng/ ⁇ l); Sequencing Buffer (260 mM Tris-HCl, pH 8.3, 39 mM MgCl 2 ); 300:1 deaza terminators, including deaza A terminator (750 ⁇ M dATP, 750 ⁇ M dCTP, 560 ⁇ M dGTP, 750 ⁇ M
  • Thermosequencase 32 U ⁇ l e.g., Thermosequenase cycle sequencing core kit, Amersham LifeScience, Product No. US 79610
  • Enzyme Dilution Buffer (10 mM Tris-HCl, pH 8, 1 mM 2-ME, 0.5% (v/v) Tween-20, 0.5% (v/v) NP-40 ; e.g., from Amersham LifeScience); Pink Loading Dye (Amersham); 10X PCR Buffer II (10 mM Tris-HCl, pH 8.3; 500 mM KCl); Taq DNA polymerase (e.g., Perkin Elmer or Roche); 25 mM MgCl 2 ; molecular grade water, and mineral oil (to prevent evaporation if a thermocycler without a heated lid is used).
  • Enzyme Dilution Buffer (10 mM Tris-HCl, pH 8, 1 mM 2-ME, 0.5% (v/v) Tween-20,
  • Apparatus used in the method may include a thermocycler (e.g., PE 9600 or MJ PTC) wherein the ramping time is adjusted to l°C/sec, and tubes and trays supplied by the manufacturer of the thermocycler, wherein the use of trays and tubes fabricated from polypropylene rather than polystyrene is preferred.
  • a thermocycler e.g., PE 9600 or MJ PTC
  • the ramping time is adjusted to l°C/sec
  • tubes and trays supplied by the manufacturer of the thermocycler wherein the use of trays and tubes fabricated from polypropylene rather than polystyrene is preferred.
  • HLA Locus Amplification Protocol may be used. Reagents (except enzyme) may be thawed at room temperature, vortexed, and microfuged briefly, and placed on ice prior to use. Enzyme may be removed from the freezer when needed.
  • the following master mix may then be prepared by combining, in the following order, (quantities provide for one 25 ⁇ l reaction): molecular grade water 7.75 ⁇ l; 10X PCR Buffer II (without MgCl 2 ) 2.5 ⁇ l; 2.5 mM deaza dNTP Mix 2.0 ⁇ l; 25 mM MgCl 2 1.5 ⁇ l; 100% DMSO 2.5 ⁇ l; 166 mM Ammonium Sulphate 2.5 ⁇ l; PCR primers 1.0 ⁇ l; and 5U/ ⁇ l Taq polymerase 0.25 (pipet gently up and down to mix).
  • the master mix (which has a volume of 20 ⁇ l) may then be introduced into a labelled 0.2 ml thin-walled amplification tube, and 5 ⁇ l of 60 ng/ ⁇ l genomic DNA may be added to produce a final concentration of 300 ng of DNA per reaction.
  • the resulting reaction mixture may then be subjected to the following cycles in a thermocycler to result in amplification:
  • a 1% agarose gel containing ethidium bromide may be prepared, and 4 ⁇ l of the PCR product may be loaded on the gel. Samples may then be run into the gel electrophoretically, along with size markers, and the size of the fragment may be compared with the size of the expected product (see, for example, Table 8).
  • the resulting amplification product may then be sequenced as follows.
  • Four .2 ml thin-walled tubes may be placed on ice and labelled A, C, G and T, respectively.
  • Three microliters each of deaza A, C, G and T terminators may be introduced into the appropriately labeled tube.
  • Thermosequenase enzyme may then be diluted 1/10 in a separate tube by combining 1 ⁇ l of thermosequenase with 9 ⁇ l of enzyme dilution buffer, on ice.
  • a master sequencing mix Sequencing Buffer 2.5 ⁇ l; Sequencing Primer 2.5 ⁇ l; 100% DMSO 3.5 ⁇ l; amplification product 4.5 ⁇ l; molecular grade water 6.0 ⁇ l; 1/10 diluted Thermosequenase 3.0 ⁇ l (TOTAL VOLUME 22 ⁇ l).
  • Five microliters of the foregoing master sequencing mix may then be added to each of the four tubes containing the deaza terminators. If necessary, the reaction mixtures may be covered with 8 ⁇ l of mineral oil and subjected to the following cycle sequence:
  • reaction products may then be run on a sequencing gel to ascertain the sequence of the amplification product, using standard techniques.
  • Genomic DNA was prepared from patient samples according to standard methods, such as a standard salting-out procedure (as provided by the Puregene DNA Isolation Kit, Gentra Systems, Inc., Minneapolis) or by detergent and proteinase K treatment (Current Protocols in Molecular Biology, Eds. Ausubel, F.M. et al, (John Wiley & Sons; 1995)).
  • Group-specific identification was performed as follows. Aliquots of genomic DNA were separately reacted with a panel of 24 group-specific exon region primer pairs set forth in Table 5, supra (see Blasczyk et al, 1995, Tissue Ant. 46:86- 95).
  • An amplification cocktail for pairs of primers was prepared in 10 ⁇ l volume using standard lOx Perkin-Elmer buffer (lx buffer: 50 mM KCl; 1.5 mM MgCl 2 ; 10 mM Tris-Hcl, pH 8.3; 0.001% (w/v) gelatin) supplemented with 5% glycerol and 0.1 ⁇ l Cresol-red, sodium salt (Cresol-red stock solution: 10 mg/ml).
  • glycerol and cresol red avoids the necessity of using an agarose gel loading buffer. Additionally, glycerol increases the PCR yield.
  • the PCR mix for a single SSP tube was as follows:
  • the amount of primers used in each 10 ⁇ l PCR volume was 3 pmol of each HLA-A primer and 0.8 pmol of each internal control primer.
  • the reaction mixture was mixed well, then heated in a Thermo-Cycler 9600 (Perkin-Elmer, Inc) and subjected to the following protocol. After an initial denaturation, a first round with 10 two-temperature cycles was followed by 20 three- temperature cycles.
  • the reaction tube was then cooled on ice.
  • 8 ul of the amplification product were run on a 2 % agarose gel prestained with ethidium bromide (0.2 ug/ml). The results were compared to a control lane with known size markers.
  • the reaction products were visualized either as two bands (alleles from different groups) or a single band (alleles from same group). The size of the band(s) were determined and group specificity was assigned according to the length assignments in Table 5.
  • FIGS 10 and 11 show typical gel results, which, as shown in Tables
  • Group specific low-resolution typing of the patient sample may be performed as follows. First, a stock PCR amplification reaction mixture may be prepared for 30 reactions: id dNTPs lOmM 24
  • H2O 45_ final 1 117 *1 X PCR Buffer comprises 10 MM Tris-HCl pH 8.3, 50 mM KCl, 1.5 mM MgC12 and 0.001% (w/v) gelatin.
  • the stock mixture may be prepared in a large volume and be stored for at least one month at 4°C or be aliquoted (117.0 ⁇ l) and stored at -30°C for at least six months. Repeated thawing and freezing should be avoided.
  • a mixture containing all the HLA-A group specific amplification primers listed in Table 5 may be prepared separately (the "Cocktail"). One member of each primer pair is labelled on the 5' end with a fluorescent label. Final Cocktail concentrations may be designed to provide 3 pmol of each HLA-A primer per 5 ⁇ l.
  • an internal control primer may be added (to determine among other things, the success of amplification) in the amount of 0.8 pmol per 5 ul. Suitable internal control primers amplify a 1074 bp fragment of the human growth hormone gene (see supra).
  • reaction mixture may be prepared as follows:
  • PCR cycle parameters may be adjusted for a Perkin-Elmer System 9600 thermal cycler. After an initial denaturation, a first round with 10 two- temperature cycles may be followed by 20 three-temperature cycles: 1) Initial Denaturation at 95 °C for 5 min; 2) First 10 cycles i) Denaturation at 95 °C for 30 seconds and ii) Annealing and extension at 65 °C for 50 seconds; 3) Last 20 cycles i) Denaturation at 95 °C for 30 seconds, ii) Annealing at 62°C for 50 seconds and iii) Extension at 72 °C for 30 seconds.
  • the reaction tube may then be cooled on ice.
  • 2ul of the amplification product may be run on a polyacrylamide gel giving single nucleotide length resolution such as in a MicroGene Blaster.
  • the results were compared to a control lane with known size markers.
  • the reaction products may be visualized either as two bands (alleles from different groups) or a single band (alleles from same group).
  • the size of the band(s) may be determined and group specificity may be assigned according to the length assignments in Table 5.
  • group specific amplification of a fresh portion of the patient sample may be performed using a single pair of primers specific for the group in question to generate sequencing template.
  • amplification primers may be selected from Table 2, supra, which lists group-specific untranslated region primers. This second amplification serves two pu ⁇ oses. First, it confirms, by successful amplification, the group determination of the low resolution test. Second, it generates sequence information which may be used for accurate allele identification. If two groups are identified, two separate reactions may be performed each using a different primer pair.
  • the same PCR protocol may be used for all primer mixes used for template generation.
  • the PCR amplification may be set up in a total volume of 50 ⁇ l in order to produce enough PCR product for more than 10 sequencing reactions. This ensures that, if anything fails during the sequencing process, sequencing can be repeated without generation of a new template.
  • the high stringency of the PCR primers and protocol detailed below makes the use of a "hot start approach" unnecessary.
  • the following PCR reaction mix may be used: volume per reaction
  • Antisense primer* * ( 1 Opmol/ ⁇ l) 1. O ⁇ l
  • Genomic DNA (1 OOng/ ⁇ l) 4.0/
  • **The pair of group specific amplification primers may be selected from those disclosed in Table 2, supra.
  • PCR cycle parameters may be adjusted for a Perkin-Elmer System 9600 thermal cycler. After an initial denaturation, a first round with 10 two- temperature cycles may be followed by 20 three-temperature cycles. 1.) Initial Denaturation at 95 C for 5 min 2.) First 10 cycles i) Denaturation at 95 C for 30 seconds ii) Annealing and extension at 65 C for 50 seconds 3.) Last 20 cycles i) Denaturation at 95 C for 30 seconds ii) Annealing at 62 C for 50 seconds iii) Extension at 72 C for 30 seconds lO ⁇ l of the PCR product may then be run on a 2 % agarose gel prestained with ethidium bromide (0,2 ⁇ g/ml). A distinct band of the expected size should be seen.
  • the sequencing reactions may be carried out with AmpliTaqTM DNA Polymerase FS dye terminator cycle sequencing chemistry using the Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit FS (Perkin Elmer Applied Biosystems Division, Foster City, CA) according to the manufacturer's protocol.
  • the PCR fragments may be used directly for sequencing without any prior purification step.
  • a master mix may be prepared consisting of the 5'Biotin labeled sequencing primer, ddH2O and the Kit reagents. This master mix should be prepared immediately prior to use and can be kept at room temperature until use.
  • the sequencing master mix for one reaction may comprise 3.0 ⁇ l of a lpmol/ ⁇ l solution of sequencing primer; 6.0 ⁇ l ddH 2 0, and 8.0 ⁇ l of premixed sequencing reagents; for 36 + 1 reactions, these amounts are increased, respectively, to 111.0 ⁇ l; 222.0 ⁇ l; and 296.0 ⁇ l, respectively.
  • the sequencing primer may be selected from the sequencing primers for HLA-A set forth in Table 6, supra.:
  • the master mix may be aliquoted in a volume of 17 ⁇ l for each sequencing reaction in a 200 ⁇ l PCR tube and 3 ⁇ l of the unpurified PCR product are added.
  • the reaction mixes may then be subjected to 25 cycles in a Perkin Elmer thermal cycler 9600. Each cycle consists of 10 sec 95 C, 5 sec 50 C and 4 min 60 C. 8.3.
  • the extension products are desirably separated from the uninco ⁇ orated Dye Terminators which would otherwise interfere with the fluorescence-based detection process of the electrophoretically separated sequencing fragments.
  • Strep tavidin-coated Dynabeads M-280 (Dynal Inc., Oslo, Norway) may be washed in 5 ⁇ l of 2x Binding and Washing buffer ("B&W"; 2X B&W buffer: 2M NaCl, lOmM Tris-HCl pH 7.5, lmM EDTA). The beads may then be resuspended in 20 ⁇ l of 2x B&W.
  • loading buffer (5:1 Formamide- 25mM EDTA pH 8.0, 50mg/ml Dextran Blue) may be added.
  • Samples prepared by the foregoing methods may be used immediately or be stored at 4 C at least for 24 hours before starting the electrophoretic separation. Prior to the electrophoretic separation, each reaction may be incubated at 90 C for 2 minutes. 3 ⁇ l of each sample may be loaded on a prerun sequencing gel.
  • sequences may be compared manually to existing HLA data in the EMBL databank and the sequences compiled by Arnett and Parham. Due to the group-specific amplification and the lack of heterozygous positions, manual analysis is typically very fast. Alternatively, sequences may be checked with the data analysis editor (Sequence NavigatorTM, Applied Biosystems) and aligned with any sequence alignment program.
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccctctcctctcttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggacaca
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct ct ctttttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagcccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggaca 300 c
  • gagccccaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttctcgctgg 60 cgcttctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct ct ctttttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgagaaca 300 cg
  • gagccccaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttctcgctgg 60 cgcttctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct ct ctttttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgagaaca 300 cg
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcccgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct ct ctttttg 180 acgcctcaac cccttagggg ttccgacact gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 c
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcccgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct ct ctttttg 180 acgcctcaac cccttagggg ttccgacact gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 c
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcccgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct ct ctttttg 180 acgcctcaac cccttagggg ttccgacact gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 c
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccctctcctctcttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaagaca 300
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccctctcctctcttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaagaca 300
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccctctcctctcttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagcccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggacaca
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccgtctccct cttttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggacaca
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccctctcctctctg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatatggcg gaagcccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggaca 300
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccctctcctctcttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatatggcg gaagcccgg 240 actctgggac tctcggtgcg gaccccggga cgggactgggga gacgaggaca 300
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccctctcctctcttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggacaca
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccgtctccct ctttttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggacaca
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccctctcctcttttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccatgaagcg ggactgggga gacgaggaca 300
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccgtctccct ctttttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggacaca
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccgtctccct ctttttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggacaca
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccgtctccct ctttttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga cctgaagcg ggactgggga gacgaggacaca
  • gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt tatcctcact cttgacccag 120 gcgcagcact cataggtcct tctctggg atgtatccaa ccctctcct ctttttg 180 acgcctcaac cccttagagg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggagga
  • ⁇ 400> 39 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcctggc 60 gggggcgcag gacccgggaa gccgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
  • ⁇ 400> 58 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
  • ⁇ 400> 62 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgccggc 60 gggggcgcag gacccgggaa gccgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
  • ⁇ 400> 66 gtgagtgcgg ggtcgggagg gaaacggcct ctgcggggag aagcaagggg cccgcctggc 60 gggggcgcaa gacccgggaa gccgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
  • ⁇ 400> 68 gtgagtgcgg ggtcgggagg gaaacggcct ctgcggggag aagcaagggg cccgcctggc 60 gggggcgcaa gacccgggaa gccgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
  • ⁇ 400> 76 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgccggc 60 gggggcgcag gacccgggaa gccgcgctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130

Abstract

The present invention relates to methods and materials for determining the HLA Class I type of a subject, wherein group-specific sequences are used to design primer molecules which may be used in amplification protocols which accurately identify the HLA group(s) and/or allele(s) carried by the subject.

