WO1999005425A1 - Self-lubricated bearing - Google Patents
Self-lubricated bearing Download PDFInfo
- Publication number
- WO1999005425A1 WO1999005425A1 PCT/EP1998/004959 EP9804959W WO9905425A1 WO 1999005425 A1 WO1999005425 A1 WO 1999005425A1 EP 9804959 W EP9804959 W EP 9804959W WO 9905425 A1 WO9905425 A1 WO 9905425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- substrate
- set forth
- structures
- layer
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
- F16C33/201—Composition of the plastic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
- F16C33/203—Multilayer structures, e.g. sleeves comprising a plastic lining
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
- F16C33/203—Multilayer structures, e.g. sleeves comprising a plastic lining
- F16C33/206—Multilayer structures, e.g. sleeves comprising a plastic lining with three layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/20—Sliding surface consisting mainly of plastics
- F16C33/208—Methods of manufacture, e.g. shaping, applying coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/28—Brasses; Bushes; Linings with embedded reinforcements shaped as frames or meshed materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/02—Plastics; Synthetic resins, e.g. rubbers comprising fillers, fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/20—Thermoplastic resins
- F16C2208/58—Several materials as provided for in F16C2208/30 - F16C2208/54 mentioned as option
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2220/00—Shaping
- F16C2220/40—Shaping by deformation without removing material
- F16C2220/48—Shaping by deformation without removing material by extrusion, e.g. of metallic profiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/60—Thickness, e.g. thickness of coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C37/00—Cooling of bearings
Definitions
- This invention relates to bearings, and more particularly to a maintenance free bearing having a lubricious wear layer that is resistant to creep.
- Maintenance-free sliding bearings comprising a metal support and a plastic layer are known. Such bearings provide convenient means for rotatably, pivotably or slidably fastening multiple members to one another in a maintenance free manner. Applications for such bearings include those that utilize continuous rotational movement such as journals for supporting a driven shaft. These bearings are also suitable for applications that employ repeated pivotal movement such as automotive door hinges, door checks, brake and accelerator pedals. Additional applications include those that utilize repeated reciprocal movement such as automotive shock absorbers and struts. These bearings may also be used in lighter duty applications such as multiple bar linkages commonly utilized in the automotive industry for trunk deck lid and hood hinges. Such maintenance free bearings may comprise a variety of configurations, such as, for example, bushes or journal bearings, thrust bearings or washers, locating pads, valve port plates, and wearing components for a variety of mechanisms.
- the DU bearing consists of a composite material in which a porous bronze layer is bonded to a metal backing.
- the porous bronze layer is impregnated with a polymer such as PTFE (polytetrafluoroethylene), with a top layer or lining of polymer disposed thereon.
- PTFE polytetrafluoroethylene
- One aspect of this construction is that the ratio of polymer to bronze tends to change with depth, with the bronze being relatively more concentrated closer to the metal backing. This provides a reduced concentration of low friction material close to the backing metal. Thus, the coefficient of friction tends to disadvantageous ly vary (increase) over the bearing life.
- An additional drawback of this concentration gradient is that any operation that removes material from the bearing layer, such as the common practices of boring, broaching or burnishing the bearings to size after installation, generally cannot be accomplished without a reduction in bearing performance.
- Norglide comprises a thin sheet of bearing material, such as, for example, a PTFE compound, bonded onto steel backing using high temperature thermoplastic films, (eg. PFA and ETFE) heat and pressure. Since the bearing layer is fabricated as a discrete sheet, rather than a dispersion as in the case of the aforementioned DU bearings, the Norglide bearing layer is homogeneous. This aspect advantageously provides a coefficient of friction that remains nominally constant throughout the bearing life.
- the coefficient of friction of the Norglide bearing may be lower than other prior art bearings due to the ability to utilize reduced filler content or fillers that have less negative impact on the coefficient of friction.
- the Norglide bearing may utilize graphite filler rather than bronze as discussed hereinabove. Also, such homogeneity enables the bearing surface of Norglide bearings to be bored, broached or burnished to size after installation nominally without reducing the performance thereof.
- the creep and delamination problems may be addressed by roughening the metal backing surface, such as by sandblasting, etc., prior to application of the bearing surface.
- the process is relatively cumbersome, time consuming and adds expense to the process.
- Norglide M is substantially similar to Norglide, but utilizes a bearing layer having an open-mesh metal fabric reinforcement disposed therein. The use of this reinforcement tends to ameliorate the aforementioned creep and conductivity drawbacks, but does not address the delamination and electrical conductivity concerns.
- a maintenance-free sliding bearing includes a substrate having a surface and a plurality of structures disposed in spaced relation along, and extending substantially orthogonally therefrom.
- a load bearing layer is superposed with the surface in engagement with the plurality of structures, so that the structures are embedded therein.
- a method of fabrication of a maintenance-free sliding bearing includes the steps of: (a) providing a substrate having a surface; (b) integrally disposing a plurality of structures in spaced relation along, and extending substantially orthogonally from, the surface; and
- FIG. 1 is a schematic end view of a maintenance-free bearing of the prior art, fabricated as a journal bearing and supporting a shaft therein;
- Fig. 2 is a perspective view, on an enlarged scale, of portions of a bearing of the present invention.
- Fig. 3 is a cross-sectional view taken along 3-3 of Fig. 2, which illustrates the portions of a bearing shown in Fig. 2, with a sliding or bearing layer disposed thereon.
- the present invention comprises a self- lubricating bearing 110 fabricated as a laminate of a metallic backing, support or substrate 112, a series of raised structures 113 extending orthogonally therefrom, and a polymeric sliding, wear or load bearing layer 114 superposed thereover.
- Raised structures 113 preferably are fabricated from bronze, fastened integrally to substrate 112 and embedded into load bearing layer 114.
- Structures 113 serve to maintain load bearing layer 114 in place to help prevent it from sliding along the surface of substrate 112 during bearing operation. This improved anchorage to the substrate enables a relatively thick bearing layer to be utilized with a reduced tendency to creep.