Description

METHOD AND KIT FOR HLA CLASS I TYPING DNA 1. INTRODUCTION
The present invention relates to methods and materials for determining the HLA Class I type of a subject, wherein group-specific sequences are used to design primer molecules which may be used in amplification protocols which accurately identify the HLA group(s) and/or allele(s) carried by the subject.
2. BACKGROUND OF THE INVENTION The Histocompatibility Locus Antigen ("HLA") Class I genes comprise three classical genes encoding the major transplantation antigens HLA-A, HLA-B, and HLA-C and seven other Class I genes of which HLA-E, HLA-F and HLA-G are probably functional genes and HLA-H, HLA-I. HLA-K and HLA-L are pseudogenes. The class I genes share a similar structure, which includes, inter alia, 5' -> 3', a 5' untranslated flanking region; a first exon ("exόn 1") having a length of approximately 73 base pairs ("bp"); a first intron ("intron 1") having a length of approximately 130 bp; a second exon ("exon 2"), having a length of approximately 250 bp; a second intron ("intron 2"), having a length of approximately 272 bp; a third exon ("exon 3"), having a length of approximately 276 bp; a third intron ("intron 3"), having a length of approximately 588 bp; and a fourth exon ("exon 4").
The HLA Class I genes are highly polymorphic among individuals. As of 1996, at least 73 alleles of HLA-A. 126 alleles of HLA-B and 35 alleles of HLA-C have been identified. This variability is of particular relevance when tissue transplantation between a donor and a host is contemplated. The histocompatibility antigens of donor and host should be as similar as possible to avoid both immune rejection of the transplanted tissue as well as graft-versus-host disease. It is therefore important to accurately identify the HLA types of donor and host. In view of the exigencies implicit in tissue transplantation, it is desirable that the typing be accomplished as efficiently as possible.
Methods for determining alleles of HLA-A, HLA-B,and HLA-C in a patient sample have been heavily investigated because of the functional importance of these genes in transplant tissue matching and autoimmune diseases. The first tests developed used immunological methods to identify epitopes expressed by various HLA loci. These tests (e.g., the complement-dependent cytotoxicity assay described in Terasaki and McClelland, Nature, 204:998, (1964)) identified broad serological specificities but were not capable of distinguishing between allelic members of a group, and sometimes mis-identified groups altogether. Unfortunately, even the most accurate of such low resolution assays cannot detect and distinguish all functionally significant transplant antigens (Anasetti et al. Hum. Immunol, 29:70 (1990)). High resolution tests performed at the nucleic acid level which distinguish among alleles of each group have become the focus of recent research. Current methods of high resolution typing include the following.
The Sequence Specific Oligonucleotide Probes ("SSOP") technique, as described in United States Patent No. 5,451,512 assigned to Hoffman-La Roche, Inc., uses a reverse dot blot format, wherein HLA-A probes are immobilized on a membrane, and the labelled target (patient sample) DNA is hybridized to the membrane-bound probe (as described in Saiki et al., 1989, Proc. Natl. Acad. Sci. 86:6230-6234). The pattern of hybridization to the probes on the dot-blot gives information regarding the HLA type of the individual. However, because hybridization is inherently not sufficiently specific to rule out minor differences in sequence between probe and patient sample, there is a possibility that the patient sample may contain an allelic variant which is not accounted for.
Another nucleic acid-based test is the Amplification Refractory Mutation System (ARMS) as described in the "HLA Class I SSP ARMS-PCR Typing Kit" Reference Manual, June 1995 edition, published by the Imperial Cancer Research Fund. This assay is based on the need for complementarity (matching) between the 3' end of an amplification primer and a target DNA sequence. Absent such matching, the primer will not function properly and no fragment will be amplified. Sequence information is deduced by determining, for various pairs of primers acting on target DNA from a patient sample, whether or not a fragment is successfully amplified. The accuracy of the technique is limited by the number of primer pairs tested and by the possibility that allelic variations exist in regions of DNA which lie between the primers. In order to overcome the foregoing shortcomings, it has been proposed that typing be accomplished by direct DNA sequencing (Santamaria et al., "HLA Class I Sequence-Based Typing" Hum. Immunol. 37, 39-50 (1993); WO 9219771; US Pat. 5,424,184). However, while direct sequencing of a patient's Class I HLA locus may conceptually be the most accurate, such sequencing may require a time- frame unsuitable for clinical practice. The success of direct sequencing methods may be expected to rely upon the design of efficient protocols and relevant primer sequences.
Prior to the present invention, direct sequencing protocols have exhibited a number of disadvantages. For example, the method of Santamaria et al., supra, fails to provide sufficient information because it focuses on cDNA (exon) sequences which, in view of exon sequence diversity, offer a very limited selection of conserved primer hybridization sites. In addition, because the Santamaria sequencing primers hybridize within an exon, they do not provide information for DNA sequence upstream of the primer which is potentially decisive for distinguishing among alleles. Further, the sites disclosed were determined before the recent discovery of dozens of more alleles that now need to be considered in identifying HLA type.
Intron sequences could provide the preferred hybridization sites for amplification and sequencing primers for the HLA-A, HLA-B and HLA-C genes because they may provide the DNA sequence of the full exon. Intron sequences for an HLA Class I gene were disclosed at least as early as 1985 (Weiss et al Immunobiol 170:367-380, (1985)). Due to their substantial diversity, and the difficulties in sequencing, few intron sequences have been published subsequently.
A number of researchers have made limited use of intron based oligonucleotides for limited aspects of HLA Class I typing.
Blasczyk et al. (Tissue Antigens 1996: 47: 102-110) used exon based amplification primers to determine group specificity. After amplification, universal sequencing primers located in intron 2 were used to sequence the amplified fragment. The paper does not disclose any intron sequence motifs from intron 1 or 3 or the 5' untranslated region.
Cereb et al. (Tissue Antigens 1995: 45:1-11), undertook the identification of intron sequences useful for locus-specific amplification primer sets for all Class I genes. These primer sets were designed to amplify all alleles of the same locus. No group specific amplification primers were sought or reported. Further, amplified fragments were characterized by SSOP and not by direct sequencing.
Johnston-Dow et al (Poster Presentation: 1995 ASHI Meeting, Dallas, TX) presented a system for direct sequence determination of HLA-A wherein degenerate exon based primers were used to amplify exons 1 to 5 of the genomic HLA-A DNA sequence. As in Cereb et al, supra, the degenerate primer pool was designed to amplify all alleles of the HLA-A locus. Group specificity was not sought or reported. Further, sequencing of the amplified fragment was obtained using a degenerate primer mix wherein primers hybridize to intron regions flanking exons 2 and 3.
A rational approach to typing of classical HLA Class I loci would provide a simplified series of steps for high resolution typing of each allele of each loci in a patient sample using intron based oligonucleotides. Further, this method would be able to identify new alleles without ambiguities.
An alternative method of intron based HLA Class I typing is the subject of previously filed US Patent Application Serial No. 08/pending (Atty Docket No. VGEN.P-037-US), assigned to an assignee of the present invention.
3. SUMMARY OF THE INVENTION The present invention relates to materials and methods for high- resolution, nucleic acid-based typing of the three classical HLA Class I genes (comprising the loci HLA-A, HLA-B and HLA-C) in a patient sample. It is based, in part, on the discovery of group-specific sequence motifs, derived from the analysis of numerous patient samples, which include sequences of the 5' flanking region, intron 1, intron 2, and intron 3. Such sequence motifs may be used to design amplification primers which may be used to identify the HLA group or type of a subject. The invention is also based, in part, on the determination of numerous allele-specific sequences which may be used to confirm the precise allelic type of a subject. The present invention provides for substantially purified nucleic acids which are capable of selectively hybridizing with group specific sequence motifs in untranslated regions of the HLA-A, HLA-B or HLA-C gene loci. Such nucleic acids, which may be comprised in a kit, may be used, alone or in conjunction with exon- based primers, to determine the group specificity of HLA-A, HLA-B, or HLA-C alleles contained in a patient sample and to identify the specific alleles present.
In particular embodiments, the present invention provides for methods of ascertaining the HLA Class I type of a subject which comprise performing a first amplification reaction which identifies the group type of the subject, and a second amplification reaction which produces allele-specific nucleic acids for sequencing.
3.1. DEFINITIONS
"Allele" means one of the alternative forms of the gene in question;
"Amplification" means the process of increasing the relative abundance of one or more specific genes or gene fragments in a reaction mixture with respect to the other genes. A method of amplification which is well known by those skilled in the art is the polymerase chain reaction (PCR) as described in United States Patents Nos. 4,683,194, 4,683,195 and 4,683,202, which are incorporated herein by reference. The PCR process involves the use of pairs of primers, one for each complementary strand of the duplex DNA (wherein the coding strand is referred to as the "sense strand" and its complementary strand is referred to as the "antisense strand"), that will hybridize at a site located near a region of interest in a gene. Chain extension polymerization (without a chain terminating nucleotide) is then carried out in repetitive cycles to increase the number of copies of the region of interest many times. The amplified oligonucleotides are then separated from the reaction mixture and used as the starting sample for the sequencing reaction. Gelfand et al. have described a thermostable enzyme, "Taq polymerase," derived from the organism Thermus aquaticus, which is useful in this amplification process (see United States Patent Nos. 5,352,600 and 5,079,352 which are incorporated herein by reference);
"Group" as used herein, refers to a subset of alleles of one loci, all of which share sequence features which distinguish them from other groups. For example, serological group reactivity (in a lymphocytotoxicity assay) is the conventional basis for nomenclature of HLA alleles. The first two digits of an allele refer to the serological group; for example, the designation A*0201, A*0202, A*0217 all are members of the A2 group. Further, typically the nomenclature refers to the serological split group (e.g., A23 and A24 are serological splits of A9;
"Group-specific sequence motif means a generally short, 1-25 nucleotide ("nt") sequence of nucleic acid which is found only in one or a few groups. Where a motif is shared by several groups in one region of the HLA locus, group- specific sequence motifs in other regions of the locus may serve as group- distinguishing features. The motif may share one or more nucleotides with the consensus sequence for the region;
"Haplotype" means the allele present on one chromosome;
"Heterozygote" means the presence of at least two different alleles of a gene;
"Homozygote" means the presence of a single species of allele of a gene;
"Locus" means a gene, such as HLA-A, HLA-B or HLA-C; "Locus specific" means an event or thing associated with only one locus;
"Patient sample" means a sample collected from a patient in need of HLA typing which contains a sufficient amount and quality of nucleic acid (preferably DNA) for the performance of an amplification reaction. A nonlimiting example of a suitable source is peripheral blood lymphocytes, tissue (including cell cultures derived therefrom, mucosal scrapes, spleen and bone marrow;
"Primer" means a polynucleotide generally of 5-50 nucleotides length which can serve to initiate a chain extension reaction;
"Sequencing" or "DNA sequencing" means the determination of the order of nucleotides in at least a part of a gene. A well known method of sequencing is the "chain termination" method first described by Sanger et al., Proc. Nat'l Acad. Sci. (USA) 74(12): 5463-5467 (1977) (recently elaborated in EP-B1- 655506, and Sequenase 2.0 product literature (Amersham Life Sciences, Cleveland) incorporated herein by reference). Basically, in this process, DNA to be sequenced is isolated, rendered single stranded, and placed into four vessels. In each vessel are the necessary components to replicate the DNA strand, which include a template- dependant DNA polymerase, a short primer molecule complementary to a known region of the DNA to be sequenced, and individual nucleotide triphosphates in a buffer conducive to hybridization between the primer and the DNA to be sequenced and chain extension of the hybridized primer. In addition, each vessel contains a small quantity of one type of optionally detectably labeled dideoxynucleotide triphosphate, e.g., dideoxyadenosine triphosphate ("ddA"), dideoxyguanosine triphosphate ("ddG"), dideoxycytosine triphosphate ("ddC"), or dideoxythymidine triphosphate ("ddT"). In each vessel, each piece of the isolated DNA is hybridized with a primer. The primers are then extended, one base at a time to form a new nucleic acid polymer complementary to the isolated pieces of DNA. When a dideoxynucleotide is incorporated into the extending polymer, this terminates the polymer strand and prevents it from being further extended. Accordingly, in each vessel, a set of extended polymers of specific lengths are formed which are indicative of the positions of the nucleotide corresponding to the dideoxynucleic acid in that vessel. These sets of polymers are then evaluated using gel electrophoresis to determine the sequence.
"Specific hybridization" means hybridization of one strand of a nucleic acid to its complement.
"Target sequence" means the preferred site for specific hybridization of a primer; and
"Untranslated region" refers to a portion of an HLA locus which is not transcribed into RNA and eventually translated into protein. Examples of untranslated regions are the 5' and 3' flanking regions and intron sequences. For example, the 5' flanking region is neither transcribed nor translated, and intron sequences are transcribed but not translated. 4. DESCRIPTION OF THE FIGURES FIGURE 1 is an illustration of the principle for an HLA class I sequencing strategy. Group-specific primers are used for PCR amplification, and universal primers located in the 2nd intron are used for sequencing, regardless of the amplified group. 5'FR= 5' flanking region; 5' UTR= 5' untranslated region (-1 to -23 from the ATG start codon in exon 1).
FIGURE 2 A and 2B depict, in schematic form, a method of the invention in which a cocktail of HLA-A group specific primers is used to amplify target DNA contained in a patient sample. The products of amplification are then separated electrophoretically in an agarose gel, allowing the identification, by fragment mobility, of fragments corresponding to groups A2 and A3. Primers specific for groups A2 and A3 are then used to amplify duplicate samples of target DNA in separate reactions, to produce A2 and A3 fragments which may then be sequenced using universal sequencing primers. FIGURE 2C and 2D depict a strategy wherein group type specificity is determined by reaction of aliquots of genomic DNA in separate reactions with a panel of primer pairs.
FIGURE 3 depicts the nucleic acid sequences of the HLA-A 5' flanking region in various alleles, including a consensus sequence (SEQ ID NO:l) as well as the sequences for the following alleles: A*0101 (SEQ ID NO:2); A*0301 (SEQ ID NO:3); A*l 101 (SEQ ID NO:4); A*l 102 (SEQ ID NO:5); A*3001 (SEQ ID NO:6); A*3002 (SEQ ID NO:7); A*3004 (SEQ ID NO:8); A*0201-l 1 (SEQ ID NO:9); A*0215 (SEQ ID NO: 10); A*0217 (SEQ ID NO:l 1); A*6801 (SEQ ID NO:12); A*6802 (SEQ ID NO:13); A*6901 (SEQ ID NO:14); A*2301 (SEQ ID NO: 15); A*2402 (SEQ ID NO: 16); A*2403 (SEQ ID NO: 17); A*2404 (SEQ ID NO: 18); A*2405 (SEQ ID NO: 19); A*2407 (SEQ ID NO:20); A*2501 (SEQ ID NO:21); A*2601 (SEQ ID NO:22); A*3402 (SEQ ID NO:23); A*4301 (SEQ ID NO:24); A*6601 (SEQ ID NO:25); A*6602 (SEQ ID NO:26); A*6603 (SEQ ID NO:27); A*2901 (SEQ ID NO:28); A*2902 (SEQ ID NO:29); A*31012 (SEQ ID NO:30); A*3201 (SEQ ID NO:31); A*3301 (SEQ ID NO:32); A*3303 (SEQ ID NO:33); A*7401 (SEQ ID NO:34); A*7402 (SEQ ID NO:36); A*7403 (SEQ ID NO:37); and A*8001 (SEQ ID NO:38). FIGURE 4 depicts the nucleic acid sequences of HLA-A intron 1 in various alleles, including a consensus sequence (SEQ ID NO:39) as well as the sequences for the following alleles: A*0101 (SEQ ID NO:40); A*0301 (SEQ ID NO:41); A*1101 (SEQ ID NO:42); A*1102 (SEQ ID NO:43); A*3001 (SEQ ID NO:44); A*3002 (SEQ ID NO:45); A*3004 (SEQ ID NO:46); A*0201 (SEQ ID NO:47); A*0202 (SEQ ID NO:44); A*0203 (SEQ ID NO:49); A*0204 (SEQ ID NO:50); a*0205 (SEQ ID NO:51); A*0206 (SEQ ID NO:52); A*0207 (SEQ ID NO:53); A*0207 (SEQ ID NO:54); A*0208 (SEQ ID NO:55); A*0209 (SEQ ID NO:56); A*0210 (SEQ ID NO:57); A*0211 (SEQ ID NO:58); A*0215 (SEQ ID NO:59); A*0217 (SEQ ID NO:60); A*6801 (SEQ ID NO:61); A*6802 (SEQ ID NO:62); A*6901 (SEQ ID NO:63); A*2301 (SEQ ID NO:64); A*2402 (SEQ ID NO:65); A*2403 (SEQ ID NO:66); A*2404 (SEQ ID NO:67); A*2405 (SEQ ID NO:68); a*2407 (SEQ ID NO:69); A*2501 (SEQ ID NO:70); A*2601 (SEQ ID NO:71); A*3402 (SEQ ID NO:72); A*6601 (SEQ ID NO:73); A*6602 (SEQ ID NO:74) A*6603 (SEQ ID NO:75); A*4301 (SEQ ID NO:76); A*2901 (SEQ ID NO:77); A*2902 (SEQ ID NO:78); A*3101 (SEQ ID NO:79); A*3201 (SEQ ID
NO:80); A*3301 (SEQ ID NO:81); A*3303 (SEQ ID NO:82); A*7401 (SEQ ID
NO:83); A*7402 (SEQ ID NO:84); A*7403 (SEQ ID NO:85); and A*8001 (SEQ ID
NO:86).
FIGURE 5 depicts the nucleic acid sequences of HLA-A intron 2 in various alleles, including a consensus sequence (SEQ ID NO:87) as well as sequences for the following alleles: A*0101 (SEQ ID NO:88); A*0201 (SEQ ID NO:89);
A*0202 (SEQ ID NO:90); A*0203 (SEQ ID NO:91); A*0204 (SEQ ID NO:92);
A*0205 (SEQ ID NO:93); A*0206 (SEQ ID NO:94); A*0207 (SEQ ID NO:95);
A*0208 (SEQ ID NO:96); A*0209 (SEQ ID NO:97); A*0210 (SEQ ID NO:98);
A*0211 (SEQ ID NO:99); A*0215 (SEQ ID NO: 100); A*0217 (SEQ ID NO: 101);
A*6801 (SEQ ID NO:102); A*6802 (SEQ ID NO:103); A*6901 (SEQ ID NO:104);
A*2501 (SEQ ID NO:105); A*2601 (SEQ ID NO:106); A*4301 (SEQ ID NO:107);
A*6601 (SEQ ID NO: 108); A*6602 (SEQ ID NO: 109); A*6603 (SEQ ID NO: 110);
A*3402 (SEQ ID NO: 111); A*2901 (SEQ ID NO: 112); A*2902 (SEQ ID NO: 113);
A*3101 (SEQ ID NO: 114); A*3201 (SEQ ID NO:115); A*3301 (SEQ ID NO: 116); A*3303 (SEQ ID NO: 117); A*7401 (SEQ ID NO: 118); A*7402 (SEQ ID NO: 119) A*7403 (SEQ ID NO:120); A*2301 (SEQ ID NO:121); A*2402 (SEQ ID NO:122) A*2403 (SEQ ID NO: 123); A*2404 (SEQ ID NO: 124); A*2405 (SEQ ID NO: 125) A*2407 (SEQ ID NO: 126); A*0301 (SEQ ID NO: 127); A* 1101 (SEQ ID NO: 128) A*1102 (SEQ ID NO:129); A*3001 (SEQ ID NO:130); A*3002 (SEQ ID NO:131) A*3004 (SEQ ID NO:132); and A*8001 (SEQ ID NO:133).
FIGURE 6 depicts the nucleic acid sequences of HLA-A intron 3 in various alleles, including a consensus sequence (SEQ ID NO: 134) as well as sequences for the following alleles: A*0101 (SEQ ID NO:135); A*0301 (SEQ ID NO:136); A*l 101 (SEQ ID NO:137); A*l 102 (SEQ ID NO:138); A*3001 (SEQ ID NO: 139); A*3002 (SEQ ID NO: 140); A*3004 (SEQ ID NO: 141); A*0201 (SEQ ID NO:142); A*0202 (SEQ ID NO:143); A*0203 (SEQ ID NO:144); A*0204 (SEQ ID NO: 145); A*0205 (SEQ ID NO: 146); A*0206 (SEQ ID NO: 147); A*0207 (SEQ ID NO: 148); A*0208 (SEQ ID NO: 149); A*0209 (SEQ ID NO: 150); A*0210 (SEQ ID NO: 151); A*0211 (SEQ ID NO: 152); A*0215 (SEQ ID NO: 153); A*0217 (SEQ ID NO: 154); A*6801 (SEQ ID NO: 155); A*6802 (SEQ ID NO: 156); A*6901 (SEQ ID NO:157); A*2301 (SEQ ID NO:158); A*2402 (SEQ ID NO:159); A*2403 (SEQ ID NO: 160); A*2404 (SEQ ID NO: 161); A*2405 (SEQ ID NO: 162); A*2407 (SEQ ID NO:163); A*2501 (SEQ ID NO:164); A*2601 (SEQ ID NO:165); A*3402 (SEQ ID NO:166); A*4301 (SEQ ID NO:167); A*6601 (SEQ ID NO:168); A*6602 (SEQ ID NO:169); A*6603 (SEQ ID NO:170); A*2901 (SEQ ID NO:171); A*2902 (SEQ ID NO:172); A*3101 (SEQ ID NO:173); A*3201 (SEQ ID NO:174); A*3301 (SEQ ID NO:175); A*3303 (SEQ ID NO:176); A*7401 (SEQ ID NO:177); A*7402 (SEQ ID NO:178); A*7403 (SEQ ID NO:179); and A*8001 (SEQ ID NO:180).
FIGURE 7 depicts a phylogenetic tree of the 5' flanking and 5' untranslated regions of HLA-A.
FIGURE 8 depicts a phylogenetic tree of introns 1-3 of the HLA-A gene.
FIGURE 9 depicts a phylogenetic tree of introns 1-3 of the HLA-B gene. FIGURE 10 depicts the results of amplification using group-specific exon region primers to determine HLA-A group type, wherein the group specificity is determined to be 6601 and 3201 (see Table 7).
FIGURE 11 depicts the results of amplification using group-specific exon region primers to determine HLA-A group type, wherein the group specificity is determined to be 020x and 680x (see Table 8).
FIGURE 12 depicts the nucleic acid sequences of the first intron of HLA-B, inlcuding a consensus sequence (SEQ ID NO:246) as well as the sequences for the following alleles: B*0702 (SEQ ID NO:247), B*0801 (SEQ ID NO:248), B*1302 (SEQ ID NO:249), B*1401 (SEQ ID NO:250), B*1402 (SEQ ID NO:251), B*1501 (SEQ ID NO:252), B*1502 (SEQ ID NO:253), B*1505 (SEQ ID NO:254), B*1508 (SEQ ID NO:255), B*1510 (SEQ ID NO:256), B*1512 (SEQ ID NO:251), B*1513 (SEQ ID NO:258), B*1517 (SEQ ID NO:259), B*1525 (SEQ ID NO:260), B*1532 (SEQ ID NO:261), B*1801 (SEQ ID NO:262), B*1805 (SEQ ID NO:263), B*27052 (SEQ ID NO:264), B*27053 (SEQ ID NO:265), B*2707 (SEQ ID NO:266), B*3501 (SEQ ID NO:267), B*3502 (SEQ ID NO:268), B*3503 (SEQ ID NO:269), B*3701 (SEQ ID NO:270), B*3801 (SEQ ID NO:271), B*3901 (SEQ ID NO:272), B*3903 (SEQ ID NO:273), B*3906 (SEQ ID NO:274), B*4001 (SEQ ID NO:275), B*4002 (SEQ ID NO:276), B*4101 (SEQ ID NO:277), B*4102 (SEQ ID NO:278), B*4201 (SEQ ID NO:279), B*4402 (SEQ ID NO:280), B*4403 (SEQ ID NO:281), B*4501 (SEQ ID NO:282), B*4601 (SEQ ID NO:283), B*4701 (SEQ ID NO:284), B*4801 (SEQ ID NO:285), B*4901 (SEQ ID NO:286), B*5001 (SEQ ID NO:287), B*5101 (SEQ ID NO:288), B*5108 (SEQ ID NO:289), B*5201 (SEQ ID NO:290), B*5301 (SEQ ID NO:291), B*5401 (SEQ ID NO:292), B*5501 (SEQ ID NO:293), B*5601 (SEQ ID NO:294), B*5701 (SEQ ID NO:295), B*5801 (SEQ ID NO:296),B*5901 (SEQ ID NO:297), B*6701 (SEQ ID NO:298), B*7301 (SEQ ID NO:299).
FIGURE 13A-B. depicts the nucleic acid sequences of the second intron of HLA-B, including a consensus sequence (SEQ ID NO:300) as well as the following alleles: B*0702 (SEQ ID NO:301), B*0801 (SEQ ID NO:302), B*1302 (SEQ ID NO:303), B*1401 (SEQ ID NO:304), B*1402 (SEQ ID NO:305), B* 1501 (62) (SEQ ID NO:306), B* 1505(62) (SEQ ID NO:307), B* 1508(62) (SEQ ID NO:308), B*1510(71) (SEQ ID NO:309), B*1513(77) (SEQ ID NO:310), B*1517(63) (SEQ ID NO:311), B*1525(62) (SEQ ID NO:312), B*1532(62) (SEQ ID NO:313), B*1801 (SEQ ID NO:314), B*2702 (SEQ ID NO:315), B*2704 (SEQ ID NO:316), B*27052 (SEQ ID NO:317), B*27053 (SEQ ID NO:318), B*2707 (SEQ ID NO:319), B*3501 (SEQ ID NO:320), B*3502 (SEQ ID NO:321), B*3503 (SEQ ID NO:322), B*3507 (SEQ ID NO:323), B*3508 (SEQ ID NO:324), B*3701 (SEQ ID NO:325), B*3801 (SEQ ID NO:326), B*3901 (SEQ ID NO:327), B*3903 (SEQ ID NO:328), B*3906 (SEQ ID NO:329), B*4001 (SEQ ID NO:330), B*4002 (SEQ ID NO:331), B*4101 (SEQ ID NO:332), B*4102 (SEQ ID NO:333), B*4201 (SEQ ID NO:334), B*4402 (SEQ ID NO:335), B*4403 (SEQ ID NO:337), B*4501 (SEQ ID NO:338), B*4601 (SEQ ID NO:339), B*4701 (SEQ ID NO:340), B*4801 (SEQ ID NO:341), B*4901 (SEQ ID NO:342), B*5001 (SEQ ID NO:343), B*5101 (SEQ ID NO:344), B*5108 (SEQ ID NO:345), B*5201 (SEQ ID NO:346), B*5301 (SEQ ID NO:347), B*5401 (SEQ ID NO:348), B*5501 (SEQ ID NO:350), B*5601 (SEQ ID NO:351), B*5701 (SEQ ID NO:352), B*5801 (SEQ ID NO:353), B*5901 (SEQ ID NO:354), B*6701 (SEQ ID NO:355), B*7301 (SEQ ID NO:356).