- structures 113 provide a bearing 110, fabricated with a relatively thin load bearing layer 114, with a friction coefficient that remains relatively constant over its life.
- structures 113 act as thermal and electrical bridges for relatively high heat and electrical conductivity between support 112 and a supported article such as a rotating shaft.
- the raised structures thus may act as boundaries surrounding and retaining discrete pockets of self-lubricating material locally available for lubrication but unable to escape therefrom during bearing operation.
- Structures 113 also may be in direct contact with the supported article to help prevent bedding-in.
- bearings 110 are provided with a relatively low coefficient of friction, long bearing life, resistance to creep and mechanical stresses, and are electrically and thermally conductive.
- self-lubricated or “self-lubricating” shall refer to use of a material that exhibits sufficient lubricity to nominally eliminate the need for application of a discrete lubricant to a bearing surface.
- Fig. 1 the effect of creep is shown in Fig. 1 relative to a prior art journal bearing 9 fabricated with a metal housing 11 and a maintenance free bearing 10 including a plastic load bearing layer as generally described hereinabove.
- Bearing 10 is adapted to support a shaft 15 which is weighted to apply a load in the direction indicated by arrow 16.
- the load bearing layer tends to creep or become displaced in the direction indicated by arrows 18 and 20 ("radial creep") as well as in the axial direction (“axial creep", not shown) wherein the shaft effectively "beds in” to bearing 10.
- this action generates a loss of center alignment of shaft 16 as shown at 22.
- the present invention comprises a bearing 110 having a backing or substrate 112 fabricated from a metallic or other material capable of providing bearing 110 with requisite structural integrity for an intended application.
- raised structures 113 are preferably fabricated as integral components of an intermediate layer 116 that extends continuously in a superimposed manner over a surface 118 of support 112.
- structures 113 comprise a generally honeycomb-like pattern substantially as shown, but may however, be fabricated with substantially any geometric pattern sufficient to provide anchorage for the wear layer, as will be discussed hereinafter.
- structures 113 may comprise a series of connected or discontinuous polygons such as squares, circles, triangles etc., or may comprise a series of discrete posts (not shown) that extend approximately orthogonally relative to surface 118 of support 112.
- layer 116 has a thickness t of approximately 60 microns ( ⁇ )
- structures 113 have a height h of approximately lOO ⁇ , a width w of approximately 50 ⁇ and are spaced to define an interior dimension d of approximately 300 ⁇ .
- a small degree of conicity of structures 113 is preferred to facilitate manufacture of the structures using an embosser or a mold.
- load bearing layer 114 is laminated to structures 113 and intermediate layer 116, being bonded thereto by a layer of adhesive 120.
- structures 113 are embedded within load bearing layer 114, with the bearing layer having a substantially smooth outermost surface 122 disposed a predetermined orthogonal distance v from structures 113.
- Distance v may be varied depending on the intended application for bearing 110.
- Substrate 112 may be fabricated from various metals, including steel or aluminum, as well as additional materials such as stainless steel, conventional drawing quality sheet steel, brass or other alloys, or from plastics, ceramics or composites utilizing glass or carbon fibers. Surface 118 thereof may be left untreated, or treated using various techniques such as galvanizing, chromate or phosphate treatments, anodizing (in the case of an aluminum substrate), mechanical sandblasting and/or chemical pickling. It is also contemplated that a steel substrate coated with porous bronze, such as utilized in the aforementioned DU bearing, may be utilized in the fabrication of the present invention.
- substrate 112 may be provided with structures 113 by a discontinuous laser beam which, by selectively hitting surface 118 and melting it over a relatively small area, creates regularly spaced craters over surface 118 thereof.
- Load bearing layer 114 may comprise any number of suitable lubricious substances, such as a polymer or plastic material, including a fluoropolymer, for example, the compounds disclosed in U.S. Patent No. 5,573,846, entitled POLYFLUOROCARBON COATED METAL BEARING which issued on 11/12/96 and which is hereby incorporated by reference.
- Preferred plastic materials generally include temperature tolerant polymer systems containing high melt temperature organic polymers, and/or systems characterized by a relatively low coefficient of friction.
- the materials have to be suitable for application or lamination to the material from which the substrate is fabricated.
- fluoropolymers are the preferred adhesives.
- an appropriate adhesive layer 120 nominally any organic polymer may be laminated as the load bearing layer 114 to a metal substrate.
- Examples of useful polymeric materials in load bearing layer 114 include fluoropolymers (e.g., poly tetrafluoroethylene (PTFE), fluorinated ethylene-propylene (FEP), polyvinylidene flouride (PVDF), polychlorotrifluoroethylene (PCTFE), ethylene- chlorotrifluoroethylene (ECTFE), and perfluoroalkoxy polymer (PFA)), acetal, polycarbonate, polyimides, polyetherimide, polyether ether ketone (PEEK), polyethylene, polypropylene, polysulfones (e.g., polyethersulfone), polyamide (Nylon), polyphenylene sulfide, polyurethane, polyester, polyphenylene oxide, and blends and alloys thereof.
- fluoropolymers e.g., poly tetrafluoroethylene (PTFE), fluorinated ethylene-propylene (FEP), polyvinylidene flouride (PVDF
- PPS polystyrene resin
- PPSO 2 polystyrene resin
- aromatic or aliphatic polyketone/ethers PEI and/or Nylon 46
- Reactive polymers such as polyimides, in solid form (unreacted film) or in solution may be utilized. These reactive polymers may thus constitute the continuous matrix.
- Other polymers such as very high molecular weight polyethylene (which can then be bonded with lower temperature adhesives such as ethylene vinylacetate (EVA)), or polyamides also may be utilized.
- EVA ethylene vinylacetate
- the bearing layer may be perforated for additional lubrication by grease pockets disposed therein.
- Lubricants or fillers are useful. These include various additives that affect polymer characteristics such as lubricity, mechanical strength, wear resistance and thermal and electrical conductivity.
- Useful additives include, but are not limited to, a minor volume percentage (e.g., 0.5 to 49.5 percent) of glass and or carbon fiber, silicone, graphite, molybdenum disulfide, aromatic polyester, carbon particles, bronze, fluoropolymer and combinations thereof.