FIGURE 14A-E. depicts the nucleic acid sequences of the third intron of HLA-B, including a consensus sequence (SEQ ID NO: 357) as well as the following alleles: B*0702 (SEQ ID NO:358),B*0801 (SEQ ID NO:359), B*1302 (SEQ ID NO:360), B*1401 (SEQ ID NO:361), B*1402 (SEQ ID NO:362), B*1501 (SEQ ID NO:363), B*1502 (SEQ ID NO:364), B*1510 (SEQ ID NO:365), B*1513 (SEQ ID NO:366), B*1517 (SEQ ID NO:367), B*1525 (SEQ ID NO:368), B*1801 (SEQ ID NO:369), B*27052 (SEQ ID NO:370), B*27053 (SEQ ID NO: 371), B*3501 (SEQ ID NO:372), B*3502 (SEQ ID NO:373), B*3503 (SEQ ID NO:374), B*3701 (SEQ ID NO:375), B*3801 (SEQ ID NO:376), B*3903 (SEQ ID NO:377), B*3906 (SEQ ID NO:378), B*4001 (SEQ ID NO:379), B*4002 (SEQ ID NO:380), B*4101 (SEQ ID NO:381), B*4102 (SEQ ID NO:382), B*4201 (SEQ ID NO:383), B*4402 (SEQ ID NO:384), B*4403 (SEQ ID NO:385), B*4501 (SEQ ID NO:386), B*4601 (SEQ ID NO:387), B*4701 (SEQ ID NO:388), B*4901 (SEQ ID NO:389), B*5001 (SEQ ID NO:390), B*5101 (SEQ ID NO:391), B*5108 (SEQ ID NO:392), B*5201 (SEQ ID NO:393), B*5301 (SEQ ID NO:394), B*5401 (SEQ ID NO:395), B*5501 (SEQ ID NO:396), B*5601 (SEQ ID NO:397).
5. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to compositions and methods which may be used to efficiently and accurately determine the HLA Class I type of a patient sample.
The present invention is based, in part, on the determination of group- specific sequence motifs in regions of HLA Class I loci. These motifs may be used to design oligonucleotides which may be used as group-specific primers in nucleic acid amplification reactions. The present invention is also based, in part, on the determination of the sequences of regions of a wide variety of alleles of HLA Class I loci; such sequences may be used to distinguish one allele from another. Sequences of regions including the 5' flanking region of HLA-A and introns 1, 2 and 3 of HLA-A are provided herein, and are set forth in Figures 3-6.
In general, the methods of the invention may be described as follows. Comparison of nucleotide sequences of an HLA locus among members of an HLA Class I group, which lie in either untranslated or exon regions, may be used to identify group-specific motif sequences. Identification of groups may be by establishing serological relationships or using phylogenetic information, as set forth in Figures 7- 9. Based on the group-specific motif sequences, oligonucleotide primers may be designed, synthesized, and used to amplify a portion of the HLA locus. Oligonucleotides used in this manner are referred to herein as "group-specific primers" and, in particular, as "group-specific untranslated region primers" or "group- specific exon region primers", as the case may be.
In preferred nonlimiting embodiments of the invention, the primers correspond to untranslated regions of the HLA Class I locus ("group-specific untranslated region primers"). Such primers may be used in pairs, wherein each member of the pair hybridizes to an untranslated region lying on either side of at least one exon. For example, but not by way of limitation, primer pairs may be oligonucleotide pairs which hybridize to group-specific motifs in the 5' untranslated region and the first, second, or third intron; the first intron and the second or third intron; or the second and third intron.
The group-specific primers may be used in several different methods according to the invention. In a first series of nonlimiting embodiments, the group- specific primers may be used in a diagnostic manner to identify which allelic groups are present in a patient sample. In a second series of nonlimiting embodiments, the group-specific primers may be used to amplify sufficient amounts of a particular allelic fragment which is then subjected to direct nucleotide sequencing using universal sequencing primers.
According to the first series of embodiments, the present invention provides for a method of determining the HLA Class I group type of a subject comprising (i) combining a group-specific primer pair with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; and (ii) determining whether a nucleic acid product is produced by the amplification; wherein the ability of a primer pair to produce a nucleic acid product is associated with a particular HLA group type. The group-specific primers may be group-specific exon region primers or group-specific untranslated region primers. In related embodiments the present invention provides for a method of determining the HLA Class I group type of a subject comprising (i) combining a plurality of group- specific exon region primer pairs with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; (ii) determining the size of the nucleic acid products of the amplification; and (iii) correlating the size of the product with the predicted size of a fragment associated with a particular HLA group type. The plurality of primers is referred to as an HLA "cocktail" (see Figures 1 and 2). These first methods may be used to provide useful diagnostic information. For example, group type determination may serve as a first level of comparison for a histocompatibility analysis, even without identification of the specific allele(s) involved. For example, if a potential donor and host are being evaluated for tissue transplantation, if it is found that their group types do not match, no further comparison may be necessary. If, alternatively, their types do match, further analysis, for example by direct sequencing, may be desirable.
According to the second series of embodiments, the present invention provides for a method of determining the HLA Class I allelic type of a subject comprising (i) combining a group-specific oligonucleotide primer pair with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; (ii) collecting the nucleic acid product of the amplification; and (iii) determining the nucleic acid sequence of the product. The group-specific primer pair used may be determined based on the group type of the subject, as determined using the first method, described above. In preferred embodiments of the invention, group-specific untranslated region primers which span a region of the HLA locus containing allele-specific sequence may be utilized. If a subject is heterozygous, separate amplification reactions are performed for each group identified (e.g., separate reactions to amplify fragment for group A2 and group A3; see Figure 2). Sequencing may be performed using universal sequencing primers which will operate irrespective of HLA group or allelic type.
A more detailed description of the invention follows. Most alleles of the classical HLA Class I gene loci (consisting of HLA-A, HLA-B and HLA-C) can be distinguished on the basis of exon 2 and 3 alone. In one non-limiting embodiments, a method of the invention takes advantage of this fact, and employs the strategy generally described in Figure 2, using the example of HLA-A. A genomic DNA sample is prepared from a patient sample according to well known techniques. Aliquots of the genomic DNA may then separately be reacted with a panel of group- specific exon region primer pairs (Figure 2C), wherein the successful amplification of a DNA fragment is associated with a particular group type. Alteratively, as depicted in Figure 2 A), part of the sample may be treated with a cocktail of group-specific exon region primer pairs. Each primer pair in the cocktail will amplify only selected allelic groups because they specifically hybridize to group specific intron sequence motifs. Between them, under suitable polymerase chain reaction (PCR) conditions, the cocktail may amplify all known HLA-A groups, with each group specific amplification product having a different length. When reaction products are separated on an agarose gel the group(s) present in the patient sample may be identified by length.
Optionally, once the group specificity is determined, the direct sequence of alleles may be determined for precise allelic identification. As illustrated in Figure 2 B), a further part of the patient sample DNA may be treated under PCR conditions with a pair of primers that are specific for the previously determined group; preferably such primers are group-specific untranslated region primers, which span greater distances of the locus. If two groups were detected, then two separate reactions are performed. At completion of the second amplification, the reaction products are sequenced using an intron based "universal primer" which hybridizes to an intron sequence which is conserved among all alleles of the locus. Though it is theoretically possible to use a sequencing primer which is specific for the amplified group only, it is found that using a universal primer simplifies the method and the preparation of a kit. Various universal sequencing primers are specifically provided herein (see infra) which hybridize, respectively, to intron sequences flanking the 5' end of exon 2, the 3' end of exon 2, the 5' end of exon 3 and the 3' end of exon 3.
The substantial advantage of the method of the invention is that the initial group specific amplification allows a PCR based separation of haplotypes in 95% of patient samples. The separation of the haplotypes is a major achievement of this protocol since it permits the resolution of cis/trans linkages of heterozygote sequencing results which cannot be achieved with other protocols. With the instant invention, a separation of the haplotypes may be achieved in serological heterozygous samples with the sequencing primer mixes ("PMs") described in Table 2 (infra) using group-specific amplification corresponding to the serological families. The selection of the PMs used for sequencing depends on the amplification patterns of the preceding PCR-SSP low-resolution typing. The primers are designed to work with a in a single cycle protocol including, but not limited to, a PCR protocol on a Perkin Elmer System 9600, maintaining typing capacities of the laboratory. All PCR products carry sufficient sequence information for a complete subtyping. This approach is superior to a typing system using a single pair of generic primers followed by direct sequencing or SSO hybridization, even if the amplification strategy is locus-specific. The substantial advantage of Sequence Based Typing (SBT) is the definition of the cis/trans linkage of sequence motifs. SBT after generic PCR amplification cannot define the cis/trans linkage of sequence motifs and therefore mimics oligotyping. The rapidly growing number of newly identified alleles confirms that new alleles have arisen mainly from gene conversion events which have usually taken place between different alleles of the same locus. Newly identified alleles are not characterized by new sequence motifs, but by a new combination of already existing sequence motifs. From this observation it may be concluded that the amount of alleles at each locus may theoretically represent all possible combinations of known sequence motifs. Of course, some of them will fall victim to negative selection. Nevertheless, it can be expected that still an enormous amount of alleles are yet unidentified. PCR-SSP subtyping strategies using a restricted number of oligonucleotides which do not cover all possible sequence motifs suffer from this limitation. If the cis/trans linkage of the analyzed polymoφhic regions is not defined some new alleles may be mistyped as a heterozygous combination of known alleles. This has consequences with respect to SBT strategies. An unambiguous typing result of SBT after generic PCR amplification is only unambiguous with regard to the presently known HLA sequence databank. However, with the detection of new alleles this result can become ambiguous over the course of time. This observation has already been made in PCR based DRB1 typing during the last five years and will probably also occur in PCR based class I typing. Considering the above points, the idea of the instant SBT approach is not only to identify the HLA-A, HLA-B and HLA-C subtypes, but to cover as many of the polymoφhic sites as possible and to define the cis/trans linkage of the polymoφhic sequence motifs. Typing results obtained with this method will remain unambiguous independently of the growing HLA sequence databank.
In general, group-specific primers are desirably designed to facilitate hybridization to their intended targets. It should be taken into account that homology between different groups, and indeed between group-specific motifs, may exist. Accordingly, in preferred embodiments of the invention, a primer may be designed such that it hybridizes to its group target under relatively stringent conditions. For example, one or more mismatched residues may be engineered into the 3 ' domain of the molecule. Further, the primer may be designed such that it differs from any naturally occurring or consensus sequence, but rather has mismatches inserted which serve to further reduce hybridization of the primer to target DNA of a group other than the intended target group. Under certain circumstances, one or more mismatches may be introduced into the 5' end to destabilize internal haiφin loops; such changes are not generally expected to enhance the efficiency of the primer.
The following nucleic acid sequences may be comprised in group- specific untranslated region primers for HLA-A which are specific for the groups as indicated in Table 1. The sequences in Table 1 have the following sequence identifiers: 11-210 is SEQ ID NO:35, and the remaining sequences Il-230m through 13-282 have SEQ ID NOS S: 181 -202, respectively.
Table 1.
Figure imgf000020_0001
Figure imgf000021_0001
The present invention provides for nucleic acid molecules comprising regions having the foregoing sequences or their functional equivalents.
"Functional equivalents" of a nucleotide sequence, as defined herein, refers to nucleotide sequences which, when contained in a nucleic acid molecule, retain the specificity of the disclosed sequence and/or hybridize to the complement of the disclosed sequence under stringent hybridization conditions (e.g., .1 x SSC at 65°C).
In specific nonlimiting examples, oligonucleotides comprising the above sequences, or functional equivalents thereof which retain specificity, may be used in a PCR amplification reaction in the following pairwise combinations to generate group specific fragments of the lengths as indicated in Table 2. Table 2.
Figure imgf000022_0001
The following nucleic acid sequences may be comprised in group- specific exon region primers for HLA-A which are specific for the groups as indicated in Table 3 (sense primers) and Table 4 (antisense primers). The sequences in Table 3, primer numbers 85, 118, 120, 123, 127, 129, 134, 137, 140, 160, 167, 175, 193 and 202, have SEQ ID NOS:203-216, respectively. The sequences in Table 4, primer numbers 98, 115, 116, 117, 126, 133, 135, 136, 138, 142, 144, 145, 152, 153, 154, 155, 161, 165, 168, and 180, have SEQ ID NOS:217-236, respectively, and primer number 119 has SEQ ID NO:245. The present invention provides for nucleic acid molecules comprising regions having the foregoing sequences or their functional equivalents. They may, in specific nonlimiting examples, be used in pairs as set forth in Table 5. Table 3.
Figure imgf000023_0001
Table 4. Antisense Primers
Figure imgf000023_0002
Figure imgf000024_0001
Table 5.
Group-specific exon pairs
Figure imgf000024_0002
Figure imgf000025_0001
In general, the foregoing group-specific primers may be modified by addition, deletion, or substitution of bases, to produce functionally equivalent primers with the substantially the same specificity, that is to say, such that the group specific polymoφhism(s) are not removed. Such modifications may be constrained by several parameters. First, exact matching at the 3' end is particularly important for primer extension. Preferably, at least 5 nt are complementary to target DNA. When the exactly conserved region is short, for example, less than 10 nt, it is not advisable to change the primer sequences. The primer is preferably less than 50% G or C. Also, the primers should be designed to avoid specific hybridization with pseudogenes or non-classical HLA Class I loci. In the examples which follow, the melting temperature of all primers used was about 62C to ensure uniform amplification conditions.
For sequencing puφoses, the following nucleic acid sequences are sequences which hybridize to all alleles of the indicated loci, in the locations indicated (and hence are referred to as universal sequencing primers). The primers in Table 6 are assigned consecutively SEQ ID NOS:237-244.
Table 6
Figure imgf000026_0001
The foregoing three groups of pπmers include 5' and 3' pπmers for sequencing across exons 2 and 3, respectively
The selection of suitable universal sequencing pπmers is constrained by a vaπety of rules including the following Sequencing pπmer hybπdization sites must e within the fragment amplified by the group specific amplification pπmers All pπmers are desirably selected to provide informative sequence and not start too far downstream of useful sequence Preferred pπmers hybπdize to conserved sites near the exon intron boundaπes
Direct sequencing of the 2nd and 3rd exon may be performed from either the 5' or 3' end using the pπmers of Table 6 supra which are located in conserved regions of the 1st, 2nd and 3rd mtron as indicated. These conserved regions were found to be identical in all samples investigated, regardless of the amplified group.
An important issue of direct sequencing for HLA class I genes is the generation of a specific PCR product, which is rather complicated due to the extensive sequence homologies between the different HLA class I loci including several pseudogenes. If an adequate PCR product has been generated, any sequencing chemistry should be applicable.
In the normal case, since group specific amplifications take place before sequencing, only one allele at a time is sequenced, resulting in unambiguous homozygous sequencing results. In these cases alleles are relatively easy to identify, even without software.
However, in about 5% of cases, both alleles come from the same group, but the sequence results show heterozygosity. In practice, when viewed by a fluorescence-detecting system, the sample appears as a normal sequence of bases with, sporadically, two bases at one site, each with half the peak height. This result flows from the high degree of similarity shared among all alleles of each HLA gene; sequence heterozygosity flows from base substitutions. The laborious task of determining which alleles are present in the test sequence may be simplified using computer analysis. A software program called GeneLibrarian developed by Visible Genetics, the assignee of the present application, rapidly compares the test sequence to a database which includes all possible homozygote and heterozygote combinations of the alleles. The program identifies those stored sequences that are closest matched to the test sequence. The operator can then determine which allelic pair is in the test sample. If no allelic pair shows an exact match, the software allows the operator to review the test sequence to determine if errors in base-calling or other artifacts are interfering with the analysis.
The order of sequencing reactions may be selected by the operator. Each exon of each locus may be sequenced on the sense strand or anti-sense strand. A preferred method is to obtain sequence from one strand from each exon. If the results contain ambiguities, then the amplicon is re-sequenced using the other primer for the same exon. The availability of both sequencing primers provides redundancy to ensure robust results.
In some cases, it may be advantageous to employ an equimolar mixture of 2 or more oligonucleotide species. Mixtures of oligonucleotides may be selected such that between them they will effectively prime the sequencing reactions for all alleles of the locus at the same site.
In an alternative technique, instead of using dye terminators, a dye- labelled primer may be employed. In this case, the selected sequencing primers is labelled on the 5' end with a detectable label, using phosphoramidite or NHS/dye ester techniques well known in the art. The label selected depends on the detection instrument employed. The label for use with an OpenGene System (Visible Genetics Inc., Toronto, ON) is the fluorophore Cy5.5 (Amersham Life Sciences, Cleveland OH). Fluorescein-isothio-cyanate may be used for detection with the ALF Automated Sequencer (Pharmacia, Piscataway NJ). In this method, which is well known to one skilled in the art, the sequencing reaction mixture is changed slightly to include only one ddNTP per reaction mixture. For detection of reaction products, the sample may be mixed with an equal volume of loading buffer (5% ficoll plus a coloured dye). 1.5 ul of these samples may be loaded per lane of a MicroCel electrophoresis cassette loaded in a MicroGene Blaster automated DNA sequencer (Visible Genetics Inc., Toronto). The sample may be electrophoresed and read.
Results may be displayed and analyzed with GeneObjects software. The sequence of bases may be determined, and the HLA allele to which the sequence corresponds may then be identified. This process may be performed for each locus (HLA-A, HLA-B, HLA-C) and the results may then be reported to the patient file.
It is well known in the art that different variations of sequencing chemistry may be employed with different automated DNA sequencing instruments. Single dye instruments, such as the OpenGene System (Visible Genetics Inc., Toronto), the ALF Express (Pharmacia, Uppsala, Sweden) or the Li-Cor 4000L (Lincoln City, Nebraska) generally use dye-labeled primers. In these systems a single chain termination sequencing reaction mixture is run per lane.
Multi-dye sequencers, such as the Prism 377 (applied Biosystems, Inc., Foster City, California) detect multiple dyes in a single lane. This technology conveniently employs dye-terminator chemistry, where the chain-terminating nucleotides are themselves labeled with fluorophores (see United States Patent No. 5,332,666, to Dupont de Nemours and Co.). In this case, the reaction products carrying four different labels may be run in a single lane. Either single dye or multi-dye chemistry may be employed according to the present invention, along with other sequencing chemistries. Additional methods for reducing the numbers of reactions required to obtain detailed sequence information from the classical HLA Class I loci are disclosed in commonly owned United States Patent Applications USSN 08/577,858 (for single-track sequencing) and USSN 08/640,672 and 08/684,498 (for single-tube sequencing).
Directly analogous methods may be used to determine the HLA-B type of an individual. As with the HLA-A gene, the second and third exon of the HLA-B gene are polymoφhic, and therefore provide for sequencing based typing strategies. A list of primers, together with their sequence, length, and localization, is provided in Table 7 below. The primers in Table 7 are assigned consecutively SEQ ID NOS:398- 435.
Figure imgf000030_0001
Figure imgf000031_0001
Suitable primer mixes for HLA-B typing are set forth in Table 8 below.
Figure imgf000031_0002
Figure imgf000032_0001
Figure imgf000033_0001
Sequencing primers suitable for HLA-B typing are set forth in Table 9, below.
TABLE 9
B. Sequencing primers
Bseq2 AS 5' ggA TCT Cgg ACC Cgg AgA CTC g 3' 22 74°C Intron 2, 70..91 Mismatch for B*7301 at Pos. 9 and 10 from 3' end For Sequencing of HLA-B exon 2
Bseq3 S 5' ACC Cgg TTT CAT TTT CAg TTG 3 21 60°C Intron 2,153..173 For Sequencing of HLA-B exon 3 Bseq3AB S 5' TTT ACC Cgg TTT CAT TTT CAg TT 3'23 62°C Intron 2,150..172
For Sequencing of HLA-A and B exon
3
Mismatch for B*7301 at Pos. 8 and 9 from 3' end
Mismatch for A*8001 at Pos. 19 from
3 end
HLAB3X3.SEQ 5'TCC CCA CTG CCC CTG GTA 18 55-C Intron 3, 2-19 (also BC33, 3IN3BC02)
No requirement for DEAZA
HLAB5X3.SEQ 5'GGK CCA GGG TCT CAC A 16 55-C Intron 2, 258- (also BC5X3INEX) Exon 3, 9
Requirement for DEAZA
HLAB3X2.SEQ 5'ATC TCG GAC CCG GAG ACT 18 60"C Intron 2, 78-98
(also A seq3)
Requirement for DEAZA
HLAB5X2.SEQ 5'TCC CAC TCC ATG AGG TAT TTC 21 55°C Exon 2, 3-23 (also ABC25, SPE2, 5PE2)
No requirement for DEAZA
The primers in Table 9 are assigned consecutively SEQ ID NOS:436-
442.
The protocol described in working example 8, infra, may be used to accomplish HLA-B typing using the foregoing materials.
The nucleic acids described above may be comprised in a kit for use in practicing the methods of the invention. In addition to the group-specific primers and primer pairs disclosed, such kits may further comprise buffers, reagents, and enzymes such as, amplification enzymes including but not limited to, Taq polymerase. In specific, non-limiting embodiments, the kit may comprise group-specific exon region primers (for example, as a "cocktail" comprising a plurality of primers) as well as group-specific untranslated region primers; such primers may be contained in individual tubes.
In a specific, nonlimiting embodiment of the invention, the following method may be used to perform allele typing, here exemplified for HLA-B but, depending on the choice of primers, applicable to HLA-A as well. The following reagents may be used: 2.5 mM deaza dNTP Mix (2.5 mM dATP, 2.5 mM dCTP, 2.5 mM dTTP, 1.25 mM dGTP, 1.25 mM 7-DEAZA dGTP); 166 mM ammonium sulphate (Sigma BioSciences); 100% DMSO; PCR primers (e.g., pairs selected from Table 8); genomic DNA control (60 ng/μl); Sequencing Buffer (260 mM Tris-HCl, pH 8.3, 39 mM MgCl2); 300:1 deaza terminators, including deaza A terminator (750 μM dATP, 750 μM dCTP, 560 μM dGTP, 750 μM dTTP, 190 μM 7-deaza dGTP, 2.5 μM ddATP), deaza C terminator (750 μM dATP, 750 μM dCTP, 560 μM dGTP, 750 μM dTTP, 190 μM 7-deaza dGTP, 2.5 μM ddCTP), deaza G terminator (750 μM dATP, 750 μM dCTP, 560 μM dGTP, 750 μM dTTP, 190 μM 7-deaza dGTP, 2.5 μM ddGTP) and deaza T terminator (750 μM dATP, 750 μM dCTP, 560 μM dGTP, 750 μM dTTP, 190 μM 7-deaza dGTP, 2.5 μM ddTTP); Sequencing Primers 5x2.seq, 3x2.seq,5x3.seq, 3x3. seq (see, e.g., Table 9); Thermosequencase 32 U μl (e.g., Thermosequenase cycle sequencing core kit, Amersham LifeScience, Product No. US 79610); Enzyme Dilution Buffer (10 mM Tris-HCl, pH 8, 1 mM 2-ME, 0.5% (v/v) Tween-20, 0.5% (v/v) NP-40 ; e.g., from Amersham LifeScience); Pink Loading Dye (Amersham); 10X PCR Buffer II (10 mM Tris-HCl, pH 8.3; 500 mM KCl); Taq DNA polymerase (e.g., Perkin Elmer or Roche); 25 mM MgCl2; molecular grade water, and mineral oil (to prevent evaporation if a thermocycler without a heated lid is used). Apparatus used in the method may include a thermocycler (e.g., PE 9600 or MJ PTC) wherein the ramping time is adjusted to l°C/sec, and tubes and trays supplied by the manufacturer of the thermocycler, wherein the use of trays and tubes fabricated from polypropylene rather than polystyrene is preferred.
First, according to the specific embodiment referred to in the preceding paragraph, the following HLA Locus Amplification Protocol may be used. Reagents (except enzyme) may be thawed at room temperature, vortexed, and microfuged briefly, and placed on ice prior to use. Enzyme may be removed from the freezer when needed. On ice, the following master mix may then be prepared by combining, in the following order, (quantities provide for one 25 μl reaction): molecular grade water 7.75 μl; 10X PCR Buffer II (without MgCl2) 2.5 μl; 2.5 mM deaza dNTP Mix 2.0 μl; 25 mM MgCl2 1.5 μl; 100% DMSO 2.5 μl; 166 mM Ammonium Sulphate 2.5 μl; PCR primers 1.0 μl; and 5U/μl Taq polymerase 0.25 (pipet gently up and down to mix). The master mix (which has a volume of 20μl) may then be introduced into a labelled 0.2 ml thin-walled amplification tube, and 5 μl of 60 ng/μl genomic DNA may be added to produce a final concentration of 300 ng of DNA per reaction. The resulting reaction mixture may then be subjected to the following cycles in a thermocycler to result in amplification:
(1) denaturation at 94°C for 5 minutes, cycle IX with
(2) denaturation at 94°C for 30 seconds;
(3) annealing at 63°C for 30 seconds, cycle 35X with
(4) extension at 72°C for 60 seconds;
(5) extension at 72°C for 5 minutes, cycle IX; and
(6) soak at 4°C, cycle IX.
To analyze the resulting amplification product, a 1% agarose gel containing ethidium bromide may be prepared, and 4 μl of the PCR product may be loaded on the gel. Samples may then be run into the gel electrophoretically, along with size markers, and the size of the fragment may be compared with the size of the expected product (see, for example, Table 8).
The resulting amplification product may then be sequenced as follows. Four .2 ml thin-walled tubes may be placed on ice and labelled A, C, G and T, respectively. Three microliters each of deaza A, C, G and T terminators may be introduced into the appropriately labeled tube. Thermosequenase enzyme may then be diluted 1/10 in a separate tube by combining 1 μl of thermosequenase with 9 μl of enzyme dilution buffer, on ice. In a separate .5 ml tube, on ice, the following may be combined to form a master sequencing mix: Sequencing Buffer 2.5 μl; Sequencing Primer 2.5 μl; 100% DMSO 3.5 μl; amplification product 4.5 μl; molecular grade water 6.0 μl; 1/10 diluted Thermosequenase 3.0 μl (TOTAL VOLUME 22 μl). Five microliters of the foregoing master sequencing mix may then be added to each of the four tubes containing the deaza terminators. If necessary, the reaction mixtures may be covered with 8 μl of mineral oil and subjected to the following cycle sequence:
(1) denaturation at 94°C for 2 minutes, cycle IX with
(2) denaturation at 94°C for 30 seconds;
(3) annealing at 55°C for 30 seconds, cycle 35X with
(4) extension at 70°C for 60 seconds;
(5) extension at 70°C for 2 minutes, cycle IX; and
(6) soak at 4°C.
The reaction products may then be run on a sequencing gel to ascertain the sequence of the amplification product, using standard techniques.
Methods of high resolution typing are detailed in the examples below, which examples are set out to exemplify the method of the invention and not to limit the scope of it in any way.
6.EXAMPLE: DETERMINATION OF HLA-A GROUP TYPE
Genomic DNA was prepared from patient samples according to standard methods, such as a standard salting-out procedure (as provided by the Puregene DNA Isolation Kit, Gentra Systems, Inc., Minneapolis) or by detergent and proteinase K treatment (Current Protocols in Molecular Biology, Eds. Ausubel, F.M. et al, (John Wiley & Sons; 1995)).
All primers were synthesized on a Gene Assembler plus (Pharmacia, Uppsala, Sweden), and purified by fast protein liquid chromatography. The sequence, length, melting temperature (Tm), group specificity localization of the primers are given in Tables 3 (sense primers), 4 (antisense primers) and 5 (primer pairs). Internal positive control primers were: 5' primer hGHI 5'GCC TTC CCA ACC ATT CCC TTA 3', (SEQ ID NO:336) 21mer, Tm=64°C, nucleotide position 5560-5580; 3' primer hGHI 5' TCC ATG TCC TTC CTG AAG CA 3', (SEQ ID NO:349) 20mer, Tm=60°C, nucleotide position 6614-6633. These control primers amplify a 1074 bp fragment of the human growth hormone gene.
Group-specific identification was performed as follows. Aliquots of genomic DNA were separately reacted with a panel of 24 group-specific exon region primer pairs set forth in Table 5, supra (see Blasczyk et al, 1995, Tissue Ant. 46:86- 95). An amplification cocktail for pairs of primers was prepared in 10 μl volume using standard lOx Perkin-Elmer buffer (lx buffer: 50 mM KCl; 1.5 mM MgCl2; 10 mM Tris-Hcl, pH 8.3; 0.001% (w/v) gelatin) supplemented with 5% glycerol and 0.1 μl Cresol-red, sodium salt (Cresol-red stock solution: 10 mg/ml). The use of glycerol and cresol red avoids the necessity of using an agarose gel loading buffer. Additionally, glycerol increases the PCR yield.
The PCR mix for a single SSP tube was as follows:
Genomic DNA 100 ng 1.00 μl
Taq polymerase, 0.4 U 0.08 μl dNTPs, lO mM 0.80 μl
Buffer, lOx 1.00 μl
Glycerol 0.50 μl
Cresol red lOmg/ml 0.10 μl dH20 1.52 μl imer Pair + Control
Primer Pair 5.00 u\
Total 10.00 μl The PCR solution was prepared in volumes that would accommodate
30 reactions. The amount of primers used in each 10 μl PCR volume was 3 pmol of each HLA-A primer and 0.8 pmol of each internal control primer.
The reaction mixture was mixed well, then heated in a Thermo-Cycler 9600 (Perkin-Elmer, Inc) and subjected to the following protocol. After an initial denaturation, a first round with 10 two-temperature cycles was followed by 20 three- temperature cycles.
1) Initial denaturation at 95°C for 5 min.
2) First 10 cycles i) Denaturation at 95°C for 30 sec. ii) Annealing and extension at 65°C for 50 sec.
3) Last 20 cycles i) Denaturation at 95°C for 30 sec. ii) Annealing at 62°C for 50 sec. iii) Extension at 72°C for 30 sec.
The reaction tube was then cooled on ice. For visualization, 8 ul of the amplification product were run on a 2 % agarose gel prestained with ethidium bromide (0.2 ug/ml). The results were compared to a control lane with known size markers. The reaction products were visualized either as two bands (alleles from different groups) or a single band (alleles from same group). The size of the band(s) were determined and group specificity was assigned according to the length assignments in Table 5.
Figures 10 and 11 show typical gel results, which, as shown in Tables
7 and 8, were inteφreted to determine what group specificities were present in genomic DNA samples tested. In Tables 10 and 1 1, the column titled "Position" refers to the primer mix no. of Table 5.
Table 10.
Position HLA Specificitv Kontr. Species ampl. PM
1 A*0101,0102,8001 1
2 A*0201-0217 2
3 A*0301,0302 3
4 A*0101,3601 36
5 A*1101,1102 11
6 A*2301 23
7 A*2402-2407 24
8 A*2603,2605,6601 X 10.1
9 A*2501 25
10 A*2601,2602,2604,4301 26
11 A*3401,3402 34
12 A*6602 6602
13 A*1101, 1102,3401,3402, X 10.2
6601,6602,
A*68011,6802,6901
14 A*4301 43
15 A*68012,6802,6803 68
16 A*6901 69
17 A*2901,2902,3101,3201 X 19
3301-3303, A*7401
18 A*2901,2902 29
19 A*3001-3004 30
20 A*3101 31
21 A*3201,2501 X 32 Table 11
Position HLA Specificitv Kontr. PM
1 A*0101,0102,8001 1
2 A*0201-0217 X 2
3 A*0301,0302 3
4 A*0101,3601 36
5 A*1101,1102 11
6 A*2301 23
7 A*2402-2407 24
8 A*2501,2601-2603, 10.1
2605,6601
9 A*2501 25
10 A*2601,2602,2604,4301 26
11 A*3401,3402 34
12 A*6602 6602
13 A*1101, 1102,3401,3402 X 10.2
6601,6602, A*68011,6802,
6901
14 A*4301 43
15 A*6801,6802 X 68
16 A*6901 69
17 A*2901-2902,3101,3201, 19
3301-3303, A*7401
18 A*2901,2902 29
19 A*3001-3004 30
7. EXAMPLE: DETERMINATION OF GROUP SPECIFICITY USING A PRIMER COCKTAIL
Group specific low-resolution typing of the patient sample may be performed as follows. First, a stock PCR amplification reaction mixture may be prepared for 30 reactions: id dNTPs lOmM 24
Glycerol 100% 15 lOx PCR Buffer* 30
Cresol-red (lOmg/ml) 3.0
H2O 45_ final 1 117 *1 X PCR Buffer comprises 10 MM Tris-HCl pH 8.3, 50 mM KCl, 1.5 mM MgC12 and 0.001% (w/v) gelatin.
The stock mixture may be prepared in a large volume and be stored for at least one month at 4°C or be aliquoted (117.0 μl) and stored at -30°C for at least six months. Repeated thawing and freezing should be avoided.
A mixture containing all the HLA-A group specific amplification primers listed in Table 5 may be prepared separately (the "Cocktail"). One member of each primer pair is labelled on the 5' end with a fluorescent label. Final Cocktail concentrations may be designed to provide 3 pmol of each HLA-A primer per 5 μl. Optionally, an internal control primer may be added (to determine among other things, the success of amplification) in the amount of 0.8 pmol per 5 ul. Suitable internal control primers amplify a 1074 bp fragment of the human growth hormone gene (see supra).
To perform the low resolution amplification reaction, the reaction mixture may be prepared as follows:
Volume Stock Mixture 5 μl
Cocktail 5 μl
Patient sample DNA 100-250 ng 1 μl Taq Polymerase Enzyme 0.4 U 0.08 μl
PCR cycle parameters may be adjusted for a Perkin-Elmer System 9600 thermal cycler. After an initial denaturation, a first round with 10 two- temperature cycles may be followed by 20 three-temperature cycles: 1) Initial Denaturation at 95 °C for 5 min; 2) First 10 cycles i) Denaturation at 95 °C for 30 seconds and ii) Annealing and extension at 65 °C for 50 seconds; 3) Last 20 cycles i) Denaturation at 95 °C for 30 seconds, ii) Annealing at 62°C for 50 seconds and iii) Extension at 72 °C for 30 seconds.
The reaction tube may then be cooled on ice. For visualization, 2ul of the amplification product may be run on a polyacrylamide gel giving single nucleotide length resolution such as in a MicroGene Blaster. The results were compared to a control lane with known size markers. The reaction products may be visualized either as two bands (alleles from different groups) or a single band (alleles from same group). The size of the band(s) may be determined and group specificity may be assigned according to the length assignments in Table 5.
8. EXAMPLE: DETERMINATION OF ALLELIC TYPE BY SEQUENCING After determining group type specificity, group specific amplification of a fresh portion of the patient sample may be performed using a single pair of primers specific for the group in question to generate sequencing template. In a preferred, nonlimiting embodiment, amplification primers may be selected from Table 2, supra, which lists group-specific untranslated region primers. This second amplification serves two puφoses. First, it confirms, by successful amplification, the group determination of the low resolution test. Second, it generates sequence information which may be used for accurate allele identification. If two groups are identified, two separate reactions may be performed each using a different primer pair.
8.1. PCR PROTOCOL
The same PCR protocol may be used for all primer mixes used for template generation. The PCR amplification may be set up in a total volume of 50μl in order to produce enough PCR product for more than 10 sequencing reactions. This ensures that, if anything fails during the sequencing process, sequencing can be repeated without generation of a new template. The high stringency of the PCR primers and protocol detailed below makes the use of a "hot start approach" unnecessary. The following PCR reaction mix may be used: volume per reaction
5X PCR buffer* lO.Oμl
DMSO l.Oμl
2.5mM each dNTP 5.0μl ddH2O 27.8ul
Total 43.8μl
Sense primer** (lOpmol/μl) l .Oμl
Antisense primer* * ( 1 Opmol/μl) 1. Oμl
Taq Polymerase (5U/μl) 0.2μl
Genomic DNA (1 OOng/μl) 4.0/
Final Total 50.0μl Composition of 5X PCR buffer:75mM (NH4)2SO4; 17.5mM MgCl2; and
Figure imgf000043_0001
**The pair of group specific amplification primers may be selected from those disclosed in Table 2, supra.
PCR cycle parameters may be adjusted for a Perkin-Elmer System 9600 thermal cycler. After an initial denaturation, a first round with 10 two- temperature cycles may be followed by 20 three-temperature cycles. 1.) Initial Denaturation at 95 C for 5 min 2.) First 10 cycles i) Denaturation at 95 C for 30 seconds ii) Annealing and extension at 65 C for 50 seconds 3.) Last 20 cycles i) Denaturation at 95 C for 30 seconds ii) Annealing at 62 C for 50 seconds iii) Extension at 72 C for 30 seconds lOμl of the PCR product may then be run on a 2 % agarose gel prestained with ethidium bromide (0,2 μg/ml). A distinct band of the expected size should be seen.
8.2. SEQUENCING REACTION PROTOCOL
The sequencing reactions may be carried out with AmpliTaqTM DNA Polymerase FS dye terminator cycle sequencing chemistry using the Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit FS (Perkin Elmer Applied Biosystems Division, Foster City, CA) according to the manufacturer's protocol. This Kit contains the four ddNTPs with different fluorescence labels (=Dye Terminators). The PCR fragments may be used directly for sequencing without any prior purification step.
To simplify the pipetting steps, a master mix may be prepared consisting of the 5'Biotin labeled sequencing primer, ddH2O and the Kit reagents. This master mix should be prepared immediately prior to use and can be kept at room temperature until use. The sequencing master mix for one reaction may comprise 3.0 μl of a lpmol/μl solution of sequencing primer; 6.0 μl ddH20, and 8.0 μl of premixed sequencing reagents; for 36 + 1 reactions, these amounts are increased, respectively, to 111.0 μl; 222.0 μl; and 296.0 μl, respectively. The sequencing primer may be selected from the sequencing primers for HLA-A set forth in Table 6, supra.: The master mix may be aliquoted in a volume of 17μl for each sequencing reaction in a 200μl PCR tube and 3μl of the unpurified PCR product are added. The reaction mixes may then be subjected to 25 cycles in a Perkin Elmer thermal cycler 9600. Each cycle consists of 10 sec 95 C, 5 sec 50 C and 4 min 60 C. 8.3. PURIFICATION OF EXTENSION PRODUCTS
After the sequencing reaction the extension products are desirably separated from the unincoφorated Dye Terminators which would otherwise interfere with the fluorescence-based detection process of the electrophoretically separated sequencing fragments.
For each sequencing reaction, 50 μg (5 μl) Strep tavidin-coated Dynabeads M-280 (Dynal Inc., Oslo, Norway) may be washed in 5 μl of 2x Binding and Washing buffer ("B&W"; 2X B&W buffer: 2M NaCl, lOmM Tris-HCl pH 7.5, lmM EDTA). The beads may then be resuspended in 20 μl of 2x B&W.
To each 20μl sequencing reaction, 20μl of resuspended beads may be added, and the mixture may be incubated at room temperature (20-25 C) for 15 minutes. The beads may then be immobilized, the supernatant may be removed, and then the beads may be washed once in 70% ethanol by pipetting up and down five times. Then, as much as possible of the ethanol may desirably be removed, because residual ethanol may interfere with electrophoretic gel mobility.
For each sequencing reaction, 4μl of loading buffer (5:1 Formamide- 25mM EDTA pH 8.0, 50mg/ml Dextran Blue) may be added.
8.4. ELECTROPHORESIS AND DATA COLLECTION
Samples prepared by the foregoing methods may be used immediately or be stored at 4 C at least for 24 hours before starting the electrophoretic separation. Prior to the electrophoretic separation, each reaction may be incubated at 90 C for 2 minutes. 3μl of each sample may be loaded on a prerun sequencing gel. For an automated ABI 377 sequencer (Applied Biosystems, Foster City, CA) a 0,2mm thick 5% polyacrylamide (acrylamide:bisacrylamide = 29:1) - 7 M urea gel may be used [gel composition: 21.0 g urea, 8.4 ml 30% acrylamide (stock solution: 58g acryl- amide, 2g bisacrylamide in bidistilled water), 6.0 ml TBE buffer (lOx TBE-buffer: 108.0 g tris base, 55.0 g boric acid, 7.4 g Na2EDTA), 15 μl TEMED, 350 μl 10% Ammoniumpersulfate (1.0 g Ammoniumpersulfate in 10 ml ddH2O), 20.0 ml ddH20]. Electrophoresis may be run at constant 48 watt for 8h. Data collection may be initiated immediately after starting the electrophoresis on the ABI377. Data analyses may be performed thereafter using the ABI analysis software (version 2.1.1).
8.5. DATA INTERPRETATION AND HLA TYPING
After data collection, the chromatograms may be printed and sequences may be compared manually to existing HLA data in the EMBL databank and the sequences compiled by Arnett and Parham. Due to the group-specific amplification and the lack of heterozygous positions, manual analysis is typically very fast. Alternatively, sequences may be checked with the data analysis editor (Sequence NavigatorTM, Applied Biosystems) and aligned with any sequence alignment program.
Various publications are cited herein, the contents of which are hereby incoφorated by reference in their entireties.
SEQUENCE LISTING
<110> BLASCZYK, RAINER LEUSHNER, JAMES
<120> METHOD AND KIT FOR CLASS I HLA TYPING
<130> 30861A
<140> 08/909,290 <141> 1997-08-11
<150> 08/766,189 <151> 1996-12-12
<160> 442
<170> FastSEQ for Windows Version 3.0
<210> 1 <211> 450 <212> DNA <213> homo sapiens
<400> 1 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctcttttg ggagccgtac ccggggcagg gagaggaaag tgaaaagtag ggcattagag 420 acagggactt gacctgaggg actgagggtg 450
<210> 2 <211> 449 <212> DNA <213> homo sapiens
<400> 2 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cgcttcgcga gacagagtta cagagggact cagaaccggg tcctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gtaatagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 3 <211> 449 <212> DNA <213> homo sapiens
<400> 3 gagccgcaga cccctcttag actcagggcc acccacgcac gcccgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgagac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cgcttcgcga gacagagtta cagagggact cagaaccggg tcctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gtaatagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 4 <211> 449 <212> DNA <213> homo sapiens
<400> 4 gagccccaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttctcgctgg 60 cgcttctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgagaaca 300 cgcttcgcga gacagagtta cagagggact cagaaccggg tcctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gtaatagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 5 <211> 449 <212> DNA <213> homo sapiens
<400> 5 gagccccaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttctcgctgg 60 cgcttctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgagaaca 300 cgcttcgcga gacagagtta cagagggact cagaaccggg tcctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gtaatagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 6 <211> 449 <212> DNA <213> homo sapiens
<400> 6 gagccgcaga cccctcttag actcagggcc acccacgcac gcccgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgacact gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cgcttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gtaatagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 7 <211> 449 <212> DNA <213> homo sapiens
<400> 7 gagccgcaga cccctcttag actcagggcc acccacgcac gcccgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgacact gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cgcttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gtaatagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 8 <211> 449 <212> DNA <213> homo sapiens
<400> 8 gagccgcaga cccctcttag actcagggcc acccacgcac gcccgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct acttcctggg atgcatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgacact gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cgcttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gtaatagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 9 <211> 448 <212> DNA <213> homo sapiens
<400> 9 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gggggttagg tatgtggcgg aagccccgga 240 ctctgggact ctcggtgcgg accccgggac cctgaagcgg gactggggag acgaagacac 300 ggttcgcgag acagagttac agagggactc agaaccgggt tctcgacaga ctctttgttc 360 cctctttggg agccgtaccc ggggcaggga gaggaaagtg aaaaataggg cattagagac 420 agggacttga cctgagggac tgagggtg 448
<210> 10 <211> 449 <212> DNA <213> homo sapiens
<400> 10 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaagaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 11 <211> 449 <212> DNA <213> homo sapiens
<400> 11 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaagaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 12 <211> 449 <212> DNA <213> homo sapiens
<400> 12 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgta 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 13 <211> 449 <212> DNA <213> homo sapiens
<400> 13 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgta 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 14 <211> 449 <212> DNA <213> homo sapiens
<400> 14 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgta 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449 <210> 15 <211> 449 <212> DNA <213> homo sapiens