- the choice of a particular material for a given application may be made based on the coefficient of friction ( ⁇ ) of the material.
- ⁇ coefficient of friction
- the coefficient of friction between two surfaces is defined in the CRC Handbook of Chemistry and Physics (62nd Edition, 1981-1982) as the ratio of the force required to move one surface over the other to the total force pressing the two together.
- F the force required to move one surface over another and W
- acceptable materials include those that have a static coefficient of friction ⁇ at least below that of steel on steel (.58) and preferably similar to that of polyethylene (0.2). In heavier duty applications, such as for automotive or general industrial use, materials having relatively lower coefficients are preferred. Preferred materials for these applications are those that, for example, have a coefficient of static friction ( ⁇ ) similar to that of PTFE (approximately 0.04-0.10).
- the coefficients of dynamic or kinetic friction ( ⁇ ) are more meaningful in the context of the present invention in light of the continuous and/or repetitive duty applications typically associated with bearings.
- the test described below was used for determining and comparing values for the coefficients of dynamic friction ( ⁇ ) for various materials.
- a series of disks of predetermined dimensions are fabricated, each having a plastic or load bearing layer of a particular material to be tested.
- the load bearing layers of two nominally identical disks are pressed against opposite sides of a smooth steel plate at a predetermined pressure or load W.
- the steel plate is then pulled out from between the disks at a predetermined velocity.
- the force F required to remove the plate is measured and then divided by W to obtain the coefficient of kinetic friction ( ⁇ ).
- test results discussed hereinafter were obtained using a loading W of 565 N and the steel plate was pulled out at a velocity of 50 mm min. For example, this test typically yields a coefficient of kinetic friction ( ⁇ ) for filled PTFE of approximately 0.08 to 0.1.
- layer 114 may also include common fillers.
- the present invention does not utilize a dispersion of PTFE to facilitate penetration thereof into porous bonze as taught by the prior art, the size of filler particles is generally not of concern. Rather, use of skived PTFE sheet in a preferred embodiment of the invention permits use of fillers of substantially any particle size and concentration provided PTFE is the continuing phase binding the particles together.
- Various alternatives are available for adhesive 120.
- Suitable adhesives include fluoropolymers, such as PFA, MFA, ETFE, FEP, PCTFE, PVDF, curing adhesives such as epoxy, polyimide adhesives, and lower temperature hot melts such as EVA and polyether/polyamide copolymer (PebaxTM).
- layers 114 and 120 are fabricated as a monolayer comprising a polymer blend.
- a blend of PFA/ PTFE produced by melt extrusion (if PFA is predominant) or by sheet skiving (if PTFE is predominant), may be utilized to serve as both adhesive 120 and load bearing layer 114.
- the presence of PFA will increase the creep resistance of pure PTFE. This effect may be increased by adding fillers as described hereinabove.
- the voids defined by structures 113 may be filled with a dispersion of the chosen polymer (PTFE, PPS, a combination thereof, etc., possibly with fillers), the dispersion dried out, then pressed to form load bearing layer 114.
- PTFE polymer
- PPS polymer
- load bearing layer 114 a dispersion of the chosen polymer
- polyimide P84 available from Lending Co., preferably containing PTFE as a filler, may be coated directly onto the structures 113, the solvent flashed off and the polymer fully imidized.
- Bearing 1 10 of the present invention is preferably fabricated by providing a substrate 112 formed as a metallic sheet, with a cladding of bronze superimposed therewith to form an integral intermediate layer 116.
- This cladding or intermediate layer 116 is bonded to substrate 112 using conventional cladding techniques involving application of heat and pressure to form an integrated composite.
- This composite is then passed through a conventional calender roll engraved with the negative of the desired pattern of structures 113 such as the honeycomb pattern shown in Fig. 2.
- Bearing layer 114 may be subsequently formed by laminating a conventional sheet of lubricious material, such as PTFE, using a suitable adhesive as described hereinabove.
- bearing 110 is substantially complete.
- the bearing may be formed into various application specific configurations using conventional techniques.
- a load bearing layer 114 may be laminated on both surfaces of substrate 112 to provide a double- sided bearing.
- Bearings 110 may be formed into any number of bearing types, such as bushes or journal bearings, thrust washers, and skid plates, etc.
- bushes or journal bearings may be formed by cutting the bearing 110 into strips. Each of these strips, in turn, may be formed into hollow cylinders, with load bearing layer 1 14 disposed on the inside cylindrical surface thereof, similar to that shown in prior art Fig. 1, or alternatively, on the outside surface thereof, depending on the particular application.
- the cylindrical bearings may then be flanged using techniques familiar to those skilled in the art, such as, for example, described in the
- bearing 110 may be alternatively fabricated by forming substrate 112 into a desired configuration, such as, for example, a cylinder, prior to application of load bearing layer 114 thereon.
- the substrate may be provided with structures 113 as described hereinabove, then fabricated into a tube using any convenient method, with the structures disposed on either the inner, outer, or both cylindrical surfaces thereof.
- load bearing layer 114 may be applied to the tube in any convenient manner, such as, for example, by spray coating or dipping.
- Application of the load bearing layer may be performed either before or after flanging one or both ends thereof.
- substrate 112 may be fabricated into a tube, by any conventional method such as hot or cold forming operations, including roll forming, piercing, drawing or extrusion processes to produce either seamed or seamless tubes.
- structures 113 may be provided using a surface texturing technique such as a chemical etching process or the aforementioned laser treatment.
- Load bearing layer 114 may be applied thereafter, as previously discussed. The invention is explained in greater detail by the following examples and tests.
- a support 112 was formed as a sheet of steel quality St4 1.0338 LG according to the German Industrial Specification (Deutsche Industrie Norm) "DIN 1624".
- This sheet was provided with a thickness of 0.8mm, including a bronze cladding approximately 80 ⁇ thick (bronze quality CuSn 6).
- Structures 113 were formed by passing support 112 through a conventional calender roll engraved with the negative of the desired honeycomb pattern shown in Fig. 2. The dimensions of the structures 113 forming the honeycomb pattern were substantially as described hereinabove and shown in Figs. 2 and 3.
- Load bearing layer 1 14 was then formed by laminating a conventional skived PTFE compound sheet (composition 25% carbon/graphite, 75% PTFE) using an adhesive 120 of conventional 25 ⁇ thick PFA (Teflon® PFA by DuPont®). Parameters of the bearing layer 114 were predetermined to provide a thickness v (Fig.
- support 112 was a sheet of 0.8 mm thick aluminum (quality AlMg 04 Si 1.2) with both faces treated with chromic acid according to methods well known in the art, commonly referred to as chromate conversion coating, at 700-800 mg/m 2 . Remaining fabrication steps were substantially identical to the example discussed hereinabove to produce similar bearings 110.
- the value of 0.19 at a depth of 60 ⁇ is the friction coefficient between pure bronze and steel, which thus indicates that the available depth of lubricating material from the initial outermost surface 122 is approximately 60 ⁇ . This amount is considerably less than the total theoretical depth of the mixture of PTFE/bronze of 250-350 ⁇ of the DU bearing.
- the present invention shows a relatively long plateau of low friction values up to approximately 80 ⁇ . This result is surprising because one would expect this plateau to last only for the depth of the top, bronze free layer (depth "v” in Fig. 3) or 30 ⁇ as tested.
- the specific mechanism that provides this surprisingly long low friction plateau is not known. It is hypothesized, however, that this plateau extends to more than twice depth v due to the disposition of the bronze in discrete locations rather than being intermixed with polymer. Results for NG are provided as a reference. Because NG does not utilize bronze in the bearing layer and is homogeneous, the friction coefficient does not vary during its life. However, it is expected that the PI bearing will provide a better wear rate over time than the NG bearing. In other words, it is expected that during actual use, the PI bearing will take substantially longer to wear to a given depth than the NG bearing.
- Samples of the present invention were compared to NG with similar PTFE bearing layer thickness.
- NG was fabricated using standard carbon/graphite filler as described hereinabove.
- An alternate embodiment of the present invention was also fabricated having 25 weight percent of an aromatic polyester filler sold by Carborundum Co., U.S.A., under the designation "EkonolTM, type T101.” The results are shown in the following Table III.
- the bearings of the present invention were tested for heat conductivity using equipment available from Semmler and Reinhart Company, (Meitingen, Germany) type WLM 20/112. 20mm diameter disks of the bearings were inserted between two measuring heads, set at 30°C and 50°C respectively. The value of heat conductivity was measured according to the manufacturer's instructions. The results shown below in Table IV show that the bearings of the invention (PI) are approximately three times better than NG, and are also better than DU at full thickness. This superior heat conductivity is apparently due to the structures 113 forming a solid connection to metal support 112, to effectively form a fin structure extending from support 112 towards the surface of load bearing layer 114. In this connection, conduction values are even higher once bearing layer 114 is worn down to structures 113 (depth v as shown in Fig. 3, or approximately 30 ⁇ in the embodiment tested). Utilizing a sandblasted substrate 112 did not result in significantly improved results.
- bearings of the present invention are more resistant to mechanical stresses than standard NG.
- bearings of the present invention were fabricated using a steel substrate 0.8 mm thick with bronze intermediate layer 116 and PTFE bearing layer 114 of the dimensions shown and described hereinabove with respect to Fig. 3. These bearings 110 were then formed into cylindrical bushes of the type generally shown in prior art Fig. 1 and flanged. Upon inspection, the bushes of the invention did not show any delamination, but the NG samples delaminated.
- raised structures 113 of the present invention formed integrally with substrate 112 and embedded into load bearing layer 114 enable a relatively thick bearing layer 114 of low friction self- lubricating material to be utilized.
- This provides bearings 110 with a relatively long bearing life.
- the bearing's coefficient of friction remains low and nominally constant over its life, even, su ⁇ risingly, once load bearing layer 114 is worn down to, and into, structures 113.
- Bearings 110 are also advantageously resistant to creep and mechanical stresses, and are electrically and thermally conductive.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Sliding-Contact Bearings (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000504379A JP2001511502A (en) | 1997-07-24 | 1998-07-11 | Self-lubricating bearing |
EP98942669A EP0998637B1 (en) | 1997-07-24 | 1998-07-11 | Self-lubricated bearing |
DE69831675T DE69831675T2 (en) | 1997-07-24 | 1998-07-11 | SELF-LUBRICANT BEARING |