<400> 15 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaagaca 300 cggttcgcga gacagagtta cagagggact tagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 16 <211> 449 <212> DNA <213> homo sapiens
<400> 16 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaagaca 300 cggttcgcga gacagagtta cagagggact tagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 17 <211> 449 <212> DNA <213> homo sapiens
<400> 17 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaagaca 300 cggttcgcga gacagagtta cagagggact tagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 18 <211> 449 <212> DNA <213> homo sapiens
<400> 18 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaagaca 300 cggttcgcga gacagagtta cagagggact tagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 19 <211> 449 <212> DNA <213> homo sapiens
<400> 19 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaagaca 300 cggttcgcga gacagagtta cagagggact tagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 20 <211> 449 <212> DNA <213> homo sapiens
<400> 20 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttgtcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaagaca 300 cggttcgcga gacagagtta cagagggact tagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 21 <211> 449 <212> DNA <213> homo sapiens
<400> 21 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccgtctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgaga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 22 <211> 449 <212> DNA <213> homo sapiens
<400> 22 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatatggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 23 <211> 449 <212> DNA <213> homo sapiens
<400> 23 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 24 <211> 449 <212> DNA <213> homo sapiens
<400> 24 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatatggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 25 <211> 449 <212> DNA <213> homo sapiens
<400> 25 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 26 <21 1> 449 <212> DNA <213> homo sapiens
<400> 26 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgta 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 27 <211> 449 <212> DNA <213> homo sapiens <400> 27 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgta 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaaatagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 28 <211> 449 <212> DNA <213> homo sapiens
<400> 28 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccgtctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgaga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 29 <211> 449 <212> DNA <213> homo sapiens
<400> 29 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccgtctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgaga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 30 <211> 449 <212> DNA <213> homo sapiens
<400> 30 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccatgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gacccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 31 <211> 449 <212> DNA <213> homo sapiens
<400> 31 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccgtctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 32 <211> 449 <212> DNA <213> homo sapiens
<400> 32 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccatgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gacccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 33 <211> 449 <212> DNA <213> homo sapiens
<400> 33 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccatgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gacccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 34 <211> 449 <212> DNA <213> homo sapiens
<400> 34 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccgtctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 35 <211> 18 <212> DNA <213> homo sapiens
<400> 35 acccgggaag ccgggcct 18
<210> 36 <211> 449 <212> DNA <213> homo sapiens
<400> 36 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccgtctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449 <210> 37 <211> 449 <212> DNA <213> homo sapiens
<400> 37 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt taccctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccgtctccct cttttctttg 180 acgcctcaac cccttagggg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cggttcgcga gacagagtta cagagggact cagaaccggg ttctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 38 <211> 449 <212> DNA <213> homo sapiens
<400> 38 gagccgcaga cccctcttag actcagggcc acccacgcac gcctgaaatc ttggcgctgg 60 cgctgctgtg actaaccgaa gagacctttg ggctgtgggt tatcctcact cttgacccag 120 gcgcagcact cataggtcct tcttcctggg atgtatccaa ccctctccct cttttctttg 180 acgcctcaac cccttagagg ttccgaccct gaggggttag gtatgtggcg gaagccccgg 240 actctgggac tctcggtgcg gaccccggga ccctgaagcg ggactgggga gacgaggaca 300 cgcttcgcga gacagagtta cagagggact cagaaccggg tcctcgacag actctttgtt 360 ccctctttgg gagccgtacc cggggcaggg agaggaaagt gaaaagtagg gcattagaga 420 cagggacttg acctgaggga ctgagggtg 449
<210> 39 <211> 130 <212> DNA <213> homo sapiens
<400> 39 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 40 <211> 130 <212> DNA <213> homo sapiens
<400> 40 gtgagtgcgg ggtcgggagg gaaaccgcct ctgcggggag aagcaagggg ccctcctggc 60 gggggcgcag gaccggggga gccgcgccgg gaggagggtc gggcaggtct cagccactgc 120 tcgcccccag 130
<210> 41 <211> 130 <212> DNA <213> homo sapiens
<400> 41 gtgagtgcgg ggtcgggagg gaaaccgcct ctgcggggag aagcaagggg ccctcctggc 60 gggggcgcag gaccggggga gccgcgccgg gacgagggtc gggcaggtct cagccactgc 120 tcgcccccag 130
<210> 42 <211> 130 <212> DNA <213> homo sapiens
<400> 42 gtgagtgcgg ggtcgggagg gaaaccgcct ctgcggggag aagcaagggg ccctcctggc 60 gggggcgcag gaccggggga gccgcgccgg gaggagggtc gggcaggtct cagccactgc 120 tcgcccccag 130
<210> 43 <211> 130 <212> DNA <213> homo sapiens
<400> 43 gtgagtgcgg ggtcgggagg gaaaccgcct ctgcggggag aagcaagggg ccctcctggc 60 gggggcgcag gaccggggga gccgcgccgg gaggagggtc gggcaggtct cagccactgc 120 tcgcccccag 130
<210> 44 <211> 130 <212> DNA <213> homo sapiens
<400> 44 gtgagtgcgg ggtcgggagg gaaaccgcct ctgcggggag aagcaagggg ccctcctggc 60 gggggcgcag gaccggggga gccgcgccgg gaggagggtc ggtcaggtct cagccactgc 120 tcgcccccag 130
<210> 45 <211> 130 <212> DNA
<213 > homo sapiens
<400> 45 gtgagtgcgg ggtcgggagg gaaaccgcct ctgcggggag aagcaagggg ccctcctggc 60 gggggcgcag gaccggggga gccgcgccgg gaggagggtc ggtcaggtct cagccactgc 120 tcgcccccag 130
<210> 46 <211> 130 <212> DNA <213> homo sapiens
<400> 46 gtgagtgcgg ggtcgggagg gaaaccgcct ctgcggggag aagcaagggg ccctcctggc 60 gggggcgcag gaccggggga gccgcgccgg gaggagggtc ggtcaggtct cagccactgc 120 tcgcccccag 130
<210> 47 <211> 130 <212> DNA <213> homo sapiens
<400> 47 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 48 <211> 130 <212> DNA <213> homo sapiens
<400> 48 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 49 <211> 130
<212> DNA <213> homo sapiens
<400> 49 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 <210> 50 <211> 130 <212> DNA <213> homo sapiens
<400> 50 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 51 <211> 130 <212> DNA <213> homo sapiens
<400> 51 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 52 <211> 130 <212> DNA <213> homo sapiens
<400> 52 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 53 <211> 130 <212> DNA <213> homo sapiens
<400> 53 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 54 <211> 130 <212> DNA <213> homo sapiens <400> 54 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 55 <211> 130 <212> DNA <213> homo sapiens
<400> 55 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 56 <211> 130 <212> DNA <213> homo sapiens
<400> 56 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 57 <211> 130 <212> DNA <213> homo sapiens
<400> 57 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 58 <211> 130
<212> DNA <213> homo sapiens
<400> 58 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 59 <211> 130 <212> DNA <213> homo sapiens
<400> 59 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 60 <211> 130 <212> DNA <213> homo sapiens
<400> 60 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaacggg cccgcctggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 61 <21 1> 130
<212> DNA <213> homo sapiens
<400> 61 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 62 <21 1> 130 <212> DNA <213> homo sapiens
<400> 62 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 63 <211> 130 <212> DNA <213> homo sapiens
<400> 63 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 64 <211> 130 <212> DNA <213> homo sapiens
<400> 64 gtgagtgcgg ggtcgggagg gaaacggcct ctgcggggag aagcaagggg cccgcctggc 60 gggggcgcaa gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 65 <211> 130 <212> DNA <213> homo sapiens
<400> 65 gtgagtgcgg ggtcgggagg gaaacggcct ctgcggggag aagcaagggg cccgcctggc 60 gggggcgcaa gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 66 <211> 130 <212> DNA <213> homo sapiens
<400> 66 gtgagtgcgg ggtcgggagg gaaacggcct ctgcggggag aagcaagggg cccgcctggc 60 gggggcgcaa gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 67 <211> 130 <212> DNA <213> homo sapiens
<400> 67 gtgagtgcgg ggtcgggagg gaaacggcct ctgcggggag aagcaagggg cccgcctggc 60 gggggcgcaa gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 68 <211> 130 <212> DNA <213> homo sapiens
<400> 68 gtgagtgcgg ggtcgggagg gaaacggcct ctgcggggag aagcaagggg cccgcctggc 60 gggggcgcaa gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 69 <211> 130 <212> DNA <213> homo sapiens
<400> 69 gtgagtgcgg ggtcgggagg gaaacggcct ctgcggggag aagcaagggg cccgcctggc 60 gggggcgcaa gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgtccccag 130
<210> 70 <211> 129 <212> DNA <213> homo sapiens
<400> 70 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc ccgcccggcg 60 gggacgcagg acccgggtag ccgcgccggg aggagggtcg ggtgggtctc agccactcct 120 cgcccccag 129
<210> 71
<211> 130 <212> DNA <213> homo sapiens
<400> 71 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 72 <211> 130 <212> DNA <213> homo sapiens
<400> 72 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130 <210> 73 <211> 130 <212> DNA <213> homo sapiens
<400> 73 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 74 <211> 130 <212> DNA <213> homo sapiens
<400> 74 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 75 <211> 130 <212> DNA <213> homo sapiens
<400> 75 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 76 <211> 130 <212> DNA <213> homo sapiens
<400> 76 gtgagtgcgg ggtcgggagg gaaacggcct ctgtggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgcctg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 77 <211> 129 <212> DNA <213> homo sapiens
<400> 77 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc ccgcccggcg 60 gggacgcagg acccgggtag ccgcgccggg aggagggtcg ggtgggtctc agccactcct 120 cgcccccag 129
<210> 78 <211> 129 <212> DNA <213> homo sapiens
<400> 78 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc ccgcccggcg 60 gggacgcagg acccgggtag ccgcgccggg aggagggtcg ggtgggtctc agccactcct 120 cgcccccag 129
<210> 79 <211> 129 <212> DNA <213> homo sapiens
<400> 79 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc ccgcccggcg 60 ggggcgcagg acccgggtag ccgcgccggg aggagggtcg ggcggatctc agccactcct 120 cgcccccag 129
<210> 80 <211> 129 <212> DNA <213> homo sapiens
<400> 80 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc ccgcccggcg 60 ggggcgcagg acccgggtag ccgcgccggg aggagggtcg ggcgggtctc agccactcct 120 cgcccccag 129
<210> 81 <211> 129 <212> DNA <213> homo sapiens
<400> 81 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc ccgcccggcg 60 ggggcgcagg acccgggtag ccgcgccggg aggagggtcg ggcggatctc agccactcct 120 cgcccccag 129
<210> 82 <211> 129 <212> DNA <213> homo sapiens
<400> 82 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc ccgcccggcg 60 ggggcgcagg acccgggtag ccgcgccggg aggagggtcg ggcggatctc agccactcct 120 cgcccccag 129
<210> 83 <211> 129 <212> DNA <213> homo sapiens
<400> 83 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc ccgcccggcg 60 ggggcgcagg acccgggtag ccgcgccggg aggagggtcg ggcgggtctc agccactcct 120 cgcccccag 129
<210> 84 <211> 129 <212> DNA <213> homo sapiens
<400> 84 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc ccgcccggcg 60 ggggcgcagg acccgggtag ccgcgccggg aggagggtcg ggcgggtctc agccactcct 120 cgcccccag 129
<210> 85 <211> 129
<212> DNA <213> homo sapiens
<400> 85 gtgagtgcgg ggtcgtgggg aaaccgcctc tgcggggaga agcaaggggc tcgcccggcg 60 ggggcgcagg acccgggtag ccgcgccggg aggagggtcg ggcgggtctc agccactcct 120 cgcccccag 129
<210> 86 <211> 130 <212> DNA <213> homo sapiens
<400> 86 gtgagtgcgg ggtcgggagg gaaacggcct ctgcggggag aagcaagggg cccgcccggc 60 gggggcgcag gacccgggaa gccgcgccgg gaggagggtc gggcgggtct cagccactcc 120 tcgcccccag 130
<210> 87 <211> 241 <212> DNA <213> homo sapiens
<400> 87 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 88 <211> 241 <212> DNA <213> homo sapiens
<400> 88 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggactccg agacccttgt 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 89 <211> 241 <212> DNA <213> homo sapiens
<400> 89 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 90 <211> 241 <212> DNA <213> homo sapiens
<400> 90 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 91 <211> 241 <212> DNA <213> homo sapiens
<400> 91 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 92 <211> 241
<212> DNA <213> homo sapiens
<400> 92 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 93 <211> 241 <212> DNA <213> homo sapiens
<400> 93 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 94 <211> 241 <212> DNA <213> homo sapiens
<400> 94 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 95 <211> 241 <212> DNA <213> homo sapiens
<400> 95 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 96 <211> 241 <212> DNA <213> homo sapiens
<400> 96 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 97 <211> 241 <212> DNA <213> homo sapiens
<400> 97 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 98 <211> 241 <212> DNA <213> homo sapiens <400> 98 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 99 <211> 241 <212> DNA <213> homo sapiens
<400> 99 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 100 <211> 241 <212> DNA <213> homo sapiens
<400> 100 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 101 <211> 241
<212> DNA <213> homo sapiens
<400> 101 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 102 <211> 241 <212> DNA <213> homo sapiens
<400> 102 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggaccgggc tgacctcggg gtccgggcca 240 g 241
<210> 103 <211> 241 <212> DNA <213> homo sapiens
<400> 103 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggaccgggc tgacctcggg gtccgggcca 240 g 241
<210> 104 <211> 241 <212> DNA <213> homo sapiens
<400> 104 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccaggttggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtccgggcca 240 g 241
<210> 105 <211> 241 <212> DNA <213> homo sapiens
<400> 105 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggaccgggc tgacctcggg gtccgggcca 240 g 241
<210> 106 <211> 241 <212> DNA <213> homo sapiens
<400> 106 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggaccgggc tgacctcggg gtccgggcca 240 g 241
<210> 107 <211> 241 <212> DNA <213> homo sapiens
<400> 107 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggaccgggc tgacctcggg gtccgggcca 240 g 241
<210> 108 <211> 241 <212> DNA <213> homo sapiens
<400> 108 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggaccgggc tgacctcggg gtccgggcca 240 g 241
<210> 109 <211> 241
<212> DNA <213> homo sapiens
<400> 109 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggaccgggc tgacctcggg gtccgggcca 240 g 241 <210> 110
<211> 241
<212> DNA
<213> homo sapiens
<400> 110 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccgc cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggaccgggc tgacctcggg gtccgggcca 240 g 241
<21O> 111
<211> 241 <212> DNA <213> homo sapiens
<400> 111 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccggg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggcgggg cggggctcgg gggaccgggc tgacctcggg gtccgggcca 240 g 241
<210> 112 <211> 241 <212> DNA <213> homo sapiens
<400> 112 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccggg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccgga cggggctcgg gggactgggc tgaccgtggg gtcggggcca 240 g 241
<210> 113 <211> 241 <212> DNA <213> homo sapiens
<400> 1 13 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccggg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccgga cggggctcgg gggactgggc tgaccgtggg gtcggggcca 240 g 241
<210> 114
<211> 241 <212> DNA <213> homo sapiens
<400> 114 gtgagtgacc ccagcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcacccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccgga cggggctcgg gggactgggc tgaccgtggg gtcggggcca 240 g 241
<210> 115 <211> 241 <212> DNA <213> homo sapiens
<400> 1 15 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccgga cggggctcgg gggactgggc tgaccgtggg gtcggggcca 240 g 241
<210> 116 <211> 241 <212> DNA <213> homo sapiens
<400> 116 gtgagtgacc ccagcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcacccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccgga cggggctcgg gggactgggc tgaccgtggg gtcggggcca 240 g 241
<210> 117 <211> 241 <212> DNA <213> homo sapiens
<400> 117 gtgagtgacc ccagcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcacccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccgga cggggctcgg gggactgggc tgaccgtggg gtcggggcca 240 g 241
<210> 118 <211> 241 <212> DNA <213> homo sapiens
<400> 118 gtgagtgacc ccggccgggg gcgcaggtca ggacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccgga cggggctcgg gggactgggc tgaccgtggg gtcggggcca 240 g 241
<210> 119
<211> 241 <212> DNA <213> homo sapiens
<400> 119 gtgagtgacc ccggcccggg gcgcaggtca cgacctctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccgga cggggctcgg gggactgggc tgaccgtggg gtcggggcca 240 g 241
<210> 120 <211> 241 <212> DNA <213> homo sapiens
<400> 120 gtgagtgacc ccggccgggg gcgcaggtca ggacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccgga cggggctcgg gggactgggc tgaccgtggg gtcggggcca 240 g 241
<210> 121 <211> 241 <212> DNA <213> homo sapiens
<400> 121 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccggg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc cttaacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 122 <211> 241 <212> DNA <213> homo sapiens
<400> 122 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccggg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc cttaacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 123 <211> 241 <212> DNA <213> homo sapiens
<400> 123 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccggg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc cttaacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 124 <211> 241 <212> DNA <213> homo sapiens
<400> 124 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccggg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc cttaacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 125 <211> 241 <212> DNA <213> homo sapiens <400> 125 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccggg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc cttaacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 126 <211> 241
<212> DNA <213> homo sapiens
<400> 126 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccggg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc cttaacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 127 <211> 241 <212> DNA <213> homo sapiens
<400> 127 gtgagtgacc ccggccgggg gcgcaggtca ggacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggctggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 128 <211> 241 <212> DNA <213> homo sapiens
<400> 128 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tggcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccggg cagggcttgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 129 <211> 241 <212> DNA <213> homo sapiens
<400> 129 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tggcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggttggt cggggccggg cagggcttgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 130 <211> 241 <212> DNA <213> homo sapiens
<400> 130 gtgagtgacc ccggccgggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttga 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaattccc 180 ccgggttggt cggggctggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 131 <211> 241 <212> DNA <213> homo sapiens
<400> 131 gtgagtgacc ccgcccgggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttga 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaattccc 180 ccgggttggt cggggctggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 132 <21 1> 241 <212> DNA <213> homo sapiens
<400> 132 gtgagtgacc ccggccgggg gcgcaggtca cgacccctca tcccccacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttga 120 cccgggagag gcccaggcgc ctttacccgg tttcattttc agtttaggcc aaaaattccc 180 ccgggttggt cggggctggg cggggctcgg gggactgggc tgaccgcggg gtcggggcca 240 g 241
<210> 133 <211> 241 <212> DNA <213> homo sapiens
<400> 133 gtgagtgacc ccggcccggg gcgcaggtca cgacccctca tcccctacgg acgggccagg 60 tcgcccacag tctccgggtc cgagatccac cccgaagccg cgggaccccg agacccttgc 120 cccgggagag gcccaggcgc ctttagccgg tttcattttc agtttaggcc aaaaatcccc 180 ccgggtgggt cggggcgggg cggggctcgg gggaccgggc tgaccgcggg gtcggggcca 240 g 241
<210> 134 <211> 602 <212> DNA <213> homo sapiens
<400> 134 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgag cacaattaag ggataaaaat ctctgaagga atgacgggaa gacgatccct 240 cgaatactga tgagtggttc cctttgacac acaccggcag cagccttggg cccgtgactt 300 ttcctctcag gccttgttct ctgcttcaca ctcaatgtgt gtgggggtct gagtccagca 360 cttctgagtc cctcagcctc cactcaggtc aggaccagaa gtcgctgttc cctcttcagg 420 gactagaatt ttccacggaa taggagatta tcccaggtgc ctgtgtccag gctggtgtct 480 gggttctgtg ctcccttccc catcccaggt gtcctgtcca ttctcaagat agccacatgt 540 gtgctggagg agtgtcccat gacagatgca aaatgcctga atgttctgac tcttcctgac 600 ag 602
<210> 135
<211> 579
<212> DNA <213> homo sapiens
<400> 135 gtaccagggg ccacggggcg cctccctgat cgcctataga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggagt gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacaccg gcagcagcct tgggcccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtctctcag cctccactca ggtcaggacc agaagtcgct gttcccttct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcgtg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579 <210> 136 <211> 578 <212> DNA <213> homo sapiens
<400> 136 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttc cagatcctgt accagagagt gactctgagg ttccgccctg 180 ctctctgaca caattaaggg ataaaatctc tgaaggagtg acgggaagac gatccctcga 240 atactgatga gtggttccct ttgacaccgg cagcagcctt gggcccgtga cttttcctct 300 caggccttgt tctctgcttc acactcaatg tgtgtggggg tctgagtcca gcacttctga 360 gtccctcagc ctccactcag gtcaggacca gaagtcgctg ttcccttctc agggaataga 420 agattatccc aggtgcctgt gtccaggctg gtgtctgggt tctgtgctct cttccccatc 480 ccgggtgtcc tgtccattct caagatggcc acatgcgtgc tggtggagtg tcccatgaca 540 gatgcaaaat gcctgaattt tctgactctt cccgtcag 578
<210> 137 <211> 579 <212> DNA <213> homo sapiens
<400> 137 gtaccagggg ccacggggcg cctccctgat cgcctataga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggagt gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacaccg gcagcagcct tgggcccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtctctcag cctccactca ggtcaggacc agaagtcgct gttcccttct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcgtg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 138 <211> 579
<212> DNA <213> homo sapiens
<400> 138 gtaccagggg ccacggggcg cctccctgat cgcctataga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggagt gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacaccg gcagcagcct tgggcccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtctctcag cctccactca ggtcaggacc agaagtcgct gttcccttct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcgtg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 139 <211> 579 <212> DNA <213> homo sapiens
<400> 139 gtaccagggg ccacggggcg ccttcctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggagt gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacaccg gcagcagcct tgggcccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtccctcag cctccactca ggtcaggacc agaagtcgct gttcccttct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcgtg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 140 <211> 579 <212> DNA <213> homo sapiens
<400> 140 gtaccagggg ccacggggcg ccttcctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac tcaattaagg gataaaatct ctgaaggagt gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacaccg gcagcagcct tgggcccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtccctcag cctccactca ggtcaggacc agaagtcgct gttcccttct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcgtg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 141 <211> 579 <212> DNA <213> homo sapiens
<400> 141 gtaccagggg ccacggggcg ccttcctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggagt gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacaccg gcagcagcct tgggcccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtccctcag cctccactca ggtcaggacc agaagtcgct gttcccttct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcgtg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 142 <211> 600 <212> DNA <213> homo sapiens
<400> 142 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 143 <211> 600 <212> DNA <213> homo sapiens
<400> 143 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 144 <211> 600 <212> DNA <213> homo sapiens
<400> 144 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 145 <211> 600 <212> DNA <213> homo sapiens
<400> 145 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 146 <211> 600 <212> DNA <213> homo sapiens
<400> 146 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 147 <211> 600 <212> DNA <213> homo sapiens
<400> 147 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 148 <211> 600 <212> DNA <213> homo sapiens
<400> 148 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 149 <211> 600 <212> DNA <213> homo sapiens
<400> 149 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 150 <211> 600 <212> DNA <213> homo sapiens
<400> 150 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 151 <211> 600 <212> DNA <213> homo sapiens
<400> 151 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 152 <211> 600 <212> DNA <213> homo sapiens <400> 152 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 153 <211> 600 <212> DNA <213> homo sapiens
<400> 153 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 154 <211> 600
<212> DNA <213> homo sapiens
<400> 154 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600 <210> 155 <211> 600 <212> DNA <213> homo sapiens
<400> 155 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 156 <211> 600 <212> DNA <213> homo sapiens
<400> 156 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 157 <211> 600 <212> DNA <213> homo sapiens
<400> 157 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac acaggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtcct tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gatctgactc ttcctgacag 600
<210> 158 <211> 579 <212> DNA <213> homo sapiens
<400> 158 gtaccagggg ccacggggcg cctacctgat cgcctgtagg tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgacggaat gacggaaaga cgatccctcg 240 aatactgatg actggttccc tttgacaccg gcagcagcct tgggaccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtccctcag cctccactca ggtcaggacc agaagtcgct gttccctcct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcatg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 159 <211> 579 <212> DNA <213> homo sapiens
<400> 159 gtaccagggg ccacggggcg cctacctgat cgcctgtagg tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgacggaat gacggaaaga cgatccctcg 240 aatactgatg actggttccc tttgacaccg gcagcagcct tgggaccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtccctcag cctccactca ggtcaggacc agaagtcgct gttccctcct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcatg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 160 <211> 579 <212> DNA <213> homo sapiens
<400> 160 gtaccagggg ccacggggcg cctacctgat cgcctgtagg tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgacggaat gacggaaaga cgatccctcg 240 aatactgatg actggttccc tttgacaccg gcagcagcct tgggaccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtccctcag cctccactca ggtcaggacc agaagtcgct gttccctcct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcatg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 161 <211> 579 <212> DNA <213> homo sapiens
<400> 161 gtaccagggg ccacggggcg cctacctgat cgcctgtagg tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgacggaat gacggaaaga cgatccctcg 240 aatactgatg actggttccc tttgacaccg gcagcagcct tgggaccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtccctcag cctccactca ggtcaggacc agaagtcgct gttccctcct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcatg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 162 <211> 579 <212> DNA <213> homo sapiens
<400> 162 gtaccagggg ccacggggcg cctacctgat cgcctgtagg tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgacggaat gacggaaaga cgatccctcg 240 aatactgatg actggttccc tttgacaccg gcagcagcct tgggaccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtccctcag cctccactca ggtcaggacc agaagtcgct gttccctcct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcatg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 163 <211> 579 <212> DNA <213> homo sapiens
<400> 163 gtaccagggg ccacggggcg cctacctgat cgcctgtagg tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgacggaat gacggaaaga cgatccctcg 240 aatactgatg actggttccc tttgacaccg gcagcagcct tgggaccgtg acttttcctc 300 tcaggccttg ttctctgctt cacactcaat gtgtgtgggg gtctgagtcc agcacttctg 360 agtccctcag cctccactca ggtcaggacc agaagtcgct gttccctcct cagggaatag 420 aagattatcc caggtgcctg tgtccaggct ggtgtctggg ttctgtgctc tcttccccat 480 cccgggtgtc ctgtccattc tcaagatggc cacatgcatg ctggtggagt gtcccatgac 540 agatgcaaaa tgcctgaatt ttctgactct tcccgtcag 579
<210> 164 <21 1> 600
<212> DNA <213> homo sapiens
<400> 164 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 165 <211> 600
<212> DNA <213> homo sapiens
<400> 165 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 166 <211> 600 <212> DNA <213> homo sapiens
<400> 166 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 167 <211> 600 <212> DNA <213> homo sapiens
<400> 167 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 168
<211> 600
<212> DNA
<213> homo sapiens
<400> 168 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 169 <211> 600 <212> DNA <213> homo sapiens
<400> 169 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 170 <211> 600 <212> DNA <213> homo sapiens
<400> 170 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 171 <211> 600 <212> DNA <213> homo sapiens <400> 171 gtaccggggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 172 <211> 600 <212> DNA <213> homo sapiens
<400> 172 gtaccggggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 173 <211> 600 <212> DNA <213> homo sapiens
<400> 173 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctgtgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatta cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600 <210> 174 <211> 600 <212> DNA <213> homo sapiens
<400> 174 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 175 <211> 600 <212> DNA <213> homo sapiens
<400> 175 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctgtgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatta cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 176 <211> 600 <212> DNA <213> homo sapiens
<400> 176 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcac cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctgtgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatta cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 177 <211> 600 <212> DNA <213> homo sapiens
<400> 177 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 178 <211> 600 <212> DNA <213> homo sapiens
<400> 178 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgctt gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 179 <211> 600 <212> DNA <213> homo sapiens
<400> 179 gtaccagggg ccacggggcg cctccctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agaatatcgc cctccctctg gtcctgaggg 120 agaggaatcc tcctgggttt ccagatcctg taccagagag tgactctgag gttccgccct 180 gctctctgac acaattaagg gataaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcagca gccttgggcc cgtgactttt 300 cctctcaggc cttgttctct gcttcacact caatgtgtgt gggggtctga gtccagcact 360 tctgagtccc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcttcaggga 420 ctagaatttt ccacggaata ggagattatc ccaggtgcct gtgtccaggc tggtgtctgg 480 gttctgtgct cccttcccca tcccaggtgt cctgtccatt ctcaagatag ccacatgtgt 540 gctggaggag tgtcccatga cagatgcaaa atgcctgaat gttctgactc ttcctgacag 600
<210> 180 <211> 583 <212> DNA <213> homo sapiens
<400> 180 gtaccagggg ccacggggcg ccttcctgat cgcctgtaga tctcccgggc tggcctccca 60 caaggagggg agacaattgg gaccaacact agatatcacc ctccctctgc tcctgaggga 120 gaggaatcct cctgggtttc cagattctgt accagagagt gactctgagg ttccgccctg 180 ctctctgaca caattaaggg ataaaaatct ctgaaggaat gacgggaaga cgatccctcg 240 aatactgatg agtggttccc tttgacacac accggcggca gccttgggcc cgtgactttt 300 cctctcaggc cctgttctct gcttcacact caatatgtgt gggggtctga gtccagcact 360 tctgagtctc tcagcctcca ctcaggtcag gaccagaagt cgctgttccc tcgtcaggga 420 atagaagatt atcccaggtg cctgtgtcca ggctggtgtc tgggttctgt gctctcttcc 480 ccatcccagg tgtcctgtcc atcctcaaaa tggccacatg cgtgctggtg gagtgtccca 540 tgacagatgc aaaatggctg aattttctga ctcttcccgt cag 583
<210> 181 <211> 18 <212> DNA <213> homo sapiens
<400> 181 ggcaggtctc agcgactg 18
<210> 182 <211> 19
<212> DNA <213> homo sapiens
<400> 182 ctctgtgggg agaagcaac 19
<210> 183
<211> 17
<212> DNA <213> homo sapiens
<400> 183 gggagcggcg ccgggac 17
<210> 184 <211>18 <212>DNA <213> homo sapiens
<400> 184 gaagcaaggg gcccgccc 18
<210> 185
<211>18 <212>DNA <213> homo sapiens
<400>185 cgcctggcgg gggggcaa
<210> 186 <211>18 <212>DNA <213> homo sapiens
<400> 186 gtgagtgcgg ggtcgtgg
<210> 187
<211>18 <212>DNA <213> homo sapiens
<400> 187 gccgggagga gggacggt 18
<210> 188 <211> 17 <212>DNA <213> homo sapiens
<400> 188 ggcgcgcccg gcgggga 17
<210> 189 <211> 18 <212> DNA <213> homo sapiens
<400> 189 ggaggagggt cgggcgga 18
<210> 190 <211> 19 <212> DNA <213> homo sapiens
<400> 190 agtgtcttcg cggtcgctc 19
<210> 191 <211> 19
<212> DNA <213> homo sapiens
<400> 191 ctcagattct ccccagacg 19
<210> 192 <211> 20 <212> DNA <213> homo sapiens
<400> 192 catgccgagg gtttctccca 20
<210> 193 <211> 19
<212> DNA <213> homo sapiens
<400> 193 ctggccctga cccagacca 19
<210> 194 <211> 19
<212> DNA <213> homo sapiens
<400> 194 cctgacccag acctgggca 19 <210> 195 <211> 19
<212>DNA <213> homo sapiens
<400> 195 caggtatctg cggagcccg 19
<210> 196 <211>21 <212>DNA <213> homo sapiens
<400> 196 gtctgtcagg aagagtcaga a 21
<210> 197 <211>22 <212>DNA <213> homo sapiens
<400> 197 gtggaaaatt ctagtccctg aa 22
<210> 198 <211>20 <212> DNA <213> homo sapiens
<400> 198 agatctacag gcgatcagga 20
<210> 199 <211>19 <212>DNA <213> homo sapiens
<400> 199 gccagcccgg gagttctat 19
<210> 200 <211>21 <212>DNA <213> homo sapiens
<400> 200 cagagtcact ctctggtaca g 21
<210>201 <211>19 <212>DNA <213> homo sapiens
<400> 201 gcgatcgtct tcccgtcac 19
<210>202 <211>21 <212>DNA <213> homo sapiens
<400> 202 agagtcactc tctggtacag a 21
<210>203 <211> 19
<212>DNA <213> homo sapiens
<400> 203 ctcctcgtcc ccaggctct 19
<210>204 <211>21 <212>DNA <213> homo sapiens
<400> 204 tccatgaggt atttctacac c 21
<210>205 <211>18 <212>DNA <213> homo sapiens
<400> 205 'gccaggttc tcagacca
<210>206 <211> 17
<212>DNA <213> homo sapiens <400> 206 cccggcccgg cagtgga 17
<210>207 <211>20 <212>DNA <213> homo sapiens
<400> 207 gttctcacac catccagatg 20
<210>208 <211>21 <212>DNA <213> homo sapiens
<400> 208 tcacaccctc cagatgatgt t 21
<210>209 <211> 18 <212>DNA <213> homo sapiens
<400> 209 gggtaccagc aggacgct
<210>210 <211>21 <212>DNA <213> homo sapiens
<400>210 tccatgaggt atttcaccac a 21
<210>211 <211>21 <212> DNA <213> homo sapiens
<400>211 ggttctcaca ccatccagat a 21
<210>212 <211>20 <212> DNA <213> homo sapiens
<400> 212 gttctcacac catccagagg 20
<210>213 <211> 18
<212>DNA <213> homo sapiens
<400>213 gagccccgct tcaacgcc 18
<210>214 <211> 19
<212>DNA <213> homo sapiens
<400>214 cttcctccgc gggtatgaa 19
<210>215 <211> 18
<212>DNA <213> homo sapiens
<400>215 gccggagtat tgggaccg 18
<210>216 <211> 19 <212>DNA <213> homo sapiens
<400>216 ctggccctga ccctgacca 19
<210>217 <211>18 <212>DNA <213> homo sapiens
<400>217 gcagggtccc caggtcca 18
<210>218 <211> 19
<212>DNA <213> homo sapiens
<400>218 cctccaggta ggctctcaa 19
<210>219 <211> 19
<212>DNA <213> homo sapiens
<400>219 cctccaggta ggctctcca 19
<210>220 <211> 19
<212>DNA <213> homo sapiens
<400> 220 cctccaggta ggctctctg 19
<210>221 <211> 19
<212>DNA <213> homo sapiens
<400>221 ccactccacg cacgtgcca 19
<210>222 <211>18 <212>DNA <213> homo sapiens
<400> 222 ggagcgcgat ccgcaggc 18
<210>223 <211>19 <212>DNA <213> homo sapiens
<400> 223 ggagccactc cacggaccg 19 <210> 224 <211>18 <212>DNA <213> homo sapiens
<400> 224 gagccactcc acgcactc
<210>225 <211>21 <212>DNA <213> homo sapiens
<400> 225 ggccttcaca ttccgtgtgt t 21
<210>226 <211>19 <212>DNA <213> homo sapiens
<400> 226 caggtatctg cggagcccg 19
<210>227 <211> 20 <212>DNA <213> homo sapiens
<400> 227 tggtcccaat actcaggcct 20
<210>228 <211> 18
<212>DNA <213> homo sapiens
<400> 228 gcagggtccc caggttcg
<210>229 <211>18 <212>DNA <213> homo sapiens
<400> 229 gggccgcctc ccagttgt
<210> 230 <211>20 <212>DNA <213> homo sapiens
<400> 230 tctgtgagtg ggcctacaca 20
<210>231 <211>21 <212>DNA <213> homo sapiens
<400>231 ccttcacatt ccgtgtctgc a 21
<210>232 <211> 18 <212>DNA <213> homo sapiens
<400> 232 gagccactcc acgcacgt
<210>233 <211>20 <212>DNA <213> homo sapiens
<400> 233 ccactcggtc agtctctgac 20
<210>234 <211>20 <212>DNA <213> homo sapiens
<400> 234 gagcgcaggt cctcgttcaa 20
<210>235 <211> 20 <212>DNA <213> homo sapiens <400> 235 gtctgtgagt gggccatcat 20
<210>236 <211>20 <212>DNA <213> homo sapiens
<400> 236 cagccataca tcctcaggac 20
<210> 237 <211>17 <212>DNA <213> homo sapiens
<400> 237 gcgccgggag gagggtc 17
<210>238 <211>18 <212>DNA <213> homo sapiens
<400> 238 atctcggacc cggagact
<210>239 <211> 22 <212>DNA <213> homo sapiens
<400> 239 gtttcatttt cagtttaggc ca 22
<210>240 <211>23 <212>DNA <213> homo sapiens
<400> 240 cgggagatct acaggcgatc agg 23
<210>241
<211>17
<212>DNA <213> homo sapiens
<400> 241 gtcgtgacct gcgcccc 17
<210> 242 <211> 19
<212> DNA <213> homo sapiens
<400> 242 gggcggggcg gggctcggg 19
<210> 243 <211> 19
<212> DNA <213> homo sapiens
<400> 243 ggtcgtgacc ttccgcccc 19
<210> 244 <211> 15 <212> DNA <213> homo sapiens
<400> 244 cccggtttca ttttc 15
<210> 245 <211> 20 <212> DNA <213> homo sapiens
<400> 245 cttcacattc cgtgtctcct 20
<210> 246 <211> 129
<212> DNA <213> homo sapiens
<400> 246 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129 <210> 247 <211> 128 <212> DNA <213> homo sapiens
<400> 247 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 acccccag 128
<210> 248 <211> 128 <212> DNA <213> homo sapiens
<400> 248 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 249 <211> 129 <212> DNA <213> homo sapiens
<400> 249 gtgagtgcgg gatcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtct ggcgggtctc agcccctcct 120 ggcccccag 129
<210> 250 <211> 128 <212> DNA <213> homo sapiens
<400> 250 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtttca gcccctcctc 120 gcccccag 128
<210> 251 <211> 128 <212> DNA <213> homo sapiens
<400> 251 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtttca gcccctcctc 120 gcccccag 128
<210> 252 <211> 129 <212> DNA <213> homo sapiens
<400> 252 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 253 <211> 128 <212> DNA <213> homo sapiens
<400> 253 gtgagtgcgg gtcgggaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 254 <211> 129 <212> DNA <213> homo sapiens
<400> 254 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 255 <211> 129 <212> DNA <213> homo sapiens
<400> 255 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 256 <211> 129 <212> DNA <213> homo sapiens
<400> 256 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 257 <211> 129
<212> DNA <213> homo sapiens
<400> 257 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 258 <211> 128 <212> DNA <213> homo sapiens
<400> 258 gtgagtgcgg gtcgggaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 259 <211> 128 <212> DNA <213> homo sapiens
<400> 259 gtgagtgcgg gtcgggaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 260 <211> 128 <212> DNA <213> homo sapiens
<400> 260 gtgagtgcgg gtcgggaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 261 <211> 129
<212> DNA <213> homo sapiens
<400> 261 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 262 <211> 129
<212> DNA <213> homo sapiens
<400> 262 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 tgcccccag 129
<210> 263 <211> 129 <212> DNA <213> homo sapiens
<400> 263 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 tgcccccag 129
<210> 264 <211> 129 <212> DNA <213> homo sapiens
<400> 264 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 265 <211> 129 <212> DNA <213> homo sapiens <400> 265 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 266 <211> 129 <212> DNA <213> homo sapiens
<400> 266 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 267 <211> 129 <212> DNA <213> homo sapiens
<400> 267 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acctgaggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 268 <211> 129 <212> DNA <213> homo sapiens
<400> 268 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acctgaggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 269 <211> 129 <212> DNA <213> homo sapiens
<400> 269 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acctgaggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 270 <211> 129 <212> DNA <213> homo sapiens
<400> 270 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 271 <211> 128 <212> DNA <213> homo sapiens
<400> 271 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 272 <211> 128 <212> DNA <213> homo sapiens
<400> 272 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 273 <211> 128 <212> DNA <213> homo sapiens
<400> 273 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 274 <211> 128 <212> DNA <213> homo sapiens
<400> 274 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 275 <211> 128
<212> DNA <213> homo sapiens
<400> 275 gtgagtgcgg gtcggcaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gctcctcctc 120 gcccccag 128
<210> 276 <211> 129 <212> DNA <213> homo sapiens
<400> 276 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 277 <211> 128 <212> DNA <213> homo sapiens
<400> 277 gtgagtgcgg gtcggcaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gctcctcctc 120 gcccccag 128
<210> 278 <211> 128 <212> DNA <213> homo sapiens
<400> 278 gtgagtgcgg gtcggcaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gctcctcctc 120 gcccccag 128
<210> 279 <211> 128 <212> DNA <213> homo sapiens
<400> 279 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 acccccag 128
<210> 280 <211> 129 <212> DNA <213> homo sapiens
<400> 280 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagagagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 281 <211> 129 <212> DNA <213> homo sapiens
<400> 281 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagagagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 282 <211> 128 <212> DNA <213> homo sapiens
<400> 282 gtgagtgcgg gtcggcaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 283 <211> 129 <212> DNA <213> homo sapiens
<400> 283 gtgagtgcgg ggtcggcagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129 <210> 284 <211> 129 <212> DNA <213> homo sapiens
<400> 284 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggctcagg acccggggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 285 <211> 128 <212> DNA <213> homo sapiens
<400> 285 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 acccccag 128
<210> 286 <211> 128 <212> DNA <213> homo sapiens
<400> 286 gtgagtgcgg gtcggcaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 287 <211> 128 <212> DNA <213> homo sapiens
<400> 287 gtgagtgcgg gtcggcaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 288 <211> 129 <212> DNA <213> homo sapiens
<400> 288 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acctgaggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 289 <211> 129
<212> DNA <213> homo sapiens
<400> 289 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acctgaggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 290 <211> 129 <212> DNA <213> homo sapiens
<400> 290 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acctgaggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 291 <211> 129 <212> DNA <213> homo sapiens
<400> 291 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acctgaggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 292 <211> 128 <212> DNA <213> homo sapiens
<400> 292 gtgagtgcgg gtcgggaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtctg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 293 <211> 128 <212> DNA <213> homo sapiens
<400> 293 gtgagtgcgg gtcgggaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtctg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 294 <211> 128 <212> DNA <213> homo sapiens
<400> 294 gtgagtgcgg gtcgggaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtctg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 295 <211> 128 <212> DNA <213> homo sapiens
<400> 295 gtgagtgcgg gtcggcaggg aaatggcctc tgtagggagg agcaagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 296 <211> 129
<212> DNA <213> homo sapiens
<400> 296 gtgagtgcgg ggtcgggagg gaaatggcct ctgtggggag gagcgagggg accgcaggcg 60 ggggcgcagg acctgaggag ccgcgccggg aggagggtcg ggcgggtctc agcccctcct 120 cgcccccag 129
<210> 297 <211> 128 <212> DNA <213> homo sapiens
<400> 297 gtgagtgcgg gtcgggaggg aaatggcctc tgtggggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggga ggagggtctg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 298 <211> 128
<212> DNA <213> homo sapiens
<400> 298 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cctgaggagc cgcgccggga ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 299 <211> 128 <212> DNA <213> homo sapiens
<400> 299 gtgagtgcgg gtcgggaggg aaatggcctc tgccgggagg agcgagggga ccgcaggcgg 60 gggcgcagga cccggggagc cgcgccggta ggagggtcgg gcgggtctca gcccctcctc 120 gcccccag 128
<210> 300 <211> 245 <212> DNA <213> homo sapiens
<400> 300 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggtcggg 240 gccag 245
<210> 301 <211> 245 <212> DNA <213> homo sapiens
<400> 301 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccgga 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggact gggctgaccg cggggccggg 240 gccag 245 <210> 302 <211> 246 <212> DNA <213> homo sapiens
<400> 302 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgg acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 303 <211> 245
<212> DNA <213> homo sapiens
<400> 303 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgg acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 304 <211> 246 <212> DNA <213> homo sapiens
<400> 304 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgg acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac tgggctgacc gcgggggcgg 240 ggccag 246
<210> 305 <211> 246 <212> DNA <213> homo sapiens
<400> 305 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgg acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tgggcggggc ggggcggggc tcggggggac tgggctgacc gcgggggcgg 240 ggccag 246
<210> 306 <211> 246 <212> DNA <213> homo sapiens
<400> 306 gtgagtgacc ccggcctggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccaaacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggcctg 240 ggccag 246
<210> 307 <211> 245
<212> DNA <213> homo sapiens
<400> 307 gtgagtgacc ccggcctggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccaaacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggcctgg 240 gccag 245
<210> 308 <211> 245 <212> DNA <213> homo sapiens
<400> 308 gtgagtgacc ccggcctggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccaaacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggcctgg 240 gccag 245
<210> 309 <211> 245 <212> DNA <213> homo sapiens
<400> 309 gtgagtgacc ccggcctggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccaaacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggcctgg 240 gccag 245
<210> 310 <211> 245 <212> DNA <213> homo sapiens
<400> 310 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 311 <211> 245 <212> DNA <213> homo sapiens
<400> 311 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccaaacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggcctgg 240 gccag 245
<210> 312 <211> 246 <212> DNA <213> homo sapiens
<400> 312 gtgagtgacc ccggcctggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccaaacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggcctg 240 ggccag 246
<210> 313 <211> 246 <212> DNA <213> homo sapiens