BR9811530-8A BR9811530A (en) | 1997-07-24 | 1998-07-11 | Self-lubricating bearing |
CA002295829A CA2295829C (en) | 1997-07-24 | 1998-07-11 | Self-lubricated bearing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/899,572 US5971617A (en) | 1997-07-24 | 1997-07-24 | Self-lubricated bearing |
US08/899,572 | 1997-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999005425A1 true WO1999005425A1 (en) | 1999-02-04 |
Family
ID=25411232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1998/004959 WO1999005425A1 (en) | 1997-07-24 | 1998-07-11 | Self-lubricated bearing |
Country Status (11)
Country | Link |
---|---|
US (2) | US5971617A (en) |
EP (1) | EP0998637B1 (en) |
JP (1) | JP2001511502A (en) |
KR (1) | KR100368927B1 (en) |
CN (1) | CN1105834C (en) |
BR (1) | BR9811530A (en) |
CA (1) | CA2295829C (en) |
DE (1) | DE69831675T2 (en) |
ES (1) | ES2251099T3 (en) |
TW (1) | TW384363B (en) |
WO (1) | WO1999005425A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1065138A3 (en) * | 1999-06-29 | 2003-05-07 | Intertractor GmbH | Track for tracklaying vehicles |
DE102005033681A1 (en) * | 2005-07-19 | 2007-02-08 | Kunststoff-Fröhlich GmbH | Plastic molded body, thermoplastic deformable granules, hollow structure and process for their preparation |
DE102004020385B4 (en) * | 2003-05-23 | 2008-07-10 | Saint-Gobain Performance Plastics Pampus Gmbh | Method for producing plain bearing bushes |
CN102056786A (en) * | 2008-06-20 | 2011-05-11 | 美国圣戈班性能塑料公司 | Steering yoke |
DE102009055239A1 (en) | 2009-12-23 | 2011-06-30 | Federal-Mogul Wiesbaden GmbH, 65201 | Layer composite |
CN102720832A (en) * | 2012-07-05 | 2012-10-10 | 张永斌 | Method for improving lubricating property of linear contact fluid under high roll ratio |
US8585293B2 (en) | 2007-03-29 | 2013-11-19 | Saint-Gobain Performance Plastics Pampus Gmbh | Calibratable plain bearing material |
US8979376B2 (en) | 2007-04-04 | 2015-03-17 | Saint-Gobain Performance Plastics Pampus Gmbh | Spherical plain bearing |
US9022656B2 (en) | 2008-09-30 | 2015-05-05 | Saint-Gobain Performance Plastics Pampus Gmbh | Vibration-damping plain bearing composite and plain bearing bushing and plain bearing assembly |
EP2910805A1 (en) * | 2014-02-19 | 2015-08-26 | Hühoco Metalloberflächenveredelung GmbH | Hybrid metal/plastic composite for a sliding bearing and method for its preparation |
EP2806178A4 (en) * | 2012-01-20 | 2016-01-13 | Taiho Kogyo Co Ltd | Sliding member |
EP2796738A4 (en) * | 2011-12-22 | 2016-01-13 | Taiho Kogyo Co Ltd | Sliding member |
WO2016097284A1 (en) * | 2014-12-19 | 2016-06-23 | Saint-Gobain Performance Plastics Pampus Gmbh | Sliding component and method of forming the same |
US9583230B2 (en) | 2008-09-30 | 2017-02-28 | Ntn Corporation | Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing, and sliding sheet |
GB2566148B (en) * | 2017-08-29 | 2023-01-18 | Renk Gmbh | Plain bearing and method for producing a plain bearing |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6149160A (en) * | 1997-08-08 | 2000-11-21 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Mechanical seals enhanced with microstructures |
US6191204B1 (en) * | 1998-06-25 | 2001-02-20 | Caterpillar Inc. | Tribological performance of thermoplastic composite via thermally conductive material and other fillers and a process for making the composite and molded articles of the same |
KR20020006672A (en) * | 1999-03-03 | 2002-01-24 | 세인트 고베인 퍼포먼스 플라스틱스 코퍼레이션 | Roller with self-lubricated bearing |
US7235514B2 (en) * | 2000-07-28 | 2007-06-26 | Tri-Mack Plastics Manufacturing Corp. | Tribological materials and structures and methods for making the same |
WO2002016789A1 (en) * | 2000-08-24 | 2002-02-28 | Duramax Marine, Llc | Spa super demountable bearing |
JP4078209B2 (en) * | 2001-05-16 | 2008-04-23 | グラコ ミネソタ インコーポレーテッド | Solvent resistant bearings for self-generating electrostatic spray guns |
DE10126462A1 (en) * | 2001-05-31 | 2003-01-23 | Ks Gleitlager Gmbh | Plain bearing composite with a metallic support layer |
DE10126460A1 (en) * | 2001-05-31 | 2003-02-06 | Ks Gleitlager Gmbh | Plain bearing composite with a metallic support layer |
US6830641B2 (en) * | 2001-08-13 | 2004-12-14 | Saint-Gobain Performance Plastics Corporation | Method of making a seal formed from polymer laminated metallic constructions |
DE10226266B4 (en) * | 2002-06-07 | 2005-09-15 | Ks Gleitlager Gmbh | Plain bearing composite material |
US7056590B2 (en) * | 2002-06-07 | 2006-06-06 | Ks Gleitlager Gmbh | Plain bearing composite material |
US20040190803A1 (en) * | 2003-03-28 | 2004-09-30 | Deshpande Prasanna Avinash | Wear-resistant polymeric bushing for biopharmaceutical applications |
US20040216675A1 (en) * | 2003-04-30 | 2004-11-04 | Canon Kabushiki Kaisa | Deposited film forming method and apparatus |
US7135797B2 (en) * | 2003-05-22 | 2006-11-14 | Seagate Technology Llc | Fluid dynamic bearing with wear resilient surface |
EP1508708A1 (en) * | 2003-08-22 | 2005-02-23 | Delphi Technologies, Inc. | Multi layer bearing liner for a rack guide |
US7258036B2 (en) * | 2003-10-20 | 2007-08-21 | Siemens Vdo Automotive Corporation | Bi-directional electric motor with endplay structure |
US20060062502A1 (en) * | 2004-09-22 | 2006-03-23 | International Paper Company | Solid lubrication of rod end bearings |