<400> 313 gtgagtgacc ccggcctggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccaaacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggcctg 240 ggccag 246
<210> 314 <211> 246 <212> DNA <213> homo sapiens
<400> 314 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 315
<211> 243 <212> DNA <213> homo sapiens
<400> 315 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccgaggcc gcgggacccg cccagaccct 120 cgaccggcga gagcccaggc gcgtttaccc ggtttcattt tcagttgagg ccaaaatccc 180 cgcgggttgg tcggggcggg gcggggctcg gggggacggg gctgaccgcg ggggcggggc 240 cag 243
<210> 316
<211> 244 <212> DNA <213> homo sapiens
<400> 316 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccgaggcc gcgggacccg cccagaccct 120 cgaccggcga gagccccagg cgcgtttacc cggtttcatt ttcagttgag gccaaaatcc 180 ccgcgggttg gtcggggcgg ggcggggctc ggggggacgg ggctgaccgc gggggcgggg 240 ccag 244
<210> 317 <211> 244 <212> DNA <213> homo sapiens <400> 317 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccgaggcc gcgggacccg cccagaccct 120 cgaccggcga gagccccagg cgcgtttacc cggtttcatt ttcagttgag gccaaaatcc 180 ccgcgggttg gtcggggcgg ggcggggctc ggggggacgg ggctgaccgc gggggcgggg 240 ccag 244
<210> 318
<211> 244 <212> DNA <213> homo sapiens
<400> 318 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccgaggcc gcgggacccg cccagaccct 120 cgaccggcga gagccccagg cgcgtttacc cggtttcatt ttcagttgag gccaaaatcc 180 ccgcgggttg gtcggggcgg ggcggggctc ggggggacgg ggctgaccgc gggggcgggg 240 ccag 244
<210> 319
<211> 244 <212> DNA <213> homo sapiens
<400> 319 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccgaggcc gcgggacccg cccagaccct 120 cgaccggcga gagccccagg cgcgtttacc cggtttcatt ttcagttgag gccaaaatcc 180 ccgcgggttg gtcggggcgg ggcggggctc ggggggacgg ggctgaccgc ggggccgggg 240 ccag 244
<210> 320 <211> 245 <212> DNA <213> homo sapiens
<400> 320 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 321 <211> 245 <212> DNA <213> homo sapiens
<400> 321 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 322 <211> 245 <212> DNA <213> homo sapiens
<400> 322 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 323 <211> 245 <212> DNA <213> homo sapiens
<400> 323 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 324 <211> 245 <212> DNA <213> homo sapiens
<400> 324 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 325 <211> 246 <212> DNA <213> homo sapiens
<400> 325 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 326 <211> 246 <212> DNA <213> homo sapiens
<400> 326 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 327 <211> 246 <212> DNA <213> homo sapiens
<400> 327 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 328 <211> 246 <212> DNA <213> homo sapiens
<400> 328 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246 <210> 329 <211> 246 <212> DNA <213> homo sapiens
<400> 329 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 330 <211> 245 <212> DNA <213> homo sapiens
<400> 330 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccaa ccccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggact gggctgaccg cggggccggg 240 gccag 245
<210> 331
<211> 244 <212> DNA <213> homo sapiens
<400> 331 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccgc ccccgaggcc gcgggacccg cccagaccct 120 cgaccggcga gagccccagg cgcgtttacc cggtttcatt ttcagttgag gccaaaatcc 180 ccgcgggttg gtcggggcgg ggcggggctc ggggggacgg ggctgaccgc ggggccgggg 240 ccag 244
<210> 332 <211> 246 <212> DNA <213> homo sapiens
<400> 332 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgg acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggcctg 240 ggccag 246
<210> 333 <211> 246 <212> DNA <213> homo sapiens
<400> 333 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 334 <211> 246 <212> DNA <213> homo sapiens
<400> 334 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgg acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 335 <211> 243 <212> DNA <213> homo sapiens
<400> 335 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccgaggcc gcgggacccg cccagaccct 120 cgaccggcga gagccccagg cgcgtttacc cggtttcatt ttcagttgag gccaaaatcc 180 ccgcgggttg gtcggggcgg ggcggggctc gggggacggg gctgaccgcg gggccggggc 240 cag 243
<210> 336 <211> 21 <212> DNA <213> homo sapiens
<400> 336 gccttcccaa ccattccctt a 21 <210> 337 <211> 243 <212> DNA <213> homo sapiens
<400> 337 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccgaggcc gcgggacccg cccagaccct 120 cgaccggcga gagccccagg cgcgtttacc cggtttcatt ttcagttgag gccaaaatcc 180 ccgcgggttg gtcggggcgg ggcggggctc gggggacggg gctgaccgcg gggccggggc 240 cag 243
<210> 338 <211> 245 <212> DNA <213> homo sapiens
<400> 338 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggcctgg 240 gccag 245
<210> 339 <211> 245 <212> DNA <213> homo sapiens
<400> 339 gtgagtgacc ccggcctggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccaaacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggcctgg 240 gccag 245
<210> 340 <211> 243 <212> DNA <213> homo sapiens
<400> 340 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccgaggcc gcgggacccg cccagaccct 120 cgaccggcga gagcccaggc gcgtttaccc ggtttcattt tcagttgagg ccaaaatccc 180 cgcgggttgg tcggggcggg gcggggctcg gggggacggg gctgaccgcg gggcctgggc 240 cag 243
<210> 341 <211> 245 <212> DNA <213> homo sapiens
<400> 341 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggact gggctgaccg cggggccggg 240 gccag 245
<210> 342 <211> 244 <212> DNA <213> homo sapiens
<400> 342 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccag gcgcgtttac ccggtttcat tttcagttga ggccaaaatc 180 cccgcgggtt ggtcggggcg gggcggggct cgggggacgg ggctgaccgc ggggcctggg 240 ccag 244
<210> 343 <211> 245 <212> DNA <213> homo sapiens
<400> 343 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccgc ccccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggcctgg 240 gccag 245
<210> 344 <211> 246 <212> DNA <213> homo sapiens
<400> 344 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagaggcccc aggcgcgttt acccggtttc attttcagtt gaggccaaaa 180 tccccgcggg ttggtcgggg cggggcgggg ctcgggggac ggtgctgacc gcggggccgg 240 ggccag 246
<210> 345 <211> 245 <212> DNA <213> homo sapiens
<400> 345 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gtgctgaccg cggggccggg 240 gccag 245
<210> 346 <211> 245 <212> DNA <213> homo sapiens
<400> 346 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gtgctgaccg cggggccggg 240 gccag 245
<210> 347 <211> 245 <212> DNA <213> homo sapiens
<400> 347 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 348 <211> 244 <212> DNA <213> homo sapiens
<400> 348 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagaccccag gcgcgtttac ccggtttcat tttcagttga ggccaaaatc 180 cccgcgggtt ggtcggggcg gggcggggct cgggggacgg ggctgaccgc ggggccgggg 240 ccag 244
<210> 349 <211> 20 <212> DNA <213> homo sapiens
<400> 349 tccatgtcct tcctgaagca 20
<210> 350 <211> 245 <212> DNA <213> homo sapiens
<400> 350 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 351 <21 1> 245 <212> DNA <213> homo sapiens
<400> 351 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 352 <211> 246 <212> DNA <213> homo sapiens
<400> 352 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ccccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcagggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 353 <211> 245 <212> DNA <213> homo sapiens
<400> 353 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 354 <211> 245 <212> DNA <213> homo sapiens
<400> 354 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcgggggacg gggctgaccg cggggccggg 240 gccag 245
<210> 355 <211> 246 <212> DNA <213> homo sapiens
<400> 355 gtgagtgacc ccggcccggg gcgcaggtca cgactcccca tcccccacgt acggcccggg 60 tcgccccgag tctccgggtc cgagatccac ctccctgagg ccgcgggacc cgcccagacc 120 ctcgaccggc gagagcccca ggcgcgttta cccggtttca ttttcagttg aggccaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcggggccgg 240 ggccag 246
<210> 356 <211> 246 <212> DNA <213> homo sapiens
<400> 356 gtgagtgacc ccggcctggg gcgcaggtca cgacccctcc ccaaccccga cgtacggccc 60 gggtctcctc gagtctctag gtccgagatc caccccgagg ccgcgggacc cgcccagaac 120 ctcgaccgca gagagcccca ggcgacttta cccggtttca ttttcagttg aggtcaaaat 180 ccccgcgggt tggtcggggc ggggcggggc tcggggggac ggggctgacc gcgaggcctg 240 ggccag 246
<210> 357 <211> 575 <212> DNA <213> homo sapiens
<400> 357 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 358 <211> 574 <212> DNA <213> homo sapiens
<400> 358 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctccgttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctagaca attaaggaat 180 gacgtctctg aggaaatgga ggggaagaca gtccctagaa tactgatcag gggtcccctt 240 tgacccctgc agcagccttg ggaaccgtga cttttcctct caggccttgt tctctgcctc 300 acactcagtg tgtttggggc tctgattcca gcacttctga gtcactttac ctccactcag 360 atcaggagca gaagtccctg ttccccgctc agagactcga actttccaat gaataggaga 420 ttatcccagg tgcctgcgtc caggctggtg tctgggttct gtgccccttc cccaccccag 480 gtgtcctgtc cattctcagg ctggtcacat gggtggtcct agggtgtccc atgaaagatg 540 caaagcgcct gaattttctg actcttccca tcag 574
<210> 359 <211> 572 <212> DNA <213> homo sapiens
<400> 359 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctagaca attaagggat 180 gacgtctctg aggaaatgga ggggaagaca gtccctagaa tactgatcag gggtcccctt 240 tgacccctgc agcagccttg ggaaccgtga cttttcctct caggccttgt tctctgcctc 300 acactcagtg tgtttggggc tctgattcca gcacttctga gtcactttac ctccactcag 360 atcaggagca gaagtccctg ttccccgctc agagactcga actttccaat gaataggaga 420 ttatcccagg tgcctgcatc cgctggtgtc tgggttctgt gccccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtgccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 360 <211> 575 <212> DNA <213> homo sapiens
<400> 360 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgt aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 361 <211> 572 <212> DNA <213> homo sapiens
<400> 361 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagaag aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccatg acttttcttc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtctct gttccccgct cagagactcg aactttccaa tgaatagatt 420 atcccaggtg cctgcgtcca ggctggtgtc tgggttctgt gtcccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtcccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 362 <211> 572
<212> DNA
<213> homo sapiens
<400> 362 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagaag aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccatg acttttcttc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtctct gttccccgct cagagactcg aactttccaa tgaatagatt 420 atcccaggtg cctgcgtcca ggctggtgtc tgggttctgt gtcccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtcccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 363 <211> 575 <212> DNA <213> homo sapiens
<400> 363 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctagg atagtgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 364 <211> 575 <212> DNA <213> homo sapiens
<400> 364 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctagg atagtgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 365 <211> 575 <212> DNA <213> homo sapiens
<400> 365 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctagg atagtgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 366 <211> 575 <212> DNA <213> homo sapiens
<400> 366 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctagg atagtgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 367 <211> 575 <212> DNA <213> homo sapiens
<400> 367 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctagg atagtgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 368 <211> 575 <212> DNA <213> homo sapiens
<400> 368 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctagg atagtgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 369 <211> 572 <212> DNA <213> homo sapiens
<400> 369 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctagg atagtgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccatg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtctct gttccccgct cagagactcg aactttccaa tgaatagatt 420 atcccaggtg cctgcgtcca ggctggtgtc tgggttctgt gccccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtcccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 370 <211> 575 <212> DNA <213> homo sapiens
<400> 370 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctagg atagtgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 371 <211> 575
<212> DNA <213> homo sapiens
<400> 371 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcccgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 372 <211> 575 <212> DNA <213> homo sapiens
<400> 372 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacacca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 373 <211> 575 <212> DNA <213> homo sapiens
<400> 373 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacacca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 374 <211> 575 <212> DNA <213> homo sapiens
<400> 374 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacacca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 375 <21 1> 572 <212> DNA <213> homo sapiens
<400> 375 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccatg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtctct gttccccgct cagagactcg aactttccaa tgaatagatt 420 atcccaggtg cctgcgtcca ggctggtgtc tgggttctgt gccccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtcccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 376 <211> 572 <212> DNA <213> homo sapiens
<400> 376 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccaa 60 cgagaagaag aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccatg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtctct gttccccgct cagagactcg aactttccaa tgaatagatt 420 atcccaggtg cctgcgtcca ggctggtgtc tgggttctgt gccccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtcccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 377 <211> 572 <212> DNA <213> homo sapiens
<400> 377 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagaag aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccatg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtctct gttccccgct cagagactcg aactttccaa tgaatagatt 420 atcccaggtg cctgcgtcca ggctggtgtc tgggttctgt gccccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtcccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 378 <211> 572 <212> DNA <213> homo sapiens <400> 378 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccaa 60 cgagaagaag aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccatg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtctct gttccccgct cagagactcg aactttccaa tgaatagatt 420 atcccaggtg cctgcgtcca ggctggtgtc tgggttctgt gccccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtcccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 379 <211> 574
<212> DNA <213> homo sapiens
<400> 379 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctccgtgga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctagaca attaaggaat 180 gacgtctctg aggaaatgga ggggaagaca gtccctagaa tactgatcag gggtcccctt 240 tgacccctgc agcagccttg ggaaccgtga cttttcctct caggccttgt tctctgcctc 300 acactcagtg tgtttggggc tctgattcca gcacttctga gtcactttac ctccactcag 360 atcaggagca gaagtccctg ttccccgctc agagactcga actttccaat gaataggaga 420 ttatcccagg tgcctgcgtc caggctggtg tctgggttct gtgccccttc cccaccccag 480 gtgtcctgtc cattctcagg ctggtcacat gggtggtcct agggtgtccc atgaaagatg 540 caaagcgcct gaattttctg actcttccca tcag 574
<210> 380 <211> 575 <212> DNA <213> homo sapiens
<400> 380 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575 <210> 381
<211> 572 <212> DNA <213> homo sapiens
<400> 381 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctagaca attaagggat 180 gacgtctctg aggaaatgga ggggaagaca gtccctagaa tactgatcag gggtcccctt 240 tgacccctgc agcagccttg ggaaccgtga cttttcctct caggccttgt tctctgcctc 300 acactcagtg tgtttggggc tctgattcca gcacttctga gtcactttac ctccactcag 360 atcaggagca gaagtccctg ttccccgctc agagactcga actttccaat gaataggaga 420 ttatcccagg tgcctgcatc cgctggtgtc tgggttctgt gccccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtgccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 382 <211> 572 <212> DNA <213> homo sapiens
<400> 382 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctagaca attaaggaat 180 gacgtctctg aggaaatgga ggggaagaca gtccctagaa tactgatcag gggtcccctt 240 tgacccctgc agcagccttg ggaaccgtga cttttcctct caggccttgt tctctgcctc 300 acactcagtg tgtttggggc tctgattcca gcacttctga gtcactttac ctccactcag 360 atcaggagca gaagtccctg ttccccgctc agagactcga actttccaat gaataggaga 420 ttatcccagg tgcctgcatc cgctggtgtc tgggttctgt gccccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtgccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 383 <211> 572 <212> DNA <213> homo sapiens
<400> 383 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctagaca attaagggat 180 gacgtctctg aggaaatgga ggggaagaca gtccctagaa tactgatcag gggtcccctt 240 tgacccctgc agcagccttg ggaaccgtga cttttcctct caggccttgt tctctgcctc 300 acactcagtg tgtttggggc tctgattcca gcacttctga gtcactttac ctccactcag 360 atcaggagca gaagtccctg ttccccgctc agagactcga actttccaat gaataggaga 420 ttatcccagg tgcctgcatc cgctggtgtc tgggttctgt gccccttccc caccccaggt 480 gtcctgtcca ttctcaggct ggtcacatgg gtggtcctag ggtgtgccat gagagatgca 540 aagcgcctga attttctgac tcttcccatc ag 572
<210> 384 <211> 575 <212> DNA <213> homo sapiens
<400> 384 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 385 <211> 575 <212> DNA <213> homo sapiens
<400> 385 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 386 <211> 573 <212> DNA <213> homo sapiens
<400> 386 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctagaca attaagggat 180 gacgtctctg aggaaatgga ggggaagaca gtccctagaa tactgatcag gggtcccctt 240 tgacccctgc agcagccttg ggaaccgtga ctttcctctc aggccttgtt ctctgcctca 300 cactcagtgt gtttggggct ctgattccag cacttctgag tcactttacc tccactcaga 360 tcgggagcag aagtccctgt tccccgctca gagactcgaa ctttccaatg aataggagat 420 tatcccaggt gcctgcgtcc aggctggtgt ctgggttctg tgccccttcc ccaccccagg 480 tgtcctgtcc attctcaggc tggtcacatg ggtggtccta gggtgtccca tgagagatgc 540 aaagcgcctg aattttctga ctcttcccat cag 573
<210> 387 <211> 575 <212> DNA <213> homo sapiens
<400> 387 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctagg atagtgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 388 <211> 575
<212> DNA <213> homo sapiens
<400> 388 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactta 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 389 <211> 575 <212> DNA <213> homo sapiens
<400> 389 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccact cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 390 <211> 576 <212> DNA <213> homo sapiens
<400> 390 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagtc agtccctagg aatagtgatc aggggtcccc 240 tttgacccct gcagcagcct tgggaaccgt gacttttcct ctcaggcctt gttctctgcc 300 tcacactcag tgtgtttggg gctctgattc cagcacttct gagtcacttt acctccactc 360 agatcaggag cagaagtccc tgttccccgc tcagagactc gaactttcca atgaatagga 420 gattatccca ggtgcctgcg tccaggctgg tgtctgggtt ctgtgcccct tccccacccc 480 aggtgtcctg tccattctca ggctggtcac atgggtggtc ctagggtgtc ccatgagaga 540 tgcaaagcgc ctgaattttc tgactcttcc catcag 576
<210> 391 <211> 575 <212> DNA <213> homo sapiens
<400> 391 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacacca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 392 <211> 575 <212> DNA <213> homo sapiens
<400> 392 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacacca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 393 <211> 575 <212> DNA <213> homo sapiens
<400> 393 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagtc agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacacca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 394 <211> 575 <212> DNA <213> homo sapiens
<400> 394 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacacca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc catgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 395 <211> 575 <212> DNA <213> homo sapiens
<400> 395 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcctct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc tatgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 396 <211> 575 <212> DNA <213> homo sapiens
<400> 396 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcccct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc tatgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 397 <211> 575 <212> DNA <213> homo sapiens <400> 397 gtaccagggg cagtggggag ccttccccat ctcctatagg tcgccgggga tggcctccca 60 cgagaagagg aggaaaatgg gatcagcgct agaatgtcgc cctcccttga atggagaatg 120 gcatgagttt tcctgagttt cctctgaggg ccccctcttc tctctaggac aattaaggga 180 tgacgtctct gaggaaatgg aggggaagac agtccctaga atactgatca ggggtcctct 240 ttgacccctg cagcagcctt gggaaccgtg acttttcctc tcaggccttg ttctctgcct 300 cacactcagt gtgtttgggg ctctgattcc agcacttctg agtcacttta cctccactca 360 gatcaggagc agaagtccct gttccccgct cagagactcg aactttccaa tgaataggag 420 attatcccag gtgcctgcgt ccaggctggt gtctgggttc tgtgcccctt ccccacccca 480 ggtgtcctgt ccattctcag gctggtcaca tgggtggtcc tagggtgtcc tatgagagat 540 gcaaagcgcc tgaattttct gactcttccc atcag 575
<210> 398 <211> 19 <212> DNA <213> homo sapiens
<400> 398 ccacctgctg ctctcggga 19
<210> 399 <211> 17 <212> DNA <213> homo sapiens
<400> 399 ctcctgctgc tctcggc 17
<210> 400 <211> 18 <212> DNA <213> homo sapiens
<400> 400 ctgctgctct ggggggca 18
<210> 401 <211> 18 <212> DNA <213> homo sapiens
<400> 401 gagatgcggg tcacggca 18
<210> 402 <211> 18 <212>DNA <213> homo sapiens
<400> 402 ctgaccgaga cctgggct 18
<210>403 <211> 18
<212>DNA <213> homo sapiens
<400> 403 aggagggtcg ggcgggtt
<210>404 <211>18
<212>DNA <213> homo sapiens
<400> 404 gggtctcagc cccacctt
<210>405 <211>19 <212>DNA <213> homo sapiens
<400> 405 gagggaaatg gcctctgcc 19
<210>406 <211> 18 <212>DNA <213> homo sapiens
<400> 406 cgggggcgca ggacctga
<210>407 <211> 18 <212>DNA <213> homo sapiens
<400> 407 gcgccgggag gagggtct <210> 408 <211> 18
<212>DNA <213> homo sapiens
<400> 408 gcctctgtgg ggaggaga
<210>409 <211> 19 <212>DNA <213> homo sapiens
<400> 409 gcctctgtag ggaggagca 19
<210>410 <211>18 <212>DNA <213> homo sapiens
<400>410 gtcgggcggg tctcagct
<210>411 <211>17 <212>DNA <213> homo sapiens
<400>411 cgggggaccg cgccggt 17
<210>412 <211>18 <212>DNA <213> homo sapiens
<400>412 ggtctcagcc cctcctca
<210>413 <211>18 <212>DNA <213> homo sapiens
<400>413 gtggagtgcg gggtcggc 18
<210>414 <211> 17
<212>DNA <213> homo sapiens
<400>414 gtgagtgcgg ggtcggc 17
<210>415 <211> 17
<212>DNA <213> homo sapiens
<400>415 gaccgcaggc gggggct 17
<210>416 <211>18 <212>DNA <213> homo sapiens
<400>416 tctcagcccc tcctcgct
<210>417 <211> 19 <212>DNA <213> homo sapiens
<400>417 gccatccccg gcgacctat 19
<210>418 <211> 19
<212>DNA <213> homo sapiens
<400>418 gggacccctg atcactatc 19
<210>419 <211>19 <212> DNA <213> homo sapiens <400>419 ggccctcaga ggaaactcg 19
<210>420 <211>21 <212>DNA <213> homo sapiens
<400> 420 aggcctgaga ggaaaagtca t 21
<210>421 <211>21 <212>DNA <213> homo sapiens
<400>421 aggcgctttg catctctcat a 21
<210>422 <211>21 <212>DNA <213> homo sapiens
<400> 422 gatcagtatt ctagggactg a 21
<210>423 <211>20 <212>DNA <213> homo sapiens
<400> 423 gaatggacag gacacctggt 20
<210>424 <211>21 <212>DNA <213> homo sapiens
<400> 424 tcatgccatt ctccattcaa c 21
<210>425
<211>20
<212>DNA <213> homo sapiens
<400> 425 ctagggactg tcttccccta 20
<210>426 <211>20 <212>DNA <213> homo sapiens
<400> 426 cgctgatccc attttcctct 20
<210>427 <211> 20 <212>DNA <213> homo sapiens
<400> 427 cagagaacaa ggcctgagaa 20
<210>428 <211>19 <212>DNA <213> homo sapiens
<400> 428 aacccagaca ccagcggat 19
<210>429 <211>20 <212>DNA <213> homo sapiens
<400> 429 ggacttctgc tcctgatcta 20
<210>430 <211>18 <212>DNA <213> homo sapiens
<400> 430 gaggccatcc cgggcgat 18
<210>431 <211>21 <212>DNA <213> homo sapiens
<400>431 ggaaagttcg agtctctgag t 21
<210>432 <211>20 <212>DNA <213> homo sapiens
<400> 432 ctcatgccat tctccattcc 20
<210>433 <211>19 <212>DNA <213> homo sapiens
<400> 433 tgaccagcct gagaatggg 19
<210>434 <211>19 <212>DNA <213> homo sapiens
<400> 434 aacagggact tctgctccc 19
<210>435 <211>20 <212>DNA <213> homo sapiens
<400> 435 ggcctgagag gaaaagtcac 20
<210>436 <211>21 <212>DNA <213> homo sapiens
<400> 436 ggatctcgga cccggagact c 21 <210>437 <211>21 <212> DNA <213> homo sapiens
<400> 437 acccggtttc attttcagtt g 21
<210>438 <211>23 <212>DNA <213> homo sapiens
<400>438 tttacccggt ttcattttca gtt 23
<210>439 <211>18 <212>DNA <213> homo sapiens
<400> 439 tccccactgc ccctggta
<210>440 <211>15 <212>DNA <213> homo sapiens
<400> 440 jgccagggtc tcaca 15
<210>441 <211>18 <212>DNA <213> homo sapiens
<400> 441 atctcggacc cggagact
<210>442 <211>21 <212>DNA <213> homo sapiens
<400> 442 tcccactcca tgaggtattt c 21