US20060249917A1 (en) * | 2005-04-07 | 2006-11-09 | Saint-Gobain Performance Plastics Corporation | Composite sealing device |
US20060228506A1 (en) * | 2005-04-11 | 2006-10-12 | Lin A P | Abrasion resistant composite material structure |
US20090087126A1 (en) * | 2007-10-01 | 2009-04-02 | Saint-Gobain Performance Plastics Corporation | Bearings |
US20090193966A1 (en) * | 2008-02-06 | 2009-08-06 | Gm Global Technology Operations, Inc. | Compressor Piston |
US8367304B2 (en) | 2008-06-08 | 2013-02-05 | Apple Inc. | Techniques for marking product housings |
FR2934608B1 (en) * | 2008-08-01 | 2010-09-17 | Commissariat Energie Atomique | SUPERFINISHING THIN FILM COATING, PROCESS FOR OBTAINING SAME, AND DEVICE COMPRISING SUCH A COATING. |
DE102009010459A1 (en) | 2009-02-13 | 2010-08-19 | Ks Gleitlager Gmbh | Plain bearing composite material |
DE102009011955A1 (en) * | 2009-03-10 | 2010-09-23 | Universität Stuttgart | machine element |
DE102009014974A1 (en) | 2009-03-18 | 2010-09-23 | Elringklinger Ag | Polymer compound and components made using the compound |
DE102009018637A1 (en) * | 2009-04-17 | 2010-10-21 | Elringklinger Ag | bearings |
US9884342B2 (en) * | 2009-05-19 | 2018-02-06 | Apple Inc. | Techniques for marking product housings |
US9845546B2 (en) * | 2009-10-16 | 2017-12-19 | Apple Inc. | Sub-surface marking of product housings |
US7968167B2 (en) * | 2009-10-22 | 2011-06-28 | GM Global Technology Operations LLC | Coated seal for sealing parts in a vehicle engine |
EP2499386B1 (en) * | 2009-11-10 | 2018-08-15 | Saint-Gobain Performance Plastics Corporation | Closed end cup bearing |
JP5649740B2 (en) * | 2010-11-19 | 2015-01-07 | サン−ゴバン パフォーマンス プラスティックス コーポレイション | Bushing, composite, and method of forming a bushing |
US9280183B2 (en) | 2011-04-01 | 2016-03-08 | Apple Inc. | Advanced techniques for bonding metal to plastic |
BR112013027620A2 (en) * | 2011-04-29 | 2017-02-14 | Saint Gobain Performance Plastics Corp | maintenance free slide bearing with fep or pfa in adhesive layer |
US9163739B2 (en) * | 2011-07-22 | 2015-10-20 | Vetco Gray Inc. | High temperature coating resistant to damage from decompression |
CN103182808A (en) | 2011-12-28 | 2013-07-03 | 圣戈班高功能塑料集团 | Multilayer complex comprising fluorine-containing polymer surface layer and non-fluorinated polymer transition layer |
FR2985215B1 (en) | 2011-12-28 | 2014-09-19 | Saint Gobain Performance Plast | POLYMERIC COATINGS DEPOSITED ON SUBSTRATES BY THERMAL PROJECTION TECHNIQUES |
EP2867019B1 (en) | 2012-06-29 | 2023-01-18 | Saint-Gobain Performance Plastics Pampus GmbH | Slide bearing comprising a primer system as adhesion promoter |
CN102889373B (en) * | 2012-09-12 | 2015-02-25 | 常州大学 | Method for improving lubrication of line contact fluid under simple sliding |
KR101663975B1 (en) | 2012-09-28 | 2016-10-12 | 생―고뱅 퍼포먼스 플라스틱스 팜푸스 게엠베하 | Maintenance-free slide bearing with a combined adhesive sliding layer |
CN102979817B (en) * | 2012-11-26 | 2016-01-13 | 大连三环复合材料技术开发有限公司 | Elastic metal plastic tile and manufacture method thereof |
DE102012221614B4 (en) | 2012-11-27 | 2021-11-18 | Robert Bosch Gmbh | Method for producing a bearing device, bearing device having a plastic sliding layer, and use of the bearing device |
WO2014121034A1 (en) * | 2013-02-01 | 2014-08-07 | Commscope, Inc. Of North Carolina | Transitioning multi-core fiber to plural single core fibers |
JP2017503978A (en) | 2013-12-31 | 2017-02-02 | サン−ゴバン パフォーマンス プラスティックス コーポレイション | Composite bearing with polyimide matrix |
EP4043204A1 (en) | 2014-09-02 | 2022-08-17 | Saint-Gobain Performance Plastics Pampus GmbH | Corrosion resistant bushing |
KR20160133237A (en) * | 2015-05-12 | 2016-11-22 | 창원금속공업(주) | Oilless bearing comprising sliding layer consisted of complex element |
CN107787418B (en) * | 2015-06-29 | 2020-09-01 | 美国圣戈班性能塑料公司 | Linear motion system |
DE102016110858B4 (en) * | 2016-06-14 | 2018-03-08 | Renk Aktiengesellschaft | Plain bearing and method for producing the same |
DE102016210507B4 (en) * | 2016-06-14 | 2021-11-18 | Schaeffler Technologies AG & Co. KG | Method for producing a sliding surface on a machine element and machine element |
CN106870562B (en) * | 2017-04-12 | 2019-04-02 | 河海大学常州校区 | A kind of taper dynamic and hydrostatic bearing sub-assembly of diameter of axle surface-texturing |
CN107013565B (en) * | 2017-04-17 | 2023-03-31 | 哈尔滨电气动力装备有限公司 | Net-shaped elastic self-adaptive surface lubricating texture |
CN109774271A (en) * | 2017-11-10 | 2019-05-21 | 丹阳八紫光能有限公司 | A kind of axle sleeve |
CN109989999A (en) * | 2017-12-29 | 2019-07-09 | 圣戈班性能塑料帕姆普斯有限公司 | Parts of bearings and its preparation and application |
CN108691896A (en) * | 2018-07-26 | 2018-10-23 | 广州市研理复合材料科技有限公司 | A kind of honeycomb sliding surface and sliding bearing |
CN108891103B (en) * | 2018-08-22 | 2024-08-02 | 浙江长盛滑动轴承股份有限公司 | Conductive self-lubricating composite board for bearing and preparation method thereof |
MX2021011471A (en) | 2019-03-26 | 2021-10-22 | Saint Gobain Performance Plastics Pampus Gmbh | Bearing, assembly, and method of making and using the same. |
CN113906226B (en) | 2019-06-03 | 2023-12-12 | 圣戈班性能塑料帕姆普斯有限公司 | Flange bearing, assembly and manufacturing method thereof |
US11686344B2 (en) * | 2019-12-13 | 2023-06-27 | Roller Bearing Company Of America, Inc. | Bearing component with core and surface lattice structures |