Claims

WHAT IS CLAIMED IS:
1. A method of determining the HLA-B Class I group type of a subject comprising the following steps:
(i) combining a group-specific untranslated region primer pair with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; and
(ii) determining whether a nucleic acid product is produced by the amplification; wherein the ability of the primer pair to produce a nucleic acid product is associated with a particular HLA group type.
2. The method of claim 1, further comprising the step of (iii) determining the nucleic acid sequence of the nucleic acid product of step (ii).
3. The method of claim 1, wherein the primer pair comprises one or more oligonucleotide primers selected from the group consisting of El -B 121ml 7, El- B129, E1-B130, E1-B136, E1-B182, 11-B145, Il-B154m, I1-B167, 11-B168, II- B169, 11-B170, 11-B171, 11-B172, 11-B173, 11-B174, 11-B175, 11-B326, 11-B331, II- B346, 13-B126, 13-B147, 13-B164, 13-B165, 13-B166, 13-B187, 13-B212, 13-B305, 13- B319, 13-B320, 13-B321, 13-B323, 13-B332, 13-B335, 13-B337, 13-B342, 13-B347, 13- B348, and I3-B349.
4. The method of claim 1, wherein the primer pair is selected from the group of pairs consisting of I1-B174 and I3-B305; I1-B167 and I3-B323; I1-B175 and I3-B319; I1-B145 and I3-B321; El-B121ml7 and I3-B147; Il-B154m and I3-B164; E1-B182 and I3-B349; I1-B168 and I3-B212; I1-B326 and I3-B165; I1-B167 and 13- B320; I1-B172 and I3-B342; I1-B172 and I3-B323; I1-B174 and I3-B323; I1-B170 and I3-B126; I1-B326 and I3-B348;I1-B331 and I3-B332; I1-B326 and I3-B337; II- B326 and I3-B187; I1-B169 and I3-B166; I1-B171 and I3-B347; I1-B173 and 13- B335; I1-B168 and I3-B212; I1-B346 and I3-B126; I3-B326 and I3-B126; I1-B167 and I3-B126; I1-B168 and 13-B126 E1-B129 and I3-B126; E1-B130 and I3-B126; E1B-182 and I3-B126; and E1B-136 and I3-B126.
5. A method of determining the HLA-B Class I allele type of a subject, wherein the group type of the subject is known, comprising the following steps: (i) combining a group-specific untranslated region primer pair corresponding to the group type of the subject with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur and a second nucleic acid product is produced; and
(ii) determining the nucleic acid sequence of the second nucleic acid product collected in step (i).
6. The method of claim 5, wherein the group-specific untranslated region primer pair used in step (i) comprises one or more oligonucleotide primers selected from the group consisting of El-B121ml7, E1-B129, E1-B130, E1-B136, E1-B182, 11-B145, Il-B154m, I1-B167, 11-B168, 11-B169, 11-B170, 11-B171, 11- B172, 11-B173, 11-B174, 11-B175, 11-B326, 11-B331, 11-B346, 13-B126, 13-B147, 13- B164, 13-B165, 13-B166, 13-B187, 13-B212, 13-B305, 13-B319, 13-B320, 13-B321, 13- B323, 13-B332, 13-B335, 13-B337, 13-B342, 13-B347, 13-B348, and I3-B349.
7. The method of claim 5, wherein the group-specific untranslated region primer pair used in step (i) is selected from the group of oligonucleotide primer pairs consisting of I1-B174 and I3-B305; I1-B167 and I3-B323; I1-B175 and 13- B319; I1-B145 and I3-B321; El-B121ml7 and I3-B147; Il-B154m and I3-B164; El- B182 and I3-B349; I1-B168 and I3-B212; I1-B326 and I3-B165; I1-B167 and 13- B320; I1-B172 and I3-B342; I1-B172 and I3-B323; I1-B174 and I3-B323; I1-B170 and I3-B126; I1-B326 and I3-B348;I1-B331 and I3-B332; I1-B326 and I3-B337; II- B326 and I3-B187; I1-B169 and I3-B166; I1-B171 and I3-B347; I1-B173 and 13- B335; I1-B168 and I3-B212; I1-B346 and I3-B126; I3-B326 and I3-B126; I1-B167 and I3-B126; I1-B168 and 13-B126 E1-B129 and I3-B126; E1-B130 and I3-B126; E1B-182 and I3-B126; and E1B-136 and I3-B126.
8. A composition comprising a plurality of oligonucleotide primer pairs comprising one or more primers selected from the group consisting of El- B121ml7, E1-B129, E1-B130, E1-B136, E1-B182, 11-B145, Il-B154m, I1-B167, II- B168, 11-B169, 11-B170, 11-B171, 11-B172, 11-B173, 11-B174, 11-B175, 11-B326, II- B331, 11-B346, 13-B126, 13-B147, 13-B164, 13-B165, 13-B166, 13-B187, 13-B212, 13- B305, 13-B319, 13-B320, 13-B321, 13-B323, 13-B332, 13-B335, 13-B337, 13-B342, 13- B347, 13-B348, and I3-B349.
9. A composition comprising an oligonucleotide primer selected from the group consisting of El-B121ml7, E1-B129, E1-B130, E1-B136, E1-B182, II- B145, Il-B154m, I1-B167, 11-B168, 11-B169, 11-B170, 11-B171, 11-B172, 11-B173, I1-B174, 11-B175, 11-B326, 11-B331, 11-B346, 13-B126, 13-B147, 13-B164, 13-B165, I3-B166, 13-B187, 13-B212, 13-B305, 13-B319, 13-B320, 13-B321, 13-B323, 13-B332, I3-B335, 13-B337, 13-B342, 13-B347, 13-B348, and I3-B349.
10. A composition comprising an oligonucleotide primer pair selected from the group consisting of I1-B174 and I3-B305; I1-B167 and I3-B323; I1-B175 and I3-B319; I1-B145 and I3-B321; El-B121ml7 and I3-B147; Il-B154m and 13- B164; E1-B182 and I3-B349; I1-B168 and I3-B212; I1-B326 and I3-B165; I1-B167 and 13-B320; I1-B172 and I3-B342; I1-B172 and I3-B323; I1-B174 and I3-B323; II- B170 and I3-B126; I1-B326 and I3-B348;I1-B331 and I3-B332; I1-B326 and 13- B337; I1-B326 and I3-B187; I1-B169 and I3-B166; I1-B171 and I3-B347; I1-B173 and I3-B335; I1-B168 and I3-B212; I1-B346 and I3-B126; I3-B326 and I3-B126; II- B167 and I3-B126; I1-B168 and 13-B126 E1-B129 and I3-B126; E1-B130 and 13- B126; E1B-182 and I3-B126; and E1B-136 and I3-B126.
11. A kit comprising:
(a) a plurality of oligonucleotide group-specific untranslated region primer pairs comprising one or more primers selected from the group consisting of El-B121ml7, E1-B129, E1-B130, E1-B136, E1-B182, 11-B145, Il-B154m, I1-B167, I1-B168, 11-B169, 11-B170, 11-B171, 11-B172, 11-B173, 11-B174, 11-B175, 11-B326, I1-B331, 11-B346, 13-B126, 13-B147, 13-B164, 13-B165, 13-B166, 13-B187, 13-B212, I3-B305, 13-B319, 13-B320, 13-B321, 13-B323, 13-B332, 13-B335, 13-B337, 13-B342, I3-B347, 13-B348, and I3-B349; and
(b) an enzyme for nucleotide chain extension.
12. A kit comprising:
(a) an oligonucleotide group-specific untranslated region primer selected from the group consisting of El-B121ml7, E1-B129, E1-B130, E1-B136, E1-B182, 11-B145, Il-B154m, I1-B167, 11-B168, 11-B169, 11-B170, 11-B171, II- B172, 11-B173, 11-B174, 11-B175, 11-B326, 11-B331, 11-B346, 13-B126, 13-B147, 13- B164, 13-B165, 13-B166, 13-B187, 13-B212, 13-B305, 13-B319, 13-B320, 13-B321, 13- B323, 13-B332, 13-B335, 13-B337, 13-B342, 13-B347, 13-B348, and I3-B349 ; and
(b) an enzyme for nucleotide chain extension.
13. A kit comprising:
(a) an oligonucleotide primer pair selected from the group consisting of I1-B174 and I3-B305; I1-B167 and I3-B323; I1-B175 and I3-B319; I1-B145 and 13- B321; El-B121ml7 and I3-B147; Il-B154m and I3-B164; E1-B182 and I3-B349; II- B168 and I3-B212; I1-B326 and I3-B165; I1-B167 and 13-B320; I1-B172 and 13- B342; I1-B172 and I3-B323; I1-B174 and I3-B323; I1-B170 and I3-B126; I1-B326 and I3-B348;I1-B331 and I3-B332; I1-B326 and I3-B337; I1-B326 and I3-B187; II- B169 and I3-B166; I1-B171 and I3-B347; I1-B173 and I3-B335; I1-B168 and 13- B212; I1-B346 and I3-B126; I3-B326 and I3-B126; I1-B167 and I3-B126; I1-B168 and 13-B126 E1-B129 and I3-B126; E1-B130 and I3-B126; E1B-182 and I3-B126; and E1B-136 and I3-B126; and
(b) an enzyme for nucleotide chain extension.
14. The kit of claim 13, further comprising:
(d) a sequencing primer selected from the group consisting of GGA TCT CGG ACC CGG AGA CTC G (SEQ ID NO:436); ACC CGG TTT CAT TTT CAG TTG (SEQ ID NO:437); TTT ACC CGG TTT CAT TTT CAG TT (SEQ ID NO:438); TCC CCA CTG CCC CTG GTA (SEQ ID NO:439); GGK CCA GGG TCT CAC A (SEQ ID NO:440); ATC TCG GAC CCG GAG ACT (SEQ ID NO:441); and TCC CAC TCC ATG AGG TAT TTC (SEQ ID NO:442).
PCT/CA1998/000768 1997-08-11 1998-08-11 Method and kit for hla class i typing dna WO1999007883A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98939999A EP1003917A1 (en) 1997-08-11 1998-08-11 Method and kit for hla class i typing dna
AU88468/98A AU8846898A (en) 1997-08-11 1998-08-11 Method and kit for hla class i typing dna
CA002300369A CA2300369A1 (en) 1997-08-11 1998-08-11 Method and kit for hla class i typing dna
JP2000506365A JP2001512694A (en) 1997-08-11 1998-08-11 Methods and kits for determining HLA class I type of DNA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90929097A 1997-08-11 1997-08-11
US08/909,290 1997-08-11

Publications (1)

Publication Number Publication Date
WO1999007883A1 true WO1999007883A1 (en) 1999-02-18

Family

ID=25426972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1998/000768 WO1999007883A1 (en) 1997-08-11 1998-08-11 Method and kit for hla class i typing dna

Country Status (5)

Country Link
EP (1) EP1003917A1 (en)
JP (1) JP2001512694A (en)
AU (1) AU8846898A (en)
CA (1) CA2300369A1 (en)
WO (1) WO1999007883A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019509A2 (en) * 1997-10-10 1999-04-22 Visible Genetics Inc. Method and kit for amplification, sequencing and typing of classical hla class i genes
WO2000061795A2 (en) * 1999-04-09 2000-10-19 Innogenetics N.V. Method for the amplification of hla class i alleles
FR2793809A1 (en) * 1999-05-20 2000-11-24 Biomerieux Sa Analyzing genetic predisposition to disease, e.g. rheumatoid polyarthritis, by amplification then hybridization to low- and high-resolution oligonucleotide probes
EP1331275A1 (en) * 2000-10-30 2003-07-30 Takara Bio Inc. Method of determining nucleic acid base sequence
EP2035578A4 (en) * 2006-06-09 2010-01-27 Conexio 4 Pty Ltd Identification of a nucleic acid molecule
WO2011106994A1 (en) * 2010-03-04 2011-09-09 深圳华大基因科技有限公司 Realization method and system of polymerase chain reaction sequencing-based typing
US8426129B2 (en) 1998-04-20 2013-04-23 Innogenetics N.V. Method for typing HLA alleles
WO2015085350A1 (en) * 2013-12-10 2015-06-18 Conexio Genomics Pty Ltd Methods and probes for identifying gene alleles
EP2808385A4 (en) * 2011-12-28 2015-08-26 Toppan Printing Co Ltd Method for determining hla-a*24 group
US9677087B2 (en) 2004-05-18 2017-06-13 National Institute Of Transplantation Foundation Vectors and methods for long-term immune evasion to prolong tranplant viability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005102599A (en) * 2003-09-30 2005-04-21 Shimadzu Corp Hla typing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020070A1 (en) * 1995-11-29 1997-06-05 The Anthony Nolan Bone Marrow Trust Methods for separating and/or identifying dna molecules
WO1997023645A1 (en) * 1996-01-04 1997-07-03 Sloan-Kettering Institute For Cancer Research Methods and reagents for typing hla class i genes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020070A1 (en) * 1995-11-29 1997-06-05 The Anthony Nolan Bone Marrow Trust Methods for separating and/or identifying dna molecules
WO1997023645A1 (en) * 1996-01-04 1997-07-03 Sloan-Kettering Institute For Cancer Research Methods and reagents for typing hla class i genes

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BLASCZYK R ET AL: "SEQUENCE ANALYSIS OF THE 2ND INTRON REVEALED COMMON SEQUENCE MOTIFSPROVIDING THE MEANS FOR A UNIQUE SEQUENCING BASED TYPING PROTOCOL OF THE HLA-A LOCUS", TISSUE ANTIGENS, vol. 47, no. 2, 1 February 1996 (1996-02-01), pages 102 - 110, XP000573588 *
BLASCZYK R ET AL: "The diversity of class I introns reflects the serological relationship of the coding regions", BEITR. INFUSIONSTHER. TRANSFUSIONMED (TRANSFUSIONMEDIZIN 1996/97), vol. 34, 1997, pages 231 - 35, XP002088823 *
BLASCZYK R ET AL: "The nature of polymorphism of the HLA class I noncoding regions and their contribution to the diversification of HLA", HEREDITAS, vol. 127, no. 1-2, 22 May 1997 (1997-05-22) - 26 May 1997 (1997-05-26), pages 7 - 9, XP002088824 *
CEREB N ET AL: "DIMORPHIC PRIMERS DERIVED FROM INTRON 1 FOR USE IN THE MOLECULAR TYPING OF HLA-B ALLELES", TISSUE ANTIGENS, vol. 50, no. 1, July 1997 (1997-07-01), pages 74 - 76, XP002070448 *
CEREB N ET AL: "NUCLEOTIDE SEQUENCES OF MHC CLASS I INTRONS 1,2, AND 3 IN HUMANS AND INTRON 2 IN NONHUMAN PRIMATES", TISSUE ANTIGENS, vol. 47, no. 6, June 1996 (1996-06-01), pages 498 - 511, ERRATUM 235/236, XP002070446 *
KLOTSCH K ET AL: "Sequencing of HLA Class I genes based on the conserved diversity of the noncoding regions: Sequencing based typing of HLA-A gene", TISSUE ANTIGENS, vol. 50, no. 2, August 1997 (1997-08-01), pages 178 - 91, XP002070449 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019509A2 (en) * 1997-10-10 1999-04-22 Visible Genetics Inc. Method and kit for amplification, sequencing and typing of classical hla class i genes
WO1999019509A3 (en) * 1997-10-10 1999-06-24 Visible Genetics Inc Method and kit for amplification, sequencing and typing of classical hla class i genes
US8426129B2 (en) 1998-04-20 2013-04-23 Innogenetics N.V. Method for typing HLA alleles
WO2000061795A3 (en) * 1999-04-09 2001-08-23 Innogenetics Nv Method for the amplification of HLA class I alleles
EP2319942A2 (en) * 1999-04-09 2011-05-11 Innogenetics N.V. Method for the amplificiation of HLA class I alleles
EP2319942A3 (en) * 1999-04-09 2012-04-18 Innogenetics N.V. Method for the amplificiation of HLA class I alleles
EP2314715A3 (en) * 1999-04-09 2012-04-18 Innogenetics N.V. Method for the amplification of HLA class I alleles
WO2000061795A2 (en) * 1999-04-09 2000-10-19 Innogenetics N.V. Method for the amplification of hla class i alleles
FR2793809A1 (en) * 1999-05-20 2000-11-24 Biomerieux Sa Analyzing genetic predisposition to disease, e.g. rheumatoid polyarthritis, by amplification then hybridization to low- and high-resolution oligonucleotide probes
US7060438B1 (en) 1999-05-20 2006-06-13 Bio Merieux Method for analyzing a patient's genetic prediposition to at least one disease and amplification adapted to such a method
WO2000071750A1 (en) * 1999-05-20 2000-11-30 Bio Merieux Method for analysing a patient's genetic predisposition to at least a disease and amplification adapted to such a method
EP1331275A1 (en) * 2000-10-30 2003-07-30 Takara Bio Inc. Method of determining nucleic acid base sequence
EP1331275A4 (en) * 2000-10-30 2004-08-04 Takara Bio Inc Method of determining nucleic acid base sequence
US9677087B2 (en) 2004-05-18 2017-06-13 National Institute Of Transplantation Foundation Vectors and methods for long-term immune evasion to prolong tranplant viability
EP2035578A4 (en) * 2006-06-09 2010-01-27 Conexio 4 Pty Ltd Identification of a nucleic acid molecule
US20110002948A1 (en) * 2006-06-09 2011-01-06 Conexio 4 Pty Ltd Identification of a nucleic acid molecule
WO2011106994A1 (en) * 2010-03-04 2011-09-09 深圳华大基因科技有限公司 Realization method and system of polymerase chain reaction sequencing-based typing
EP2808385A4 (en) * 2011-12-28 2015-08-26 Toppan Printing Co Ltd Method for determining hla-a*24 group
WO2015085350A1 (en) * 2013-12-10 2015-06-18 Conexio Genomics Pty Ltd Methods and probes for identifying gene alleles
AU2014361730B2 (en) * 2013-12-10 2021-02-25 Illumina, Inc. Methods and probes for identifying gene alleles
US20210147935A1 (en) * 2013-12-10 2021-05-20 Conexio Genomics Pty Ltd Methods and probes for identifying gene alleles

Also Published As

Publication number Publication date
AU8846898A (en) 1999-03-01
JP2001512694A (en) 2001-08-28
CA2300369A1 (en) 1999-02-18
EP1003917A1 (en) 2000-05-31

Similar Documents

Publication Publication Date Title
US5593830A (en) DNA sequence-based HLA class I typing method
EP0870059B1 (en) Method for evaluation of polymorphic genetic sequences, and the use thereof in identification of hla types
EP0777747A1 (en) Nucleotide sequencing method
US5910413A (en) Method and kit for amplification, sequencing and typing of classical HLA class I genes
JP2007530026A (en) Nucleic acid sequencing
CA2366374C (en) Method for the detection and/or analysis, by means of primer extension techniques, of single nucleotide polymorphisms in restriction fragments, in particular in amplified restriction fragments generated using aflp
US6500614B1 (en) Method for identifying an unknown allele
EP1003917A1 (en) Method and kit for hla class i typing dna
EP2186911B1 (en) A method for determining the Histocompatibility Locus Antigen Class II
WO1998026091A2 (en) Method and kit for hla class i typing
Dicker et al. Mutational analysis of human NRAS genes in malignant melanoma: rapid methods for oligonucleotide hybridization and manual and automated direct sequencing of products generated by the polymerase chain reaction
WO2001062966A2 (en) Methods for characterizing polymorphisms
EP0887423A1 (en) A method for determining the Histocompatibility locus antigen class II
US8008002B2 (en) Nucleic acid sequencing
DiZinno et al. Typing of DNA derived from hairs
US20030228596A1 (en) Template-driven nucleic acid amplifications
US6413718B1 (en) Method for sequencing of nucleic acid polymers
KR100247215B1 (en) Amplification of nucleic acids and detection of a new non-a, non-b, non-c, non-d, non-e hepatitis virus
US20110257018A1 (en) Nucleic acid sequencing
WO1993007166A1 (en) Polymorphic locus
WO2010008809A2 (en) Compositions and methods for early stage sex determination

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2300369

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998939999

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 88468/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998939999

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1998939999

Country of ref document: EP