DE102020100453A1 (en) * | 2020-01-10 | 2021-07-15 | Mtu Friedrichshafen Gmbh | Bearing shell of a bearing of a rotating component of a motor, system with the rotating component, structure-borne noise detector and bearing with bearing shell as well as a method for determining the wear of a bearing |
US11085491B1 (en) * | 2020-06-08 | 2021-08-10 | Robert Janian | Self lubricating bearing sleeve |
DE102021132664A1 (en) | 2021-12-10 | 2023-06-15 | Zf Cv Systems Europe Bv | Plain bearing component, lever bearing, clamping device, vehicle, method of manufacture |
DE102022121689A1 (en) * | 2022-08-26 | 2024-02-29 | Federal-Mogul Wiesbaden Gmbh | Conductive self-lubricating sliding element |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3058791A (en) * | 1959-04-13 | 1962-10-16 | Ralph F Stallman | Bearings |
US3711166A (en) * | 1968-10-10 | 1973-01-16 | Merriman Inc | Means for controlling the coefficient of friction between bearing surfaces |
DE2944052A1 (en) * | 1978-11-08 | 1980-05-22 | Miba Gleitlager Ag | Heavy duty plain bearing - has backing surface profiled to take plastic based working coating (OE 15.3.80) |
US4238137A (en) * | 1978-04-26 | 1980-12-09 | American Bearing Company, Inc. | Slide bearing |
DE3241002A1 (en) * | 1982-11-06 | 1984-05-10 | Gelenkwellenbau Gmbh, 4300 Essen | Sliding element |
GB2139236A (en) * | 1982-12-03 | 1984-11-07 | Daido Metal Co | Wear resistant materials |
DE3516649A1 (en) * | 1983-11-11 | 1986-11-13 | Nippon Dia Clevite Co., Ltd., Narashino, Chiba | Self-lubricating bearing |
DE3601568A1 (en) * | 1986-01-21 | 1987-07-23 | Kolbenschmidt Ag | SLIDING BEARING MATERIAL |
US5573846A (en) * | 1991-10-24 | 1996-11-12 | Norton Pampus Gmbh | Polyfluorocarbon coated metal bearing |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2689380A (en) * | 1951-01-29 | 1954-09-21 | Glacier Co Ltd | Method of making bearings |
US2798005A (en) * | 1951-10-19 | 1957-07-02 | Glacier Co Ltd | Porous metal bearing containing polytetrafluoroethylene and a solid lubricant |
US2691814A (en) * | 1952-11-24 | 1954-10-19 | Glacier Co Ltd | Polytetrafluorethylene impregnated bearings |
GB754115A (en) * | 1953-01-23 | 1956-08-01 | Glacier Co Ltd | Improvements in or relating to plain bearings or anti-friction elements |
US2813041A (en) * | 1953-09-09 | 1957-11-12 | Glacier Co Ltd | Method of impregnating porous metal strip with polytetrafluoroethylene |
GB824940A (en) * | 1956-03-07 | 1959-12-09 | Glacier Co Ltd | Bearings and bearing materials |
US3234128A (en) * | 1960-01-08 | 1966-02-08 | Glacier Co Ltd | Plain bearings |
US3194702A (en) * | 1962-01-03 | 1965-07-13 | Gen Motors Corp | Method of making self-lubricating bearing means |
US3582166A (en) * | 1969-06-06 | 1971-06-01 | Lear Siegler Inc | Bearing having low-friction fibrous surface and method for making same |
US3929396A (en) * | 1972-04-04 | 1975-12-30 | Kamatics Corp | Molded plastic bearing assembly |
US4080233A (en) * | 1974-12-11 | 1978-03-21 | The Heim Universal Corporation | Method of making a self-lubricating bearing |
DE3505374A1 (en) * | 1985-02-16 | 1986-08-28 | Kolbenschmidt AG, 7107 Neckarsulm | SLIDING BEARING MATERIAL |
US4867889A (en) * | 1988-04-18 | 1989-09-19 | Garlock Bearings, Inc. | Composite bearings having improved wear life |
FR2633534B1 (en) * | 1988-07-01 | 1992-03-13 | Roulements Soc Nouvelle | METHOD FOR DEPOSITING A PTFE-BASED SELF-LUBRICATING COATING ON A BEARING ELEMENT AND BEARINGS THUS OBTAINED |
US5288354A (en) * | 1992-08-26 | 1994-02-22 | Rexnord Corporation | Method of bonding self-lubricating fibers to an external surface of a substratum |
EP0590488B1 (en) | 1992-09-25 | 1999-12-22 | Oiles Corporation | Multilayered sliding member |
ES2189917T3 (en) * | 1996-12-14 | 2003-07-16 | Federal Mogul Deva Gmbh | BEARING MATERIAL AND PROCEDURE FOR MANUFACTURING. |
-
1997
- 1997-07-24 US US08/899,572 patent/US5971617A/en not_active Expired - Lifetime
-
1998
- 1998-05-18 TW TW087107679A patent/TW384363B/en not_active IP Right Cessation
- 1998-07-11 EP EP98942669A patent/EP0998637B1/en not_active Expired - Lifetime
- 1998-07-11 JP JP2000504379A patent/JP2001511502A/en active Pending
- 1998-07-11 CN CN98807465A patent/CN1105834C/en not_active Expired - Lifetime
- 1998-07-11 CA CA002295829A patent/CA2295829C/en not_active Expired - Lifetime
- 1998-07-11 WO PCT/EP1998/004959 patent/WO1999005425A1/en active IP Right Grant
- 1998-07-11 ES ES98942669T patent/ES2251099T3/en not_active Expired - Lifetime
- 1998-07-11 BR BR9811530-8A patent/BR9811530A/en not_active IP Right Cessation
- 1998-07-11 KR KR10-2000-7000614A patent/KR100368927B1/en active IP Right Grant
- 1998-07-11 DE DE69831675T patent/DE69831675T2/en not_active Expired - Lifetime
-
1999
- 1999-08-13 US US09/373,846 patent/US6258413B1/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3058791A (en) * | 1959-04-13 | 1962-10-16 | Ralph F Stallman | Bearings |
US3711166A (en) * | 1968-10-10 | 1973-01-16 | Merriman Inc | Means for controlling the coefficient of friction between bearing surfaces |
US4238137A (en) * | 1978-04-26 | 1980-12-09 | American Bearing Company, Inc. | Slide bearing |
DE2944052A1 (en) * | 1978-11-08 | 1980-05-22 | Miba Gleitlager Ag | Heavy duty plain bearing - has backing surface profiled to take plastic based working coating (OE 15.3.80) |
DE3241002A1 (en) * | 1982-11-06 | 1984-05-10 | Gelenkwellenbau Gmbh, 4300 Essen | Sliding element |
GB2139236A (en) * | 1982-12-03 | 1984-11-07 | Daido Metal Co | Wear resistant materials |
DE3516649A1 (en) * | 1983-11-11 | 1986-11-13 | Nippon Dia Clevite Co., Ltd., Narashino, Chiba | Self-lubricating bearing |
DE3601568A1 (en) * | 1986-01-21 | 1987-07-23 | Kolbenschmidt Ag | SLIDING BEARING MATERIAL |
US5573846A (en) * | 1991-10-24 | 1996-11-12 | Norton Pampus Gmbh | Polyfluorocarbon coated metal bearing |
Non-Patent Citations (1)
Title |
---|
See also references of EP0998637A1 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1065138A3 (en) * | 1999-06-29 | 2003-05-07 | Intertractor GmbH | Track for tracklaying vehicles |
DE102004020385B4 (en) * | 2003-05-23 | 2008-07-10 | Saint-Gobain Performance Plastics Pampus Gmbh | Method for producing plain bearing bushes |
DE102005033681A1 (en) * | 2005-07-19 | 2007-02-08 | Kunststoff-Fröhlich GmbH | Plastic molded body, thermoplastic deformable granules, hollow structure and process for their preparation |
US8585293B2 (en) | 2007-03-29 | 2013-11-19 | Saint-Gobain Performance Plastics Pampus Gmbh | Calibratable plain bearing material |
US8979376B2 (en) | 2007-04-04 | 2015-03-17 | Saint-Gobain Performance Plastics Pampus Gmbh | Spherical plain bearing |
CN102056786A (en) * | 2008-06-20 | 2011-05-11 | 美国圣戈班性能塑料公司 | Steering yoke |
US9583230B2 (en) | 2008-09-30 | 2017-02-28 | Ntn Corporation | Electrically conductive polyethylene resin composition, electrically conductive polyethylene resin molding, sliding bearing, and sliding sheet |
US9022656B2 (en) | 2008-09-30 | 2015-05-05 | Saint-Gobain Performance Plastics Pampus Gmbh | Vibration-damping plain bearing composite and plain bearing bushing and plain bearing assembly |
DE102009055239A1 (en) | 2009-12-23 | 2011-06-30 | Federal-Mogul Wiesbaden GmbH, 65201 | Layer composite |
US9222513B2 (en) | 2009-12-23 | 2015-12-29 | Federal-Mogul Wiesbaden Gmbh | Laminate composite |
WO2011076662A1 (en) | 2009-12-23 | 2011-06-30 | Federal-Mogul Wiesbaden Gmbh | Laminate composite |
EP2796738A4 (en) * | 2011-12-22 | 2016-01-13 | Taiho Kogyo Co Ltd | Sliding member |
EP2806178A4 (en) * | 2012-01-20 | 2016-01-13 | Taiho Kogyo Co Ltd | Sliding member |
US9316298B2 (en) | 2012-01-20 | 2016-04-19 | Taiho Kogyo Co., Ltd. | Sliding member |
CN102720832A (en) * | 2012-07-05 | 2012-10-10 | 张永斌 | Method for improving lubricating property of linear contact fluid under high roll ratio |
EP2910805A1 (en) * | 2014-02-19 | 2015-08-26 | Hühoco Metalloberflächenveredelung GmbH | Hybrid metal/plastic composite for a sliding bearing and method for its preparation |
WO2016097284A1 (en) * | 2014-12-19 | 2016-06-23 | Saint-Gobain Performance Plastics Pampus Gmbh | Sliding component and method of forming the same |
US10428874B2 (en) | 2014-12-19 | 2019-10-01 | Saint-Gobain Performance Plastics Pampus Gmbh | Sliding component and method of forming the same |
GB2566148B (en) * | 2017-08-29 | 2023-01-18 | Renk Gmbh | Plain bearing and method for producing a plain bearing |
Also Published As
Publication number | Publication date |
---|---|
CN1265182A (en) | 2000-08-30 |
KR100368927B1 (en) | 2003-01-24 |
JP2001511502A (en) | 2001-08-14 |
BR9811530A (en) | 2000-08-22 |
CA2295829A1 (en) | 1999-02-04 |
EP0998637B1 (en) | 2005-09-21 |
DE69831675T2 (en) | 2006-06-14 |
ES2251099T3 (en) | 2006-04-16 |
DE69831675D1 (en) | 2006-02-02 |
US5971617A (en) | 1999-10-26 |
US6258413B1 (en) | 2001-07-10 |
KR20010022045A (en) | 2001-03-15 |
CA2295829C (en) | 2002-10-29 |
CN1105834C (en) | 2003-04-16 |
EP0998637A1 (en) | 2000-05-10 |
TW384363B (en) | 2000-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5971617A (en) | Self-lubricated bearing | |
EP2201256B1 (en) | Bearing | |
KR100454658B1 (en) | Multi-layered material for sliding element and its manufacturing method and use of the multi-layered material | |
RU2438877C2 (en) | Plain bearing and method of its production | |
EP2798099B1 (en) | A multi-layer composite including a fluoropolymer surface and a non-fluorinated polymer transition layer | |
US9168726B2 (en) | Cast fluoropolymer film for bushings | |
US6979129B2 (en) | Self-lubricated connector | |
US20130183488A1 (en) | Polymer coating on substrates using thermal spray techniques | |
WO2015044458A1 (en) | Laminates with fluoropolymer cloth | |
MXPA00000832A (en) | Self-lubricated bearing | |
US20230175552A1 (en) | Bearing material and methods of making and using the same | |
WO2005124173A1 (en) | Needle thrust bearing with misalignment tolerance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 98807465.6 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA CN JP KR MX |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2295829 Country of ref document: CA Ref document number: 2295829 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020007000614 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2000/000832 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998942669 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998942669 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020007000614 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020007000614 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1998942669 Country of ref document: EP |